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Abstract21

Background: Ablation zone segmentation in contrast-enhanced computed tomography22

(CECT) images enables the quantitative assessment of treatment success in the ablation23

of liver lesions. However, fully-automatic liver ablation zone segmentation in CT images24

still remains challenging, such as low accuracy and time-consuming manual refinement of25

the incorrect regions.26

Purpose: Therefore, in this study, we developed a semi-automatic technique to address27

the remaining drawbacks and improve the accuracy of the liver ablation zone segmentation28

in the CT images.29

Methods: Our approach uses a combination of a CNN-based automatic segmentation30

method and an interactive CNN-based segmentation method. Firstly, automatic segmen-31

tation is applied for coarse ablation zone segmentation in the whole CT image. Human32

experts then visually validate the segmentation results. If there are errors in the coarse seg-33

mentation, local corrections can be performed on each slice via an interactive CNN-based34

segmentation method. The models were trained and the proposed method was evaluated35

using two internal datasets of post-interventional CECT images (n1 = 22, n2 = 145; 6236

patients in total) and then further tested using an external benchmark dataset (n3 = 12;37

10 patients).38

Results: To evaluate the accuracy of the proposed approach, we used Dice Similarity Co-39

efficient (DSC ), average symmetric surface distance (ASSD), Hausdorff Distance (HD),40

and volume difference (VD). The quantitative evaluation results show that the proposed41

approach obtained mean DSC, ASSD, HD, and VD scores of 94.0%, 0.4 mm, 8.4 mm,42

0.02, respectively, on the internal dataset, and 87.8%, 0.9 mm, 9.5 mm, and -0.03 re-43

spectively, on the benchmark dataset. We also compared the performance of the proposed44

approach to that of five well-known segmentation methods; the proposed semi-automatic45

method achieved state-of-the-art performance on ablation segmentation accuracy, and on46

average, 2 minutes are required to correct the segmentation. Furthermore, we found that47

the accuracy of the proposed method on the benchmark dataset is comparable to that of48

manual segmentation by human experts (p = 0.55, t-test).49

Conclusions: The proposed semi-automatic CNN-based segmentation method can be used50

to effectively segment the ablation zones, increasing the value of CECT for assessment51

of treatment success. For reproducibility, the trained models, source code, and demon-52

stration tool are publicly available at https://github.com/lqanh11/Interactive_53

AblationZone_Segmentation.54

55
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I. Introduction81

Liver cancer has a high mortality rate, and its incidence increases yearly1. According to statistics from82

GLOBOCAN 2020, liver cancer ranked fifth in the number of new cases and third in the number of cancer83

deaths2. Early detection and treatment of liver cancer are crucial for improving treatment outcomes3.84

Thermal ablation such as radiofrequency ablation (RFA) and microwave ablation (MWA) are considered85

as curative treatment options for patients with early-stage liver cancer can not undergo an open surgical86

procedure4 and can be performed with minimal discomfort for the patient, and with a short recovery87

time5. RFA and MWA also have a low risk of complications compared to surgery and a low risk of side88

effects compared to chemotherapy and radiation therapy6.89

During the procedure, the interventionist uses ultrasound (US) or CT to guide the insertion of90

a thin needle through the patient’s skin and into the target lesion7. Once the needle tip is placed91

in position, heat is generated at the needle tip to destroy the malignancy by creating a region of cell92

destruction, also known as the ablation zone. A major drawback of RFA and MWA is the high recurrence93

rate after treatment, especially in the local ablation site. It has been reported that ablation of tumors94

with a size ranging from 2 to 5 cm in diameter results in a recurrence rate of 26.4%8.95

A.1 A.2 B.1 B.2

Figure 1: The liver tumor (red circle) in the pre-intervention CT image (A.1 and B.1) and
its corresponding ablation zone (red arrow) in the post-intervention image (A.2 and B.2).

To evaluate the ablation, a CECT scan is usually performed at the end of the intervention to96

visualize the ablation zone (see Figure 1)9. By assessing the ablation zone in the CECT image, the97

physician can determine whether the procedure was completely successful, whether additional ablation98

needs to be performed, and what the safety margins of the ablation zone correspond to the lesion10. It99

is especially important to accurately assess the margins of the ablation zone. In current clinical practice,100

this assessment is performed visually by the interventional radiologist. Precise segmentation of the101

ablation zone in the CECT image enables quantitative assessment and may provide improved confidence102

in the outcome.103
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While manual segmentation of the ablation zone is tedious and time-consuming and thus is not104

feasible in clinical practice, computer-aided methods can be used to greatly reduce the required cognitive105

load. The main challenge of precise ablation zone segmentation is that the post-interventional CT106

images are noisy, with inhomogenous intensities inside the ablation zone. In addition, for clinical use,107

the segmentation processing time should be sufficiently fast (in order of minutes). Although there108

have been many studies developing methods for liver lesion segmentation11, only a few studies have109

focused on ablation zone segmentation. Egger et al. (2015)12 presented a semi-automatic method,110

based on an interactive, graph-based contouring approach, for segmenting the ablation zone in twelve111

post-interventional CECT images. The obtained segmentation is compared to manual segmentations112

performed by two medical experts, achieving a mean Dice Similarity Coefficient (DSC ) score of 77%.113

Wu et al. (2021)13 applied a region-growing method to segment the ablation zone in the CT image,114

followed by fuzzy c-mean clustering and then refined by cyclic morphological processing, which achieved115

the mean DSC core of 75%. Recently, deep learning-based methods have been applied to segment the116

ablation zone. He et al. (2021)14 used a multi-scale patch-based 3D Residual Attention U-Net (RA-117

UNet) to segment the ablation zone in multiphase CT images, achieving median DSC scores of 83% and118

89% for arterial and portal venous phase, respectively. It was reported that the hepatic enhancement in119

the arterial phase is not sufficient to discriminate the ablation zone’s edge, resulting in the difficulty for120

the segmentation. Anderson et al. (2022)15 investigated Hybrid-WNet to segment the ablation zone in121

CECT images, reporting a median DSC score of 79% and a median surface distance of 0.76 mm. From122

the reported state-of-the-art results, it is clear that precise segmentation of the ablation zone in CT123

images remains a challenging problem. In addition, to the best of our knowledge, none of the previous124

studies evaluated the methods on external datasets. Therefore, the purpose of this study is to propose125

and assess an effective method for precise ablation zone segmentation. In addition, we will evaluate the126

method using both internal and external datasets to verify the performance of the method.127

In the last decade, deep learning-based methods, especially Convolutional Neural Networks (CNN)128

and Transformers, have demonstrated their indisputable effectiveness across a variety of fields including129

medical image analysis. Ronneberger et al. (2015)16 introduced U-Net, which consists of a combi-130

nation of encoder-decoder structures for efficient automatic segmentation of medical images. Since131

then, numerous variants of U-Net have been proposed, such as Residual U-Net17, which integrates the132

residual path into the original structure, and H-DenseUNet18, which combines 2D and 3D Dense U-Net.133

Isensee et al (2021)19 further demonstrated the effectiveness of U-Net in medical image segmentation134

via the release of nnU-Net, which has become a well-known platform for automatic training and organ135
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segmentation pipelines. Recently, the Vision Transformer technique (ViT) proposed by Dosovitskiy et136

al. (2020)20 demonstrated its potential in computer vision, and is now being applied to the problem137

of medical image segmentation. For instance, UNETR21 leverages the U-shaped encoder-decoder ar-138

chitecture but replaces the CNN-based encoding branch with ViT. Chen et al. (2021)22 also realize139

the potential of the ViT-based encoder scheme and introduce TransUNet, but instead of a pure ViT140

encoding branch, the authors propose a hybrid architecture where a multi-resolution CNN is initially141

utilized to produce input feature maps for the ViT encoding block. CoTr23 further improves the hybrid142

architecture in TransUNet by fully leveraging the multi-scale feature maps from the CNN instead of only143

using the lowest resolution. Subsequently, these multi-scale feature maps are flattened and encoded by144

Deformable ViT, which greatly reduces the complexity of ViT and therefore significantly boosts its145

performance.146

Unlike automatic segmentation methods, semi-automatic segmentation methods require some147

level of human interactions to complete the segmentation procedure. The interaction can be point-148

clicking, scribbling, rectangle/circle initial drawing, and manual tuning of parameter values. Several149

semi-automatic segmentation methods have been developed for medical image segmentation24. Region-150

growing is one of the most popular semi-automatic segmentation methods25. Region-growing is initial-151

ized by a seed point with a predefined threshold interval and then expands within a connected region.152

The contrast between the object and the background acts as an important factor for a successful153

segmentation. Chan and Vese (2001)26 introduced an interactive segmentation method based on a154

level-set algorithm, where the user provides an initial contour around the object. The method can suc-155

cessfully segment objects without clear boundaries. Grab-cut27 is a well-known interactive segmentation156

method in which the user provides source and sink regions via manual interactions. Furthermore, sev-157

eral conventional methods such as the Robust Statistics Segmenter28, Otsu & Picking29, and Geodesic158

Segmenter30 were investigated for interactive segmentation of objects in medical images.159

Recently, interactive CNN-based segmentation methods have been investigated and shown to out-160

perform traditional interactive methods, achieving higher accuracy with fewer user interactions. Deep-161

Cut31 and ScribbleSup32 are among the first interactive CNN-based segmentation frameworks which162

embed user-provided bounding boxes or scribbles into CNN models. DeepIGeoS33 performed interactive163

segmentation by using geodesic distance transforms of scribbles as additional input channels to CNNs.164

Furthermore, Wang et al. (2018)34 proposed an image-specific fine-tuning method to make a CNN165

model adaptive to a specific test image. Although promising results have been reported, the method166

still has some limitations. For example, it requires the user to provide a bounding box for the object and167
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scribbling on the background and foreground for the correction which may be inconvenient in practice.168

Luo et al. (2021)35 introduced MIDeepSeg, a minimally interactive segmentation method based on a169

CNN and exponentiated geodesic distance, to segment both seen and unseen objects appearing in the170

training dataset. However, the framework requires the user to click several points at the edges of the171

object on each slice the object presents to create a ROI for the object, which may be inconvenient to172

use in applications with tight timing constraints. Sun et al. (2022)36 proposed a graph convolutional173

neural network for segmentation tasks; however, the requirement of clicking points at the boundaries or174

dragging predicted points is also not well-suited to time-critical tasks. Sofiiuk et al. (2022)37 proposed175

a click-based interactive segmentation, Reviving Iterative Training with Mask Guidance (RITM), that176

iteratively uses the differences of the previous prediction segmentation and the ground truth to provide177

additional prior information to train the model and improve segmentation prediction accuracy.178

Generally, fully automatic segmentation methods are convenient and fast for global segmentation179

of the entire image. However, they frequently have small segmentation errors that need to be manually180

corrected. Theoretically, for CNN-based approaches, the more data involved in training the deep learning181

models, the more accurate the model can become. However, it is not clear how much data should be182

used for a specific medical image segmentation application. Furthermore, collecting large amounts183

of data in the medical image field with accurate segmentations is challenging. In contrast, a human184

expert can control an interactive method to segment a region correctly. Nevertheless, using interactive185

segmentation methods to fully segment a structure may not be practical because of the excessive186

amount of interactions required. In addition, we hypothesize that clicking points inside a region is more187

convenient than clicking points at the edges, or scribbling using the mouse. Therefore, our key idea to188

solve the problem of ablation zone segmentation is to utilize an interactive CNN-based segmentation189

method in which the user clicks points at the incorrect segmentation regions to refine the segmentation190

provided by an automatic segmentation method.191

The overview of the remainder of the paper is as follows: Section II. describes the proposed192

interactive CNN-based segmentation method in detail. Subsequently, Section III. describes extensive193

experiments to assess the performance of the proposed solution. Next, the experimental results are194

discussed in Section IV.. Finally, Section V. summarizes the findings of this study.195
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II. Methods196

In order to precisely segment the ablation zone in a CECT image, our strategy is to combine automatic197

segmentation with interactive segmentation. Firstly, the automatic segmentation method is applied to198

segment the ablation zone in the whole CT volume. Next, a human expert reviews the automatic seg-199

mentation and then uses RITM37 as a CNN-based interactive segmentation method to fix the incorrect200

segmentations via clicking points at the local error locations. Finally, the segmentations are combined201

by mixing the probability maps at the local location of the two methods. The underlying assumption202

is that the more accurate the automatic segmentation is, the fewer human interactions are needed for203

error correction. In this study, we evaluate several automatic segmentation frameworks for the initial204

segmentation in Section III.D.1.. In addition, the interactive method enables click-based segmentation205

which is one of the simplest interaction types. The pipeline of the proposed approach is illustrated in206

Figure 2. The following sections describe each component in the pipeline in detail.207

II.A. Automatic segmentation208

In the first step of the proposed pipeline, an automatic segmentation network is utilized to segment the209

ablation zone from the CT image. In this study, we evaluate well-known CNN-based and Transformer-210

based networks to find a suitable one, aiming for fast inference time and high accuracy. Here are211

descriptions of four segmentation methods.212

• 3D U-Net, introduced by Cciccek et al. (2016)38, is an extension of U-Net architecture designed213

to segment objects in 3D data by processing them with corresponding 3D operations. 3D U-Net214

consists of an encoder-decoder structure with a skip connection to capture high-level and low-215

level features of the 3D image and produce full-resolution segmentation. The 3D U-Net has been216

extensively used in various medical image segmentation tasks.217

• UNETR, proposed by Hatamizadeh et al. (2022)21, leverages the potential of ViT in sequence218

representation learning, making it highly effective in segmenting objects in images. UNETR219

utilizes the strength of the U-Net architecture but replaces the CNN-based encoder with the220

Transformers-based encoder. The original image is split into 3D patches and a linear projec-221

tion of these patches is applied to produce the input for the ViT-based encoder. UNERT has222

demonstrated state-of-the-art performance in several medical image segmentation tasks.223
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Figure 2: The pipeline of the proposed approach for the semi-automatic ablation zone seg-
mentation. The 3D coarse segmentation is predicted using nnU-Net, which is then locally
corrected in each slice by the user using the interactive segmentation via the combination
scheme. The probability map, the output of segmentation models, overlapped with the CT
image and visualized by a color map. The color bar indicates the probability prediction
value of the segmentation. The white circle marks the region of interest.

• nn-UNet, developed by Isensee et al.(2021)19, focuses on optimizing and improving the perfor-224

mance of the U-Net architecture by introducing various enhancements. nn-UNet employs novel225

data augmentation techniques, training strategies, and model configurations to achieve better226

segmentation results.227

• CoTr, proposed by Xie et al. (2021)23, also consists of an encoder-decoder structure like other228

segmentation networks. In the encoder part, CNNs and Transformers are used in the CoTr’s229

architecture. The CNN’s role is to extract feature representations from the input image. Then,230

the deformable Transformer (DeTrans) is used to model long-range dependencies within the231

extracted feature maps. Combining the strengths of CNNs and Transformers, CoTr addresses232

complex tasks requiring local and global context understanding in image analysis.233
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II.B. Interactive CNN-based segmentation234

Figure 3: The architecture of RITM. User click points are encoded in binary disks. The pos-
itive and negative click points are shown in green and red in the encoding map, respectively.

We aim to use slice-based segmentation for the correction as in clinical routine: the medical expert235

needs to check every single axial slice containing the ablation zone after the treatment12.236

As post-interventional CT images are characterized by inhomogeneous intensities and noise in the237

ablation zone (see Figure 1), traditional methods may not perform well in such conditions. It has been238

demonstrated that CNN-based segmentation methods are able to deal with inhomogeneous regions and239

noise39. Therefore, we use RITM37, a 2D interactive CNN-based segmentation method, to revise the240

prediction of the automatic segmentation and obtain the final ablation zone segmentation. The RITM241

consists of two parts: the click encoding block and the backbone, as shown in Figure 3. The idea242

of the interactive segmentation network is to encode the user clicks and feed them into the network’s243

backbone to generate a prediction. We encode the user click in a binary disk, which achieved effective244

performance compared to other click encoding schemes40.245

As a segmentation network, RITM also contains a semantic segmentation backbone. In this study,246

we choose High-Resolution Net combined with Object-Contextual Representations (HRNet+OCR) as247

the backbone of the interactive segmentation method. The HRNet+OCR is a promising architecture248

specifically designed for producing high-resolution outputs34. The HRNet+OCR backbone model was249

pre-trained using the ImageNet dataset, meaning the backbone’s input is a three-channel image. How-250

ever, in the interactive segmentation, the input includes additional features such as a guided mask and251

the click-encoding map. To adapt the pre-trained model, we employ a convolution block known as252

Conv1S, introduced by Sofiiuket al. (2022)37. The architecture of Conv1S is designed to ensure that253

the output feature’s channel matches the input of the backbone’s first convolutional layer (64 channels).254
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A B

C D

Figure 4: Illustration of interactive segmentation using the click-based semi-automatic
method w and w/o the combination scheme: the original image with ground truth seg-
mentation (green contour) of an ablation zone (A), the segmentation (red contour) obtained
from the automatic model (B), the segmentation (red contour) obtained from the original
interactive model (C), and the segmentation (red contour) obtained using the proposed com-
bination scheme (D). The green dot represents the user’s click. The white circle is the ROI.
The red arrows mark the mislabeled regions.

II.C. Combination scheme255

Since the segmentation obtained from the automatic model might have mislabeled regions (see Figure256

4.B), the interactive model is applied to revise the prediction of the automatic segmentation. Nev-257

ertheless, the segmentation obtained from the interactive model may also have mislabeled regions far258

from the clicked points (see Figure 4.C). Consequently, we combine the two CNN-based segmentations259

using their probability predictions with a spatial constraint from the clicked points. The main idea is260

to construct a weighted voter between the two probability predictions within the regions of interest261

(ROIs), assuming that the user clicks inside the incorrect segmentation regions. The pseudo-code of262

the combination scheme is shown in Algorithm 1.263

Firstly, the automatic segmentation network coarsely predicts the ablation zone from the CT slice264

I ∈ R512×512 to obtain the probability prediction Pcoarse ∈ Ω512×512,Ω ≜ [0, 1] which is then defined265

as the initial prediction Pinit for the combination scheme. Next, the initial prediction is thresholded to266

obtain the final segmentation Sfinal ∈ Θ512×512,Θ ≜ {0, 1}. If the segmentation is not satisfying, the267
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Algorithm 1 Combination scheme

1: Input: CT slice: I, Coarse prediction: Pcoarse, Kernel size: K, Weighted value: λ,
Threshold value: thrsh

2: Output: Final segmentation: Sfinal

3: Pinit ← Pcoarse

4: Sfinal ← Pinit > thrsh
5: while Sfinal is unsatisfied do

/* User define a click in the mislabeled region */
6: encoding map, click positon ← USER CLICK()
7: Pinteract ← PREDICTOR(I, Pinit, encoding map)
8: cirle mask 1,cirle mask 0 ← CRICLE(click position,K)

/* Update Pinit */
9: Pcombination ← λ × Pinteract + (1-λ) × Pinit

10: updated region← Pcombination × cirle mask 1
11: preserve region← Pinit × cirle mask 0
12: Pinit ← updated region+ preserve region

/* Thresholding to get Sfinal */
13: Sfinal ← Pinit > thrsh
14: end while

user corrects the mis-segmented regions using a negative point click to correct a false positive region268

or a positive point click to correct a false negative region. Based on the clicked points, the interactive269

segmentation network generates a probability prediction (PREDICTOR), which refers to the interactive270

prediction Pinteract ∈ Ω512×512. In addition, we define ROIs from the positions of user clicks by dilating271

the clicking positions with a kernel size K (CIRCLE). The initial probability prediction is then updated272

by combining the previous initial probability prediction Pinit and the interactive probability prediction273

Pinteract with a weighted parameter λ within the local correcting ROIs. Subsequently, the ablation zone274

segmentation is corrected only in the ROIs. To this end, the process is repeated until the final ablation275

zone segmentation Sfinal is satisfied. The effect of weighted parameter λ and kernel size K on the276

segmentation accuracy will be assessed in Section III.D.2..277

III. Experiments and results278

III.A. Datasets279

III.A.1. The details of the datasets:280

This study involved three datasets, comprising a total of 179 contrast-enhanced CT scans, from two281

medical centers.282
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The first dataset, denoted as EMCA dataset, includes CT scan images (arterial phase) from 22283

patients who underwent ablation treatment of liver lesions. The CT scans were acquired at Erasmus284

MC using Siemens CT scanners and reconstructed with an axial matrix size of 512× 512, with a pixel285

spacing of 0.8 mm, a slice thickness of 3 mm, and the number of slices ranged from 40 to 70 slices.286

The second dataset, referred to as EMCB dataset, was reused from our prior study41 and consists287

of 145 multiphase CT scans from 40 patients who underwent ablation treatment of liver cancer at288

Erasmus MC. The CT scan was acquired while patients were in the intra-intervention room and patients289

went to the medical center for the follow-up procedure. The CT scans were reconstructed with an axial290

matrix size of 512× 512, with the slice thickness ranging from 0.4 to 5 mm, the pixel spacing ranging291

from 0.59 to 0.98 mm, and the number of slices ranging from 19 to 672 slices.292

The third dataset, the Benchmark dataset, was obtained from the Medical University of Leipzig,293

Saxony, Germany and included 12 CT scans from 10 patients12. The CT scans are acquired in the294

portal venous phase, reconstructed with an axial matrix size of 512 × 512, pixel spacing ranging from295

0.68 to 0.78 mm, slice thickness ranging from 1 to 2 mm, and the number of slices ranging from 52 to296

232.297

Each CT scan contains one to three ablation zones. The mean diameter of the ablation zones in298

the training set was 55 ± 18.6 mm. In 12 CT scans in the training set, the needle is visible. In the299

validation set, the mean diameter of the ablation zones is 54.6 ± 23.8 mm. Three CT scans in the300

validation set contain the needle. In the EMC testing set, the mean diameter of the ablation zones was301

54.5 ± 18.4 mm. The needle was visible in seven CT scans in this set. For the Benchmark dataset, the302

mean diameter of the ablation zones was 62.2 ± 16.3 mm. The needle is visible in six CT scans in this303

dataset.304

The specifics of data division can be found in Table 1.305

Table 1: Number of CT volumes and slices for training, validation, and testing used in this
study. The numbers in parentheses are the number of 2D slices.

Dataset # Patients Arterial Portal venous Total

Training
EMCA 18 18 - 18
EMCB 29 36 (5638) 35 (5379) 71 (11017)

Validation
EMCA 4 4 - 4
EMCB 18 5 (862) 13 (1353) 18 (2215)

Testing
EMCB 11 31 (3006) 25 (3141) 56 (6147)
Benchmark 10 - 12 (1525) 12 (1525)
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III.A.2. Annotation and ground-truth306

For the ablation zone of EMCA and EMCB datasets, a technician manually created segmentations using307

Mevislab version 3.4.3. Next, the segmentations were corrected/verified by a physician, serving as the308

ground truth. In the Benchmark dataset, the ground truth of the ablation zones was obtained from two309

medical experts who manually drew segmentations using Mevislab12.310

III.A.3. Preprocessing311

In the preprocessing step of the CT scan, we limited the prediction range to the liver region. Firstly,312

liver segmentation is automatically acquired using a nnU-Net segmentation network, which has been313

trained on the LiTS dataset11. Then, the liver segmentation is dilated with a kernel size of (30, 30, 1).314

The dilated liver segmentation is used as a mask for the ablation zone segmentation.315

In the interactive segmentation, we truncated the CT image using a HU range, which is defined in316

Section III.D.2. for an optimal value. Then, we converted the clipped CT images into a three-channel317

format using the OpenCV library for input into the interactive segmentation model.318

The preprocessing step of the automatic segmentation methods is performed using the default319

settings described in the original articles. For nnU-Net, nnU-Net (fine-tuning), and CoTr, these models320

are implemented within the nnU-Net framework. Consequently, they share similar preprocessing steps,321

which are automatically determined based on the characteristics of the training dataset. Firstly, all data322

is cropped to retain only the region containing nonzero values. Subsequently, the data is resampled323

to the median voxel spacing of the entire training dataset, where third-order spline interpolation and324

nearest interpolation are applied for the image data and segmentation label, respectively. Following325

resampling, the data is normalized by clipping intensity values to the [0.5, 99.5] percentiles of the entire326

training dataset’s intensity range. This is based on z-score normalization, which is computed based on327

the mean and standard deviation of all intensity values collected from the dataset.42. For 3D U-Net and328

UNETR, the models are implemented using the MONAI library. The preprocessing steps include various329

data transformations, which are resampled to a fixed spacing, clipped, and scaled the intensity into the330

range of 0 to 143. Since the training samples are not extensive, data augmentation is also applied to331

the data to prevent the overfitting problem, which are random crop, random rotate, random flip, and332

random elastic deformations42.333
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III.B. Hardware and implementation in details334

III.B.1. Implementation of the CNNs335

This study is conducted using a Ubuntu 20.04 workstation, with an Intel® Core™ i9-10900K CPU, 64GB336

RAM, RTX 8000 GPU. The source code is implemented in Python 3.6 with Pytorch 1.10 integrated337

with CUDA 11.3. The implementations of automatic segmentation models and RITM are based on338

their authors’ GitHub repositories a b c d.339

We implemented well-known CNN-based and Transformer-based networks, including 3D U-Net38,340

nnUNet19, UNETR21, and CoTr23 for automatic segmentation performance comparison. We trained341

CNN-based and Transformer-based models with the training EMCB dataset mentioned in Section III.A..342

For nnU-Net and CoTr, two models were constructed using the same self-configuration framework for343

training and testing. For 3D U-Net and UNETR, we trained the models using the tutorials from MONAI344

with default parameters. To assess the performance of the automatic segmentation model when more345

data is involved in the training model, we conducted an experiment with nnU-Net. We trained the nnU-346

Net model with the EMCA dataset and then employed the fine-tuning technique to train the model with347

the EMCB dataset; we refer to this experiment as nnU-Net (fine-tuning). All automatic segmentation348

models were trained for 1000 epochs, and the training time for nnU-Net and CoTr was approximately349

30 hours, while the training time for U-Net and UNETR was about 25 hours.350

To train the RITM model, an interactive sampling procedure is required. We reused the procedure351

described in the original RITM paper, in which the sampled point is obtained by applying a morphological352

erosion operation of the mislabeled region37. In addition, we used the DiceCE loss function, which was353

used in the automatic segmentation network nnU-Net. We reuse the RITM model, which was trained on354

the COCO+LVIS dataset44,45 as the pre-trained model for the ablation zone segmentation task. Note355

that before the training stage, the backbone HRnet was already pre-trained with the ImageNet dataset.356

We then employed the fine-tuning technique to train the RITM model with the EMCB training dataset.357

We trained RITM for 500 epochs with the default parameters from the original article.358

III.B.2. Ablation zone segmentation demonstration tool359

For an easy demonstration, we adopt the demonstration tool, which was created by Sofiiuk et al.360

(2022)37, using the Tkinter library. Nevertheless, the original demonstration tool was initially designed361

for 2D images, which necessitates modifications for working with CT scans. The most significant362
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modification involves embedding the proposed method, incorporating 3D CT scans and enabling users363

to adjust the display of slices in the 3D CT scan using the mouse. The demonstration tool and video364

are publicly available at Github e.365

III.C. Experiments setup and results366

III.D. Evaluation criteria367

In this study, we use the Dice Similarity Coefficient (DSC ), Average Symmetric Surface Distance368

(ASSD), Hausdorff Distance (HD), and Volume difference (VD) as metrics for evaluation of the pro-369

posed methods.370

• Dice similarity coefficient (DSC): Suppose A and B represent the ground truth and predicted371

segmentation of the ablation zone of a 3D CT image, respectively. The DSC measures how good372

the overlap between A and B is. The DSC value of 0 means no overlap, and 100 means perfect373

overlap. The more overlap between A and B, the closer the DSC score to 100%.374

DSC (A,B) =
2 |A ∩B|
|A|+ |B|

× 100% . (1)375

• Average symmetric surface distance (ASSD): Suppose S(A), S(B) represent all surface voxels376

on the ground truth (A) and the predicted ablation zone segmentation (B). Voxel vA and vB are377

arbitrary voxels belonging to A and B, respectively. We define the shortest path from vA to S(B)378

or vB to S(A) as follows:379

d(vA′ , S(B)) = min
vBA∈S(B)

||vA − vBA|| , (2)380

381

d(vB′ , S(A)) = min
vAB∈S(A)

||vB − vAB|| , (3)382

where vBA means the point in S(B) that draws the shortest distance from point vA and similar383

for vAB. The ASSD metric measures the average gap between the boundary of A and B. The384

formula for ASSD is written as follows:385

ASSD (A,B) =

∑
vA∈S(A) d

(
vA′ , S(B)

)
+
∑

vB∈S(B) d
(
vB′ , S(A)

)
S(A) + S(B)

. (4)386

• Hausdorff distance (HD): The HD shows the maximum distance between the boundary of A387

and B. The formula for HD is as follows:388

HD (A,B) = max

(
max

vA∈S(A)
d
(
vA′ , S(B)

)
, max
vB∈S(B)

d
(
vB′ , S(A)

))
. (5)389
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• Volume Difference (VD): Suppose VA and VB represent the volumes of the ground truth and390

the predicted segmentation of the ablation zone in a 3D CT image, respectively. The VD metric391

measures the volume difference between these two volumes without considering their overlap. A392

VD value close to 0 indicates that the size of the prediction closely matches the size of the ground393

truth. The formula for VD is as follows:394

VD (A,B) =
2(VB − VA)

VB + VA
. (6)395

• Precision: The formula for Precision is written as:396

Precision =
TP

TP + FP
, (7)397

where TP is the number of correctly identified ablation voxels, and FP is the number of over398

segmentation voxels of the predicted ablation zone segmentation.399

• Recall: The formula for Recall is written as:400

Recall =
TP

TP + FN
, (8)401

where FN is the number of incorrectly identified ablation voxels.402

In addition, we also use the Area under a curve metric (AUC ) to evaluate the performance of the403

segmentation methods.404

III.D.1. Automatic ablation zone segmentation405

In this experiment, we investigate the performance of four state-of-the-art automatic segmentation net-406

works on ablation zone segmentation: 3D U-Net38, UNETR21, nnU-Net, nnU-Net (fine-tuning)19 and407

CoTr23. The experimental results regarding the comparison of the automatic ablation zone segmen-408

tation of four well-known methods are summarized in Table 2. The evaluation is based on the three409

metrics: DSC, HD and ASSD, and on the two test sets from the EMCB testing dataset, with the final410

segmentation achieved using a threshold of 0.5. We also list the number of failed cases, when there is411

no overlap between the ground truth and the predicted segmentation. The highest mean DSC values412

are 81.2% and 88.4% for CT images acquired in the arterial and portal venous phases, respectively.413

Regarding the processing time, UNETR has the lowest processing time (4-5 seconds for a CT volume414

on average), while nnU-Net (fine-tuning) requires a slightly longer processing time of approximately 7415
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Table 2: Performance comparison of ablation zone segmentations among the well-known
automatic segmentation methods. The bold numbers are the highest mean scores.

Dataset Method DSC HD (mm) ASSD (mm) VD # failure Processing time (s)

EMC
(Arterial)
n = 31

3D U-Net 61.7 ± 18.7 66.7 ± 78.1 8.2 ± 8.8 0.61 ± 0.39 13 4.4 ± 3
UNETR 48.8 ± 20.8 203.1 ± 64.8 16.7 ± 11.2 0.56 ± 0.46 9 3.8 ± 2
nnU-Net 81.2 ± 12.8 34.1 ± 29.7 2.9 ± 4.5 0.26 ± 0.29 1 31.9 ± 11.7
CoTr 76.6 ± 20.6 39.4 ± 29.7 3.6 ± 5.8 0.34 ± 0.39 1 25.3 ± 9.1
nnU-Net
(fine-tuning)

80 ± 15.6 29.9 ± 30.3 3.4 ± 5.4 0.3 ± 0.33 2 7.1 ± 3.5

EMC
(Portal venous)

n = 25

3D U-Net 58.4 ± 26.9 125.3 ± 94.9 12.5 ± 16.1 0.62 ± 0.54 1 5.3 ± 3.8
UNETR 52.9 ± 20.9 240 ± 84.2 23.4 ± 21.4 0.34 ± 0.58 0 4.9 ± 4
nnU-Net 86.1 ± 13.7 44.3 ± 37.3 2 ± 2.1 0.15 ± 0.3 0 33 ± 12.8
CoTr 87 ± 14.2 42.4 ± 36.3 1.9 ± 2.3 0.16 ± 0.31 1 28.2 ± 9.7
nnU-Net
(fine-tuning)

88.4 ± 11.2 25.6 ± 20.2 1.4 ± 1.5 0.13 ± 0.26 0 6.6 ± 4.7
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Figure 5: The histogram of voxel intensity in the CT scans in the EMC dataset (left) and
the Benchmark dataset (right).

seconds for a CT volume, on average. Furthermore, nnU-Net trained by EMC dataset only has the416

longest processing time– an average of approximately 30 seconds for a CT volume. The reason is that the417

nnU-Net framework is designed for patch-based segmentation, which means that the framework needs418

to define the patch size and the patch separation strategy based on the training dataset. The nnU-Net419

(fine-tuning) performs a preprocessing stage based on the EMCA dataset, therefore the preprocessing420

strategy is different from that of nnU-Net and CoTr, resulting in a lower number of split patches. Thus,421

the processing time of nnU-Net (fine-tuning) is significantly reduced compared to nnU-Net and CoTr.422

As a result, we choose the nnU-Net (fine-tuning) model as the automatic method in the proposed423

approach since it has shown high accuracy and sufficiently fast processing time.424

III.D.2. Define optimal model for click-based interactive segmentation425

a. HU truncation range assessment:426
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Table 3: Performance assessment of interactive segmentation model with several the HU
truncation range on CT images. NoC@85% and NoC@90% are the average number of
required clicks to achieve mean DSC scores of 85% and 90%, respectively.

Model HU truncation ranges NoC@85 NoC@90

RITM + DiceCE
(Baseline)

-100 to 200 3.62 6.01
-160 to 240 3.64 6.24
-100 to 400 3.82 6.53
-1024 to 1024 4.26 6.46

In this experiment, we demonstrate the value of the HU truncation range on ablation zone seg-427

mentation. First, we plot the histogram of the voxel intensity of two datasets to show the distribution428

of ablation zone intensity in the CT image in Figure 5. It can be seen that the range of -100 to 200 HU429

contains the most ablation zone voxel intensity (larger than 99%). Furthermore, we evaluate the impact430

of HU truncation on the performance of the interactive segmentation model. Four HU truncation ranges431

are employed for this purpose. Firstly, the HU range of -100 to 200 is utilized by He et al. for automatic432

ablation zone segmentation14. Secondly, the HU range of -160 to 240 is widely used in various methods433

participating in the Liver Tumor Segmentation Benchmark (LiTS)11. Thirdly, the HU range of -100434

to 400 is often used for liver segmentation11. Finally, the HU range of -1024 to 1024 represents the435

entire HU range of a CT image. We use the RITM (baseline) model with DiceCE loss to perform this436

experiment. The models are trained using truncated CT image datasets. We evaluate using 100 2D437

images randomly selected from the validation set. Table 3 indicates that the range of -100 to 200 HU438

achieved the minimum number of clicks required compared to other HU truncation ranges. Hence, we439

used the HU range of -100 to 200 for truncating the CT image in the interactive segmentation model.440

b. Weight & kernel size optimization:441

In this section, we examined the impact of weight λ and kernel size K on the mean number of clicks442

required to achieve DSC scores of 85% and 90% (referred to as NoC@85% and NoC@90%). To achieve443

this, λ is varied from 0.1 to 0.9 and K from 10 to 190 pixels, and the results were evaluated using 100444

2D images randomly selected from the validation set. We experimented with the values of λ and K in445

two strategies: keeping the value fixed and changing adaptively based on the number of clicks. In the446

fixed strategy, the values of λ and K are fixed for the segmentation revising process. In the adaptive447

strategy, each click point provided by the user increases the λ by 10% and decreases K by 10%. A 10%448

change per click is substantial enough to alter the parameters meaningfully and avoid instability in the449

segmentation refinement process. The findings in Figure 6 indicate that when λ is small (e.g., 0.1 and450

0.3), the interactive network requires more clicks. When λ exceeds 0.5, there is no difference in the451
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Figure 6: The effect of the mean number of clicks to achieve DSC of 85% (left) and 90%
(right) w.r.t the weighted value (λ) and kernel size (K) in fixed strategy (solid line) and
adaptive (dash line) strategy.

results. The reason is that when λ is less than 0.5, the weight of interactive segmentation is smaller452

than that of automatic segmentation. Thus, it requires more clicks in the ablation zone regions in which453

the automatic model predicts with low confidence scores. Regarding the kernel size K, the fewest clicks454

are required when K is 30 pixels. For K is less than 30, the ROI may not cover all the large mislabeled455

regions (e.g., Figure 4.B). When K exceeds 30, it produces an ROI with a large coverage area; when456

the interactive network has mislabeled regions, it subsequently affects the final segmentation. For the457

strategies of value adjustment, we observed that there were no significant differences in the minimum458

value of NoC@85% (with a difference of 0.13) and NoC@90% (with a difference of 0.08) between the459

fixed and adaptive strategies. Furthermore, utilizing fixed values can offer considerable advantages in460

simplicity, flexibility, and user proactivity during the process of revising segmentation. Based on these461

considerations, we selected fixed values of λ = 0.5 and K = 30 for the proposed method.462

c. Interactive methods comparison:463

This section presents the results of an experiment conducted on the EMC testing set to evaluate464

the impact of the loss function and combination scheme on the mean number of clicks required to465

achieve a mean DSC score of 85% and 90% (referred to as NoC@85% and NoC@90%). Based on the466

study of Sofiiuk et al. (2022), the RITM architecture outperformed several interactive segmentation467

methods37. Therefore, we use the RITM network structure to perform this experiment. The experiment468

involved three models: the baseline model, which is an interactive segmentation model without a guided469

mask from automatic segmentation; the automatic initial model, which is an interactive segmentation470

model with a guided mask from automatic segmentation; and the combination scheme model, which is471
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Table 4: Performance comparison of the loss functions and combination schemes on 2D CT
images of the ablation zone. NoC@85% and NoC@90% are the average number of required
clicks to achieve mean DSC scores of 85% and 90%, respectively. SPC is second per click.

Model NoC@85% NoC@90% SPC (s)

RITM + NFL 5.13 8.03 0.061
Baseline

RITM + DiceCE 4.47 7.23 0.055

RITM + NFL 4.9 7.86 0.054Automatic
Initial RITM + DiceCE 4.07 6.85 0.051

RITM + NFL 4.79 6.98 0.057
Combination

scheme
RITM + DiceCE
(selected)

3.74 6.22 0.054

an interactive segmentation model that utilizes the combination scheme described in section II.C.. To472

compare the loss function, we trained the RITM model using Normalized Focal Loss (NFL), which was473

used in the original work by Sofiiuk et al. (2022)37, and using DiceCE loss, a loss function that has474

been used in various medical image segmentation studies. The results, as shown in Table 4, indicate475

that using DiceCE loss performs better than using the NFL loss in terms of the mean number of clicks476

required. Additionally, the selected combination scheme achieved the highest results. As a result, we477

selected the combination scheme model (RITM + DiceCE) for further evaluation.478

In the next experiment, we compare the performance of the proposed method with the baseline479

interactive segmentation method (RITM) and conventional approach (manual segmentation) on a pilot480

dataset. The pilot dataset contains 10 CT volumes, which are randomly selected from the testing set,481

and contains from one to three ablation zones per volume. Two medical image analysis technicians (3482

years and 1 year of experience), referred to as User 1 and User 2, respectively, utilized the developed483

tool with the two interactive segmentation methods to segment the ablation zone in the pilot dataset.484

Additionally, two users manually annotated the ablation zone slice-by-slice using the Mevislab software.485

Two users perform the ablation zone annotation until the satisfaction is met. The ablation zone appears486

as a non-enhancing area of low attenuation in the CT image. The users segment the ablation zone slice-487

by-slice by delineating the attenuation as a typical procedure13. To assess the impact of the interaction488

on the segmentation accuracy, the DSC score of the whole 3D CT volume is recalculated when a new489

click is provided by a technician. We also plot the mean DSC score of manual segmentation from two490

technicians. The results are shown in Figure 7 (left). It can be seen that, for both of the technicians,491

using the baseline interactive method requires an average of more than 250 clicks to achieve a mean492

DSC score of 88%. In contrast, for the proposed method, both of the technicians require averages of 53493

and 94 clicks to achieve saturated mean DSC scores of approximately 91.1% and 92.4%, respectively,494
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indicating that the proposed method outperformed RITM (baseline) in terms of DSC score with the495

same amount of clicks. Furthermore, mean DSC scores of 92.4% and 90.9% are achieved by User 1 and496

User 2 in manual segmentation, respectively. We also achieved the mean DSC of 92.4% between the497

ablation zone manually annotated by the two technicians. The experiment demonstrated a high level of498

inter-observation agreement between the manual segmentation annotations made by two technicians.499

The annotation time for each case was recorded. The average annotation time is shown in Figure 7500

(right). The results experimental show that using the proposed method, the average annotation time501

is reduced by approximately 40% and 60% compared with the baseline interactive method and manual502

segmentation, respectively.503
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Figure 7: Experiment on the pilot dataset. Mean DSC scores w.r.t the number of clicks by
two users for segmenting the ablation zones in a CT volume (left). Average annotation time
by two users in three manners: Manual, RITM baseline assistance, and proposed method
assistance (right). RITM baseline is the interactive segmentation model trained using NFL
loss.

III.D.3. Semi-automatic segmentation performance504

In this section, we investigate the performance of the proposed method on 3D CT images with human505

interaction. A technician uses the interactive segmentation tool, which integrates the proposed method,506

to correct the ablation zone region in the 3D CT images. The evaluation on the EMCB dataset, arterial507

phase CT subset shows that the proposed segmentation method obtained a mean DSC, HD, ASSD,508

and VD of 92.3%, 6.5 mm, 0.5 mm, and 0.05, respectively. These metrics for the portal-venous subset509

are 94%, 8.4 mm, 0.4 mm, and 0.02, respectively (see Table 5). The paired t-tests to those of the510

nnU-Net (fine-tuning) obtained p- values which are less than 0.01, suggesting that the proposed method511

statistically significantly improves the segmentation accuracy of the automatic method. In addition, the512
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Table 5: Performance comparison of ablation zone segmentations between the
automatic/semi-automatic segmentation and proposed methods on the EMCB dataset. The
bold numbers are the highest mean values.

Dataset Method DSC HD (mm) ASSD (mm) VD # fails Processing time (s)

EMCB

(Arterial)

nnU-Net
(fine-tuning)

80 ± 15.6 29.9 ± 30.3 3.4 ± 5.4 0.3 ± 0.33 2 7.1 ± 3.5

MONAI Label
(Deepedit)

50.4 ± 23 99.9 ± 82.6 16.6 ± 20.1 0.64 ± 0.41 7 2.1 ± 1.1

Proposed 92.3 ± 3.6 6.5 ± 3.2 0.5 ± 0.3 0.05 ± 0.13 0 121.5 ± 103.1

EMCB

(Portal venous)

nnU-Net
(fine-tuning)

88.4 ± 11.2 25.6 ± 20.2 1.4 ± 1.5 0.13 ± 0.26 0 6.6 ± 4.7

MONAI Label
(Deepedit)

60.3 ± 18.2 159.7 ± 137.2 35.1 ± 55.1 0.14 ± 0.42 2 2.4 ± 1.2

Proposed 94.0 ± 2.2 8.4 ± 5.9 0.4 ± 0.2 0.02 ± 0.06 0 126.7 ± 105.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Recall

 CoTr, AUC=0.91
 nnUNet, AUC=0.92
 nnU-Net (fine-tuning), AUC=0.92
 RITM, AUC=0.93
 Proposed, AUC=0.95

EMC dataset

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Recall

 CoTr, AUC=0.72
 nnUNet, AUC=0.79
 nnU-Net (fine-tuning), AUC=0.83
 RITM, AUC=0.92
 Proposed, AUC=0.92

Benchmark dataset

Figure 8: The Precision-Recall curve of ablation zone segmentation on the EMC dataset
(left) and the Benchmark dataset (right).

proposed method successfully segmented all of the lesions in the EMCB dataset while the nnU-Net513

fine-tuning model failed 2 cases in the EMCB arterial subset. Moreover, the Precision-Recall curve514

of the proposed method shows highly precise ablation zone segmentation compared to the automatic515

segmentation methods: CoTr, nnU-Net, nnU-Net fine-tuning (as depicted in Figure 8). Specifically, the516

proposed method’s AUC scores are 0.92 and 0.95 for the Benchmark dataset and the EMCB dataset,517

respectively, which are greater than those of the other automatic methods. Examples of ablation zone518

segmentation by the proposed method and the other methods on EMC and Benchmark dataset are in519

Figure 10.520

To further assess the segmentation accuracy of the proposed method on the Benchmark dataset,521

we compared the proposed method with inter-observer manual segmentation and the other well-known522

segmentation methods, including CoTr, nnU-Net, nnU-Net (fine-tuning) and Graph-based contouring12.523

Two experts labeled the Benchmark dataset. We use the labels created by the first expert as the524
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Table 6: Performance comparison of ablation zone segmentations on the Benchmark dataset.
The bold numbers are the best scores. The statistics of Graph-based contouring method is
listed from the original paper by Egger et al. (2015)12.

Method DSC HD (mm) ASSD (mm) VD # failure Processing time (s)

3D U-Net 62.9 ± 21.5 87.9 ± 78.8 7.8 ± 6.9 0.33 ± 0.64 1 4.7 ± 1.5

UNETR 60.8 ± 13.8 260.3 ± 75.3 25.2 ± 7.5 -0.02 ± 0.43 2 4.5 ± 2.2

nnU-Net 76.1 ± 18.4 40.5 ± 41 6.4 ± 8.8 -0.06 ± 0.46 0 29.8 ± 7.9

CoTr 78 ± 17 47 ± 45 7.3 ± 9.5 -0.19 ± 0.28 3 23.1 ± 7.6

nnU-Net (fine-tuning) 77.2 ± 16.6 33.9 ± 40.3 5.8 ± 8.2 -0.07 ± 0.39 0 5.5 ± 4.5

MONAI Label (Deepedit) 52.3 ± 20.8 105.8 ± 100 14.2 ± 13.8 0.42 ± 0.75 2 -

Proposed 87.8 ± 6.8 9.5 ± 6.9 0.9 ± 0.5 -0.03 ± 0.07 0 134.3 ± 82.8

Manual (inter-observer) 88.8 ± 3.3 8.6 ± 3.4 0.8 ± 0.2 -0.02 ± 0.07 0 -
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Figure 9: The boxplot of DSC scores among the manual segmentation, the proposed method,
the automatic methods, and the classical interactive method12 for ablation zone segmentation
on the Benchmark dataset.

ground truth, while the labels created by the second expert are used to represent the inter-observer525

manual segmentation. From Table 6, the mean DSC, HD, ASSD, and VD scores achieved by the526

proposed method were 87.8%, 9.5mm, 0.9 mm, and -0.03, respectively. The inter-observer manual527

segmentation achieved mean DSC, HD, ASSD, and VD scores of 88.8%, 8.64 mm, 0.8 mm, and -0.02,528

respectively. In addition, we applied a t-test on the DSC scores of the methods. As shown in Figure 9,529

there is no statistically significant difference between the proposed method and inter-observer manual530
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Figure 10: Examples of ablation zone segmentation on EMC and Benchmark dataset of
the methods with the segmentation ground truths (B.1 and D.1). The original images
(A.1 and C.1) are overlaid by the probability predictions (A.2-5; C2-5) and the thresholded
segmentations of each corresponding method (B.2-5; D2-5).

segmentation (p-value = 0.55). While the performances of CoTr, nnU-Net, nnU-Net (fine-tuning),531

and Graph-based contouring are not statistically significantly different, the proposed method obtained532

a statistically significantly better performance compared to those of the methods (p-values ≤ 0.02).533

Furthermore, the mean processing time to correct the ablation zone is 134 seconds.534

IV. Discussion535

In this study, we have proposed and evaluated a semi-automatic method for accurate segmentation of the536

ablation zone in the post-interventional liver tumor ablation CT images. The ablation zone segmentation537

accuracy was compared to five state-of-the-art segmentation methods using both internal and publicly538
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available external datasets. Extensive experiments were carried out to assess the performance of the539

proposed method. In addition, we also developed a tool for demonstrating the effectiveness of the540

method. The demonstration tool and the source code were made publicly available for research purposes.541

Table 2 displays the ablation zone segmentation accuracy of four automatic segmentation meth-542

ods. The results indicate that nnU-Net performs better than the other baseline methods in automatic543

segmentation, showing the effectiveness of the self-configuration framework for automatic ablation zone544

segmentation. Furthermore, using the t-test, we found no statistically significant differences between545

the results of nnU-Net and CoTr (with a p-value ranging from 0.2 to 0.5). The accuracy of both546

methods is comparable to those of the state-of-the-art ablation zone segmentation method reported by547

He et al. (2021)14 and Anderson et al. (2022)15. We also found that the accuracy of the methods548

is reduced when using arterial phase CT images compared to the portal venous phase, which is consis-549

tent with the study by He et al. (2021)14. However, the performance of the automatic segmentation550

methods suggests that they are still unreliable and insufficient for clinical use. In addition. Table 6551

shows that the accuracy of the method decreases when performed on the external dataset, indicating552

that ablation zone segmentation is still a challenge for fully automatic methods. On the other hand, the553

proposed semi-automatic segmentation method achieves state-of-the-art performance on ablation zone554

segmentation and outperforms the other methods, yielding mean DSC scores of 92.3%, 94.0%, and555

87.8% on the Arterial EMCB, Portal venous EMCB and Benchmark datasets, respectively (see Table 5,556

6, and 8), which are remarkably better than the mean DSC scores reported by Anderson et al. (2022)15557

(79%). The means of ASSD cores of the proposed method on both the EMC dataset and Benchmark558

dataset are less than 1 mm, which is smaller than the ideal ablation zone safety margin of 10 mm46
559

and equivalent to the median surface distance reported by Anderson et al. (2022)15 (0.76 mm).560

From the experiment with MONAI Label, we see that MONAI Label, a state-of-the-art semi-561

automatic segmentation method for medical images47, yielded low accuracy with the embedded click-562

based method. This is because the default preprocessing setting of the MONAI Label is investigated for563

multiple organ segmentation (BTCV Challenge), which may not be optimal for a single class (ablation564

zone segmentation only). In the resampling step, a fixed spacing is applied for the entire data, and a565

large spacing (spacing of [1.5, 1.5]) for the axial plane resampling makes lost information. Additionally,566

the patch-based segmentation with a small patch size (the size of [96, 96, 32]) results in a class567

imbalance during the training phase. Since the ablation zone region is small compared to the whole568

CT volume, the number of patches that contain the background only is larger than the number of569

patches that contain the ablation zone. This is the evidence to explain the performance of models570
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implemented using the MONAI library (3D U-Net, UNETR, and MONAI Label) achieved low accuracy.571

In contrast, the proposed method has the advantage of the self-configuration framework (nnU-Net),572

which can automatically adapt the preprocessing step based on the training data. Furthermore, using573

a 2D interactive segmentation model (RITM) for the refinement of the ablation zone in a slice-based574

manner supports the technician in the refinement of the ablation zone as a typical procedure.575

Figure 9 also indicates that the proposed method achieved the best performance compared to576

other automatic methods. Our observation is that the EMCB dataset is less noisy than the Benmchark577

dataset. Thus, the performance of the methods on the EMCB dataset is higher than that on the578

Benchmark dataset. In addition, the manual segmentations of the Benchmark dataset were created579

by two experts. By quantitatively evaluating the inter-observer variability of manual segmentation, we580

found that the proposed method achieved a segmentation accuracy comparable with the inter-observer581

variation in terms of DSC. The p-value of 0.55 (t-test) suggests that there is no statistically significant582

difference between the proposed method and the inter-observer manual technique (see Figure 9).583

From Figure 7, we can see that the proposed method needs a lower number of required clicks584

compared to the original RITM. This is because the proposed method takes advantage of the automatic585

segmentation to reduce the workload for the user. This indicates that the performance of the automatic586

method is also an essential factor in reducing the number of clicks. The larger the number of clicks is,587

the more time and inconvenient it is for the operator to obtain a good segmentation. From Table 5588

and 6, we can see that the average processing time of the proposed method for a volume is around 2589

minutes, which is small compared to the average operation time of a MWA/RFA session of 112 -149590

minutes48. Moreover, it can be seen from Figure 7 that the mean saturated DSC scores of both users591

are slightly different. Since the proposed method requires human interaction, we suppose the difference592

is caused by inter-observer variation.593

Our study has some limitations. Firstly, although we conducted the study with both internal and594

external datasets, and achieved state-of-the-art performance, the number of CT images in the external595

dataset is only 12 CT volumes, thus conclusions on generality should be drawn with care. By sharing596

our source code and demonstration tool, we expect other researchers can easily reproduce our obtained597

results and perform testing on larger external datasets. Secondly, the developed demonstration tool598

was derived from the work by Sofiiuk et al.(2022)37, which was not originally designed for medical599

application purposes. As a result, the number of interactions might not be optimal yet. In this study,600

we consider the tool for the demonstration purpose only. Further studies may require a better design for601
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the user interface and user experience. Another solution which could be considered is to integrate the602

proposed method with existing medical image tools such as MONAI43, ITK-SNAP49 and 3D Slicer50.603

In addition, although the accuracy of the semi-automatic method is comparable with the accuracy of the604

manual segmentation by experts, it still contains errors in the final segmentation with a mean HD score605

of 9.5 mm (compared that of the 8.6 mm inter-observer score, p-value = 0.67). These errors seem to606

be the limitations of human-level performance for annotation and evaluation on the Benchmark dataset.607

We suggest that the interventionist may take the errors into account in assessing the ablation zone. We608

acknowledge that the time cost of the proposed method, which is about 120 seconds, is higher than609

automatic segmentation methods that can produce results in a matter of seconds. This difference in610

time cost is indeed a consideration and can be seen as a limitation when comparing our method to fully611

automated approaches. However, the proposed method allows for higher accuracy and customization, as612

users can iteratively refine the segmentation. This is particularly advantageous in cases where automatic613

methods might struggle with complex or ambiguous regions. Finally, in this study, we mainly focus on614

developing methods for precise ablation zone segmentation without further investigating the effect of615

the ablation zone segmentation on the clinical outcome. Nevertheless, Lin et al. (2023)46 suggested in616

their recent study that precise ablation zone segmentation has clinical benefits.617

The use of deep learning for medical image analysis is massively expanding at present, especially618

for image segmentation applications51,52. A major drawback of deep learning is that it requires a619

sufficiently large amount of data for effective training of the models. However, it is frequently difficult620

to acquire a sufficient amount of medical images with labels that are appropriate for a specific application,621

potentially resulting in sub-optimal performance. For fully automatic CNN-based segmentation methods,622

the predicted segmentation may therefore contain segmentation errors. However, with simple interactive623

corrections using the proposed semi-automatic CNN-based method, the accuracy of segmentation can624

be improved significantly. Therefore, we expect that using the proposed approach, other segmentation625

problems may be similarly addressed without requiring large amounts of training data.626

V. Conclusions627

This study has proposed a semi-automatic approach for ablation zone segmentation in thermal treat-628

ments of liver cancer. An accurate segmentation is obtained by combining automatic CNN-based seg-629

mentation and click-based CNN segmentation methods. Regarding segmentation accuracy, the proposed630

method is superior to the well-known CNNs in almost all metrics, achieving comparable performance to631
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manual segmentation of human experts on a benchmark dataset, yielding a mean DSC score of 87.8%632

on average. The obtained segmentation accuracy scores of the proposed approach are also better than633

those of the other methods when applied to the internal dataset, achieving state-of-the-art performance634

in accuracy (DSC score of 94.0% on average), and the method is sufficiently fast for the use in clinical635

practice. In conclusion, this study has shown the potential of the semi-automatic approach in supporting636

the interventionist in assessing the treatment outcome of thermal ablation for liver cancer treatment.637
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