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Non-motorized lane target behavior classification based 

on millimeter wave radar with P-Mrca convolutional 

neural network 

 

Abstract—In the fields of road regulation and road safety, the 

classification of target behaviors for non-motorized lanes is of 

great significance. However, due to the influence of adverse 

weather and lighting conditions on the recognition efficiency, we 

use radar to perform target recognition on non-motorized lanes to 

cope with the challenges caused by frequent traffic accidents on 

non-motorized lanes. In this paper, a classification and recognition 

method for non-motorized lane target behavior is proposed. 

Firstly, a radar data acquisition system is constructed to extract 

the micro-Doppler features of the target. Then, in view of the 

shortcomings of traditional deep learning networks, this paper 

proposes a multi-scale residual channel attention mechanism that 

can better perform multi-scale feature extraction and adds it to 

the convolutional neural network (CNN) model to construct a 

multi-scale residual channel attention network (MrcaNet), which 

can identify and classify target behaviors specific to non-

motorized lanes. In order to better combine the feature 

information contained in the high-level features and the low-level 

features, MrcaNet was combined with the feature pyramid 

structure, and a more efficient network model feature pyramid-

multi-scale residual channel attention network (P-MrcaNet) was 

designed. The results show that the model has the best scores on 

classification indexes such as accuracy, precision, recall rate, F1 

value and Kappa coefficient, which are about 10% higher than 

traditional deep learning methods. The classification effect of this 

method not only performs well on this paper's dataset, but also has 

good adaptability on public datasets. 

 
Index Terms—attention mechanism, feature pyramid structure, 

gait recognition, micro-Doppler signatures, MrcaNet, multi-scale 

residual channel attention, P-MrcaNet. 

 

 

I. INTRODUCTION 

ON-motorized lanes are an important part of the urban 

low-carbon transportation system and play an 

increasingly significant role in urban green travel. The 

classification and identification of non-motorized lane target 

behaviors can enable road supervision, improve traffic 
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efficiency, and ensure road safety. This has become a research 

direction attracting much attention. The current urgent problem 

is the lack of effective monitoring methods on non-motorized 

lanes, making traffic management difficult. This situation can 

cause traffic congestion, increase the risk of accidents, and 

endanger the safety of people with reduced mobility [1]. 

Traditional methods are mostly based on video and infrared 

images, which have limited effectiveness under conditions such 

as low light or extremely strong light, and cannot work in hazy 

weather. Additionally, because video images are easily blocked, 

especially at turning intersections and non-motor vehicle 

intersection areas, the recognition accuracy is low, affecting the 

monitoring effect [2]. Radar has the advantage of not being 

affected by weather and occlusion and can stably measure and 

perceive the traffic environment all day long. It is an important 

supplement to the video image method and can achieve reliable 

monitoring of non-motorized lanes with a small increase in cost. 

As machine learning methods such as deep learning have made 

significant progress, there is increasing attention to the use of 

micro-Doppler [3],[4], sensor fusion [5], pattern recognition [6], 

and other technologies to achieve the identification and 

classification of road targets. 

 

A. Motivation and Contribution 

The above article does achieve a good effect on the multi-

angle classification task. However, at different scales, the 

objects in the image may have different features, and the 

traditional method may only focus on the features on the fixed 

scale, while ignoring the information on other scales. This also 

limits the use of these methods in certain applications that 

require a high degree of interpretability. To solve these 

problems, this paper proposes a deep learning network 

architecture, P-MrcaNet, to better integrate multi-scale features. 

This can identify and classify Non-motorized lane specific 

target behaviors, strengthen the supervision of turning junctions 

and non-motor vehicle crossing areas, and thus reduce accident 

rates. Our contributions can be summarized as follows: 
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1) This paper proposes a new network model, MrcaNet, which 

introduces a multi-scale residual attention mechanism into 

the model and searches for the optimal multi-scale attention 

mechanism through experiments. 

2) In order to better combine the feature information contained 

in the high-level features and the low-level features in the 

operation of the network, MrcaNet is combined with the 

feature pyramid structure, and the network model P-

MrcaNet with high accuracy is designed. 

3) We have analyzed data from various perspectives by 

comparing the accuracy, precision, recall rate, F1 score, 

Kappa coefficient, and other classification performance 

measures of the data confusion matrix. Based on these 

measures, we conclude that the new model has the most 

effective classification performance. 

4) The targets to be identified are not limited to simple gaits but 

also include more complex human activities, such as 

hobbling on crutches, hopping on one leg, riding a bicycle, 

etc. Compared with repetitive and single human activities, 

the complex activities identified in this article can better 

reflect people's intentions and have practical significance. 

 

II. RELATED WORKS 

A. Explainable Gait Recognition 

Pedestrian gait recognition technology can be used for 

pedestrian behavior analysis and detection [7],[8],[9]. Through 

the recognition and analysis of pedestrian gait, the pedestrian's 

walking speed, direction, and intention can be detected, which 

helps to improve the safety and convenience of urban traffic. As 

highlighted by Komura et al. [10], physiological effects can be 

attached to motion-captured data, providing deeper insights 

into human movement dynamics. Additionally, Chan et al. [11] 

developed a virtual reality dance training system using motion 

capture technology, showcasing the potential for immersive and 

interactive applications in this field. Moreover, Sandilands et al. 

[12] explored interaction capture using magnetic sensors, 

contributing valuable insights into capturing subtle nuances of 

human interaction through advanced sensor technologies. 

These works collectively underscore the significance of 

integrating motion capture techniques with gait analysis. 

Research on Human Activity Recognition (HAR) has made 

significant progress in the past decade. Human activity 

classification methods based on radar micro-Doppler data 

usually extract physically interpretable features from the time-

velocity domain, and use them for classification [13],[14]. Li et 

al. [15] elaborated on the application of radar systems and deep 

learning technology in detecting human behavior, and 

summarized corresponding deep learning algorithms for 

different types of radar echo forms. Ni et al. [16] used the 

micro-Doppler characteristics of human gait captured by 

millimeter-wave radar to build a micro-Doppler Gait (Mgait) 

system that can realize indoor multi-person identity recognition 

and intrusion detection with an accuracy of up to 88.59%. Bai 

et al. [17] proposed an effective method to generate radar 

echoes using infrared public motion capture datasets. 

Experiments show that the proposed method achieves higher 

recognition accuracy in fine human gait classification and can 

be easily It can be extended to the fine recognition of other 

human activities. Li et al. [18] proposed a high-precision and 

efficient human activity classification method based on radar 

micro-Doppler features, data enhancement, and deep neural 

networks. Experimental results show that the optimal 

parameters can be selected to classify different human micro-

movements. The accuracy rate can reach more than 99%. Zhao 

et al. [19] proposed a new continuous human motion 

recognition (HMR) method using micro-Doppler features, 

which can work in scenarios with non-target micro-motion 

interference. At present, human activity classification methods 

based on radar micro-Doppler data have high accuracy, but 

compared with simple behaviors such as walking, running, 

squatting, etc., complex activities can better express people's 

intentions and have more practical significance. 

 

B. Target Recognition of Vulnerable Road Users 

Non-motorized lanes contain not only pedestrians but also 

cyclists, such as bicycles and electric bicycles. In practical 

applications, pedestrians and non-motor vehicles are 

collectively called “Vulnerable Road Users (VRUs)”. By 

identifying different types of targets, traffic conditions on the 

road can be monitored more accurately to ensure the safety of 

pedestrians and vehicles [20],[21]. Du et al. [22] proposed a 

pedestrian and bicycle feature extraction method based on 

sparse coding of micro-Doppler features and verified it. The 

results showed that this method has higher recognition accuracy. 

Chipengo et al. [23] proposed a micro-Doppler feature 

difference classification method for disadvantaged road users 

based on a training machine learning algorithm. The research 

results show that the spectrogram obtained within a time 

window of 0.2s can achieve an accuracy of 95%. In the context 

of disadvantaged road users, Dubey et al. [24] proposed a new 

Bayesian-based deep metric learning method to learn feature 

embeddings corresponding to target micro-Doppler features. 

The results show that this method makes the target separable 

better. Gurbuz et al. [3] proposed a road target recognition 

scheme based on micro-Doppler, using joint radar and 

communication operations to achieve collaborative multi-static 

observation. The results show that the target recognition 

capability based on collaborative multi-sensors is significantly 

better than other methods. 

Although the above machine learning methods are effective 

in certain scenarios, they cannot effectively train models in all 

cases and require a substantial amount of data as well as multi-

sensor support. With the increasing complexity of tasks, 

whether these methods can maintain their performance 

advantage still necessitates further research and exploration. 

 

C. Gait Recognition Based on Deep Learning 

Many researchers use different human behaviors as inputs to 

neural networks to test the accuracy of their proposed 

algorithms for object recognition and prediction. Chen et al. [25] 

developed a Conditional Autoregressive Motion Diffusion 

Model (CAMDM) for character control, utilizing transformer-

based architecture to generate diverse and high-quality 

character animations in real time. The model demonstrates 

robust performance across various dynamic user control signals, 

showcasing effective motion generation capabilities. 
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Jokanovic et al. [26] applied a 14-layer deep convolutional 

neural network (DCNN) on time-Doppler maps to classify 

human gait. Experimental results show that even in lower 

frequency or low signal-to-noise ratio environments, the 

DCNN structure can extract effective micro-Doppler features 

of human gait. R.P. et al. [27] used a superimposed auto-

encoder to obtain the most significant features in radar echoes, 

and then used a softmax classifier to identify human motion. 

The results show that convolutional auto-encoder (CAE) is 

better than convolutional neural network (CNN) and ordinary 

auto-encoder in identifying human activities. W. Wang et al. 
[28] introduced NEURAL MARIONETTE, a transformer-

based multi-action human motion synthesis system. Extensive 

experiments confirm the system's ability to generate motions 

with precision, naturalness, and fluidity. Furthermore, W. Wang 

et al. [29] proposed a technique used in the fields of computer 

graphics and artificial intelligence to generate realistic 3D 

human motion sequences based on descriptive tags or keywords.  

As the above-mentioned deep learning models are 

increasingly used in radar target recognition, many target 

recognition and classification methods based on deep learning 

have been proposed. Therefore, in the field of radar target 

recognition, deep learning architecture has been achieved good 

results. 

 

III. DATA CONSTRUCTION 

In this section, we describe the data collection and data 

processing process, as shown in Fig. 1. 

Moving Target 
Indicator

Moving 
target

Raw 
Dataset

Radar
Short-time Fourier 

Transform

Butterworth 
Filter

Processed 
Dataset

 
Fig. 1. Data collection and processing flow chart. 

 

A. Data Collection 

We collected eight different target behaviors on non-

motorized lanes: walking; running; one-legged jumping; 

double-legged jumping; walking while using a mobile phone; 

walking with crutches; cycling; electric cycling. Each category 

collects 200 sets of data, with a total of 1,600 pieces of data in 

8 categories. The outdoor pedestrian and non-motor vehicle 

behavior data collection system is shown in Fig. 2, in which Fig. 

2(a) represents the moving target to be measured. Fig. 2(b) 

shows the data acquisition and processing platform of TI's 

millimeter wave radar chip, which is used to process the raw 

data obtained from the sensor. Fig. 2(c) represents the Radar 

system, which mainly transmits the target position, movement 

speed, and other information collected by AWR1642 and 

DCA1000EVM to the computer. 

Radar system

（AWR1642、

DCA1000EVM）

Moving target

mmWave Studio

(a)

(b)
(c)

 
Fig. 2. Experimental environment diagram. 

 

B. Data Preprocessing 

Common features used for pedestrian and non-motor vehicle 

detection include speed, gait frequency, and stride length, 

which are extracted using short-time Fourier transform (STFT) 

[30], [31], [32] and radar reflection Doppler [33]. 

Due to the static interference of zero velocity in the 

actual measurement process, using a single delay line 

cancelling moving target indicator can filter out the static 

clutter returned by radar and keep only the moving target 

signal. 

Due to the large amount of environmental noise present in 

the actual application scenario of this project, denoising 

algorithms can transform this data into a form more suitable for 

feature extraction [34] and neural network classification 

training. Therefore, this paper employs a Butterworth high-pass 

filter (BHPF) for processing, achieving filtering of the low-

frequency part. Repeat the above steps for the eight 

categories respectively to obtain the speed-time micro-

Doppler images of eight gaits as shown in Fig. 3. 

(a) (b) (c) (d)

(e) (f) (g) (h)  
Fig. 3. Micro-Doppler images, (a)-(h) represent micro-Doppler 

images of different targets. 

 

To remove the blank parts of each piece of data, each data is 

cropped and organized into 𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝑪, with each sample size 

of ℝ1×500×800. In order to expand the number of samples, data 

augmentation is applied to each sample. Each sample is 

horizontally cropped into 5 samples according to the following 

method, resulting in 𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝑬 comprising 8000 samples: 
𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝑬[𝑖 ∗ 5 + 𝑗, 0~500,0~400] =

𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝑪[𝑖, 0~500,100 ∗ 𝑗~100 ∗ 𝑗 + 400] (1)
 

This article has been accepted for publication in IEEE Transactions on Biometrics, Behavior, and Identity Science. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2024.3428577

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 21,2024 at 04:44:43 UTC from IEEE Xplore.  Restrictions apply. 



 

4 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. XX, NO. XX, MONTH X, XXXX 

where 𝑖  represents the sample index in 𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝑪 , and 𝑗 

represents the corresponding index of the data cropped from 

each sample in 𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝑬 , with 𝑗 ∈ (0,1,2,3,4) , the size of 

each sample in 𝑫𝒂𝒕𝒂𝒔𝒆𝒕𝑬 is ℝ𝟏×𝟓𝟎𝟎×𝟒𝟎𝟎. 

 

IV. NETWORK CONSTRUCTION 

In the actual scenes discussed in this article, scale changes of 

objects are common. The same object can appear at different 

scales, and different image scales contain varying levels of 

feature information, as shown in Fig. 4. The edge features of 

objects can usually be extracted in lower-level feature maps, 

while higher-level feature maps contain more abstract and 

feature-rich information. Therefore, multi-scale feature 

extraction is particularly important [35], [36]. 

To capture features of various scales and improve the 

network's perception ability, this paper proposes a channel 

attention mechanism for multi-scale residual networks based on 

CNN. It combines this mechanism with a pyramid network 

structure to build a model that can better classify and recognize 

the target behavior of non-motorized lanes. 

bicycle frame, 
human torso

bicycle frame, 
human torso, 
human limbs

（a）

Human 
torso

human torso, 
human limbs

（b）  
Fig. 4. Features of cycling (a) and running (b) at different scales. 

 

A. Multi-scale Residual Channel Attention Mechanism 

Traditional CNN models [37] face limitations in processing 

features of different scales due to fixed-size convolution and 

pooling kernels, leading to loss of details, especially in small 

targets or image boundaries. To capture the characteristics of 

various scales and improve the perceptual ability of the network, 

after introducing channel attention [38], a CNN-based method 

was proposed as the multi-scale residual channel attention 

(MRCA) mechanism, the MRCA structure is shown in Fig. 5a. 
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Fig. 5. Mrca block structure diagram, (a) Multi-scale residual channel attention mechanism, (b) Channel attention mechanism. 

 

The feature extraction method in MRCA is as follows: 

𝑿𝟏 = 𝐶𝑜𝑛𝑣(1,1) (𝐶𝑜𝑛𝑣(1,1)(𝑿)) (2) 

𝑿𝒊 = 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐶𝑜𝑛𝑣(2𝑖−1,2𝑖−1)(𝑿𝟏))) (3) 

where 𝑖 represents the sequence number of feature extraction, 

𝑖 ∈ (1,2,3,4) , 𝐶𝑜𝑛𝑣(2𝑖−1,2𝑖−1)()  represents a convolution 

operation whose convolution kernel size is (2𝑖 − 1,2𝑖 − 1) . 

BN stands for batch normalization operation. The core idea of 

BN is to normalize the input of each feature channel into a 

distribution with mean 0 and variance 1, and then map it to the 

appropriate range through learnable scaling and translation 

parameters. In order to solve the problem of gradient 

disappearance and increase model flexibility, the residual 

connection is introduced to add 𝑿𝒊 and 𝑿𝟏. 

As shown in Fig. 5b, the implementation of the channel 

attention mechanism is divided into global maximum pooling 

and global average pooling, and two feature vectors 𝑭𝒂𝒗𝒈 and 

𝑭𝒎𝒂𝒙 can be obtained. Then input 𝑭𝒂𝒗𝒈 and 𝑭𝒎𝒂𝒙 into the fully 

connected layer to obtain two feature weight vectors: 

𝑾𝒂𝒗𝒈 = 𝜎(𝑾𝟏𝑭𝒂𝒗𝒈 + 𝑏1), 𝑾𝒎𝒂𝒙 = 𝜎(𝑾𝟐𝑭𝒎𝒂𝒙 + 𝑏2) (4) 

Among them, 𝑾𝟏, 𝑏1 and 𝑾𝟐, 𝑏2 are the weights and biases 

of the two fully connected layers respectively, 𝜎 representing 

the activation function (here we use Sigmoid). Then add the 

𝑾𝒂𝒗𝒈 sum 𝑾𝒎𝒂𝒙 element-wise to get the final weight vector: 

𝑾𝒄 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑾𝒂𝒗𝒈 + 𝑾𝒎𝒂𝒙) (5) 

Finally, the original feature map 𝑋and weights are weighted 

𝑾𝒄 ∈ [0,1]and summed to obtain the enhanced feature map: 

𝒀 = ∑ 𝑾𝒄𝒊𝑿:,:,𝒊

𝐶

𝑖=1
(6) 

As can be seen from the above, after the feature map 𝑿 ∈
ℝ𝑯×𝑾×𝑪  passes through a fully connected layer, 𝑿  is 

compressed into a smaller feature map, and then activated by a 

Sigmoid function to obtain the weight vector 𝑾𝒄 represents the 

importance of each channel, and is multiplied with the original 

feature map 𝑿  to obtain 𝒀 . Each channel of 𝒀  is assigned a 

different weight, indicating the importance of the channel. 

The MRCA module considers multi-scale features and 

channel correlations using different-sized convolution kernels, 

capturing local and global context simultaneously, and adapting 

to multi-scale inputs. With channel attention, it weights feature 

channels, improving expressive ability and performance by 

focusing on meaningful scales, and accurately capturing key 

features for complex tasks. Adding MRCA to the convolutional 

neural network structure, the MRCA feature extraction 

structure (Features-Mrca) is obtained as shown in Fig. 6, which 
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represents the number of convolution and MRCA output 

channels. Four feature-MRCA blocks are connected in series 

with channel numbers 16, 64, 128, 512. Then fully connected 

layers with hidden layers of 256 and 512 are added at the end 

to construct the multi-scale residual channel attention 

mechanism network (MrcaNet). 
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Fig. 6. MRCA feature extraction structure (Features-Mrca). 

 

B. Feature Pyramid Multi-scale Residual Channel Attention 

Network 

Feature pyramid structure (FPS) is a widely used technique 

for classification tasks. FPS constructs a multi-scale feature 

map pyramid to capture object features at various scales, 

enabling algorithms to handle objects of different sizes 

effectively. Feature Pyramid Network (FPN) [39],[40],[41] is a 

network architecture based on the FPS framework, which 

enables the generation of feature maps with varying resolutions 

across different levels. 

Taking the CNN structure as an example, the input image is 

𝑰 . Through a series of convolution and pooling operations, 

multiple feature maps are obtained, expressed as 𝑭𝒊, 2 ≤ 𝑖 ≤ 5, 

these maps correspond to different network levels. When 𝑖 = 2, 

the feature map calculation process is as follows: 

𝑭𝒊 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑰, 𝑾𝒊)) (7) 

Among them, 𝐶𝑜𝑛𝑣() represents the convolution operation, 

𝑅𝑒𝐿𝑈() represents the modified linear unit operation, and 𝑾𝒊 

is the convolution kernel parameter of the corresponding level. 

When 𝑖 > 2, the feature map calculation process was as follows: 

𝑭𝒊 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑭𝒊−𝟏), 𝑾𝒊)) (8) 

Among them, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙() represents the maximum pooling 

operation. Due to the pooling operation, as the level increases, 

the resolution of the feature map gradually decreases, causing 

the network to lose detailed information when processing small 

objects. In order to solve this problem, FPN is introduced. First, 

perform an upsampling operation: 
𝑼𝑭𝒊

= 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑭𝒊) (9) 

Among them, 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒()  represents the upsampling 

operation, which uses bilinear interpolation to estimate the 

value of the new pixel using the weighted average of the 

surrounding four pixels. When the image is 𝑰𝑼, interpolation is 

performed at the position of the image, set the four adjacent 

pixels respectively 𝑰𝑼(𝑥1, 𝑦1) , 𝑰𝑼(𝑥1, 𝑦2) , 𝑰𝑼(𝑥2, 𝑦1) , 

𝑰𝑼(𝑥2, 𝑦2), bilinear interpolation can be expressed as: 
𝐼𝑖𝑛𝑡𝑒𝑟𝑝(𝑥, 𝑦) = (1 − 𝛼)(1 − 𝛽)𝑰𝑼(𝑥1, 𝑦1) +  𝛼(1 − 𝛽)

𝑰𝑼(𝑥2, 𝑦1) + (1 − 𝛼)𝛽𝑰𝑼(𝑥1, 𝑦2) + 𝛼𝛽𝑰𝑼(𝑥2, 𝑦2) (10)
 

where 𝛼 sum 𝛽 is relative to the relative position (𝑥, 𝑦) in the 

𝑥and 𝑦 direction: 

𝛼 = 𝑥 − 𝑥1, 𝛽 = 𝑦 − 𝑦1 (11) 

where the value range of 𝛼 and 𝛽 is [0,1]. 

Then, Construct a feature pyramid through channel-

dimensional connection and upsampling operations. 

Combining MRCA with FPN creates the feature pyramid-

multi-scale residual channel attention network (P-MrcaNet). P-

MrcaNet leverages MRCA's multi-scale adaptability and FPN's 

multi-level feature fusion to enhance object detection across 

scales. FPN's top-down feature propagation complements 

MRCA's attention mechanism, improving feature relationships 

and contextual utilization. Integrating multi-scale features and 

rich contextual information enhances P-MrcaNet's detection 

accuracy and robustness, enabling precise target localization 

across various scales. 

 

C. Improved Network Structure 

To optimize Feature-MRCA combined with FPS, we placed 

multiple Feature-MRCAs before and after FPS in strategic 

locations and conducted experiments to analyze their impacts. 

Findings emphasized the importance of including a 16-channel 

Feature-MRCA before FPS for effective learning of low-level 

image features. Similarly, lacking a 32-channel Feature-MRCA 

before FPS led to degraded performance in recognizing 

medium-level features crucial for accurate recognition. 

Furthermore, the absence of a 64-channel Feature-MRCA 

impacted the network's understanding of the overall image 

structure, resulting in reduced performance when processing 

global information. Moreover, the absence of a 128-channel 

Feature-MRCA before FPS further hindered the network's 

ability to comprehend the overall image structure, especially in 

recognizing complex objects and scenes. 

After conducting multiple experiments, we determined that 

incorporating Feature-MRCA with channel numbers 16, 32, 64, 

and 128 before FPS provided optimal results. Following FPS, 

we added another Feature-MRCA configuration with channel 

numbers 128, 256, 256, and 512. This refined setup effectively 

merged and processed features, assisting the network in 

comprehending the complex semantic and spatial information 

within images. The model structure is illustrated in Fig. 7, 

where the numbers displayed in the Features-MRCA block 

signify the number of output channels. The input to the network 

is an 𝑋 ∈ ℝ1×500×400 single-channel image.  
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Fig. 7. Improved P- MrcaNet model structure. 

 

The feature map after feature pyramid-multi-scale residual 

channel attention feature extraction is 𝑿𝒊 . When 𝑖 = 1 , the 

feature extraction process is as follows: 

𝑿𝒊 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑀𝑅𝐶𝐴(𝑿) (12) 

When 2 ≤ 𝑖 ≤ 4 , the feature extraction process was as 

follows: 

𝑿𝒊 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑀𝑅𝐶𝐴(𝑿𝒊−𝟏) (13) 

When 2 ≤ 𝑖 ≤ 4, the feature maps 𝑿𝒊 are upsampled to the 

size of (250, 200) so that they have similar spatial resolution: 

𝑿𝒊_𝑼𝒑𝒔𝒂𝒎𝒑𝒍𝒆 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑿𝒊) (14) 

Then the feature map of the upper sample is concatenated 

with the output of the first feature extraction module to form the 

feature pyramid 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑷𝒚𝒓𝒂𝒎𝒊𝒅. 
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Taking 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑷𝒚𝒓𝒂𝒎𝒊𝒅 ∈ ℝ𝟐𝟒𝟎×𝟐𝟓𝟎×𝟐𝟎𝟎  as input, the 

Feature graph 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑶𝒖𝒕𝒑𝒖𝒕  is obtained by the 5th ~ 8th 

feature extraction. Flatten the feature map after feature 

extraction into a one-dimensional vector 𝑭𝒍𝒂𝒕𝒕𝒆𝒏𝑶𝒖𝒕𝒑𝒖𝒕.  

Finally, the final output is obtained by inputting the MLP 

structure 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 consisting of three fully connected layers, 

each layer followed by batch normalization, 𝑅𝑒𝐿𝑈  activation 

functions and 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 operations: 

𝑶𝒖𝒕𝒑𝒖𝒕 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑭𝒍𝒂𝒕𝒕𝒆𝒏𝑶𝒖𝒕𝒑𝒖𝒕) (15) 

Among them, the output size of the last fully connected 

layer is 8, corresponding to 8 categories. 

 

D. Comparison of Computational Resources 

In this section, the computational resources required for the 

P-MrcaNet model and other models are compared, as shown in 

Table I, where the total params represent the total number of 

trainable parameters in the model, the pass size indicates the 

memory consumption size during forward/backward 

propagation, the params size indicates the memory size 

occupied by model parameters, and the total size indicates the 

total memory size expected to be occupied by the entire model. 

Firstly, we compared the total parameter count of P-MrcaNet 

with several deep learning models, including LeNet [42], 

AlexNet [43], ZFNet [44], VGG13 [45], VGG16 [46], SENet 

[47], ShuffleNetV2 [48] and ViT [49]. The results indicated that 

P-MrcaNet has a total parameter count of 5.63e7, which falls 

within the moderate range. Next, we investigated the memory 

usage performance of P-MrcaNet. We calculated its memory 

size for forward/backward propagation to be 1057.29MB, with 

the parameter size being 214.84MB, totaling approximately 

1272.89MB. Compared with the model with larger parameters, 

P-MrcaNet has lower memory requirements. 

TABLE I 

PERFORMANCE METRICS OF MODELS 

Model 
Total 

params 
Pass size 

(MB) 
Params size 

(MB) 
Total size 

(MB) 

ShuffleNetV2[48] 1.16e6 637.77 4.43 642.97 

SENet[47] 2.18e6 793.67 8.31 802.74 

LeNet[42] 2.40e7 19.08 91.60 111.44 

MrcaNet 2.60e7 1024.16 99.23 1124.15 

ViT[49] 4.35e7 255.38 3.16 259.3 

P-MrcaNet 5.63e7 1057.29 214.84 1272.89 

AlexNet[43] 5.70e7 33.70 217.52 251.98 

ZFNet[44] 5.83e7 106.88 222.34 329.98 

VGG13[45] 4.04e8 790.73 1540.03 2331.53 
VGG16[46] 4.13e8 869.84 2446.39 2446.39 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

In this paper, in order to train and optimize the model 

effectively, the Adam optimizer with a learning rate of 1e-4 is 

used for updating the model parameters. The batch size is set to 

32 to balance training speed and memory consumption. The 

training model is run for 300 epochs, as verified by several 

experiments to ensure that the model achieves sufficient 

convergence and generalization ability during the training 

process. For the loss calculation, we use the cross-entropy loss 

function. The dataset is divided into the training set, validation 

set, and test set according to the ratio of 5:3:2. The training set 

is used to train the model parameters, the hyperparameters are 

adjusted, and the performance of the model is evaluated using 

the validation set. Finally, the test set is used for the final 

evaluation of the model to ensure the generalization and 

reliability of the model. 

 

A. T-SNE Visualization 

In order to intuitively show the classification performance of 

each network model, we visualize the t-Distributed Stochastic 

Neighbor Embedding (t-SNE) plots for each network model, 

using data that is not involved in model training. 

Through t-SNE, high-dimensional features are converted 

into points on a two-dimensional plane, and the classification 

effect is displayed using graphics. Fig. 8 shows the t-SNE 

visualization results of some network models. 

The t-SNE visualization results show that P-MrcaNet is 

superior to other network models in classification. 

ShuffleNetV2 VGG16

ViT P-MrcaNet

 
Fig. 8. t-SNE visualization of some models. 

 

B. Accuracy Comparison 

Use the optimal parameter combination built above to train 

the network model and verify its classification and recognition 

effect. Then, the classification results of various target samples 

are visualized through the confusion matrix. The confusion 

matrix and accuracy of each model are shown in Fig. 9. 

The accuracy of all models in classifying target behavior on 

non-motor vehicle lanes ranges from 80.563% to 97.500%. 

LeNet's shallow structure limited its ability to process 

complex images, resulting in reduced performance in capturing 

intricate features. AlexNet, while an improvement over LeNet, 

still faced structural limitations affecting its effectiveness in 

handling diverse target behaviors. VGG13 and VGG16 

improved performance by deepening the network but increased 

computational complexity, potentially leading to overfitting 

and higher costs. ZFNet, despite architectural optimizations, 

struggled with local information extraction and multi-scale 

feature fusion, impacting its accuracy. 

ShuffleNetV2, a lightweight model, achieved 91.125% 

accuracy, demonstrating promising performance and 

computational advantages. However, for diverse target 

behaviors, more robust feature extraction capabilities may be 

necessary. ViT excelled in capturing global information but had 

89.563% accuracy, indicating weakness in extracting critical 

local information for non-motorized lane target behavior 

classification.
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SENet with attention mechanisms reached 90.375% accuracy, 

highlighting the utility of attention mechanisms but suggesting 

room for improvement in handling complex scenarios. 

In contrast, MrcaNet significantly improved accuracy to 

95.625%, with P-MrcaNet further increasing accuracy to 

97.500%. These models comprehensively captured image 

information, making them leaders in classifying target 

behaviors on non-motorized lanes. 

（a） （b） （c） （d）

（e） （f）

（i）

（j）（g） （h）

+Pyramid

 
Fig. 9. Confusion matrix diagrams for different networks, where (a)-(h) are confusion matrix diagrams for other networks, and (i), 

(j) are confusion matrix diagrams for the network proposed in this paper. 

 

Combined with Table I and Fig. 9, the classification accuracy 

and required resources of all models were graded. Models with 

accuracy below 85% are rated as “Inadequate”, those with 

accuracy between 85% and 95% are rated as “Adequate”, and 

those with accuracy above 95% are rated as “Good”. Models 

with total params less than 1e7 are classified as “Small”, those 

with params between 1e7 and 1e8 are classified as “Medium”, 

and those with params above 1e8 are classified as “Large”. 

Models with a total size less than 500MB are labeled as “Small”, 

those between 500MB and 1500MB are labeled as “Medium”, 

and those above 1500MB are labeled as “Large”. The summary 

of these classifications is provided in Table II. 

As seen from Table II, P-MrcaNet achieves “Good” level 

accuracy with a medium number of parameters and model size 

compared to other models. Specifically, P-MrcaNet avoids the 

massive parameter count and the large-scale structure of large 

models like VGG13 and VGG16, while providing better 

accuracy than early models such as LeNet and AlexNet. 

Compared to models like SENet, ZFNet, and ShuffleNetV2, P-

MrcaNet offers higher accuracy while maintaining a similar 

scale. Furthermore, although ViT also has “Adequate” accuracy 

and a medium-sized parameter count, P-MrcaNet still holds an 

advantage in terms of accuracy. 

TABLE II 

MODEL PERFORMANCE AND SCALE SUMMARY 
Model Accuracy Total params Total size 

LeNet[42] Inadequate Medium Small 

AlexNet[43] Adequate Medium Small 
VGG13[45] Adequate Large Large 

ViT[49] Adequate Medium Small 

SENet[47] Adequate Small Medium 
ZFNet[44] Adequate Medium Small 

ShuffleNetV2[48] Adequate Small Medium 

VGG16[46] Adequate Large Large 

MrcaNet Good Medium Medium 

P-MrcaNet Good Medium Medium 

 

C. Comparison of Different Performance Indicators 

Based on the above research, the classification performance 

of different models is measured by comparing the accuracy, 

precision, recall, F1 value, Kappa coefficient, and other 

classification performance measures of the data confusion 

matrix [50]. Accuracy is the correct rate: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
(16) 

where the true number (TP) is the correct prediction number 

that belongs to the class and is consistent with the actual class; 

False positives (FP) are counts of predictions made for 

categories that do not match the actual category; False 

negatives (FN) are instances of the actual class present, but the 

prediction does not include the class count; True negative (TN) 

is the count of instances where the prediction does not include 

a class and the actual class does not exist. 

Precision represents the proportion of samples in the study 

area that were correctly predicted: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(17) 

Recall is also called recall rate. It represents the proportion 

of samples with correct predictions in the study area: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(18) 

The F1 value is the arithmetic mean divided by the geometric 

mean, and the larger the value, the better. It is derived by 

combining Precision and Recall: 

𝐹1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(19) 

The Kappa coefficient is used for consistency testing and can 

also be used to measure classification accuracy. Its calculation 

is based on a confusion matrix, which represents the ratio of 

error reduction between classification and completely random 

classification. 

𝐾𝑎𝑝𝑝𝑎 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒

(20) 

where the 𝑝0 is the sum of the number of correctly classified 

samples of each category divided by the total number of 

samples, which is the overall classification accuracy. 𝑝𝑒  is 
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calculated by the following formula: 

𝑝𝑒 =
𝑎1 ∗ 𝑏1 + 𝑎2 ∗ 𝑏2 + ⋯ + 𝑎𝑐 ∗ 𝑏𝑐

𝑛 ∗ 𝑛
(21) 

As can be seen from the results of different classification 

indicators in Fig. 10, each classification indicator of P-MrcaNet 

is optimal and maintained at around 97.5%. 

 
Fig. 10. Results chart of different classification indicators. 

 

D. Ablation Experiments 

In order to better analyze the role and importance of each 

component in P-MrcaNet, we conducted ablation experiments 

on the model. The details of the experimental parameters are 

consistent with our previous experimental settings. The ablation 

models are: (a) the model that removes the multi-scale residual 

channel attention block, (b) the model that removes the multi-

scale residual feature block, (c) the model that removes the 

channel attention mechanism block, (d) the feature pyramid 

block is deleted model, and (e) P-MrcaNet. 

The results of the ablation experiments are shown in Table 

III. The results of ablation experiments show that multi-scale 

residual channel attention and feature pyramid structure play 

significant roles in this classification task. 

TABLE III 

RESULTS OF THE ABLATION EXPERIMENTS 

Model 
Multi-scale 

residual 
Channel 
attention 

Feature 
pyramid 

Accuracy 

a No No Yes 92.500% 
b No Yes Yes 93.125% 

c Yes No Yes 94.063% 

d Yes Yes No 95.625% 
e Yes Yes Yes 97.500% 

 

E. Validation on Public Datasets 

In this paper, to enhance the credibility and performance of 

the P-MrcaNet model, we conducted further validation using a 

public dataset. We selected the Defence Institute of Advanced 

Technology micro-Doppler Human Activity Recognition 

(DIAT-μRadHAR) dataset [51] as the experimental foundation.  

The DIAT-μRadHAR dataset was acquired using an X-band 

continuous wave (CW) 10 GHz radar system. This dataset 

consists of records documenting suspicious human activities, 

such as army crawling, army jogging, gun jumping, army 

marching, boxing, rock/grenade throwing, etc. Throughout the 

data acquisition process, individuals with varying heights, 

weights and genders were instructed to perform these 

suspicious activities at different target angles (0°, ±15°, ±30° 

and ±45°), within a range spanning from 10 m to 0.5 km from 

the radar. Subsequently, micro-Doppler features were extracted 

from the acquired data and compiled into this dataset.  

To simulate a more complex real-world environment, we 

introduced random noise from a normal distribution with a 

mean of 0 and a standard deviation equal to the standard 

deviation of the input samples into the DIAT-μRadHAR 

dataset. The same experimental methods used for the 

dataset collected in this study were applied to this public 

dataset, and the experimental results are shown in Table IV.  

The results of the experiments clearly demonstrate the 

excellent performance of the P-MrcaNet model on the DIAT-

μRadHAR dataset compared to traditional deep learning 

models. This experiment further solidifies the scientific 

foundation of our proposed model, providing a robust 

theoretical basis for its effectiveness in addressing diverse 

environments and challenges. 

TABLE IV 

SUMMARY OF RECOGNITION ACCURACY OF DIFFERENT 

NETWORKS ON PUBLIC DATASETS 
Network Accuracy 

LeNet[42] 82.940% 
ShuffleNetV2[48] 85.185% 

ViT[49] 90.608% 

AlexNet[43] 90.741% 
ZFNet[44] 91.931% 

SENet[47] 92.989% 

VGG16[46] 93.254% 
VGG13[45] 93.386% 

MrcaNet 95.635% 

P-MrcaNet 96.296% 

 

VI. CONCLUSION 

In order to solve the problem of low efficiency in 

identifying vulnerable road users, this paper proposes a 

new non-motorized lane user behavior classification and 

identification method based on the multi-scale residual 

attention mechanism and the feature pyramid model P-

MrcaNet and uses actual measurements. The data generates 

a confusion matrix to compare the accuracy and 

performance measures of different networks. The results 

show that the convolutional neural network based on P-

MrcaNet can effectively distinguish eight behavioral 

categories such as walking, running, walking with crutches, 

bicycles, and electric vehicles. The overall accuracy of the 

model on the test set is 97.500%, which is better than the 

classification accuracy of ZFNet, VGG16, ShuffleNetV2, 

ViT, and other networks.  

Finally, the accuracy, precision, recall, F1 value, Kappa 

coefficient, and other classification performance measures 

of the data confusion matrix are compared to show that the 

new model has the optimal classification effect. In the 

future, the branches of the P-MrcaNet model can be 

expanded according to the input features to meet more 

feature inputs, allowing the model to better adapt to 

different types of data, such as images, text, and audio. The 

model can also be adaptively adjusted according to the 

input features to achieve the best classification effect. In 

addition, it can also be planned to expand the recognition 

of all target types on urban roads, such as cars, trucks, 

tricycles, etc., to better solve urban road congestion and 

safety problems. 
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