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Abstract—Both Convolutional Neural Networks (CNNs) and
Transformers have shown great success in semantic segmen-
tation tasks. Efforts have been made to integrate CNNs with
Transformer models to capture both local and global context
interactions. However, there is still room for enhancement, partic-
ularly when considering constraints on computational resources.
In this paper, we introduce HAFormer, a model that combines
the hierarchical features extraction ability of CNNs with the
global dependency modeling capability of Transformers to tackle
lightweight semantic segmentation challenges. Specifically, we
design a Hierarchy-Aware Pixel-Excitation (HAPE) module for
adaptive multi-scale local feature extraction. During the global
perception modeling, we devise an Efficient Transformer (ET)
module streamlining the quadratic calculations associated with
traditional Transformers. Moreover, a correlation-weighted Fu-
sion (cwF) module selectively merges diverse feature represen-
tations, significantly enhancing predictive accuracy. HAFormer
achieves high performance with minimal computational overhead
and compact model size, achieving 74.2% mloU on Cityscapes
and 71.1% mloU on CamVid test datasets, with frame rates of
105FPS and 118FPS on a single 2080Ti GPU. The source codes
are available at https://github.com/XU-GITHUB-curry/HA Former.

Index Terms—Semantic segmentation, lightweight, multi-scale
feature extraction, local and global context.

I. INTRODUCTION

EMANTIC segmentation involves the task of assigning
Sa label to each pixel in a given image, making it a
fundamental dense prediction task in computer vision with ap-
plications in autonomous driving [ 1], medical care [2], satellite
remote sensing [3], and more. Previous methods, such as [4],
[5], leverage deep convolutional neural networks (CNNs) for
feature extraction, incorporating feature pyramid structures for
multi-scale information perception [6] and attention modules
for global context perception [7]-[9]. Although these meth-
ods have achieved considerable accuracy, they often require
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Fig. 1: Visual comparison of small object segmentation using
our approach versus an existing method on sample images
from Cityscapes (top) and CamVid (bottom).

extensive computational resources and exhibit relatively slow
inference speeds due to deep network stacking for larger
receptive fields and higher semantic levels.

To accommodate devices with limited computational re-
sources, recent studies [10]-[14] have focused on developing
lightweight segmentation models. For example, ERFNet [1 1]
employs 1-D non-bottleneck modules to reduce computation,
while ICNet [13] utilizes inputs of varying resolutions to en-
hance information flow across different branches. FBSNet [15]
uses a symmetrical encoder-decoder structure with a spatial
detail branch and a semantic information branch to refine
contextual details. Typically, these models simplify the base
module structures to minimize computational costs. However,
while enhancing computational efficiency, their segmentation
accuracy is often compromised due to the local limitations of
convolution networks and shallower network depths.

Transformers have recently demonstrated remarkable suc-
cess in various computer vision communities [16], [17]. Draw-
ing inspiration from this progress, researchers have started
integrating ViT [18] architectures to tackle semantic seg-
mentation challenges. Unlike CNNs, Transformers inherently
provide a broad global receptive field through their extensive
global attention mechanisms. Models using Transformers as
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image encoders excel in global context modeling, leading to
significant improvements in segmentation accuracy compared
to CNN-based approaches. While UNETR [19] and other
methods [20], [21] base predictions on the last layer of
the Transformer encoder, they tend to overlook smaller-scale
objects in images, affecting the precise classification of smaller
elements or pixels, as depicted in Fig. 1. SegFormer [22]
introduces a hierarchical attention model integrating a hier-
archical Transformer encoder and a lightweight multi-layer
perceptron (MLP) decoder to enhance segmentation precision.
MPVIT [23] effectively incorporates multi-scale feature inputs
into Transformer operations, yielding impressive results.

These methods prioritize high segmentation accuracy but
often overlook model efficiency. Firstly, transformer-based
approaches lack inductive bias, making their training slow and
challenging to converge. In addition, they typically require
larger datasets and extended training duration, resulting in
significant training overhead. Secondly, slow inference speeds
are attributed to the time-consuming multi-head self-attention
(MHSA) operations. The computational burden escalates, es-
pecially with high-resolution inputs, due to the quadratic com-
plexity of MHSA. Additionally, these methods may struggle
with capturing details and small objects due to their limited
fine local modeling capabilities.

In this work, our goal is to develop a lightweight semantic
segmentation model that leverages both CNNs and Transform-
ers, focusing on minimizing model size and computational
requirements. Introducing the “HAFormer” model, we com-
bine the global receptive capabilities of Transformers with the
local perception strengths of CNNs to unleash the power of
hierarchy-aware features.

The core contributions of this paper are threefold:

e« We propose a novel Hierarchy-Aware Pixel-Excitation
(HAPE) module, utilizing hierarchy and content-aware
attention mechanisms to reduce the computational load
while enabling the extraction of deeper semantic infor-
mation from pixels under various receptive fields.

o We develop an effective feature fusion mechanism, named
correlation-weighted Fusion (cwF), to synergistically in-
tegrate the local and global context features learned by
CNNs and Transformers, effectively enhancing accuracy.

o We propose an Efficient Transformer to decompose @), K,
and V' matrices, which effectively addresses the quadratic
computational complexity challenge present in traditional
Transformer models.

Extensive experiments conducted on two widely used bench-
marks demonstrate that our HAFormer achieves a balance
between segmentation accuracy and efficiency.

The remainder of this paper is structured as follows: Sec-
tion II provides a comprehensive review of related works.
Section III presents the details of our proposed HAFormer,
focusing on its three key components. Section IV describes
the detailed experimental setting and presents the evaluation
results, including ablation studies and discussions. Finally,
Section V concludes the paper by summarizing the key find-
ings and discussing future directions.

II. RELATED WORK
A. Hierarchical Methods in Semantic Segmentation

In dense prediction tasks, accurately classifying multi-
scale and small target objects is a common challenge. This
is particularly evident in semantic segmentation, where the
classification of small objects can be affected by neighboring
larger objects, leading to misclassification. Hierarchical meth-
ods effectively address this challenge by utilizing convolutions
with varying dilation rates or pooling layers with different
rates. The outcomes are then cascaded or concatenated to
integrate information from diverse scales. This multi-scale in-
tegration enhances receptive field levels, mitigating ambiguity
from varying local region sizes and improving object detail
handling. Existing hierarchical approaches [6], [13], [14], [22],
[24], [25] can be classified into overall hierarchical structures
or specific hierarchical modules, summarized as follows:

Hierarchical Structures. Several approaches have adopted
a multi-scale design, featuring distinct network branches han-
dling inputs or feature maps of varying resolutions. A notable
method following this approach is ICNet [13], which in-
corporates three encoding branches (low-resolution, medium-
resolution, and high-resolution), each excelling at extracting
fine-grained information at different scales to enhance bound-
ary information in the output. In contrast, HRFormer [24]
effectively combines robust semantic information with precise
location details. Whereas HSSN [26] is a hierarchical ap-
proach, focusing on categorizing objects like “Human-Rider-
Bicyclist” rather than addressing pixel-level classification chal-
lenges for small objects. Other methods, including [14], [22],
[25], [27], utilize multi-scale structures by parallelizing multi-
ple resolution branches and facilitating continuous information
interaction among them.

Hierarchical Modules. Numerous methods integrate hier-
archical modules at specific layers within the architecture,
allowing the utilization of varied receptive fields on feature
maps. For example, the ASPP module used in DeepLab [28],
[29] and DenseASPP [6] effectively extracts features from
different scales through atrous convolutions, addressing the
variability in object scales within and across images. PSP-
Net [30] stands out for its pyramid pooling module that
integrates features from four scales. By collecting and merg-
ing contextual information from diverse scales, this module
generates more representative and discriminative features than
those from global pooling alone. Models using this mod-
ule can enhance their recognition capability for objects of
various sizes. Inspired by the “wider” modules [30], [31],
in this work we demonstrate that utilizing multiple diverse
convolution kernels efficiently enhances expressive capacity,
leading to improved performance with minimal computational
and parameter overhead.

B. Vision Transformer in Semantic Segmentation

The groundbreaking ViT [18] introduces a pure transformer
framework for image recognition, treating images as sequences
of patches processed through multiple layers. Subsequent
models such as DeiT [32], Fact [33], CrossFormer [34],
and DVIT [35] have further excelled in image processing
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Fig. 2: The overall architecture of the proposed HAFormer. HAFormer introduces a Hierarchy-Aware Pixel-Excitation (HAPE)
module for adaptive multi-scale local feature extraction. For global perception modeling, HAFormer develops an efficient
Transformer module to streamline the quadratic calculations. Additionally, a correlation-weighted Fusion (cwF) module
selectively combines diverse feature representations, markedly boosting predictive accuracy.

tasks. SETR [16] is a tailored paradigm for segmentation,
utilizing a pure Transformer model in the encoder and var-
ious CNN decoder combinations to achieve state-of-the-art
results. Swin-Transformer [17] addresses redundant compu-
tations, easing computational loads to some extent. However,
these methods still require extensive training data to match
CNN performance, posing challenges in dense prediction fields
requiring detailed annotations. Transformer-based models such
as [23], [27] have recognized the importance of hierarchical
perceptions in dense prediction tasks, incorporating multi-scale
structures and pyramid modules in their designs.

Recent studies have noted that Transformers often prioritize
global long-range dependencies, potentially overlooking crit-
ical features like local connections and translation invariance
characteristic of CNNs. Consequently, various methods [2],
[36]-[38] have sought to combine CNNs and Transformers
to fully leverage the strengths of both. However, these efforts
struggle to balance real-time inference requirements and low-
latency capabilities. Lightweight techniques such as LET-
Net [39] position the Transformer as a capsule network while
others, such as TopFormer [40], integrate it as an auxiliary
component in the decoder to enhance boundary recovery.
Nonetheless, a definitive solution for effectively combining
global and local information remains elusive.

To tackle the challenges of high computational require-
ments and effectively integrating local information with a
global context when combining CNNs with Transformers, our
HAFormer introduces an Efficient Transformer (ET) module to
manage computational complexity and a correlation-weighted
Fusion (cwF) mechanism to harmonize features from CNNs
and Transformers.

C. Attention Mechanisms in Semantic Segmentation

Inspired by the focal nature of human visual perception,
attention mechanisms emphasize significant features while
disregarding irrelevant ones. These mechanisms fall into two
main categories: channel attention and spatial attention. In
channel attention methods, SKNet [41] enables neurons to
dynamically adjust their receptive field sizes based on input
scales. Spatial attention methods, such as non-local neural
networks [8], capture long-range dependencies in semantic
segmentation. However, modeling relationships between all
locations can be computationally intensive. Asymmetric non-
local neural networks [9] attempted to reduce computational
costs, yet they may still be resource-intensive, especially with
high-resolution input features.

Researchers have explored combining both channel and
spatial attention mechanisms to enhance features from multiple
perspectives. For instance, CBAM [7] sequentially operates
along two independent dimensions (channel and spatial), pro-
ducing attention maps that are then multiplied with input
features for adaptive feature optimization. DANet [4] and
CCNet [42] integrate channel and spatial attention in par-
allel, employing self-attention operations and combining the
resulting features. CAA [43] disassembles axial attention and
integrated channel attention to manage conflicts and prioritize
features. These methods, utilizing self-attention mechanisms,
have demonstrated positive results.

A prevalent challenge involves pixel-wise long-distance
modeling, which incurs high computational costs, rendering it
unsuitable for deployment in resource-constrained scenarios.
This study introduces a lightweight model that optimizes the
local perception of CNNs and the global modeling abilities
of Transformers. We address the computational complexity
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issue by utilizing a spatial reduction-linear projection and split
operation strategy within our proposed Efficient Transformer
(ET) module.

III. THE PROPOSED METHOD
A. Overall Architecture

The overall architecture of our HAFormer is illustrated in
Fig. 2, which features three components: a CNN encoder
enhanced with hierarchy-aware pixel excitation, an efficient
Transformer encoder, and a lightweight decoder.

For a given input image I € R3*¥*W with dimen-
sions of H x W, the model begins with a CNN Encoder,
producing features F € RO >*HrxWr (g, = & W, = W),
Simultaneously, the input [ wundergoes processing in
the Transformer encoder post the Transformer Stem
block, resulting in feature embedding 7' € RV*P, where
N =% W (H, = & W, =) denotes the token count,
D = C; x P? denotes the dimension of each token, and
P signifies token size. Subsequently, the two distinct types
of context features, F' and 7, are synergized effectively
by our newly designed correlation-weighted Fusion (cwF)
module. This fusion of correlated CNN and Transformer
features enhances boundary information and restoration with
the lightweight decoder segmentation head.

Specifically, to optimize the CNN encoder, we employ three
3 x 3 convolutional layers in the CNN Stem block. In this
configuration, the last layer has a stride of 2, resulting in
a feature map size of C; x % x W where C; denotes the
output channel count. In contrast, the Transformer stem in the
Transformer Encoder reduces the resolution while extracting
feature representations, contributing to the model’s lightweight
design by minimizing computational load, since higher resolu-
tion means more computation. Therefore, in the Transformer
Stem block, we employ four 3 x 3 convolution layers with a

H., W

stride of 2, resulting in an output feature size of Cy X 15 X 5.

B. Hierarchy-Aware Pixel-Excitation (HAPE) Module

Employing convolutions with diverse kernel sizes within the
same layer, combined with pixel excitation, facilitates feature
extraction from objects of varying sizes. Building on this
concept and drawing inspiration from works like [30], [44], we
adopt a multi-scale strategy to capture unique pixel features
across different receptive field levels. Unlike the layer-wise
merging seen in ESPNet [12] and concatenation in Incep-
tion [45], our module avoids redundant computations, leading
to a more streamlined network while preserving feature effec-
tiveness. Additionally, to further improve pixel representation
across diverse scales, we introduce the innovative Hierarchy-
Aware Pixel Excitation (HAPE) module in this study. This
module enhances the model’s ability to effectively recognize
objects of various sizes in an image, ultimately reducing pixel
misclassification rates.

Specifically, as depicted in Fig. 3, given a feature input
Xin € RNexHexWe we initially feed it into a 1 ><N1 con-

volutional layer to reduce its channel dimensions to ==, i.e.,

the output feature map X is denoted as

X = fix1 (Xin), X € R <HexXWe, (1)
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Fig. 3: The architecture of our Hierarchy-Aware Pixel-
Excitation (HAPE). DC' stands for dilation convolution.
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Here, f1x1 denotes a convolution operation with a kernel size
of 1 x 1. This dimension reduction facilitates the channel
operation in the subsequent hierarchical convolutional layers.

Subsequently, we perform four parallel convolution opera-
tions, comprising factorized convolution and depthwise separa-
ble convolution, with kernel sizes of 3, 3, 5, and 7, respectively.
Additionally, the last three convolutional layers utilize dilated
convolution to enhance receptive fields, as shown in Fig. 4.
This strategy enables the model to capture image features
across various scales, ensuring comprehensive and detailed
information extraction.

The above process is expressed as

= fixa (faxa (X)) @

= fls, (o (X)) Ik =35, = 23,4}, G)

where [; represents the intermediate features, fixy, is a 1-D
convolution operation with a kernel size of k;, and d. denotes
the dilation rate. For simplicity, some activation and batch
normalization operations are excluded from the equations.

A critical element lies in the Pixel-Excitation Module
(PEM), which is responsible for enhancing the feature rep-
resentability through a content-aware spatial-attention mech-
anism. As illustrated in Fig. 3, the process begins by feed-
ing the input z € R®*"*¥ into the Global Average Pool-
ing (GAP) layer, generating z; € R!*"*%_Subsequently, z;
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undergoes reshaping and flattening operations before being
input to the Softmax function to calculate the weight matrix
A € RY>hxw This weight matrix is then multiplied with the
input features, resulting in a content-aware attention-enhanced
output z’.

This process can be represented as

C. Efficient Transformer

Conventional Transformer methods, as evidenced by [17],
[46], can be excessively large for lightweight and real-time
models, especially when handling high-resolution inputs. This
underscores the urgent need for more efficient Transformers.
Inspired by [31], [47], our approach focuses on reducing

1 = Reshape (GAP (2)) “4) computational costs by diminishing feature dimensions with-

A = Reshape ™" (Softmax (z1)), (5) put significant l.oss of il.nage. details. .To. achieve this, we

introduce a spatial reduction linear projection method which

and initially maps features into a latent embedding space with
¥=0(x0A+x). (6) reduced dimensions before employing them for multi-head

Here, Reshape and Reshape™! denote the reshaping opera-
tion and its reverse operation, J is an activation function, and
® denotes element-wise multiplication.

Finally, a residual structure is employed to retain the original
features, yielding the final output Y € RNeXHexWe The four
convolution layers are jointly added into a 1 x 1 convolution for
feature fusion and channel restoration. A residual connection
is maintained within the module, and the channel shuffle
operation effectively facilitates the information interaction
between channels, as expressed as

4
Y = Shuffle ( fixa (5 (Z PEM (zi)>> + Xm> , (D
i=1

where Shuf fle represents the channel shuffle operation, and
0 is an activation function.

self-attention calculations. This approach, known as efficient
Multi-Head Self-Attention (eMHSA) with learned projection
and split operation, is depicted in Fig. 5.

Denote the input feature as X, € R *HixW: where C,
H,, and W, represent the number of the channel, height, and
width of the feature map, respectively. Following the Reshape
operation, a sequence of flattened non-overlapping patches is

2

derived, resulting in X; € RN x(Cep ), where N = %
indicates the number of patches (i.e., the input sequence
length), with each patch size being P x P. Subsequently,
the patches are mapped by a learnable linear projection layer
E e R(F*C)*D into a latent D dimensional embedding
space, denoted as Z € RV *P_ This process can be formulated
as

Z =[x} E;2E; ..x) E] (8)
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where x; denotes the i-th patch. Note that the omission of
position embedding is intentional to allow greater adaptability
for different input sizes.

Subsequently, the three matrices in Transformers, namely
the queries (), the keys K, and the values V are derived
through their linear projections W%, WX, and WV ¢
RP*Pr This can be expressed as

Q. K,V =2zWe zZzwWE zwV e RN*Pn, 9)

Moreover, the number of heads A in the multi-head self-
attention is also a user-defined parameter, ensuring each head’s
dimension equals d = %. Consequently, the dimensions of
q, k, and v in the ¢-th head are N x d. In the i-th head, &
and v undergo spatial reduction by a factor of r, where r is
the reduction ratio and set to 2. Then, the sub-tokens resulting
from the feature split operation undergo matrix multiplication
with a field representing only % of the original perception,
where s denotes the number of feature splits, which is set to
4. This process can be described as

(q1...as) > (K1, ks), (v, vs) = Feature_Split (¢, k,v) .
(10)
Therefore, the spatial distribution becomes ¢; € RN X%,
k; € R¥Xg, and v; € R* >, This idea shares similarities
with the concept of group convolution and can efficiently
reduce memory consumption. Thus, the self-attention in the
n-th head is calculated as

T
0; (¢, ki, v;) = Softmax (ki) v, €[1,8], (1)
Vd
and
head™ = Concat[o, 09, ..., 05],n € [1,h], (12)
where C'oncat|.,.] denotes the concatenating operation.
Thus, the final output of the eMHSA is denoted as
eMHSA = Concat[head", head?, ..., head" W, (13)

where h represents the number of heads in eMHSA, while
WO € RP»*D serves as a linear projection to restore the
dimension. Hence, with the structure designed above, we have
reduced the complexity from O (N?) to O JZ—:

It is noteworthy that the Transformer series [16], [17],
[23] also utilize a kind of self-attention mechanism, includ-
ing Multi-Head. However, their approach is computationally

intensive for capturing detailed relationships among features,
which deviates from our objectives.

As for the MLP layer, we follow the approach described
in [31], [48], replacing fixed-size position encoding with zero-
padding position encoding. Moreover, we introduce a depth-
wise convolution with a padding size of 1 to capture local
continuity in the input tensor between the fully connected (FC)
layer and GELU in the feed-forward networks. By eliminating
fixed-size positional embeddings, the model becomes versatile
in handling inputs with different resolutions. Thus, the output
of the efficient MLP layer, denoted as “eM L P”, can be written
as

eMLP = p (§geru (fowcon (0 (26))))

where p denotes the FC layer operation, {ggLy represents
the GELU activation function, fpwcony signifies depthwise
convolution, and x. is the input of eMLP.

(14)

D. Correlation-weighted Fusion

Numerous studies, such as [2], [36], [40], [46], have ex-
plored integrating features from both Transformers and CNNss.
For example, SegTransConv [36] introduces a hybrid architec-
ture combining Transformers and CNNss in series and parallel,
yet it does not fully exploit the collaborative potential of both.
Given the distinct characteristics and computational mecha-
nisms of Transformers and CNNs, conventional element-wise
addition or concatenation operations may not yield optimal
results. A design leveraging the complementary strengths of
both is therefore crucial for maximizing the representability
of the extracted features and facilitating information recovery
during decoding.

In this paper, we introduce an effective strategy to bridge
this gap. Our approach seamlessly combines the distinct types
of features extracted by Transformers and CNNs through
correlation-weighted integration. By fusing CNN and Trans-
former features with high correlation, we develop a new
correlation-weighted Fusion (cwF) module.

As depicted in Fig. 6, T" and F' denote intermediate features
from the Transformer and CNNs, respectively. Initially, the
Transformer feature 7" is reshaped to match the same shape
of the CNN feature F, which is followed by the post-
concatenation operation of the two feature sets. To reduce
the computational costs, depthwise separable convolution is
employed for channel dimensional reduction. Subsequent to
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GAP and Sigmoid operations, a correlation coefficient matrix,
denoted by M, is calculated. This Nmatrixwis then multiplied
with the original features to obtain F' and 7', which are added
together to produce the final output Z.

This process can be expressed as

G = Concat[Reshape (T'|F) , F], (15)

where G € RY%*HaxWe (C) = C} + Cy)), Concat rep-
resents the concatenating operation, and a|b represents the
feature map of the size a being restored to size b. Then, the
correlation coefficient matrix M can be computed as

M =6 (fix1 (GAP (fix1 (f3x3(G))))), (16)

where M € RE»*1x1§ is the Sigmoid function, GAP rep-
resents global average pooling operation, and fj, xx, denotes
convolutional operation with a kernel size of & X ks.

Thus, the resultant cwF features, denoted by Z.yr, can be
expressed as

Zor = (T+F) AT=ToMF=FoM}, a7
where Z.p € RE=*H=xW= ' is the ReLLU activation function,
and © represents element-wise multiplication.

It is noteworthy that feature correlation has also been
explored in CTCNet [38], where the correlation between the
features derived from Transformers and CNNs is calculated.
However, in CTCNet, the module merely concatenates the
correlation with the Transformer and CNN features, which
cannot effectively align these two types of features, potentially
leading to performance degradation due to feature mismatch.

IV. EXPERIMENTS

To demonstrate the effectiveness of our HAFormer and its
individual modules qualitatively and quantitatively, compar-
ative experiments are conducted on benchmark datasets and
compared with state-of-the-art (SOTA) approaches. In this
section, we first outline the datasets, loss functions, hardware
platform configuration, and parameter settings used in our
experiments. Then, we present the series of ablation experi-
ments conducted to validate the effectiveness of the individual

TABLE I: Ablation studies on the HM and PEM components
of the proposed HAPE module. Cit., Cam., and Param. denote
Cityscapes, CamVid, and Parameter, respectively.

. FLOPs (G)| mloU (%)?
Architecture Param. (K)| G Cam. GiL Cam.
Baseline (RM) 424912 10.166 5.957  66.78 62.67
Baseline (HM) 450256  10.401 6.094 68.25147T 64.201-53T
Baseline (HAPE) 482512 10402 6.095 68.912:13T 65.412.741
HAFormer (Ours) | 602298  11.051 6475 74.18740T 71115447

TABLE II: Ablation studies on the impact of Dilation Rates.

Architecture Dilation Rate mloU (%)
Stagel Stage2 Stage3 Stage4
(L1, (L,L1,1,1,1) (1,L,1,1,1,1) (1,1,L1) 6891
Baseline (HAPE) | (22,2) (22,2,2.22) (222222) (2,2,2) 69.370-46T
(2,2,2) (4,4,8,8,16,16) (4,4,8,8,16,16) (2,2,2) 70.12%-211
(L1, (L,L1,1,1,1) (1,L,L,1,1,1) (L,L,L1) 7245
HAFormer 222) (222222 (222222) (2,22) 73.160-71T
(2,2,2) (4,4,8,8,16,16) (4,4,8,8,16,16) (2,2,2) 74.18-73T
HAFormer (ours)\(z,z,z) (4,4.8,8,16,16) (4,4.8.8,16,16) (2,2,2)  74.18

modules. Finally, comparative experiments are conducted to
demonstrate the superiority of our approach over the SOTA
approaches.

A. Datasets

Our HAFormer model is designed to tackle challenges
related to scale variations and contextual information in street
scenes. The Cityscapes [49] and CamVid [50] datasets are
two prominent benchmarks widely utilized in street scene
segmentation research. Hence, to showcase the efficacy of
our model, we conducted a series of comprehensive empirical
evaluations on these two datasets.

Cityscapes. This dataset comprises 5,000 high-quality im-
ages annotated at the pixel level. Captured from various
urban settings in 50 cities, these images have a resolution of
2,048 x 1,024 and primarily depict driving scenes. The dataset
is divided into three subsets: 2,975 images for training, 500
for validation, and 1,525 for testing. While the dataset includes
labels for 34 categories, our study focuses specifically on 19
essential semantic categories. We utilize the Cityscapes’ built-
in tools to adjust the labels to suit our research needs.

CamVid. This is a public dataset of urban road scenes
released by the University of Cambridge. The images, with a
resolution of 960 x 720, are captured from a driving perspec-
tive, increasing the diversity of observed targets. With over 700
labeled images, the dataset is suitable for supervised learning.
The CamVid dataset usually employs 11 common categories
for evaluating segmentation accuracy. These categories offer
a thorough representation of objects in urban road scenes,
making them a valuable resource for research.

B. Implementation Details

The HAFormer model is executed on a single RTX 2080 Ti
GPU card with 12GB memory, using CUDA 10.1 and PyTorch
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TABLE III: Performance comparison between using TT and
ET in HAPE on the Cityscapes (512 x 1024) and CamVid
(360 x 480) datasets.

TABLE IV: Ablation studies of the ET, the number of ETs in
HAPE (“L”), and the cwF module on the Cityscapes dataset.

Architecture Fusion — p  ram. (K) FLOPs (G)| mIoU (%)t
. FLOPs (G) | Speed (FPS)1 mloU (%)t Add Concat ewF
Architecture|TT ET Param. (K)J - - -

Cit. Cam. Cit. Cam. Cit. Cam. Baseline (HAPE)| — — — 482512 10.402 70.12

HAFormer | ¥ 760293 13.341 8.135 56 71  74.66 71.47 v 549,364 10780  71.23%111

v' 602298 11.051 6.095 105 118 74.18 71.11 HAFormer (L=1) v 585.556 12.648 71.661-54T

v 554742 10952  72.50%-38T

v 596.920 10.879  72.282-16T

. . ) i HAFormer (L=2) v 633.112 12747 73.173:051

1.8.1. The architecture is trained from scratch without any v 602298 11.051  74.184.061
pre-trained models. We employ Stochastic Gradient Descent  "HAFormer (ours) Vi 602.298 11.051 74.18

(SGD) with a momentum of 0.9 and a weight decay of le —5,
along with the “Poly” learning rate policy for optimization.

For Cityscapes, the initial learning rate is 4.5e — 2, and the
batch size is set to 5 to maximize GPU memory usage. For
CamVid, the initial learning rate is 1le — 3, with a batch size of
8. Following the existing practice, we apply data augmentation
techniques including horizontal flipping, random scaling, and
random cropping to introduce diversity in the training data,
with random scales ranging from 0.25 to 2.0 and the cropping
size of 512 x 1024 for Cityscapes over 1,000 epochs. No post-
processing is applied for a fair comparison.

Finally, following the existing practice, the performance is
quantitatively evaluated using the averaged mean Intersection-
over-Union (mloU) across all categories, as well as the param-
eter counts, FLOPs and GPU usage, and processing speed.

C. Ablation Studies

In this part, we conduct a series of ablation experiments to
validate the effectiveness of each module in our method.

Ablation Study of the HAPE Module.

In our HAPE module (see Section III-B), we proposed
four parallel convolution operations to capture image features
across various hierarchies comprehensively. This is then fol-
lowed by the PEM, designed to enhance the feature repre-
sentability through a content-aware spatial-attention mecha-
nism. In this section, we show the effectiveness of the hierar-
chical approach (denoted as “HM”) and the PEM approach of
our HAPE module, respectively.

The baseline model used for comparison is structured as a
single-line type (as shown in Fig. 7), incorporating the stan-
dard Residual Modules (RMs). To showcase the performance
gains brought by the HM and PEM, we first substitute the RM
of the baseline model with the HM module, omitting the PEM
part, and then include both the HM and PEM modules to test
the effectiveness of the entire HAPE module.

Table I highlights the superior performance of the HM,
showcasing mloU gains of 1.47% and 1.53% over the RM. The
HM excels in extracting robust features, facilitating deep se-
mantic information extraction effectively. Moreover, the multi-
scale structure significantly enhances the model’s performance
in feature extraction and small object recognition. Introducing
the PEM further enhances segmentation accuracy by 2.13%
and 2.74% on both datasets.

Throughout this experiment, the dilated convolution rates
are set to 1 in both HM and HAPE to ensure a fair comparison.

Fig. 8 also verifies the efficacy of our HAPE module when
being integrated with the Transformer module.

Ablation Study of the Dilation Rates. In this section, we
explore how the chosen dilation rates impact segmentation
performance. With a consistent number of modules, a larger
dilation rate expands the receptive field, allowing the model
to perceive a broader scope, and hence is essential for com-
prehensive feature extraction.

Results shown in Table II reveal that transitioning the
dilation rate from all 1s to all 2s (the first two rows) in
dilated convolution boosts mloU by about 0.5%. Further, by
progressively increasing the dilated convolution rate in Stages
2 and 3, we observe performance enhancements of 1.21% and
1.73% on the two datasets. Hence, to preserve spatial details,
in our approach, we allocate three modules in Stages 1 and
4 while employing six modules in Stages 2 and 3 to capture
intricate semantic information within the network’s depth. This
strategy optimizes calculations for the transformer encoder,
improving long-range dependency modeling.

Ablation Study of the Efficient Transformer.

As detailed in Section III-C, another key contribution we
made in the HAFormer is the Efficient Transformer (ET)
module, which reduces the dimension of features by projecting
them into an optimal latent embedding space before calculat-
ing self-attention. Table III showcases the performance gains
brought by the ET module over the traditional Transformer
(denoted as “TT”) in terms of segmentation accuracy and
computation complexity on Cityscapes and CamVid datasets.

As shown in Table III, the ET design demonstrates a supe-
rior balance between efficiency and accuracy. Compared to the
traditional Transformer “TT”, ET achieves an 18% reduction
in parameter count and a 17% decrease in computational
load, with only a slight mIoU loss of 0.4%. This results in
a more efficient model with minimal impact on performance,
and it even offers faster inference speed. In addition, the
results in Table IV also reveal the significant enhancement
upon integrating features learned through the Transformer,
with a remarkable 2.16% boost in mloU. This underscores
the Transformer’s exceptional ability to capture long-range
dependencies, a feature that the CNN alone cannot achieve.

Additionally, in the proposed HAFormer, the number of
ET layers L is deliberately limited to 2, considering com-
putation hardware constraints and also aiming to achieve the
best balance under constraints. Although stacking more ET
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Fig. 9: Visual results on Cityscapes dataset. From left to right: original images, ground truths, predictions of HAFormer,
LETNet [39], SGCPNet [51], DABNet [52], CGNet [53]. Note that two examples are shown. In each group, the first row
visualizes the overall segmentation results, while the second row visualizes the zoom-in of the small areas enclosed in rectangles.

layers could yield better accuracy results, as shown in Fig. §,
the performance gains slow down dramatically when L is
greater than 2. Moreover, adding excessive ET layers on a
high-resolution dataset like Cityscapes may negatively impact
parameters, computations, and inference speed, potentially
causing overfitting.

Ablation Study of the Correlation-weighted Fusion.
To address the feature mismatch issue between CNNs and
Transformers and ensure effective feature restoration during
decoding, in Section III-D we introduced the cwF mechanism.
Table IV compares the results obtained with our cwF method
and two other fusion techniques, i.e., element-wise addition,
and concatenation. The table illustrates enhanced segmentation
accuracy when integrating CNN and Transformer features
using all three fusion methods. Notably, our cwF achieves a
performance improvement of 2.38% over the baseline with one
ET layer and 4.06% gain with two layers stacked.

Moreover, from Table IV we observe that (a) Compared
to the simple element-wise addition fusion scheme, our cwF
shows performance gains of 1.27% and 1.90% in the two cases
with only a slight increase in parameter count and FLOPs; (b)
Our cwF presents mloU gains of 0.84% and 1.01% over the
computationally expensive concatenation operation, respec-
tively, while achieving about 5% reduction in parameter count
and 15% decrease in computational load. These experimental
outcomes further demonstrate the effectiveness of our cwF.

D. Comparisons with SOTA Methods

In this section, we extensively assess and compare the
performance and efficiency of our method against some state-
of-the-art approaches to showcase the advantages of our pro-
posed method. Our evaluation centers on three key aspects:
segmentation accuracy, model parameters, and floating-point
operations (FLOPs).

Evaluation Results on Cityscapes. Quantitative compar-
isons with advanced semantic segmentation methods on the
Cityscapes test set are presented in Table V. Per-class results
are detailed in Table VI, and visualization outcomes are
displayed in Fig. 9. To ensure fairness, no augmentation

techniques are used during testing, and data for other networks
are referenced from pertinent sources. Contemporary semantic
segmentation models fall into two main categories: those
emphasizing larger size and higher precision, and those prior-
itizing real-time practicality with a balance between accuracy
and efficiency.

While larger models achieve high accuracy, their FLOPs and
speed lag behind lightweight models, making them unsuitable
for real-time processing on devices with limited resources.
In contrast, lightweight models like ENet [10], ESPNet [12],
CGNet [53], and FPENet [59] are computationally efficient.
Despite their reduced parameter count, their overall perfor-
mance, especially in accuracy, is lacking. In terms of accuracy,
EFRNet-16 [66] shows similarities to our results. However,
it is noteworthy that its parameter count and GFlops are 2
times greater than ours. Apparently, our model requires fewer
parameters and computations, highlighting the efficiency of
our approach.

Evaluation Results on CamVid. To further validate the
effectiveness and generalization capacity of our model, we
compared it with other lightweight methods on the CamVid
dataset, as shown in Table VII. While MGSeg [04] excels
in accuracy, surpassing our method by 1.6 points, it does
so at the cost of having 22 times more parameters than
ours, indicating an unfavorable trade-off. On the other hand,
SGCPNet [51] exhibits notable speed but lacks accuracy. In
contrast, our HAFormer has achieved a better balance between
these aspects. The lower overall performance on the CamVid
dataset, compared to Cityscapes, is due to its smaller size and
lower resolution, which highlights the robust generalization
capability of our approach. Visualization results in Fig. 10
further demonstrate the advantages of our HAFormer.

Speed Comparison. To ensure a fair comparison, all
methods are executed on the same platform, as the com-
putational load directly impacts inference speed, which can
vary depending on the device. In our controlled evaluation,
a single NVIDIA RTX 2080Ti GPU is utilized to measure
model execution times. The comparison of speed and runtime
between our proposed HAFormer and other lightweight meth-
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[T30%2]

TABLE V: Comparisons on the Cityscapes test dataset. “x

w9

indicates that the method utilizes multiple graphics cards. “—

means that the result is not provided in the corresponding methodology.

‘ Methods ‘ Year Resolution Backbone Param. (M) | FLOPs (G) | GPU Speed (FPS) +  mloU (%) 1
SegNet [54] 2017 TPAMI 360 x 640 VGG-16 29.50 286.0 * 17.0 57.0
DeepLab [28] 2017 TPAMI 512 x 1024 ResNet 101 262.10 457.8 * 0.3 63.5

= PSPNet [30] 2017 CVPR 713 x 713 ResNet-101 68.10 2048.9 * 1.2 78.5
T | DeepLab-V3+ [29] | 2018 ECCV — MobileNet-V2 62.70 2032.3 * 1.2 80.9
= | DANet [4] 2019 CVPR 1024 x 1024 ResNet-101 66.60 1111.8 * 4.0 81.5
g,, SETR [16] 2021 CVPR 768 x 768 ViT-Large 318.30 — * 0.5 82.2
3 HRVIT [55] 2022 CVPR 1024 x 2048 HRVIT 28.60 66.8 * — 83.2
SegFormer [22] 2021 NIPS 1024 x 2048 MiT-B5 84.70 1447.6 * 2.5 84.0
Lawin [56] 2022 arxiv 1024 x 1024 Swin-L — 1797.0 * — 84.4
DDPS-SF [57] 2023 arxiv 1024 x 2048 MiT-B5 122.80 — * — 82.4
ENet [10] 2016 arxiv 512 x 1024 No 0.36 3.8 Titan X 135 58.3
ESPNet [12] 2018 ECCV 512 x 1024 ESPNet 0.36 - Titan XP 113 60.3
NDNet [58] 2021 TITS 512 x 1024 No 0.50 35 Titan X 101 61.1
CGNet [53] 2021 TIP 360 x 640 No 0.50 6.0 V100 120 64.8
ERFNet [11] 2017 TITS 512 x 1024 No 2.10 — Titan X 42 68.0
ICNet [13] 2018 ECCV 1024 x 2048 PSPNet-50 26.50 28.3 - 30 69.5
= DABNet [52] 2019 BMVC 1024 x 2048 No 0.76 424 1080 Ti 28 70.1
2 | FPENet [59] 2019 BMVC 512 x 1024 No 0.40 12.8 Titan V 55 70.1
= | LEDNet [60] 2019 ICIP 512 x 1024 No 0.94 - 1080 Ti 71 70.6
%;; FBSNet [15] 2023 TMM 512 x 1024 No 0.62 9.7 2080 Ti 90 70.9
'S | SGCPNet [51] 2022 TNNLS 1024 x 2048 MobileNet 0.61 4.5 1080 Ti 103 70.9
; MSCFNet [14] 2022 TITS 512 x 1024 No 1.15 17.1 Titan XP 50 71.9
5" SegFormer [22] 2021 NIPS 512 x 1024 MiT-BO 3.80 17.7 V100 48 71.9
MLFNet [61] 2023 TIV 512 x 1024 ResNet-34 13.03 15.5 Titan XP 72 72.1
BiseNet-V2 [62] 2021 ICV 1024 x 2048 Xception 3.40 21.2 1080 Ti 156 72.6
PCNet [63] 2022 TITS 1024 x 2048 Scratch 1.63 11.8 2080 Ti 72 72.7
MGSeg [64] 2021 TIP 1024 x 1024  ShuffleNet-V2 4.50 16.2 Titan XP 101 72.7
LETNet [39] 2023 TITS 512 x 1024 No 0.95 13.6 3090 150 72.8
SegTransConv [36] 2023 TITS 512 x 1024 STDC 7.00 10.2 3090 57 73.0
PMSDSEN [65] 2023 ACM MM 512 x 1024 No 0.92 10.2 — 53 73.2
EFRNet-16 [66] 2022 TMM 512 x 1024 EAA 1.44 25.1 Titan X 58 74.3
HAFormer (Ours) | - 512 x 1024 No 0.60 11.1 2080 Ti 105 74.2

TABLE VI: Comparisons with other methods about per-class results on the Cityscapes test set. Roa: Road, Sid: Sidewalk, Bui:
Building, Wal: Wall, Fen: Fence, Pol: Pole, TLi: Traffic Light, TSi: Traffic Sign, Veg: Vegtation, Ter: Terrain, Sky: Sky, Ped:
Pedestrain, Rid: Rider, Car: Car, Tru: Truck, Mot: Motorcycle, Bic: Bicycle.

Methods [ Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic [ mloU
SegNet [54] 96.4 732 84.0 284 29.0 35.1 39.8 45.1 87.0 63.8 91.8 62.8 42.8 893 38.1 43.1 44.1 358 519 57.0
ENet [10] 96.3 742 75.0 322 332 434 341 440 88.6 614 90.6 655 384 90.6 369 505 481 38.8 554 | 583
ESPNet [12] 97.0 775 762 350 36.1 450 356 463 908 632 926 67.0 409 923 38.1 525 50.1 41.8 57.2| 60.3
CGNet [53] 955 787 88.1 40.0 43.0 54.1 59.8 639 89.6 67.6 929 749 549 902 44.1 595 252 473 60.2| 64.8
ERFNet [11] 977 81.0 89.8 425 48.0 563 59.8 653 914 682 942 768 57.1 928 50.8 60.1 51.8 473 61.7| 68.0
LEDNet [60] 98.1 79.5 91.6 477 499 628 613 728 926 612 949 762 537 909 644 64.0 527 444 7T71.6| 70.6
FBSNet [15] 98.0 832 915 509 535 625 67.6 715 92.7 705 944 825 638 939 505 56.0 37.6 56.2 70.1| 70.9
LARNet [67] 98.0 822 90.7 489 447 572 628 672 920 68.6 947 793 598 939 544 739 613 540 66.1 | 71.1
MSCFNet [14] 977 828 91.0 49.0 525 612 67.1 714 923 702 943 82.7 627 941 509 66.1 519 57.6 70.2| 71.9
LETNet [39] 98.2 83.6 91.6 509 53.7 61.0 66.7 70.5 925 705 949 823 61.7 944 550 724 57.0 56.1 69.3| 72.8
HAFormer (Ours) ‘ 984 82.6 91.7 572 61.1 63.0 622 743 91.8 61.7 938 793 564 93.7 66.9 80.1 653 56.7 73.5 ‘ 74.2

ods is detailed in Table VIII. The experiments involve the
spatial resolution of 512 x 1024 for evaluation, aligning with
methods with the official code to ensure fairness. Table VIII
demonstrates the impressive speed of HAFormer, achieving
a frame rate of 105 fps when processing image streams
of size 512 x 1024, positioning it as one of the fastest
methods. While DABNet operates at 139 fps, HAFormer’s
competitive accuracy of 74.2% is significant for real-world
applications like autonomous driving. Balancing speed (105
fps) and accuracy effectively, HAFormer emerges as a strong
candidate for practical use.

V. CONCLUSIONS

In this study, we introduced HAFormer, a new lightweight
semantic segmentation approach. We designed the Hierarchy-
Aware Pixel-Excitation Module (HAPE) to extract enhanced
hierarchical local features. Additionally, an Efficient Trans-
former module efficiently captures extensive global features
with a limited computational load. Then, we incorporated
a correlation-weighted Fusion (cwF) mechanism to combine
highly correlated CNN and Transformer features for improved
representational learning. Through extensive experiments on
benchmark datasets, our approach has shown effectiveness
and generalization, highlighting the capability of HAFormer to
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Image Ground Truth SGCPNet DABNet DFANet

Fig. 10: Visual results obtained on the CamVid dataset. From left to right: original images, ground truths, predictions obtained
with HAFormer, LETNet [39], SGCPNet [51], DABNet [52], DFANet [25]. Next to each prediction result is a partially
enlarged detail map.

TABLE VII: Comparisons on the CamVid test dataset.

Methods \ Resolution Backbone Param. M) | GPU Speed (FPS) 1 mloU (%) 1
ENet [10] 360 x 480 No 0.36 Titan X 98 51.3
SegNet [54] 360 x 480 VGG-16 29.50 Titan X 60 55.6
NDNet [58] 360 x 480 No 0.50 Titan X 78 57.2
DFANet [25] 720 x 960 Xception 7.80 Titan X 120 64.7
DABNet [52] 360 x 480 No 0.76 1080 Ti 136 66.4
ICNet [13] 720 x 960 PSPNet-50 7.80 Titan X 28 67.1
LARNet [67] 360 x 480 No 0.95 2080 Ti 204 67.1
EFRNet-16 [66] 720 x 960 EAA 1.44 Titan X 154 68.2
FBSNet [15] 360 x 480 No 0.62 2080 Ti 120 68.9
SGCPNet [51] 720 x 960 No 0.61 1080 Ti 278 69.0
MLFNet [61] 720 x 960 ResNet-34 13.03 Titan XP 57 69.0
MSCFNet [14] 360 x 480 No 1.15 Titan XP 110 69.3
AGLNet [68] 360 x 480 No 1.12 1080 Ti 90 69.4
LETNet [39] 360 x 480 No 0.95 3090 200 70.5
MGSeg [64] 736 x 736 ResNet-18 13.3 Titan XP 127 72.7
360 x 480 No 0.60 2080 Ti 118 71.1
HAFormer (Qurs) | 7o) 960 No 0.60 2080 Ti 83 71.9

TABLE VIII: Comparisons of run-time and inference speed of 4} ; gy 5 Liu, 0. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention

the proposed HAFormer with other approaches. network for scene segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
RTX 2080Ti pp. 3146-3154.
Methods Param. (M)J 512 x 1024 [5] K. Li, Q. Geng, M. Wan, X. Cao, and Z. Zhou, “Context and spatial fea-
FLOPs (G) | ms | fps T mloU (%) 1 ture calibration for real-time semantic segmentation,” IEEE Transactions
ENet [10] 036 38 3 10 333 on Image Processing, vol. 32, pp. 5465-54717, “2023. .
[6] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, “Denseaspp for semantic

NDNet [58] 0.50 3.5 8 119 61.1 o - .

s segmentation in street scenes,” in Proceedings of the IEEE Conference

DABNet [52] 0.76 105 7139 69.3 on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 3684—

FBSNet [15] 0.62 9.7 11 90 70.9 3692.

MSCFENet [14] 1.15 17.1 18 56 71.9 [71 S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional

MLEFNet [61] 13.03 15.5 14 72 722 block attention module,” in Proceedings of the European Conference on

LETNet [39] 0.95 13.6 11 91 72.8 Computer Vision (ECCV), 2018, pp. 3-19.

SegTransConv [36] 7.00 10.2 17 58 73.0 [8] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-

works,” in Proceedings of the IEEE Conference on Computer Vision

HAFormer (ours) ‘ 060 | . 10105 74.2 and Pattern Recognition, 2018, pp. 7794-7803.

[91 Z. Zhu, M. Xu, S. Bai, T. Huang, and X. Bai, “Asymmetric non-
local neural networks for semantic segmentation,” in Proceedings of
achieve a balanced trade-off between segmentation accuracy the IEEE/CVF International Conference on Computer Vision, 2019, pp.
and computational efficiency. 593-602.
[10] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep
neural network architecture for real-time semantic segmentation,” arXiv
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