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Abstract—As the primary standard protocol for modern cars,
the Controller Area Network (CAN) is a critical research target
for automotive cybersecurity threats and autonomous applica-
tions. As the decoding specification of CAN is a proprietary
black-box maintained by Original Equipment Manufacturers
(OEMs), conducting related research and industry developments
can be challenging without a comprehensive understanding of
the meaning of CAN messages. In this paper, we propose a
fully automated reverse-engineering system, named ByCAN, to
reverse engineer CAN messages. ByCAN outperforms existing
research by introducing byte-level clusters and integrating mul-
tiple features at both byte and bit levels. ByCAN employs the
clustering and template matching algorithms to automatically
decode the specifications of CAN frames without the need for
prior knowledge. Experimental results demonstrate that ByCAN
achieves high accuracy in slicing and labeling performance, i.e.,
the identification of CAN signal boundaries and labels. In the
experiments, ByCAN achieves slicing accuracy of 80.21%, slicing
coverage of 95.21%, and labeling accuracy of 68.72% for general
labels when analyzing the real-world CAN frames.

Index Terms—Reverse Engineering, Controller Area Network,
In-Vehicle Network, Vehicular Networks

I. INTRODUCTION

Massive volumes of data are now generated and transmitted
via In-Vehicle Networks (IVNs) as modern cars are equipped
with more in-vehicle Electronic Control Units (ECUs) with
communication capabilities [1], [2]. The Controller Area Net-
work (CAN) protocol was firstly developed by Bosch in the
1980s [1] and serves as the de facto standard protocol for con-
necting ECUs embedded in cars [3]–[5]. The standard structure
of the CAN frame is composed of the start of frame, arbitration
field, control field, data field, CRC field, ACK field and end
of frame, as shown in Fig. 1. While the CAN protocol has
a standardized frame structure, understanding the protocol’s
utilization for signal transmission remains challenging. This
is because Original Equipment Manufacturers (OEMs) encode
the signals within the CAN frames’ data fields (data payloads)
in proprietary ways that vary among OEMs, vehicle models,
and years [6].

Understanding and decoding the data payloads of CAN
frames is the first step to extracting the essential information
to develop autonomous applications or explore automotive
cybersecurity threats, such as vehicle location detection [7]–
[10]. Many studies have been dedicated to developing an
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Fig. 1. Standard CAN frame format: 1-bit Start of Frame (SOF), 11-bit
ID, 1-bit Remote Transmission Request (RTR), 1-bit Identifier Extension Bit
(IDE), 1-bit Reverse R0, 4-bit Data Length Code (DLC), 0 to 8 byte data
payload, 15-bit Cyclic Redundancy Check (CRC), 1-bit CRC delimiter, 1-bit
Acknowledge (ACK), 1-bit ACK delimiter, and 7-bit End of Frame (EOF).

automated Reverse Engineering (RE) system for CAN with
minimum human interactions to uncover the communication
patterns of CAN signals and deduce the decoding specification
of the data payloads of CAN frames [11]–[19]. This could
allow penetration testing and digital forensics on the CAN
bus. Automotive insurance companies benefit from RE systems
because the result of those systems provides a way to evaluate
cybersecurity risks, as well as to discover driver fingerprinting
for usage-based insurance [6].

Existing methodologies leverage CAN frames and addi-
tional data sources, such as the Global Positioning System
(GPS) [12], Inertial Measurement Unit (IMU) [16], DBC
files [17], and On-Board Diagnostics II (OBD-II) data [20],
to decode the specification of CAN signals. Among these, the
OBD-II diagnostic data is easy to access via the OBD-II port,
as all modern cars are equipped with the OBD-II diagnostic
system. OBD-II diagnostic data can be converted into human-
readable accurate vehicle data with public formulas to be used
in the matching process for associating semantic meanings
with CAN signals. Both OBD-II diagnostic data and regular
CAN frames can be collected from the OBD-II port. The
RE systems can leverage both CAN and OBD-II diagnostic
data to create a comprehensive dataset for reverse engineering
purposes, eliminating the need for additional measurement
equipment like IMUs.

The primary objective of a CAN RE system is to identify the
boundaries of CAN signals within a CAN frame payload field
and to determine the associated signal labels. CAN messages
are structured into frames, and the CAN frames of different
CAN IDs have different lengths of the data payload. The
payload servers as a container for multiple CAN signals,
each with distinct bit positions and lengths, as illustrated
in Fig. 2. Before labeling CAN signals, the CAN signal
slicing process first identifies the CAN signals’ boundaries.
The bit-flip rate, representing the frequency at which bits
change from 1 to 0 or vice versa, is the primary feature in
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Fig. 2. Sample DBC: Mazda 3, Year 2019, CAN ID of 0x01A [21]. CAN
signals may occupy more than one byte, e.g., engine speed and pedal gas,
which can be found by the yellow 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 CAN signals that take more
than 8 bits consecutively. CAN signals often align with whole-byte offsets,
such as the Dynamic signals aligned to the left and the Verification signals
aligned to the right.

existing methodologies for slicing CAN signals [6]. However,
CAN signal slicing with only the bit-flip rate cannot precisely
differentiate varying CAN signals. For example, distinguishing
between Dynamic (e.g., engine speed signals) and Verification
signals (i.e., Checksum and Counter) is challenging because
their bit-flip rates are similar. By relying solely on bit-level
features [13]–[19], existing RE systems can result in excessive
slicing of CAN signals.

The byte-level patterns of CAN signals are considered in
this paper based on the observation of DBC files from the
OpenDBC repository [21]. The DBC files from the OpenDBC
repository cover 82 cars, ranging from 2001 to 2023 for
19 distinct OEMs, such as Honda, Mazda, Mercedes Benz,
and Toyota. There are 34, 495 CAN signals covered in the
DBC files from the OpenDBC, within which 98.25% of CAN
signals are shorter than or equal to 16 bits of signal length. In
summary, we found the patterns of CAN signals as follows:
• Pattern 1: CAN signals usually occupy consecutive bits

within a CAN frame, necessitating the signal slicing to
locate CAN signals.

• Pattern 2: CAN signals may occupy more than one byte,
highlighting the need for identifying signal boundaries at
the byte level.

• Pattern 3: CAN signals often align with whole-byte off-
sets, suggesting the advantage of initial byte level slicing.

These insights are indicated in Fig. 2. Thereby, the byte-level
clustering step can help in finding the boundaries of CAN
signals at byte level before slicing CAN signals at bit level to
enhance accuracy.

This paper introduces a fully automated RE system named
ByCAN to decode the data payloads of CAN frames using
only the collected CAN frames and OBD-II diagnostic data
with clustering-based matching learning and template match-
ing algorithms. Unlike previous studies, ByCAN processes
CAN signals at both byte and bit levels to reduce inaccurate
in signal slicing, particularly, to avoid the issue of excessively
sliced signal boundaries. To better capture the identified three

patterns, ByCAN proposes multiple features, such as flip rate,
average value, and distinct value ratio, at both the byte and
bit levels. The system’s performance is assessed on CAN mes-
sages captured from real-world vehicles. The key contributions
of the proposed ByCAN are summarized as follows:
• We design a fully automated RE system using easily

accessible data sources, i.e., CAN frames and OBD-II
diagnostic data, to decode the specifications of CAN
signals.

• We propose new features of CAN signals at both byte and
bit-block levels to capture high-level patterns of CAN
signals. Compared to the restrictive single-bit features,
the byte and bit-block level features can capture the
dynamics across a broader range of values, revealing
complex and subtle patterns in CAN signals. To the best
of our knowledge, this is the first attempt to use byte-level
clusters and features to slice CAN signals.

• We propose a new slicing algorithm featuring Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN), which eliminates the need for an estimated count
of CAN signals. We also introduce a new template match-
ing process utilizing Dynamic Time Warping (DTW),
specifically designed to align large-volume CAN signals
with the significantly less frequent OBD-II diagnostic
data.

The rest of the paper is organized as follows. Section II
introduces relevant background information, and Section III
gives the related works. Section IV presents the proposed sys-
tem. Section V evaluates the proposed system, and Section VI
concludes the paper.

II. BACKGROUND

A. Controller Area Network

A CAN frame contains the start of frame, arbitration field,
control field, data field, CRC field, ACK field and end of
frame, as in Fig. 1. ECUs have their own CAN IDs as unique
identifiers [1]. The CAN ID of each frame is the reference
to arbitrate the priority of concurrent CAN frames. Real-time
information of vehicle states (e.g., vehicle speed, indicator
status and checksum) is enclosed in the data payload. The
length of the data payload is up to 8 bytes. One CAN frame
may contain multiple CAN signals of different functions in
the data payload. For instance, different CAN signals related
to doors and trunks (e.g., front left door open, rear right door
open, and trunk open) can be located in the same CAN frame.
OEMs have different decoding specifications of CAN frames
such that different car models may use different CAN IDs for
the same CAN signals.

B. OBD-II Diagnostic Data

OBD-II is an automotive diagnostic system developed in
1992 and installed mandatory for all cars built after 1996
in the US [22]. The primary function of OBD-II diagnostic
messages is to monitor the vehicle health state and enable the
vehicle to communicate its operational information through
standardized Diagnostic Trouble Codes (DTCs) [23]. OBD-II
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diagnostic data use Parameter IDs (PIDs) to specify different
vehicle states be requested or transmitted. These PIDs govern a
range of data from vehicle speed to sensor data for fuel system
status with a published standard to interpret related signal
messages. The same vehicle state, e.g., vehicle speed, can
be obtained from the regular CAN frames and the requested
OBD-II diagnostic data but following the CAN encoding and
OBD-II diagnostic encoding, respectively.

C. Collecting CAN Frames and OBD-II Diagnostic Data

CAN frames and OBD-II diagnostic data are accessed via
the OBD-II port that typically located under the dashboard. By
connecting CAN analyzers to the OBD-II port, CAN frames
can be recorded passively, and meanwhile OBD-II diagnostic
data can be requested actively. The CAN frames from the
OBD-II port follow the same format as those over the in-
vehicle CAN bus. This is because the OBD-II port is hard-
wired to the CAN bus and provides CAN high and CAN low
for passive listening. There could be a CAN gateway between
CAN bus and OBD-II port which regulates the transfer of
CAN data and can filter out CAN frames based on specific
CAN IDs before sending through the OBD-II port [24], [25].
Different methods can be used to gain direct access to the CAN
bus, e.g., via the instrument pack or the rear of the radio, to
bypass the CAN gateway and obtain all CAN signals. The only
difference between the CAN frames collected from the OBD-
II port and those from the CAN bus wires is the number of
CAN IDs and CAN signals in the collected dataset. As existing
RE systems focus on analyzing CAN IDs independently, the
absence of specific CAN IDs does not impede the RE process
on other accessible CAN IDs. Since the OBD-II port is the
common access point without damaging cars, most existing
works promise utility and applicability by collecting CAN
frames via the OBD-II port.

D. CAN Database Container

The CAN Database Container (DBC) is a widely adopted
format developed for the storage and interchange of the
decoding specifications of CAN frames’ data payload. DBC
files are in the ASCII format to keep it human-readable and
easy to manipulate programmatically. The DBC file describes
the CAN IDs, the lengths of the data payloads of CAN
frames, and the names of CAN signals. The DBC file also
encapsulates the signal details, including the names, bit start
position, length, endianness, scale, offset, range and unit of
CAN signals associated with CAN ID. However, DBC files
vary across different vehicle models and makers [26]. OEMs
rarely release DBC files due to security concerns, which makes
the decoding specification of the data payloads of CAN frames
a black box [27].

E. DBSCAN Clustering Algorithm

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) clustering algorithm was first introduced
in 1996 and widely used to recognize data patterns [28].
DBSCAN identifies the core points with many nearby neigh-
bors, the border points that are reachable from core points but

not dense themselves, and the outliers that lie alone in low-
density regions [29]. Unlike the K-Means, DBSCAN does not
require the specification of the number of clusters as an input
parameter. Instead, the DBSCAN clustering algorithm only
requires two parameters: The search radius 𝜖 around each point
to find neighbors and the minimum number of points minPts
to determine a dense region for the core point. The number of
clusters is determined by 𝜖 , minPts and the data itself, which
makes DBSCAN particularly useful for the clustering tasks
with unknown data structures.

III. RELATED WORK

CAN RE systems deduce CAN signals’ boundaries and
labels by slicing and labeling CAN signals from collected
CAN frames [6]. Existing works have developed from the
manual systems [30]–[32], which require significant human
effort, to automated systems that analyze CAN signal patterns
from collected CAN frames for more efficient slicing and
labeling [14]–[19], [33]–[36]. Markovitz and Wool are the first
to develop an automated RE system and evaluate the perfor-
mance with the simulated CAN frames [14]. Subsequently,
Marchetti and Stabili develop the READ system and evaluate
the performance with real-world cars [15]. Machine learning
algorithms are used to enhance the automated RE when ana-
lyzing the real-world traffic trace of CAN frames where most
CAN signals are transmitted at millisecond frequencies [37].

The bit-level features, such as the bit-flip rates of CAN
signals, are largely utilized in the existing automated CAN
RE system. The RE system named READ calculates the bit-
flip rate for each bit in the CAN frame’s data payload and
builds up the magnitude array to slice CAN signals [15].
READ identifies CAN signals’ boundaries by searching the
magnitude array for pairs of consecutive bits where the first
exhibits a higher bit-flip magnitude than the second, marking
such instances as potential signal boundaries. Based on READ,
Pesé et al. use the bit-flip rate and magnitude array to
determine CAN signals’ boundaries but introduce a specific
percentage threshold for the bit-flip rate decrease to refine
the pair identification [16]. The CANMatch system focuses
on the bit-flip rate only but extends the use of bit-flip rate
by incorporating the endianness of CAN signals at the byte
level [17]. In [18], the CAN-D system is developed to slice and
label CAN signals with the input of multiple bit-level features,
e.g., the bit-flip rate, two-bit distributions, and entropy. In [26],
the value of each byte in the CAN frame of different CAN
IDs is used to find the clusters of various vehicle functions.

Existing RE systems utilize byte values or endianness
merely as supplementary to bit-level slicing, thus neglecting
additional byte-level patterns of CAN signals. The byte-
level features indicate different patterns of various CAN sig-
nals [38], [39]. According to our observation, CAN signals
typically occupy up to two bytes, and those CAN signals
associated with similar vehicle functions often consecutively
reside within one or two bytes. By examining the byte-level
patterns, such as the flip rate and average value of the byte,
CAN signals can be initially separated at the byte level to
prevent excessive slicing.
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TABLE I
COMPARISON OF REVERSE ENGINEERING SYSTEMS

Approaches Input Features of CAN Message Data Source

Bit-level Byte-level

READ [15] Taxonomy Bit-flip Rate - CAN

LibreCAN [16] Taxonomy Bit-flip Rate - CAN, GPS, IMU, OBD-II

CANMatch [17] Unsupervised Learning, Bit-flip Rate - CAN, DBC Files
Frame Matching1

CAN-D [18] Supervised Learning, Bit-flip Rate, - CAN, OBD-II
Unsupervised Learning Neighbouring Bit’s Values and Flips2

Our work Unsupervised Learning, Bit-flip Rate, Byte Flip Rate, CAN, OBD-II
Template Matching Bit-block Flip Rate, Average Byte Value,

Average Bit/Bit-block Value, Distinct Byte Value Ratio
Distinct Bit-block Value Ratio

1 CAN signals whose ID can be matched in DBC files (ground truth) are directly reverse-engineered by using the ground truth results, which makes
CANMatch largely depend on the ground truth.

2 The neighboring bit’s values and flip rates are not directly used but encoded.

The existing works and the proposed ByCAN system are
compared in Table I. The RE systems have developed from the
basic taxonomy approaches to machine learning-based meth-
ods. We apply unsupervised learning and template matching
in the proposed ByCAN system for clustering and labeling
steps, respectively. In prior works, the bit flip rate [15]–[18]
or the set of encoded features of neighbouring bit’s values and
flips [18] are used to slice and label CAN signals. In contrast to
existing methods, which have typically overlooked the byte-
level patterns of CAN signals, ByCAN highlights the byte-
level patterns and applies unsupervised learning algorithms
in both slicing and labeling procedures. ByCAN introduces
multiple byte-level and bit-level features for byte-level signal
clustering and bit-level signal slicing. Additional data sources,
such as GPS [16], DBC file [17], or OBD-II diagnostic
data [18], are examined in existing works to enhance the
system performance. The proposed system only requires CAN
frames and the request for OBD-II diagnostic data that can be
commonly collected from cars directly. No prior knowledge,
such as the DBC file used in CANMatch [17] is required in
ByCAN to slice and label CAN signals, which ensures the
applicability of the proposed system for unknown cars and
new models of cars. The slicing and labeling performance of
ByCAN is evaluated with CAN frames collected from real-
world cars.

IV. PROPOSED SYSTEM

The proposed CAN RE system, ByCAN, is demonstrated in
Fig. 3. To the best of our knowledge, ByCAN is the first to uti-
lize multiple features at both the byte and bit levels to identify
CAN signals’ boundaries and labels. The introduced features
capture the characteristics of CAN signals and enhance the
performance of the proposed ByCAN. ByCAN consists of
three procedures: Data Pre-processing, Signal Slicing, and
Signal Labeling.

A. Features Identification
Based on empirical observations of the ground-truth DBC

files and the collected CAN traces, the proposed system slices

and labels CAN signals as Unused, Switch, Dynamic and
Verification types. The Unused CAN signals stand for the bits
that are not taken or the values of the CAN signals are not
changed during the communication period. The Switch CAN
signals stand for the CAN signals that represent vehicle states
whose values change rarely during the whole communication
period. The Dynamic CAN signals stand for the vehicle’s
kinematic states, such as vehicle speed, which are quite active
signals. The Verification CAN signals stand for the CAN signal
counters or checksum that keep changing for every transmitted
CAN frame.

Unlike previous works that primarily focus on the bit-flip
rate or other bit-level features, our system comprehensively
analyzes both byte and bit characteristics. According to the
characteristics of different CAN signals, we propose new
features to distinctly categorize CAN signals, including the
flip rate, the average value, and the distinct value ratio for
each byte, bit, and bit-block, as summarized below.

1) Flip Rate: The flip rate quantifies the variability of
CAN signals across a sequence of CAN frames, which is
fundamental for detecting the clusters of CAN signals at the
byte or bit level within the data payloads of the CAN frames.
Clusters with Dynamic or Verification CAN signals have high
bit-flip rates, bit-block flip rates, and byte flip rates. Dynamic
CAN signals typically represent continuous variables, either
incrementing or decrementing by the base unit, whereas
Verification CAN signals pertain to discrete variables. This
is because Dynamic CAN signals capture vehicle kinematic
states, which consistently change while driving. Consequently,
the Verification CAN signals are updated with each CAN
frame.

2) Average Value: The use of the average value as a
clustering parameter for CAN signals is substantiated by the
observation that different types of CAN signals exhibit distinct
patterns in their average values. For example, the average value
of vehicle speed is usually between 0 and 100 km/h, while the
average value of engine speed usually ranges between 600 and
5000 RPM. Therefore, the average value of the CAN signals
could reveal the semantic meaning of the CAN signals.
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Fig. 3. ByCAN system: In the data pre-processing procedure, CAN messages are grouped by CAN ID first. Then, the grouped CAN messages are reformatted
into the trace 𝑀𝐶 and 𝑚𝐶 with CAN frames’ data payloads segmented at byte level and bit level, respectively. In the signal-slicing procedure, the byte-level
CAN signal features are extracted to deduce byte-level signal clusters. The bit-level CAN signal boundaries are further sliced within each byte-level cluster
using proposed signal features at the bit level. In the signal labeling procedure, the sliced CAN signals are first labeled as general categories (i.e., Unused,
Switch, Dynamic and Verification). Finally, the descriptive labels are identified by applying the template matching algorithm to measure the similarity between
the Dynamic signals and OBD-II diagnostic messages.

3) Distinct Value Ratio: By measuring the number of val-
ues that are utilized actively, the distinct value ratios indicate
the operational characteristics of the CAN signals, such as
frequency of change and data density. The distinct value
ratios indicate the functional complexity and utilization of the
byte or the bit-block, revealing whether the byte or bit-block
is predominantly occupied by dynamic values, static values,
or a combination thereof. Dynamic CAN signals may vary
within a range constrained by vehicle kinematic states, such
as vehicle speed, while verification signals can assume all
possible values, as seen with counter signals. Thus, Verification
CAN signals have more distinct values than Dynamic CAN
signals. Since Switch CAN signals only have a few values
to represent different states, Switch CAN signals have lower
ratios of distinct values than Dynamic and Verification CAN
signals. Unused signals have the lowest distinct byte value
ratio and distinct bit-block value ratio.

By leveraging these identified features, the proposed By-
CAN system achieves enhanced performance and accuracy in
distinguishing different CAN signal types. The comprehensive
suite of features at both byte and bit levels captures the
distinct characteristics and patterns of each signal type more
effectively.

B. Data Pre-processing

The initial phase of ByCAN is the data pre-processing of the
collected CAN traces that include a variety of CAN IDs. The
first step is to group CAN frames by CAN IDs due to the fact
that CAN frames associated with distinct CAN IDs exhibit
unique transmission and signal patterns. Subsequently, the

CAN frame’s data payload is segmented at byte level and bit
level, respectively. This conversion facilitates the subsequent
stages of the byte-level and bit-level CAN signal slicing and
labeling.

1) CAN Frame Grouping: The standard CAN frame has the
start of frame, arbitration field, control field, data field, CRC
field, ACK field, and end of frame as illustrated in Fig. 1. In
practice, CAN frames are recorded and collected by CAN bus
analyzers1 as CAN trace. Except for the essential data payload
of the CAN frame, additional information, such as timestamps,
CAN bus channel, and frame state, is covered in the recorded
CAN trace by the CAN bus analyzer. The timestamp is crucial
for analyzing the signal patterns over time. All active functions
of the targeted vehicle are represented in the data payloads
of CAN frames, where CAN signals vary across occupied
bytes and value ranges. Different CAN IDs have different
transmission patterns and CAN signal patterns for their CAN
frames. For example, the data payload of CAN ID 0x094 could
occupy 8 bytes for active signals, whereas the data payload of
CAN ID 0x01AB may only have 3 bytes used by CAN signals.
The first step of the data pre-processing procedure is to group
CAN frames in the recorded CAN trace by their respective
CAN ID 𝐶 before slicing CAN signals within CAN frames.

2) Payload Reformatting: The collected CAN trace is split
into multiple CAN traces for different CAN IDs. The trace of
CAN ID 𝐶 has 𝑇𝐶 rows of CAN frames. The trace of CAN
ID 𝐶 is further converted into two traces, i.e., 𝑀𝐶 and 𝑚𝐶 ,
from byte-level and bit-level perspectives, respectively. In 𝑀𝐶 ,

1CAN bus analyzer can be used to view and log received and
transmitted frames from the CAN bus. https://www.influxbigdata.in/post/
can-bus-analyzer-choose-the-right-one

https://www.influxbigdata.in/post/can-bus-analyzer-choose-the-right-one
https://www.influxbigdata.in/post/can-bus-analyzer-choose-the-right-one
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TABLE II
NOTATIONS

Notation Description

𝑀𝐶 /𝑚𝐶 CAN trace whose frame payload is segmented by byte/bit
for CAN ID 𝐶

𝑇𝐶 The number of entries in 𝑀𝐶 or 𝑚𝐶

Γ𝐶
𝑖

𝑖-th byte of the data payload in the CAN frame for CAN
ID 𝐶

Γ𝐶
𝑖,𝑖+1 Sliced byte block with the 𝑖-th and (𝑖 + 1)-th byte in the

data payload of the CAN frame for CAN ID 𝐶

𝛾𝐶
𝑘

𝑘-th bit of the data payload in the CAN frame for CAN
ID 𝐶

𝛾𝐶𝑚𝑛 Sliced CAN signal from 𝑚-th to 𝑛-th bit of the data
payload in the CAN frame for CAN ID 𝐶

𝐴𝐶
𝑖

/𝑎𝐶
𝑘

/𝑎𝐶𝑚𝑛 Average byte/bit/bit-block value of Γ𝐶
𝑖

/𝛾𝐶
𝑘

/𝛾𝐶𝑚𝑛

𝐵𝐶
𝑖

/𝑏𝐶
𝑘

/𝑏𝐶𝑚𝑛 Flip rate of Γ𝐶
𝑖

/𝛾𝐶
𝑘

/𝛾𝐶𝑚𝑛

𝑉𝐶
𝑖

/𝑣𝐶𝑚𝑛 Distinct value set of Γ𝐶
𝑖

/𝛾𝐶𝑚𝑛

𝑈𝐶
𝑖

/𝑢𝐶𝑚𝑛 Distinct value ratio of Γ𝐶
𝑖

/𝛾𝐶𝑚𝑛

𝜃𝐶𝑚𝑛 Labeling parameter of 𝛾𝐶𝑚𝑛

𝑔 Bit-level labeling function

𝛽/𝜙 Flip rate function of Γ𝐶
𝑖

/𝛾𝐶𝑚𝑛

𝜁 / 𝜛 Slicing accuracy/coverage

𝜉 Labeling accuracy

a 64-bit CAN frame’s data payload is converted into eight
numerical values, with each byte represented by one value.
The bit-level trace 𝑚𝐶 retains the 64-bit representation of the
CAN frame’s data payload. Different from existing works, the
byte-level trace 𝑀𝐶 is introduced to support our new byte-level
processing, e.g., byte-level clustering. The bit-level trace 𝑚𝐶
is used in the subsequent bit-level processing, e.g., bit-level
slicing.

C. Signal Slicing

According to the identified CAN signal Pattern 1, the signal
slicing is required to extract different CAN signals from the
CAN frames. CAN signal boundaries are identified through a
two-step process: the byte-level signal clustering and the bit-
level signal slicing. Initially, the byte-level features extracted
from CAN frames are used to cluster CAN signals at the byte
level, establishing preliminary signal delimiters. Then, within
each byte-level cluster, the boundaries of CAN signals are
further sliced and defined at the bit level. The notations used
are detailed in Table II. Algorithm 1 illustrates the CAN signal
slicing at both byte and bit level.

1) Byte-level Signal Clustering: The processed CAN trace
𝑀𝐶 of CAN ID 𝐶 whose data payload segmented by bytes is
used in this step. The byte-level features are extracted from
the trace 𝑀𝐶 for each byte in the data payload. Γ𝐶

𝑖
, 1 ≤ 𝑖 ≤ 8,

represents the 𝑖-th byte of the data payload of the CAN frame
for CAN ID 𝐶.

According to the identified Patterns 2 and 3, CAN signals
can be firstly located at the byte level to enhance the slicing

performance. ByCAN proposes the new byte-level features,
i.e., the byte flip rate 𝐵𝐶

𝑖
, the average byte value 𝐴𝐶

𝑖
, and

the distinct byte value ratio 𝑈𝐶
𝑖

. 𝐵𝐶
𝑖

represents the frequency
at which the value of Γ𝐶

𝑖
changes. 𝐴𝐶

𝑖
is the mean value

of Γ𝐶
𝑖

and 𝑈𝐶
𝑖

indicates the quantity of different values for
Γ𝐶
𝑖

. Different CAN signals distinguish from each other with
different features of 𝐵𝐶

𝑖
, 𝐴𝐶

𝑖
, and 𝑈𝐶

𝑖
.

The byte flip rate of the Γ𝐶
𝑖

, denoted by 𝐵𝐶
𝑖

, as given by

𝐵𝐶𝑖 =

∑𝑇𝐶−1
𝑗=1 𝛽(𝑀𝐶 , 𝑖, 𝑗)

𝑇𝐶 − 1
,

𝛽(𝑀𝐶 , 𝑖, 𝑗) =
{

0, if Γ𝑖 ( 𝑗+1) = Γ𝑖 𝑗 ,

1, if Γ𝑖 ( 𝑗+1) ≠ Γ𝑖 𝑗 ,

(1)

where Γ𝑖 𝑗 is the value of Γ𝐶
𝑖

in the 𝑗-th entry of 𝑀𝐶 , 1 ≤
𝑗 ≤ 𝑇𝐶 . The byte flip function 𝛽(𝑀𝐶 , 𝑖, 𝑗) is 0 when Γ𝐶

𝑖
in

adjacent entries are the same and 1 otherwise. We can have
0 ≤ 𝐵𝐶

𝑖
≤ 1.

The average value of Γ𝐶
𝑖

, denoted by 𝐴𝐶
𝑖

, can be given by

𝐴𝐶𝑖 =

∑𝑇𝐶
𝑗=1 Γ𝑖 𝑗

𝑇𝐶
. (2)

The distinct byte value ratio of Γ𝐶
𝑖

, denoted by 𝑈𝐶
𝑖

, can be
calculated by

𝑈𝐶𝑖 =

��𝑉𝐶
𝑖

��
256

, 1 ≤
��𝑉𝐶𝑖 �� ≤ 256, (3)

where 𝑉𝐶
𝑖

is the set of distinct values of Γ𝐶
𝑖

.
��𝑉𝐶
𝑖

�� gives the
number of elements in 𝑉𝐶

𝑖
. The maximum number of

��𝑉𝐶
𝑖

�� for
a byte is 28 = 256, since one byte has 8 bits.

The proposed byte-level features are utilized to cluster CAN
signals at byte level by applying clustering algorithms as
shown in Algorithm 1 line 2. The number of CAN signals
varies for different CAN ID and is unknown, which means the
system cannot determine the number of clusters when slicing
CAN signals in a CAN frame either at byte or bit level. Thus,
ByCAN utilizes the DBSCAN clustering algorithm that does
not require to specify the number of clusters in advance. Based
on the observation of DBC files, CAN signals take up to two
bytes position of a CAN frame. ByCAN restricts the cluster
to be maximum two byte long and identifies byte blocks Γ𝐶

𝑖,𝑖+1
with two bytes and Γ𝐶

𝑖
with one byte.

2) Bit-level Signal Slicing: The proposed system slices the
bit-level CAN signal boundaries within the identified byte-
level signal clusters with 8 or 16 bits.

The 𝑘-th bit of the payload in the CAN frame of CAN ID
𝐶, denoted by 𝛾𝐶

𝑘
, has 1 ≤ 𝑘 ≤ 64. The bit-flip rate of 𝛾𝐶

𝑘
is

denoted by 𝑏𝐶
𝑘

, as given by

𝑏𝐶𝑘 =

∑𝑇𝐶−1
𝑗=1 𝛾𝑖

𝑘 ( 𝑗+1) ⊕ 𝛾
𝑖
𝑘 𝑗

𝑇𝐶 − 1
, (4)

where 𝑘 indicates the 𝑘-th bit of the payload in the CAN
frame of CAN ID 𝐶. The 𝑗 denotes the 𝑗-th CAN frame of
𝑚𝐶 , 1 ≤ 𝑗 ≤ 𝑇𝐶 . 𝛾𝑖

𝑘 𝑗
is the value of 𝛾𝐶

𝑘
in the 𝑗-th entry of

𝑚𝐶 .



7

Algorithm 1: Slicing algorithm
Input : CAN trace 𝑀𝐶 and 𝑚𝐶 for CAN ID 𝐶

Output: Sliced CAN signal 𝛾𝐶𝑚𝑛
/* Identify byte-level features of 𝑀𝐶. */

1 Compute byte-level features 𝐵𝐶
𝑖

, 𝐴𝐶
𝑖

, and 𝑈𝐶
𝑖

; ⊲

with (1), (2) and (3)
/* Cluster byte blocks of 𝑀𝐶 by applying the

clustering algorithms. */

2 Γ𝐶
𝑖

or Γ𝐶
𝑖,𝑖+1 ← DBSCAN Cluster(𝑀𝐶 , 𝐵𝐶𝑖 , 𝐴𝐶𝑖 ,𝑈𝐶𝑖 );

/* Slice bit-level signal boundary within byte-level

blocks. */

3 for 𝛾𝐶
𝑘

in Γ𝐶
𝑖

or Γ𝐶
𝑖,𝑖+1 do

4 Compute the bit-flip rate 𝑏𝐶
𝑘

; ⊲ with (4);
5 Compute the average bit value 𝑎𝐶

𝑘
; ⊲ with (5);

6 end
/* Cluster bit blocks of Γ𝐶

𝑖
or Γ𝐶

𝑖,𝑖+1 with 𝑚𝐶 by

applying the clustering algorithms. */

7 return 𝛾𝐶𝑚𝑛 ← DBSCAN Cluster(𝑚𝐶 , 𝑏𝐶𝑘 , 𝑎
𝐶
𝑘
);

The average bit value of 𝛾𝐶
𝑘

, denoted by 𝑎𝐶
𝑘

, is as given by

𝑎𝐶𝑘 =

∑𝑇𝐶
𝑗=1 𝛾

𝑖
𝑘 𝑗

𝑇𝐶
. (5)

The bit-flip rate 𝑏𝐶
𝑘

and average bit value 𝑎𝐶
𝑘

are used to
cluster bit-level blocks 𝛾𝐶𝑚𝑛, 𝑚 ≤ 𝑛. The 𝑚 and 𝑛 of 𝛾𝐶𝑚𝑛 are
the start and the end bit positions in the data payload of the
CAN frame for CAN ID 𝐶, respectively. Note that 𝑚 = 𝑛

when 𝛾𝑚𝑛 takes only one bit.
After identifying the byte-level and bit-level features, CAN

signal clusters at both levels are generated using the DBSCAN
clustering algorithm, as outlined in Algorithm 1. Under the
clustered byte blocks, bit-level features are further calculated
to cluster CAN signals at the bit level. The DBSCAN algo-
rithm is particularly suited for the clustering process because
it adeptly handles the variations in signal density, which is
common in CAN frames. Additionally, the DBSCAN algo-
rithm is suited for clustering signals by each CAN ID or each
byte, as it does not require prior knowledge of the number of
clusters—a common scenario in reverse engineering the data
payloads of CAN frames.

D. Signal Labeling

The signal labeling is illustrated in Algorithm 2, including
the general labeling and template matching process. Bit-level
features of sliced CAN signal blocks from the Signal Slicing
step are identified to associate the sliced CAN signals with
the general labels. Due to the unknown numbers of CAN
signal types, the DBSCAN algorithm is used to cluster based
on labeling thresholds, distinguishing different CAN signals’
labels using the identified bit-level features. For the identified
Dynamic CAN signals, the DTW template matching algorithm
is further used to align them with the templates of the OBD-II
diagnostic data. DTW effectively compensates for discrepan-
cies, such as time differences, shifts, or offsets between the

CAN signals and the corresponding templates of the OBD-
II diagnostic data. This alignment is crucial, as CAN frames
typically transmit faster than OBD-II diagnostic responses that
lack a fixed correspondence ratio with CAN frames.

1) General Labeling: The proposed system labels CAN
signals as Unused, Switch, Dynamic and Verification. The
flip rate is the common parameter to distinguish and label
different CAN signal types. The proposed system improves
the labeling process by introducing the labeling parameter
and combining it with the flip rate to label CAN signals. To
distinguish the signals with similar flip rates but different ratios
of distinct values (e.g., Unused and Switch), ByCAN combines
the flip rate and the ratio of distinct values into a new labeling
parameter.

The bit-block flip rate of 𝛾𝐶𝑚𝑛, denoted as 𝑏𝐶𝑚𝑛, presents the
flip rate of sliced CAN signal blocks in the payload of a CAN
frame for CAN ID 𝐶, as given by

𝑏𝐶𝑚𝑛 =

∑𝑇𝐶−1
𝑗=1 𝜙(𝑚𝐶 , 𝑖, 𝑚𝑛, 𝑗)

𝑇𝐶 − 1
;

𝜙(𝑚𝐶 , 𝑖, 𝑚𝑛, 𝑗) =
{

0, if 𝛾𝑖
𝑚𝑛( 𝑗+1) = 𝛾

𝑖
𝑚𝑛 𝑗 ;

1, if 𝛾𝑖
𝑚𝑛( 𝑗+1) ≠ 𝛾

𝑖
𝑚𝑛 𝑗 ,

(6)

where the value of 𝛾𝐶𝑚𝑛 of the 𝑗-th entry of 𝑚𝐶 is denoted by
𝛾𝑖
𝑚𝑛 𝑗 , 1 ≤ 𝑗 ≤ 𝑇𝐶 . The bit flip function 𝜙 is 1 when 𝛾𝐶𝑚𝑛 in

adjacent entries are different and 0 otherwise.
The average bit-block value of 𝛾𝐶𝑚𝑛, denoted by 𝑎𝑚𝑛, can

be calculated by

𝑎𝐶𝑚𝑛 =

∑𝑇𝐶
𝑗=1 𝛾

𝑖
𝑚𝑛 𝑗

𝑇𝐶
. (7)

The distinct bit-block value ratio of 𝛾𝐶𝑚𝑛, denoted by 𝑢𝐶𝑚𝑛,
indicates the frequency of different values of a CAN signal in
the CAN trace and is as given by

𝑢𝐶𝑚𝑛 =

��𝑣𝐶𝑚𝑛��
2𝑛−𝑚+1

, 1 ≤
��𝑣𝐶𝑚𝑛�� ≤ 2𝑛−𝑚+1, (8)

where 𝑣𝐶𝑚𝑛 is the set of distinct bit-block values of 𝛾𝐶𝑚𝑛, and��𝑣𝐶𝑚𝑛�� is the size of the set 𝑣𝐶𝑚𝑛. 2𝑛−𝑚+1 is the maximum number
of the bit block taken up from 𝑚-th bit to 𝑛-th bit (m ≤ n),
i.e., the maximum number of

��𝑣𝐶𝑚𝑛��.
The labeling parameter 𝜃𝐶𝑚𝑛 is defined to label the sliced

CAN signals 𝛾𝐶𝑚𝑛, as given by

𝜃𝐶𝑚𝑛 = 𝑏
𝐶
𝑚𝑛 × 𝑢𝐶𝑚𝑛, (9)

where 0 ≤ 𝜃𝐶𝑚𝑛 ≤ 1. The parameter 𝜃𝐶𝑚𝑛 combines 𝑏𝐶𝑚𝑛 and
𝑢𝐶𝑚𝑛 to consider both the bit-block flip rate and the ratio of
distinct bit-block values when labeling CAN signals, thereby
maximizing the dissimilarity of different labels. Instead of
using 𝑢𝐶𝑚𝑛 only to label CAN signals, 𝜃𝐶𝑚𝑛 can distinguish
CAN signals with similar flip rates and different ratios of
distinct values.

Unused CAN signal blocks have 𝜃𝐶𝑚𝑛 = 0 and 𝑏𝐶𝑚𝑛 = 0 by
which the signal can be deduced as unchanged no matter the
value it represents. Verification, Switch and Dynamic CAN
signals have 𝑏𝐶𝑚𝑛 > 0. Switch CAN signals are triggered
less frequently than Dynamic CAN signals. Dynamic and
Verification CAN signals usually have higher 𝑏𝐶𝑚𝑛. Given all
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Algorithm 2: Labeling algorithm

Input : Sliced CAN signal 𝛾𝐶𝑚𝑛, CAN trace 𝑚𝐶 for
CAN ID 𝐶, time series of the templates of
OBD-II diagnostic data 𝑆𝑥

Output: CAN signal label of 𝛾𝐶𝑚𝑛
/* Identify bit-level features of all 𝛾𝐶𝑚𝑛. */

1 Compute bit-level features 𝑏𝐶𝑚𝑛, 𝑎𝐶𝑚𝑛, and 𝑢𝐶𝑚𝑛; ⊲

with (6), (7) and (8)
2 Compute labeling parameter 𝜃𝐶𝑚𝑛; ⊲ with (9)
/* Determine labeling thresholds 𝜀0 by applying

clustering algorithms with 𝜃𝐶𝑚𝑛, 𝑏𝐶𝑚𝑛 and 𝑎𝐶𝑚𝑛 of

all bit-blocks. */

3 𝜀0 ← Cluster(𝜃𝐶𝑚𝑛, 𝑏𝐶𝑚𝑛, 𝑎𝐶𝑚𝑛);
4 foreach 𝛾𝐶𝑚𝑛 do

/* Assign general labels. */

5 Label 𝛾𝐶𝑚𝑛 with 𝑔(𝜃𝐶𝑚𝑛, 𝑏𝐶𝑚𝑛); ⊲ with (10)
/* Assign descriptive labels to Dynamic signals

by using the template matching algorithms. */

6 if 𝑔(𝜃𝐶𝑚𝑛, 𝑏𝐶𝑚𝑛) = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 then
/* Convert the CAN message values of 𝛾𝐶𝑚𝑛 into

the time seires sequence 𝐸𝑥. */

7 𝐸𝑥 ← Serialize(𝛾𝐶𝑚𝑛);
8 𝛾𝐶𝑚𝑛.TemplateMatch(𝑆𝑥 , 𝐸𝑥);
9 end

10 end
11 return Labels of 𝛾𝐶𝑚𝑛;

calculated 𝜃𝐶𝑚𝑛, the threshold 𝜀0 is determined by unsupervised
clustering algorithms and used to label Switch, Dynamic, and
Verification CAN signals. The bit-level labeling function 𝑔 is
given by

𝑔(𝜃𝐶𝑚𝑛, 𝑏𝐶𝑚𝑛) =


𝑈𝑛𝑢𝑠𝑒𝑑 if 𝜃𝐶𝑚𝑛 = 0 and 𝑏𝐶𝑚𝑛 = 0;
𝑆𝑤𝑖𝑡𝑐ℎ if 0 < 𝜃𝐶𝑚𝑛 ≤ 𝜀0;
𝐷𝑦𝑛𝑎𝑚𝑖𝑐 if 𝜀0 ≤ 𝜃𝐶𝑚𝑛 and 𝑏𝐶𝑚𝑛 < 0.99;
𝑉𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 if 𝜀0 ≤ 𝜃𝐶𝑚𝑛 and 𝑏𝐶𝑚𝑛 ≥ 0.99.

(10)
The labeling function 𝑔 takes into account 𝜃𝐶𝑚𝑛 and 𝑏𝐶𝑚𝑛 to
match the label based on different CAN signals’ features.
Unused CAN signals have both 𝜃𝐶𝑚𝑛 and 𝑏𝐶𝑚𝑛 that are equal to
0. The Switch CAN signals have lower 𝜃𝐶𝑚𝑛 than Dynamic and
Verification CAN signals. The Verification CAN signals have
higher 𝜃𝐶𝑚𝑛 and the highest 𝑏𝐶𝑚𝑛. The proposed system sets the
threshold value for 𝑏𝐶𝑚𝑛 at 0.99 to distinguish between Veri-
fication and Dynamic CAN signals. This threshold mitigates
the uncommon scenario where Verification CAN signals fail
to toggle in each CAN frame within the recorded CAN trace.

2) Template Matching: OBD-II diagnostic data are used in
this step since the information of some vehicle states, e.g.,
vehicle speed and engine speed, can be extracted from OBD-
II diagnostic data. ByCAN sends OBD-II diagnostic requests,
such as the request of PID 0C for the engine speed state, to
target vehicle. Following the public OBD-II diagnostic data

standard2, the requested OBD-II diagnostic data are examined
to translate and extract the values of the relevant states. The
sliced and labeled Dynamic CAN signals are then matched
with the extracted information from the OBD diagnostic
response to further determine the descriptive signal labels
without prior knowledge by leveraging template matching
algorithms. The proposed system builds the matching template
with the collected OBD-II diagnostic data that contain the
real-time dynamic signal values, such as Vehicle Speed and
Accelerator Pedal Position. ByCAN associates sliced CAN
signals with descriptive labels: Speed, Wheel Angle, Throttle
Pedal Position, and Brake Pedal Position Related.

The generated templates represent the time series of corre-
sponding signal values. 𝑆𝑥 denotes a time series template of
the OBD-II diagnostic data for one Dynamic CAN signal 𝑥,
where 𝑆𝑥 = {𝑠1, ..., 𝑠𝑎, ..., 𝑠𝑦}. ByCAN measures the similarity
between the sliced Dynamic CAN signal candidates and the
templates. The time series sequence of a sliced Dynamic CAN
signal candidate is denoted as 𝐸𝑥 , 𝐸𝑥 = {𝑒1, ..., 𝑒𝑏, ..., 𝑒𝑧}.
Note that 𝑧 = 𝑇𝐶 . The values of 𝐸𝑥 are the values of the labeled
signal block 𝛾𝑚𝑛 of 𝑚𝐶 in sequence. The defined time interval
of the OBD-II diagnostic data is different from the transition
rate of different CAN IDs. Thus, length 𝑦 of 𝑆𝑥 may be longer
or shorter than the length 𝑧 of 𝐸𝑥 .

In the proposed system, the DTW algorithm is used as the
similarity measure since 𝑆𝑥 and 𝐸𝑥 are unequal-length time
series [40]. A 𝑤-by-𝑧 matrix is constructed to align 𝑆𝑥 and 𝐸𝑥
using (11), where 𝑑𝑎,𝑏 is the element (𝑎, 𝑏) in the constructed
𝑤-by-𝑧 matrix to present the Euclidean Distance between the
points 𝑠𝑎 and 𝑒𝑏 (i.e., one for the Dynamic CAN signal and
the other for the template of the OBD-II diagnostic data).

𝑑𝑎,𝑏 = (𝑠𝑎 − 𝑒𝑏)2 . (11)

The warping path𝑊 is given in (12), where the 𝑘-th element
𝑤𝑘 = (𝑎, 𝑏)𝑘 .

𝑊𝑥 = {𝑤1, 𝑤2, ..., 𝑤𝑘 , ..., 𝑤𝐾 },
max(𝑦, 𝑧) ≤ 𝐾 < 𝑦 + 𝑧 − 1.

(12)

The optimal path between 𝑆𝑥 and 𝐸𝑥 is determined by
finding the minimum path from the set of all admissible paths,
as given by

𝐷𝑇𝑊 (𝑆𝑥 , 𝐸𝑥) = min ©«
√√√

𝐾∑︁
𝑘=1

𝑤𝑘
ª®¬ , (13)

where 𝐷𝑇𝑊 (𝑆𝑥 , 𝐸𝑥) is the optimal path (i.e., the shortest path
in our case) for the Dynamic CAN signal candidate with all
templates of the OBD-II diagnostic data. The proposed system
measures the optimal paths for the signal candidate with all
assessed OBD-II diagnostic data templates. The descriptive
label with the shortest path is finally associated with the signal
candidate.

2The standard OBD-II PIDs are defined by SAE J1979, which contains
the formula to translate the OBD-II diagnostic response into meaningful data.
https://en.wikipedia.org/wiki/OBD-II PIDs

https://en.wikipedia.org/wiki/OBD-II_PIDs
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E. Assessment Criteria

To quantify the performance of ByCAN, we propose three
metrics, i.e., slicing accuracy 𝜁 , slicing coverage 𝜛, and
labeling accuracy 𝜉.

Slicing accuracy (𝜁) indicates the percentage of correctly
sliced CAN signal bits, is as given by

𝜁 =

𝑥∑︁
𝑖𝑑=1

𝑆
𝛾𝐶𝑚𝑛

𝑖𝑑

𝐺
𝛾𝐶𝑚𝑛

𝑖𝑑

, (14)

where 𝑆𝛾
𝐶
𝑚𝑛

𝑖𝑑
is the number of bits that are correctly deduced

CAN signal boundaries for 𝛾𝐶𝑚𝑛 of the 𝑖𝑑-th CAN ID frame.
𝐺
𝛾𝐶𝑚𝑛

𝑖𝑑
is the number bits of exact signal boundaries for 𝛾𝐶𝑚𝑛.

The 𝑥 standards for the number of CAN IDs analyzed in the
system evaluation.

Slicing coverage (𝜛) represents the portion of sliced CAN
signals that are correctly located within the ground-truth CAN
signal boundaries. 𝜛 can be calculated by

𝜛 =

𝑥∑︁
𝑖𝑑=1

S𝛾
𝐶
𝑚𝑛

𝑖𝑑

𝐺
𝛾𝐶𝑚𝑛

𝑖𝑑

, (15)

where 𝑥 is the number of CAN IDs, the S𝛾
𝐶
𝑚𝑛

𝑖𝑑
stands for the

number of CAN signals that are located within the ground-
truth CAN signal boundaries of the 𝑖𝑑-th CAN ID signal.

Labeling accuracy (𝜉) stands for the system performance of
labeling CAN signals with the general or the descriptive labels.
𝜉 assesses the sliced CAN signals that are correctly labeled,
as given by

𝜉 =

𝑥∑︁
𝑖𝑑=1

𝐿
𝛾𝐶𝑚𝑛

𝑖𝑑

G𝛾
𝐶
𝑚𝑛

𝑖𝑑

, (16)

where 𝐿
𝛾𝐶𝑚𝑛

𝑖𝑑
is the number of correct labeled CAN signals

for 𝛾𝐶𝑚𝑛 of the 𝑖𝑑-th CAN ID frame. The label of 𝛾𝑚𝑛 in the
ground truth is determined by the label that takes up more bits
in 𝛾𝑚𝑛. G𝛾

𝐶
𝑚𝑛

𝑖𝑑
is the ground-truth label of 𝛾𝑚𝑛.

V. EVALUATION AND RESULTS

A. Experimental Setup

In our experiments, the real-world CAN traces were col-
lected from three cars of different makes and models: the
2006 Mazda 3 Automatic, the 2017 Honda Civic Manual, and
the 2022 Toyota RAV4 Hybrid. The PEAK PCAN-USB Pro3

adapter was used as the CAN analyzer in the experiment to
listen and record CAN frames on CAN bus via the OBD-
II port. An OBD-II cable was connected between the OBD-
II port of the target vehicle and the PEAK PCAN-USB Pro,
and the PEAK PCAN-USB Pro was connected with the USB
port of the experiment laptop to run the PCAN-Explorer 64

3PEAK PCAN-USB Pro is one of CAN analyzers bridging a PC
with CAN network to collect CAN frames. https://www.peak-system.com/
PCAN-USB-Pro-FD.366.0.html?&L=1

4PEAK PCAN-Explorer 6 is the Windows system software compatible with
the PEAK PCAN-USB Pro to receive, send, and record CAN frames. https:
//www.peak-system.com/PCAN-Explorer-6.415.0.html?&L=1

to record CAN frames into trace files. The CAN frames
were collected passively from the CAN bus, while the OBD-
II diagnostic data were collected by sending related OBD-
II requests. OBD-II disgnostic requests with the PIDs of
04 (calculated engine load), 0C (engine speed), 0D (vehicle
speed), 11 (throttle position), 45 (relative throttle position), 47
(absolute throttle position B), 48 (absolute throttle position C),
49 (absolute throttle position D), 4A (absolute throttle position
E), and 4B (absolute throttle position F) were sent to the target
vehicle. Both CAN frames and OBD-II data were monitored
and recorded into the trace files simultaneously.

The collected CAN trace files were converted into CSV
files using the compatible software PEAK-Converter5. The
parsed CSV files of the collected CAN trace files were fed
into the ByCAN system. The byte-level features, i.e., the flip
rate, the average value, the distinct byte value ratio of byte,
were extracted from the payload of recorded frames. ByCAN
restricts the byte clusters to have a minimum length of 1 byte
and a maximum length of 2 bytes. Within the identified byte
clusters, the bit blocks of CAN signals were further clustered
with the DBSCAN clustering algorithm with the bit-level
features. We ran the data collection and static analysis with
the DELL Latitude 5420 laptop, with 16 GB RAM and an
11th Gen Intel(R) Core(TM) i7-1185G7 CPU.

All possible car functions, e.g., acceleration, deceleration,
wheel steering and car indicators, were triggered to collect as
many CAN signals as we could. The data collection step takes
2 minutes on average to collect the regular CAN frames and
the OBD-II diagnostic data for ByCAN to reverse engineer
CAN signals. The experimental results were then assessed with
the ground truth from the OpenDBC repository [21]. Since the
DBC files from the OpenDBC were generated from manual
reverse engineering, not all CAN signals in the tested cars
were covered in the DBC files from OpenDBC. Thus, only
the CAN signals exist on both the collected CAN trace files
and the ground-truth DBC files were evaluated. The DBC
files utilized in our experiments were cross-validated with
laboratory vehicles by engineers at the Insurance Australia
Group (IAG) Research Center, ensuring the reliability of our
ground truth data. The evaluation focused on the system’s
slicing and labeling performance, examining the impact of
CAN signal type, signal length, CAN IDs and the number of
CAN frames. The CAN traces collected from individual cars
were used as the input to the proposed system for different
rounds of evaluations. The overview of the experimental
results is the average performance of all three cars tested in our
experiments, which is evaluated and discussed in this section.

B. Overall Performance

The proposed system ByCAN is compared against two
other RE systems, i.e., READ [15] and CAN-D [18], with
the evaluation metrics comprising slicing accuracy (𝜁), slicing

5PEAK PCAN-Converter is the Windows system software compatible
with the PEAK PCAN-USB Pro to convert trace files to various output
formats for the processing and analysis purpose. https://www.peak-system.
com/PEAK-Converter.554.0.html?&L=1

https://www.peak-system.com/PCAN-USB-Pro-FD.366.0.html?&L=1
https://www.peak-system.com/PCAN-USB-Pro-FD.366.0.html?&L=1
https://www.peak-system.com/PCAN-Explorer-6.415.0.html?&L=1
https://www.peak-system.com/PCAN-Explorer-6.415.0.html?&L=1
https://www.peak-system.com/PEAK-Converter.554.0.html?&L=1
https://www.peak-system.com/PEAK-Converter.554.0.html?&L=1
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TABLE III
COMPARISON OF OVERALL PERFORMANCE

System Slicing
accuracy
𝜁

Slicing
coverage
𝜛

Labeling
accuracy
𝜉

ByCAN 80.21% 95.21% 68.72%

CAN-D [18] 63.88% 89.21% 67.62%

READ [15] 51.99% 83.61% 64.48%

coverage (𝜛), and labeling accuracy (𝜉), as summarized in
Table III. The READ system relies solely on the bit-flip
rate to slice and label CAN signals. The CAN-D system
leverages multiple bit-level features, including the bit-flip
rate, two-bit distributions, and entropy. The proposed ByCAN
system distinguishes the READ and CAN-D from the initial
step of byte-level clustering before identifying bit-level signal
boundaries within the byte clusters. The experimental results
presented are the averaged performance metrics of evaluated
systems with real-world CAN traces collected from all tested
cars included in our study.

In our experiments, ByCAN demonstrates a superior slicing
accuracy 𝜁 of 80.21%, which notably surpasses that of CAN-
D and READ, with slicing accuracy 𝜁 of 63.88% and 51.99%,
respectively. ByCAN achieves slicing coverage 𝜛 of 95.21%,
which also outperforms the CAN-D (89.21%) and READ
(83.61%). In terms of labeling accuracy 𝜉, ByCAN maintains
the lead with a 68.72% labeling accuracy, while CAN-D and
READ are behind with 67.62% and 64.48%, respectively. The
experimental result indicates that the proposed ByCAN system
gains a better overall performance in decoding CAN signal
specifications without any prior knowledge.

C. Slicing Performance

1) Size of Byte-level Clusters: According to Pattern 2 and
our observation, most CAN signals take less than 16 bits in
the CAN frames’ data payloads. We compare the ByCAN’s
performance with and without the two-byte restriction in the
byte-level clustering step, and ByCAN with the restriction has
better overall performance, as shown in Fig. 4. The setting
of the two-byte restriction for the byte-level clusters’ length
enhances the overall slicing performance of ByCAN from
72.47% to 80.21% for slicing accuracy 𝜁 , and from 93.58% to
95.22% for slicing coverage 𝜛, as demonstrated in Figs. 4(a)
and 4(b). ByCAN with two-byte restriction also gains better
slicing accuracy for Dynamic and Verification CAN signals,
which is 15.03% and 2.62% higher than that without the two-
byte restriction. In terms of the slicing coverage 𝜛, the setting
of two-byte restriction for the signal clustering increases 𝜛
from 67.44% to 83.72% for Dynamic CAN signal, and from
73% to 79.07% for Verification CAN signal. The reason is
that the restriction of two-byte on the signal cluster’s length
allocates CAN signals more accurately at the byte-level bound-
ary. Since the Verification and Dynamic CAN signals tend
to take one or two bytes, the restriction setting improves the
relevant slicing accuracy and coverage. As shown in Figs. 4(c)
and 4(d), the ByCAN system with two-byte restriction also has

better slicing accuracy and coverage than that without two-byte
restriction across different numbers of CAN frames.

2) CAN Signal Type: When comparing the ByCAN system
with two-byte restriction to the CAN-D and READ systems,
ByCAN demonstrates higher slicing accuracy and coverage
than the other two systems, regardless of the signal type, as
depicted in Figs. 4(a) and 4(b). ByCAN reaches up to a slicing
accuracy 𝜁 of 80.21% that is 16.21% higher than the CAN-D
and 28.22% higher than the READ, as shown in Fig. 4(a).
The same trend can be found in Fig. 4(b) where ByCAN
has the slicing coverage 𝜛 of 93.58% and the CAN-D and
READ systems have that of 89.21% and 83.61%. ByCAN
is superior in slicing the Switch, Dynamic and Verification
(i.e., Counter and Checksum) CAN signals as indicated in
Figs. 4(a) and 4(b). The reason is that the Switch signals
with similar functionalities and Verification signals tend to
be located within one or two bytes, where the byte-level
clustering of ByCAN enhances the slicing performance by
avoiding the over-slicing at the bit level. Taking the advantage
of byte-level clustering, ByCAN has a better slicing coverage
𝜛 than the CAN-D and READ systems for Dynamic CAN
signals that usually take one or two bytes long. For Unused
CAN signals, all systems can reach the 100% slicing accuracy
and coverage because Unused signals have a bit-flip rate that
always equals 0.

3) Number of CAN Frames: As shown in Figs. 4(c)
and 4(d), all systems accurately slice a comparable number
of CAN signals. Both 𝜁 and 𝜛 increase with the number of
CAN frames fed into the RE systems. However, the slicing
performance converges when the number of CAN frames ex-
ceeds 1, 000, a point at which most functionalities are triggered
in our experiments. The optimum value of 𝑇𝐶 is considered
as 1, 000 for both the slicing accuracy and coverage. When
𝑇𝐶 = 1, 000, ByCAN with two-byte restriction (𝜁 = 80.90%)
surpasses the CAN-D system (𝜁 = 65.03%) and the READ
system (𝜁 = 51.99%), as demonstrated in Fig. 4(c). Although
the slicing accuracy differs significantly among the systems,
there is only a slight variation in the slicing coverage 𝜛 among
them, as illustrated in Fig. 4(d). When 𝑇𝐶 = 1, 000, ByCAN
with two-byte restriction reaches 95.90% of 𝜛 while the CAN-
D and READ systems achieve 89.89% and 83.61% of 𝜛,
respectively.

4) CAN IDs: As indicated in Table IV, the performance of
systems when slicing CAN signals shows variability among
different CAN IDs. This variability can be attributed to the
differences in the number and types of CAN signals contained
within the frames of each CAN ID. Specifically, ByCAN
exhibits slicing accuracy 𝜁 ranging from 48.43% to 96.43%,
signifying substantial performance variation tied to the specific
CAN ID. By contrast, CAN-D and READ display a wider
range (9.38% to 96.43% and 6.25% to 95.31%, respectively)
of the slicing accuracy, indicating a broader disparity in
performance across CAN IDs. Furthermore, while ByCAN
achieves high slicing coverage 𝜛 with minimal variability
as evidenced by the low variance of 0.0053, it still reveals
a significant gap between its minimum and maximum cov-
erage (72.73% to 100%). The CAN-D and READ systems
have a higher variance (0.0538 and 0.0646) than ByCAN,
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(a) (b)

(c) (d)

Fig. 4. Comparison of slicing accuracy and slicing coverage of different systems: The 𝑦-axis is the slicing accuracy 𝜁 and the 𝑥-axis is CAN signal type in
(a); the 𝑦-axis is the slicing coverage 𝜛 and the 𝑥-axis is CAN signal type in (b); the 𝑦-axis is the slicing accuracy 𝜁 and the 𝑥-axis is the number of CAN
frames in (c); the 𝑦-axis is the slicing coverage 𝜛 and the 𝑥-axis is the number of CAN frames in (d). Note that the Verification CAN signals represent both
the Counter and Checksum signals.

TABLE IV
COMPARISON OF SLICING ACCURACY AND COVERAGE STATISTICS ACROSS CAN IDS

System Min Max Mean Median Variance Standard Deviation

Slicing accuracy 𝜁

ByCAN 48.43% 96.43% 80.93% 83.59% 0.0211 0.1453
CAN-D [18] 9.38% 96.43% 66.65% 80.73% 0.0949 0.3081
READ [15] 6.25% 95.31% 54.47% 64.84% 0.1098 0.3314

Slicing coverage 𝜛

ByCAN 72.73% 100% 94.48% 96.41% 0.0053 0.0730
CAN-D [18] 27.27% 100% 81.19% 91.86% 0.0538 0.2320
READ [15] 20.00% 98.31% 72.47% 84.53% 0.0646 0.2541

TABLE V
COMPARISON OF SLICING ACCURACY AND COVERAGE OF CAN SIGNAL LENGTH

System 1 Bit1 2 Bits 4 Bits 8 Bits 10 Bits 16 Bits

Slicing accuracy 𝜁
ByCAN 77.50% 41.94% 81.52% 45.63% 70% 59.38%
CAN-D [18] 57.50% 37.10% 56.52% 27.5% 35% 56.25%
READ [15] 50% 83.87% 30.43% 25% 50% 43.75%

Slicing coverage 𝜛
ByCAN 70% 48.39% 100% 65% 100% 81.25%
CAN-D [18] 52.50% 41.94% 73.91% 35% 50% 56.25%
READ [15] 50% 83.87% 30.43% 25% 50% 43.75%

1 Exclude Unused CAN signals since they comprise the largest portion of the 1-bit long signal. Each Unused signal is regarded as occupying
only one bit position, even when they appear consecutively within a CAN frame.
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underscoring the inconsistency in the slicing coverage across
different CAN IDs. A notable spread in the slicing coverage is
also demonstrated for CAN-D (27.27% to 100%) and READ
(20.00% to 98.31%) in Table IV.

5) CAN Signal Length: The system performance of slicing
CAN signals with different signal lengths is detailed in Ta-
ble V. Given the diverse lengths of CAN signals, this paper
specifically focuses the commonly used bit lengths - namely, 1
bit, 2 bits, 4 bits, 8 bits, 10 bits and 16 bits - for the generality.
It is important to note that Unused CAN signals, all considered
as 1-bit long, are excluded from this discussion. ByCAN
demonstrates higher 𝜁 and 𝜛 for CAN signals with lengths
of 1 bit, 4 bits, 8 bits, 10 bits and 16 bits. Notably, ByCAN
has better performance for longer CAN signal lengths. For
instance, ByCAN achieves slicing coverage 𝜛 of 81.25% for
16-bit long CAN signals, nearly twice the value obtained by
the READ system at 43.75% for the same length. Specifically,
ByCAN achieves a 𝜁 of 81.52% and 70% for 4-bit long CAN
signals and attains a perfect 𝜁 and 𝜛 (both 100%) for 10-bit
long CAN signals.

D. Labeling Performance

1) General Labeling: The labeling accuracy 𝜉 for the
general labels of CAN signals is discussed among different
RE systems in Fig. 5. As indicated in Fig. 5, ByCAN system
that labels CAN signals with multiple inputs (i.e., labeling
threshold and flip rate of signal block) outperforms the READ
and CAN-D system which use only bit-flip rate and multiple
bit-level features, respectively. The general labels of CAN
signals are Unused, Switch, Dynamic, and Verification. In
Fig 5, the impact of different CAN signal types and the number
of CAN frames on 𝜉 are discussed.

The overall labeling accuracy 𝜉 of ByCAN is 1.09% slightly
greater than that of CAN-D and 4.23% higher than that of
READ. The performances of the three different RE systems
have little difference for labeling the Unused CAN signals. The
ByCAN outperforms CAN-D and READ except in labeling
the Switch CAN signals. The READ system achieves 39.29%
labeling accuracy for the Switch CAN signals, while the
ByCAN and CAN-D have the same labeling accuracy of
32.14%. READ has higher labeling accuracy for the Switch
CAN signals due to the excessively sliced small boundaries
at the bit level that lead to more CAN signals identified as
Switch. For READ, the trade-off of the high labeling accuracy
of the Switch (39.29%) and Dynamic (18.60%) CAN signals
is the lower labeling accuracy of the Verification (9.3%)
CAN signals. This discrepancy may be due to the READ
solely using the bit-flip rate, which could cause mislabeling
of Verification signals as Dynamic or Switch. This mislabeling
is particularly likely when the bit in the most significant
position (MSB) exhibits a significantly different bit-flip rate
compared to the bit in the least significant position (LSB) of
the Verification signals.

The impact of the number of CAN frames is demonstrated
in Figs. 5(b) and 5(c). The labeling accuracy 𝜉 of the assess-
ments, including Unused CAN signals, slightly decreases with
a larger size of CAN frames as indicated in Fig. 5(b). When

TABLE VI
LABELING ACCURACY OF TRIGGERED SIGNALS

Type of Triggered Signals Labeling Accuracy 𝜉 1

Switch 94.74%

Dynamic 70.59%
1 𝜉 is estimated specifically for the CAN signals that are triggered

during the experiments.

𝑇𝐶 = 10, 000, the labeling accuracy of the ByCAN system, in-
cluding Unused CAN signals (i.e., ByCAN-I) is 82.38%, that
of CAN-D (i.e., CAN-D-I) is 82.24%, and that of READ (i.e.,
READ-I) is 74.04%. The labeling accuracy of the ByCAN-
I, CAN-D-I and READ-I drops to 68.72%, 67.62%, and
64.48%, respectively. On the contrary, the labeling accuracy 𝜉
of ByCAN-E, CAN-D-E, and READ-E increases largely from
28.17%, 27.46%, and 4.93% to 42.96%, 37.32%, and 22.54%
when the number of CAN frames increases from 10, 000
to 200, 000, as demonstrated in Fig. 5(c). The features of
CAN signals become more accurate with more CAN frames,
which improves the labeling accuracy for Switch, Dynamic,
and Verification CAN signals and reduces the false positive
rate of Unused CAN signals. Based on our experiments, the
optimum of 𝑇𝐶 for the labeling accuracy is 10, 000.

Compared to the labeling accuracy in Fig. 5(a) which counts
all CAN signals including those rarely triggered signals during
data collection, the labeling accuracy in Table VI evaluates the
precision of labeling performance for triggered CAN signals.
The Switch and Dynamic CAN signal types are highlighted due
to the significant differences in labeling accuracy when using
triggered signals versus all CAN signals from the ground truth.
Not all Switch and Dynamic CAN signals can be triggered
during the experiments, leading to the low labeling accuracy.
The labeling accuracy increases from 32.14% in in Fig. 5(a)
to 94.74% in Table VI for Switch signals. The same trend
is found for Dynamic CAN signals whose labeling accuracy
increases from 23.26% to 70.59%. The result shows a good
labeling performance of ByCAN for all triggered and collected
CAN signals.

2) Descriptive Labeling: ByCAN leverages the template
matching to find the similarity between sliced CAN signals
and the templates of OBD diagnostic data to associate them
with descriptive meanings. In the proposed system, only the
Dynamic CAN signals are further processed in this step to
efficiently identify the descriptive labels with minimum time
cost. ByCAN firstly introduces the DTW algorithm in labeling
the descriptive labels to CAN signals with the templates of
OBD diagnostic data. By using DTW, the small time shift
problem between the collected CAN frames and the OBD
diagnostic data can be solved.

Within the descriptive labels that can be extracted from
the OBD diagnostic data, the Engine Speed, Vehicle Speed,
Throttle Position, Fuel Rail Gauge Pressure, and Calculated
Engine Load stand out as target labels that have potential
significance for subsequent assessments conducted by industry
engineers. Few Dynamic CAN signals are sliced due to the
limited number of known functions to be triggered. However,
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(a) (b) (c)

Fig. 5. Comparison of labeling accuracy of different systems: The 𝑦-axis is the labeling accuracy 𝜉 for all subplots. The 𝑥-axis is the CAN signal type in
(a), and the 𝑥-axis is the number of CAN frames in (b) and (c). Subplot (b) gives the labeling accuracy including Unused CAN signals while subplot (c)
gives the labeling accuracy excluding Unused CAN signals.

ByCAN still shows a high labeling accuracy of identifying
descriptive labels for the sliced Dynamic CAN signals. In
our experiments, all signals matched as the Engine Speed
and Throttle Position labels are correctly categorized, and the
labeling accuracy is drop to 50% for those with the Vehicle
Speed label. Although ByCAN does not have the same level
of labeling accuracy for non-speed-related labels, it is worth
noting that the speed-related labels have valuable insights and
guidance for future research.

VI. CONCLUSION

In this paper, we proposed the fully automated RE system
named ByCAN to decode the specification of the Controller
Area Network frames without prior knowledge. Based on
the observation of DBC files and CAN frames, CAN signal
patterns are identified and used in ByCAN for reverse engi-
neering CAN signals. ByCAN is the first to introduce multiple
byte-level and bit-level features that capture the characteristics
and patterns of CAN signals to slice and label CAN signals.
ByCAN applies the byte-level clustering with the DBSCAN
algorithm for enhancing the slicing and labeling performance.
The proposed ByCAN system is also the first to use the DTW
algorithm in matching sliced Dynamic CAN signals with the
templates of OBD diagnostic data for associating CAN sig-
nals with descriptive labels, facilitating further research. The
experiments validated that ByCAN enhances the performance
of CAN signal slicing and labeling with real-world data from
various cars. ByCAN requires only a short CAN trace in our
experiments to achieve a good reverse-engineering result.
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