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Abstract. The left ventricle ejection fraction is an important index for assessing 

cardiac function and diagnosing cardiac diseases. At present, EchoNet-Dynamic 

dataset is the unique large-scale resource for studying ejection fraction estima-

tion by echocardiography. Through segmentation of the end-systolic and end-

diastolic frames, the ejection fraction can be calculated based on the volumes at 

these phases. However, existing segmentation methods either mostly focus on 

single-frame segmentation and rarely consider information across consecutive 

frames, or they fail to effectively exploit temporal information between consec-

utive frames, resulting in suboptimal segmentation performance. In our study, 

we constructed a dual-branch spatial-temporal feature extraction model for 

achieving echocardiogram video segmentation. One branch was dedicated to 

extracting semantic features of frames under supervision, while the other 

branch learned the optical flows between frames in an unsupervised manner. 

Subsequently, we jointly trained these two branches using a temporal con-

sistency mechanism to acquire spatial-temporal features of the frames. This ap-

proach enhances both video segmentation performance and the consistency of 

transition frame segmentation. Experimental results demonstrate that our pro-

posed model achieves promising segmentation performance compared to exist-

ing methods. 

Keywords: Echocardiography Segmentation, Optical Flow, Joint Learning. 

1 Introduction 

Cardiovascular diseases are the leading cause of death worldwide, accounting for 

32% of the total global deaths, of which heart attack and stroke represent 85% of 

these deaths. It is recommended by World Health Organization (WHO) that early 

diagnosing is crucial for cardiovascular diseases. For evaluating heart function and 
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structure, echocardiography is a commonly utilized tool in any stage of clinical prac-

tice [1]. At present, deep learning has been the most popular way of echocardiography 

segmentation task and achieved much better performance. Paper [2, 3] utilized U-Net-

based networks to segment the ES and ED frames. Li et al. proposed a multi-level and 

multi-scale dense pyramid and deep supervision network (DPSN) for segmentation of 

key frames in multi-chamber views [4]. Other approaches [5, 6] integrated convolu-

tional neural network (CNN) models with transformer modules to utilize image 

patches for segmentation. Some researchers have also incorporated attention tech-

niques to enhance feature fusion effectiveness for segmentation[6-8]. However, the 

above single-image segmentation methods typically overlook the temporal infor-

mation and inter-frame correlations between video frames, resulting in challenges in 

accurately delineating the left ventricular region, particularly in intermediate transi-

tion frames. 

Recently, more studies started to focus on the echocardiographic video segmenta-

tion, which located the ES and ED frames based on the volumes obtained by the seg-

mentation of all frames. To introduce temporal information, some of the methods 

adopted 3D structures to extract the semantic and temporal features at the same time. 

For example, Wei et al. proposed a co-learning network that trains both at the appear-

ance level and the shape level based on 3D U-Net [9, 22]. Chen et al. proposed a 3D 

U-Net for echocardiography video segmentation by learning the ED and ES segmen-

tation and motion tracking between the frames at the same time [10]. However, the 

3D-based networks cannot be used in single image cases, which has limitations in 

clinical practice. Other approaches employed the 2D plus time (2D + t) architecture to 

discover spatial-temporal information, which take videos or image sequences as in-

puts. Li et al. proposed a multi-view echocardiographic video segmentation network 

based on long-short term memory (LSTM), named MV-RAN [11]. Although the MV-

RAN can model the temporal consistency, the LSTM structure is time-consuming and 

causes the end frames of the video to perform worse than the beginnings due to the 

errors accumulated. Sirhani et al. proposed a EchoRCNN model based on the mask 

region-based CNN (Mask RCNN) [12]. However, the ground truth mask of the first 

frame of the video should be delineated, which increases the cost of clinical applica-

tion. Moreover, the proposed EchoRCNN was validated on a small dataset with only 

750 videos. Painchaud et al. proposed an enforced temporal consistency post-

processing approach to achieve echocardiographic video segmentation [13]. However, 

its performance improvement is limited. Wu et al. proposed an adaptive spatiotem-

poral semantic calibration (ASSC) module to utilize the spatio-temporal information 

between consecutive frames and to overcome the drawback that the optical-flow-

based models are sensitive to speckle noise [14]. However, the ASSC module used a 

series of transformations and imported several learnable transformation metrics for 

both coordinate warping calibration and channel-wise feature weighting calibration, 

which made the model more complex and difficult to learn these metrics. 

In this research, we introduced a novel dual-branch spatial-temporal joint learning 

network for echocardiographic video segmentation. The network consists of a 2D 

image segmentation branch to learn the spatial features of the inputs and to achieve 

the frames segmentation, and an optical flow learning branch to extract the optical 
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flow between every two frames. Based on the optical flow learned from two consecu-

tive frames, we jointly learned spatial and temporal information using a temporal 

consistency module between the warped segmentation prediction and the real seg-

mentation prediction at t time. The contributions of this paper are as follows. 

• We developed a dual-branch network which consists of a supervised semantic 

segmentation branch, and an unsupervised optical flow learning branch to learn the 

consistency between the consecutive frames.  

• We jointly trained the two branches using the temporal consistency technique to 

learn the spatial-temporal features of the videos. 

• The proposed model achieved a promising segmentation performance on the 

EchoNet-Dynamic dataset and demonstrated higher consistency in transition 

frames than other approaches. 

2 Methods 

In this work, we presented a dual-branch echocardiographic video segmentation ap-

proach that uses video clips as inputs. As illustrated in Fig. 1, the proposed network 

consists of two branches. The segmentation branch was employed to segment the left 

ventricle area in each frame. The optical flow branch was used to learn the optical 

flow changes and temporal information between frame pairs. Finally, we jointly 

trained two branches by the proposed temporal consistency mechanism. 

It+1

It

Segmentation Branch

Optical Flow Branch

Lpc

Lsm

LBCE

LDL
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Fig. 1. The architecture of the proposed echocardiography segmentation network. The structure 

of each branch is presented in corresponding box roughly. 

2.1 Overview of Framework Workflow 

The architecture of the proposed model is a spatial and temporal combination 

structure, composed of two branches: the segmentation branch and the optical flow 

branch. The videos in the EchoNet-Dynamic dataset are typically large, with an aver-

age duration of more than 176 frames, while only two frames in each video are la-

beled. When training the frames in pairs, only two frames can be used to update the 

segmentation branch, while all frame pairs are used to update the optical flow branch.. 
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In this paper, in the training stage, we set two clips for each video, the ES frame and 

its former and later two frames as clip one, the ED frame and its former and later two 

frames as clip two. They are defined as c1: {IES−1, IES, IES+1} and c2: {IED−1, IED, 

IED+1}. All clips were used in the training in pairs to learn the semantic segmentation 

and optical flow parallelly according to the model shown in Fig. 1. In the testing 

stage, we tested all the frames of each video and output their predicted left ventricle 

masks only using the segmentation branch.  

2.2 Segmentation Learning 

For the segmentation branch, we adopted a 2D image segmentation network to learn 

the spatial semantic features of the input echocardiography. The main target of this 

branch is to distinguish between the region of interest (left ventricle) and the back-

ground. Therefore, in this branch, we adopted the baseline model U-Net to focus on 

spatial semantic feature extraction, more details can be found in paper [15].  
As shown in Fig. 2, the input images are trained in pairs between two consecutive 

frames, denoted as tI  and 1t
I

+ . We represented the segmentation branch as ( )
g

S x , 

where g is its corresponding parameter, and simply referred to it as the S branch for 

convenience. The corresponding outputs of two input pairs are ( )
g t

S I  and ( )
1g t

S I
+ , 

respectively. The S branch was trained using two common semantic segmentation 

loss functions: binary cross-entropy (BCE) loss and dice loss (DL), which are defined 

as 

 log (1 ) log(ˆ )ˆ1BCEL y y y y= − − − − , (1) 

where y and ŷ denote semantic region label and the predicted result, respectively. 
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= −

+
, (2) 

where we set the predicted segmentation results as Y and its corresponding label as G; 

the numerator denotes the twice of the overlap area of two sets Y and G , the denomi-

nator is the sum of elements in the two sets. 

The total loss function of the S branch is defined as 

 S BCE DiceL L L= + . (3) 

Notably, the segmentation learning was supervised, with human experts annotating 

the masks. That is, the segmentation branch can only output their predicted masks for 

frames without mask labels; they cannot be used to update the weights of the network. 

2.3 Optical Flow Learning 

For the optical flow branch, we employed a specialized network to learn temporal 

information between two adjacent frames through the optical flow. Compared to re-

gion-based networks, it is more suitable to use a pixel-level algorithm to discover the 
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pixel-scale movement between two consecutive frames. In particular, most of the 

brightness changes occur at the edge of the heart chambers, which can also help to 

distinguish the edge from the background. 

In this section, we designed a modified FlowNet based on FlowNetSimple [16]. 

Fig. 2 illustrates the architecture of the modified FlowNet, denoted as mFlowNet. The 

blue component is derived from the original FlowNetSimple, which we customized 

by importing part of layers. The green section represents our modifications, in which 

we added more up-sampled layers to ensure that the outputs are of the same size as 

the inputs. The reason is that we hope to use deconvolutions to learn the up-sampling 

process, instead of the interpolation during the warping computation. The correspond-

ing hyperparameters for each operation are provided below them in Fig. 2, where f 

denotes the number of features, k denotes the kernel size of the convolution, s denotes 

the step size, p denotes the padding size. The number of features of the deconvolution 

in refine operation is specified below the Refine block. “Up flow” represents the up-

sampled operation to predict flow. In mFlowNet, we also adopted the encoder and 

decoder structures to learn the optical flow between every two frames. In detail, it 

contains five normal convolution and down-sampling blocks in the encoder. For the 

decoder, we introduced two additional up-sampling layers and one more feature fu-

sion layer to ensure that the output size matches that of the input. 

Conv1
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Conv3_1

Conv4
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C
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s = 1,       p = 1
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p C denotes concatenate operation

f = 2,  k = 5
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f = 256,   k = 3

s = 2,      p = 1  

Fig. 2. The architecture of the mFlowNet. The blue rectangles represent the original FlowNet 

blocks, while the green rectangles represent the modified parts by this work. 

We represented the optical flow branch as ( )pO x , where p is its corresponding pa-

rameter, and simply named it as O branch. The inputs of the O branch are still in 

pairs, tI  and 1tI + , which are the same as the inputs of the S branch. Two frames of 

inputs were concatenated in pairs at the channel level, forming a 6-channel input. The 

output of the mFlowNet is the optical flow between the two input frames, presented as 

1t tM → + . The mFlowNet was trained in an unsupervised manner and its update was 

depended on the basic characteristics of optical flow, photometric consistency and 

motion smoothness. 

Photometric consistency loss [16, 18] is to constrain a frame and the warped image 

from its adjacent frame, which is defined as 
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1

1 ( )
(1 ) || ||

2

w

pc w

SSIM I I
L I I 

− −
= + − − , (4) 

where wI  is the warped image, SSIM is the structural similarity index and is set to 

0.85 accordingly [18]. The purpose of motion smoothness is intended to eliminate 

erroneous predictions while preserving crisp details, which is defined as 

 | ( , )|

,

| ( , ) | ( )I x y

sm

x y

L M x y e− =   , (5) 

where is the vector differential operator,   denotes element-wise absolute value. 

The total loss function for O branch is presented as 

 
1 2O pc smL L L = + , (6) 

where 1 and 2 is the corresponding weights of two losses, respectively. 

2.4 Cooperation Mechanism and Joint Learning 

For the above two branches, the S branch is to learn the spatial semantic features, and 

the O branch is to discover the temporal features between the frames. We utilized 

temporal consistency constraints to fuse the learned features to further improve the 

segmentation performance. We adopted the temporal consistency module in [19]. 

They defined the temporal consistency constraint as the function of the encoder out-

put features at time t and the warped features from time t + 1. However, in this paper, 

the temporal consistency constraint is defined as a function of the segmentation out-

put at time t and the warped output from time t + 1 using the learnt optical flow from 

the O branch. The rationale behind this choice is that the edges between the left ven-

tricle and the background tend to be blurred in ultrasound imaging. Therefore, the 

temporal consistency module that only works on the segmentation output can help 

filter out the background and noise from non-left ventricle regions. Since the segmen-

tation output is binary, that is, the pixel values of the segmented background are all 

zero, only the segmented left ventricle region is used for the optical flow warping 

computation. 
Given a pair of input frames tI  and 1tI + , we got their semantic segmentation re-

sults from branch S, tY  and 1tY + , respectively, and obtained their predicted optical 

flow from branch O, 1t tM → + . Then we warped 1tY + to tY 
 by optical flow 1t tM → + , 

which is calculated by 

 1 1Warp( , )t t t tY Y M

+ → += , (7) 

where we also used differentiable bilinear interpolation for warping. Since our dataset 

does not have the occluded issue, the temporal consistency loss is defined as 

 
,

|| ||xy xy

tcons

x y

L Y Y= − . (8) 
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In this way, we introduced temporal features into spatial space through optical flow 

and warping. Consequently, we are able to use the temporal O branch to extract fea-

tures from the unlabeled frames and then enhance the semantic segmentation result 

through warping. Two branches work together in an end-to-end manner to achieve the 

video segmentation and improve the performance of the model. 

The total loss function of the proposed model is 

 
3 1 2 3S O tcons BCE Dice pc sm tconsL L L L L L L L L   = + + = + + + + , (9) 

where the weights of SL  and OL  are set to 1, the weights of tconsL is 3 . 

3 Materials 

3.1 Data 

EchoNet-Dynamic is a large-scale, publicly available echocardiography video dataset 

for cardiac function assessment that we employed in this paper. The EchoNet-

Dynamic dataset contains 10,030 echocardiographic videos recorded independently 

by 10,030 people. For each video, the video length, the positions (time points), masks 

and volumes of ES and ED frames, and the correspondingly calculated EF are provid-

ed. The size of all the frames in the dataset is 112 × 112. All the annotations are sup-

plied by experienced experts. 

3.2 Implementation Details 

The experiments were implemented using the Pytorch library version 1.6.0. The train-

ing and testing were done on a machine with an Intel Core i7-9700K CPU processor, 

31.2 GB of memory, and a GeForce 2080 Ti 11GB GPU.  
The dataset was divided into training, validation, and testing sets in the ratios of 

75%, 12.5%, and 12.5%, respectively, which is the same as the setting of EchoNet-

Dynamic [20]. For fair comparison with parts of other models, we also evaluate the 

proposed method following their training and testing ratio of 80%:20%. During the 

training stage, as mentioned previously, we utilized video clips to train the proposed 

model. Each clip generates four pairs of inputs for every video. In the testing stage, 

we tested all the frames in each video. We trained the model for 100 epochs with a 

batch size of one. We used the Adam optimizer to update the model weights with an 

initial learning rate of 1.6 × 10−5. For the loss function, we experimentally set the 1 , 

2 , and 3  to be 5, 0.2, and 0.4, respectively. In this work, we utilized Dice coeffi-

cient score and Hausdorff distance (HD) to evaluate the segmentation performance of 

the proposed model. Dice score is related to the dice loss and defined as 

 ( , ) 1 DiceDice Y G L= − . (10) 

HD is used to valuate the maximum distance between the prediction Y and ground 

truth G , HD is defined as 



8 

 ( , ) max( ( , ), ( , ))H Y G h Y G h G Y= , (11) 

we take direct Hausdorff distance from Y to G as an example, it is presented as 

 ( , ) max(max( ( , )))
y Y g G

h Y G d y g
 

= , (12) 

where ( , )d y g denotes the Euclidean distance between y and g . 

4 Experiment 

First, we investigated the effectiveness of introducing temporal features into the spa-

tial feature extraction network for left ventricle segmentation. Second, we evaluated 

relations between the performance of the proposed method with the number of sam-

ples in the training clips. Third, we validated the advancement of the proposed meth-

od by comparing it with the existing networks on the EchoNet-Dynamic dataset. 

4.1 Evaluation of Introducing Optical Flow Branch 

We evaluated the effectiveness of importing the optical flow branch by comparing it 

with the spatial semantic network, U-Net. The comparison results are shown in Table 

1. It turns out that extracting both spatial and temporal features at the same time is 

better for video segmentation than extracting only spatial features. The temporal fea-

tures contain the information between the adjacent frames, thereby the network can 

provide spatial-temporal information for neighboring frames in the videos. 

Table 1. Evaluation of Introducing Optical Flow Branch 

Structure Dice score (%) 

U-Net 88.76 

U-Net + FlowNetSimple 92.50 

U-Net + mFlowNet (this work) 92.64 

4.2 Affection of Training Sample Numbers 

 In Table 2, we compared the results of training with different amounts of samples, 

including 6 (this work), 10, 18, and ES to ED frames. 

Table 2. Comparison Results of Using Different Samples for Training 

Num of Samples per Video Dice score (%) 

6 (this work) 92.64 

10 92.44 

18 92.12 

ES to ED frames 89.44 
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It can be seen that the segmentation performance decreases as the number of sam-

ples increases. This suggests that when more unlabeled data is introduced, the seg-

mentation heavily relies on accurate optical flow estimation. However, since the 

learning process of the optical flow is unsupervised, it may lead to an accumulation of 

errors during the warping phase if the training samples are too numerous, resulting in 

decreased segmentation accuracy. Therefore, the optimal training length for this pro-

ject is 6 samples. 

4.3 Comparison with Existing Methods 

We compared the proposed model with existing approaches on the EchoNet-Dynamic 

dataset to validate its segmentation performance, as shown in Table 3. For the 2D ES 

and ED frames segmentation methods, we compared several algorithms, including the 

primary algorithm by Ouyang et al., the EchoNet-Dynamic method [20] and three 

recent models: TransBridge [5] (offering TransBridge-B and TransBridge-L vari-

ants), PLANet [7], and Bi-DCNet [8].  They were evaluated on the training, testing, 

and validation sets provided by the EchoNet-Dynamic dataset, with a ratio of 

75:12.5:12.5, referred to as ratio-1 for convenience. For echocardiographic video 

segmentation algorithms, we compared two approaches: Joint-Net [21] and a recent 

network [14] named BSSF-Net.  Training and testing sets were randomly selected 

from the EchoNet-Dynamic dataset in an 80:20 ratio, denoted as ratio-2. These meth-

ods employed 5-fold cross-validation for evaluation and did not include a separate 

validation set. For comparison, we evaluated our proposed model and the baseline 

EchoNet-Dynamic algorithm using both ratios.  

Table 3. Comparison Result with Existing Methods 

Methods Year 
Train/Val/Test: 75/12.5/12.5 Train/Val/Test:80/-/20 

Dice Score(%) HD(mm) 
Dice Score 

(mean±STD)(%) 

HD 

(mean±STD)(mm) 

EchoNet-Dynamic 2020 91.97 2.32 93.79±0.22 2.27±0.47 

Joint-net 2020 - - 90.91±0.36 3.85±0.92 

TransBridge-B 2021 91.39 4.41 - - 

TransBridge-L 2021 91.64 4.19 - - 

PLANet 2021 - - 91.92±0.34 3.42±0.67 

BSSF-Net 2022 - - 92.87±0.16 2.93±0.72 

Bi-DCNet 2023 92.25 - - - 

Ours 2024 92.64 2.23 96.99±0.12 1.76±0.47 

In Table 3, our proposed method achieves the best segmentation results in both data 

ratios. For ratio-1, we achieved a Dice score of 92.64%, which is 0.39% higher than 

Bi-DCNet. In ratio-2, the proposed model demonstrates outstanding performance with 

a mean Dice score of 96.99%, surpassing ESSF-Net by 4.12% and EchoNet-Dynamic 

algorithm by 3.2%. This suggests that our spatial-temporal joint learning model excels 

in identifying the blurred edges of the left ventricle. Additionally, it indicates that the 

joint learning of semantic features and optical flows better exploits spatial-temporal 
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information compared to 2D image segmentation methods and strategies proposed by 

Joint-net and BSSF-Net. 

The comparison results were then represented in two different ways. Firstly, we 

compared the segmentation results of expert-labeled ES and ED frames. As depicted 

in Fig. 3, it is evident from the orange boxes that the contours segmented by our pro-

posed technique are closer to the labels than those segmented by the EchoNet-

Dynamic algorithm, indicating that our method can more accurately segment the left 

ventricle borders. 

 

Fig. 3. Comparison results of ES and ED frames. Every column is an example of ES and ED 

frames in a video. The red circles are the results of this work, the blues are the results of the 

EchoNet-Dynamic algorithm, and the greens are the labels. 

（b）

 

Fig. 4. Comparison results of unlabeled transition frames are depicted in pictures (a) and (b) for 

two separate videos, respectively. Each picture displays the original image on the left and the 

corresponding comparison visualization on the right. 

Second, we exhibited the comparison results of unlabeled transition frames be-

tween this work and the EchoNet-Dynamic algorithm in Fig. 4. It can be seen that the 

EchoNet-Dynamic method was able to roughly segment the targets of ES and ED 
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frames in the orange boxes. However, it is not able to distinguish targets in transition 

frames correctly, which is supposed to be affected by the imaging quality and noise. It 

indicates that the proposed method can not only more properly segment the ES and 

ED frames, but also more stably and reliably segment the transition frames in each 

video by learning the information between the key frames as well as the transition 

frames. 

To summarize, the proposed method attained superior performance in echocardiog-

raphy video segmentation by extracting the spatial-temporal properties of the frames. 

Compared to existing approaches, our method not only surpasses them in segmenting 

ES and ED frames but also demonstrates more consistent segmentation ability across 

other transition frames. 

5 Conclusion 

In this paper, we developed a novel echocardiography video segmentation network on 

the EchoNet-Dynamic dataset, which consists of a semantic features extraction branch 

and an optical flow learning branch. The two branches work together to combine the 

spatial and temporal information of the videos using a temporal consistency module 

to improve the performance of the left ventricle segmentation. The experimental re-

sults reveal that the proposed model achieves a promising performance compared 

with 2D ES and ED frames segmentation and echocardiographic video segmentation 

approaches, with a dice score of 92.46%. In the future, we will investigate more ad-

vanced temporal feature extraction strategies and the fuse mechanism to improve 

model segmentation performance. 
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