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ABSTRACT The current age is witnessing an unprecedented dependence on data originating from humans
through the devices that comprise the Internet of Things. The data collected by these devices are used
for many purposes, including predictive maintenance, smart analytics, preventive healthcare, disaster
protection, and increased operational efficiency and performance. However, most applications and systems
that rely on user data to achieve their business objectives fail to comply with privacy regulations and
expose users to numerous privacy threats. Such privacy breaches raise concerns about the legitimacy of
the data being processed. Hence, this paper reviews some notable techniques for transparently, securely,
and privately separating and sharing personally identifiable and non-personally identifiable information in
various domains. One of the key findings of this study is that, despite various advantages, none of the existing
techniques or data sharing applications preserve data/user privacy throughout the data life cycle. Another
significant issue is the lack of transparency for data subjects during the collection, storage, and processing
of private data. In addition, as privacy is unique to every user, there cannot be a single autonomous solution to
identify and secure personally identifiable information for users of a particular application, system, or people
living in different states/countries. Therefore, this research suggests a way forward to prevent the leakage
of personally identifiable information at various stages of the data life cycle in compliance with some of
the common privacy regulations around the world. The proposed approach aims to empower data owners
to select, share, monitor, and control access to their data. In addition, the data owner is a stakeholder and a
party to all data sharing contracts related to his personal data. The proposed solution has broad security and
privacy controls that can be tailored to the privacy needs of specific applications.

INDEX TERMS Internet of Things, security and privacy, data sharing, regulations and policies,
privacy-preserving computation, personally identifiable information.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lo’ai A. Tawalbeh .

I. INTRODUCTION
With the ongoing exponential expansion of the Internet of
Things (IoT) and the increasing ubiquity of big data tech-
nologies, data (facts) and information (knowledge obtained
through interpretation and contextualization of facts) have
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become key strategic resources of the 21st century [1].
Many organizations compete to access such resources to
generate economic value or strategic advantage. Due to the
openness of cyberspace and Internet technologies, access to
data has become easy, enhancing the efficiency of data-driven
services. However, due to limitations in the security of the
systems, e.g. the lack of privacy controls, there are increasing
opportunities for data leakage, leading to identity theft and
user privacy attacks.

It is estimated that by 2025, humans will generate
approximately 463 exabytes of data every day [2]. Such a vast
volume of data presents a growing challenge in guaranteeing
its security and maintaining the privacy of its owners. Most
of these data are private and derivative information associated
with individuals, such as social media activity, purchasing
habits, or health information, which is highly valued by both
legitimate users and malicious parties [3, 4], and [5]. As more
information of this type is collected and stored online, its
collective value and the size of the potential attack surface
continue to increase.

In this context, the significant issue is the misuse of data
and the threats to user privacy. For example, in 2018, Face-
book illegitimately shared the personal data of approximately
87 million users with Cambridge Analytica (a political data
analytics firm) [6]. Cambridge Analytica profiled the users
based on the acquired data, e.g., their political affiliations
and the type of content they post and like. Later, users were
psychologically exploited with tailored political content.
In another incident, a ransomware attack on the Australian
health insurance company Medibank in 2022, resulted in a
data breach that affected 9.7 million customers [7].

IoT devices, in particular, represent a new class of threat to
security and privacy. Researchers in [8] highlight numerous
security and privacy issues associated with this domain,
particularly discussing the evolution of cyber attacks that
exploit the near-exponential growth of IoT devices and asso-
ciated applications. For example, physicians collect extensive
longitudinal records of patients' health data, including those
collected from temporarily or permanently attached or
implanted IoT devices. Similarly, vehicle insurance providers
may track drivers' private information, such as location,
speed, and other driving habits, through embedded IoT
devices to more accurately estimate risk [9]. Such personal
information is of enormous value to hostile actors (for
example, for identity theft or fraud), creating a strong
motivation for its theft or leakage. Existing solutions may
protect sensitive customer data during transmission to some
extent. However, they cannot guarantee data protection at the
central point of collection, where a rogue administrator may
disclose sensitive personal data [10].

In some cases, misconfiguration of analytics services can
also compromise privacy [11]. For example, to facilitate
debugging, target advertising, and improve service quality,
developers of mobile applications may collect Personally
Identifiable Information (PII) and use various analytic ser-
vices to evaluate user behavior. PII includes any information

TABLE 1. List of abbreviations.

that can be used independently or in combination with any
other information to distinguish or trace an individual’s
identity, such as name, social security number, date and
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place of birth. Developers mostly use techniques such as
anonymization and aggregation to reduce the disclosure of
PII. However, these protective measures are usually not
implemented as a core part of the application design. There
is always a possibility that developers misconfigure the
analytic services, thus leaking sensitive information. For
example, an application developer may set attributes for their
customers using certain Attribute Setting Methods (ASMs)
provided by analytic services. In ASM, a user's PII, such
as an email, a username, or date of birth, is replaced with a
unique pseudonymous ID. The pseudorandom ID is then used
to label the data associated with a particular user. In contrast,
using PII as an ID may unnecessarily expose sensitive data
and threaten users' privacy. If PII is wrongly used with ASMs,
a user's private data may not be anonymized, violating the
government's privacy regulations and the service provider's
privacy policy. Hence, data analytics service providers
threaten users' privacy once they gain control of their data.
Consequently, users and app developers lose control of the
data. Data owners must learn how their data are used and
how many parties can access them. Even if data owners
trust analytics service providers, long-term storage of user
behavior data is always vulnerable [12].

According to [13], the General Data Protection Regulation
(GDPR) relates only to PII and non-PII is outside of its
scope of application. Therefore, it is important to carefully
identify PII from non-PII as it determines whether an entity
processing data is subject to the privacy regulations or not.
However, in reality, the definition of privacy and sensitivity
of data may differ from person to person. The classification
of personal data is dynamic and, depending on the context,
the same data point can be personal or non-personal [13].
Hence, a particular application or system cannot employ
a single autonomous solution to differentiate between PII
and non-PII. Similarly, if an entity, for example, a health
service provider keeps patient PII but shares anonymized data
for research with third parties, it is still termed risky and
intolerable [14]. Consequently, data owners should select data
assets, draft rules/conditions for sharing, and control access
based on the sensitivity of their data.

In addition to ethical and mishandling issues related to
private data, a small percentage of organizations implement
a secure end-to-end digital transformation solution [15].
In reality, companies integrate various technologies from
different vendors to provide services to their customers
without considering data security and privacy controls [3].
On the other hand, a strict line has been drawn through
various regulations such as the EuropeanUnion's GDPR [16],
China's Personal Information Protection Law (PIPL) [17],
Indian Digital Data Protection Bill [18], California Consumer
Protection Act (CCPA) [19], and Australian Privacy Act
(APA) [20]. These laws require organizations to collect
and process user data in a transparent way. Similarly,
the increased interest of users in data privacy has forced
organizations to reevaluate their data practices to avoid data
breaches and privacy threats.

Despite the promulgation of strict regulations, security
breaches that threaten user privacy indicate a void in existing
digital transformation strategies. Hence, there is a need to
review the existing IoT/personal data processing approaches
to ascertain their effectiveness in preserving users’/data own-
ers’ privacy and compliance with data protection regulations.
Table. 2 summarizes some of the significant threats to data
security and privacy.

TABLE 2. Data security and privacy issues.

A. RELATED WORK
According to the best of our information, none of the existing
works presents a survey of PII and non-PII segregation
techniques and provides an in-depth review of technical
solutions to preserving users' privacy. For example, [21]
presents the general cybersecurity risks and threats related
to online education. Similarly, researchers in [22] conduct
a comprehensive review of privacy and security threats to
the IoT. However, the primary contribution of the research
remains the taxonomy of IoT threats and countermeasures
with a brief discussion on privacy issues.

Sen et al. comprehensively cover the security and pri-
vacy issues and related solutions in cloud-supported IoT,
where users' data are collected, stored, and processed in
the cloud [23]. Concerning countermeasures, the authors
discuss conventional security measures such as open ports,
security protocols, intrusion detection, and single-sign-
on. Likewise, researchers in [24] discuss security and
privacy issues with respect to big healthcare data. The
researchers review approaches to counter security and
privacy issues, but only briefly discuss anonymization and
encryption techniques. Similarly, [25] studies the techniques
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to preserve users' privacy in eHealthcare. However, the scope
of the study revolves only around pseudonymization and
privacy-preserving access control.

The primary issue with existing works is their concentra-
tion on security more than privacy. In addition, they do not
purely talk about techniques to protect PII throughout the
data lifecycle. However, existing solutions that address user
privacy have limited scope or the work comprises individual
solutions to classify and securely use PII. These techniques
are discussed in Section III.

B. CONTRIBUTIONS OF THIS STUDY
The key highlights of this study are:
1) Construes compelling requirements from the world's

leading data protection regulations.
2) Provides a comprehensive review of privacy-preserving

techniques under different application scenarios.
3) Highlights the strengths, limitations, and status of

compliance of each scheme.
4) Identifies challenges associated with user/data privacy.
5) Proposes a way forward for developing a secure and

transparent framework to prevent PII leakage throughout
the data life cycle.

C. ORGANIZATION
This article is organized into various sections: Some signifi-
cant data protection regulations are highlighted in Section II.
Section III illustrates current techniques for classifying
and segregating PII and non-PII and protecting against
privacy threats. Section IV introduces the new engineering
dimension, i.e., Privacy Engineering, and Section V analyzes
existing privacy-preserving techniques and highlights their
pros and cons. The existing challenges are discussed in
Section VI, and Section VII proposes a way forward. The
study is finally concluded in Section VIII.

II. DATA PROTECTION REGULATIONS
Before we discuss state-of-the-art PII protection techniques,
it is imperative to highlight some of the notable data
protection regulations in the world. We have selected GDPR,
PIPL, Indian Digital Data Protection Bill, CCPA, and APA
because of the respective region/country's market share in the
IoT industry and subsequent requirements for data privacy.
For example, Europe is expected to dominate the IoT market
by 2030, surpassing North America [26]. Similarly, China
and India are among the top market shareholders in the
Asia-Pacific region. APA is reviewed given the Australian
Government's increasing emphasis on data privacy. However,
first, we need to define some important terms:

• Personal Data: Information that can be related to and
help identify an individual. For example, name, gender,
browser cookies, biometrics, or location data.

• Data Subject: Data owner whose data are collected, pro-
cessed, or analyzed. For example, patients, customers,
users of the web site / mobile app.

• Data Controller: An individual in an organization with
access to user data and authority to decide why and how
data will be used.

• Data Processor: The party with delegated power (by
data controller) to process users' data. This may include
individuals, cloud servers that run analytics applications,
or email service providers.

• Data Processing: Any manual or automated operation
performed on user data, e.g., data collection, data
storage, data analysis, erasing, sharing, or revoking
access.

A. GENERAL DATA PROTECTION REGULATION (GDPR)
The GDPR [27] is considered the strictest data privacy
regulation. It can be broadly divided into the following
categories:

1) DATA PROCESSING
Regulations concerning data processing revolve around seven
key data protection and accounting principles.
(a) Transparent and Legal Processing: Data processing

must be legal and transparent. Data subjects must have
visibility of the complete process.

(b) Minimal Data Collection: Data controllers and proces-
sors should collect the minimum possible data to serve
their purposes.

(c) Period of Data Storage: Data must not be stored beyond
their desired utilization.

(d) Data Confidentiality and Integrity: Integrity and
confidentiality must be ensured during storage and
processing.

(e) Data Accountability: It is the responsibility of the
data controller to comply with all the above-mentioned
GDPR principles.

2) DATA PROTECTION BY DESIGN
The developers should consider the following points when
designing and developing their applications:
(a) What type of data is to be collected?
(b) How to avoid over-data collection?
(c) How can data be secured?
(d) How to anonymize data?

3) CONSENT
EU-GDPR has tough requirements concerning data subjects'
consent. The prominent regulations in this regard include:
(a) Explicit and descriptive request for consent.
(b) Free consent of the data subject.
(c) The data subject must be a party to the data processing

contract.
(d) Data subjects should be able to withdraw consent,

restrict processing, control access, and delete data
whenever desired.

(e) Data subjects must be informed in the event of data
breaches.
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FIGURE 1. Data protection requirements.

4) TECHNICAL CONTROLS
(a) Multifactor authentication be implemented to access

stored data.
(b) End-to-end data encryption should be in place to ensure

confidentiality.
(c) Organizations should enforce role-based access control

(RBAC) to ensure the security and privacy of collected
data.

B. CHINA'S DATA PROTECTION (CDP) REGULATIONS
Data protection and privacy in China are based on three legal
frameworks [28], i.e., PIPL, Cybersecurity Law (CSL) and
Data Security Law (DSL). The main takeaways from these
regulations are the following:
1) Consent: Requests for data subjects' consent to collect

and process data should be clear and well described.
Separate consent must be obtained for data collection,
processing, sharing with third parties, overseas transfer,
and public disclosure.

2) Privacy Policy: Data controllers are required to provide
a data privacy policy to data subjects covering aspects
including; the data controller's identity, list and purpose
of collecting various types of data, location and period
of data storage, scenarios when data will be shared with
third parties or transferred across the borders.

3) Rights of Data Subjects: Data subjects should have the
power to control access to their data. Data owners must
be able to rectify or erase data whenever they want.

4) Data Processing: Data collection and processing should
comply with the data privacy contract signed between all

stakeholders. Excessive data collection must be avoided
for all the reasons.

5) Data Confidentiality: Data must have end-to-end
protection.

6) Data Breach: Data subjects must be notified of a security
incident resulting in data leakage and unauthorized
disclosure.

C. DIGITAL DATA PROTECTION BILL 2022 - INDIA
This regulation ensures safeguards for the collection and
processing of personal digital data on the Internet within
Indian territory. Data processing may involve offering
data-oriented services or user profiling [18]. The bill enforces
regulations related to data breach notifications, data subject
rights, cross-border data transfer, and penalties.

1) Breach Notifications: The bill requires the data con-
troller or data processor to issue notifications to the data
protection board and to each affected data subject.

2) Data Subject Rights: The data controller must obtain
explicit or deemed consent from the data subject. Data
subjects must have the right to information about their
data usage. Data owners should be able to rectify or
erase data and revoke sharing whenever they want.
In addition, data subjects must have the right to redress
grievances in the event of any data breach.

3) Cross Border Data Transfer: Personal data must be
stored and processed within India. However, if nec-
essary, it can be transferred to other countries after
approval from the central government.
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4) Penalties: The digital data protection bill enforces strict
penalties for the parties. For example, in the case of any
violation, data subjects can be fined up to 10,000 Indian
rupees (equivalent to $121). Similarly, data controllers
or processors can be penalized up to 5000 million Indian
Rupees (approximately 60.9 million USD).

D. CALIFORNIA CONSUMER PRIVACY ACT (CCPA)
This law allows consumers to exercise more control over
their data [29]. It also guides organizations/businesses on
effective implementation. The significant privacy rights for
the consumers include:
1) Right to correct the information an organization or a

business collects.
2) Right to restrict the use and disclosure of personal

information.
3) Right to know what information businesses have about

a customer, how businesses use the collected data and
with whom the data are shared.

4) Consumers also have the option to opt out or revoke the
sharing of their data.

5) Data controllers and processors are bound to issue
notices to customers about privacy practices.

E. AUSTRALIAN PRIVACY ACT (APA)
This act revolves around thirteen privacy principles:
1) Personal information should be managed openly and

transparently.
2) Data subjects must be able to hide their identity through

anonymity and pseudonymity.
3) Non-sensitive personal information can be collected by

an APP entity (any organization to which Australian
Privacy Principles (APP) are applied) for a specific
purpose through lawful means. In contrast, sensitive
information can only be collected with the data subject's
consent or when required by an Australian law or court
order.

4) The information should be destroyed and deidentified
when no longer required.

5) Any APP entity collecting personal information
must inform the respective individuals about such
requirements.

6) The information an APP entity collects for a specific
requirement must not be used for any other purpose.

7) Any organization collecting personal information must
not use it for direct marketing without the consent of the
respective data subject.

8) Individuals’ personal information can be shared by an
APP entity with an overseas party only if that party
complies with the APPs.

9) Organizations collecting personal information are pro-
hibited from using government-related identifiers of
an individual as their own without proper government
permission.

10) APP entities collecting personal information must
ensure that it is complete, correct, and up-to-date.

11) Organizations that store personal information should
protect the data from unauthorized access, loss, forging,
and misuse.

12) All individuals have the right to information.
13) The information collected can be corrected at the request

of the respective data subjects.
In summary, Fig. 1 shows some of the significant require-

ments mandated by each privacy regulation discussed above.
The figure also highlights data protection requirements
common to the privacy regulations, which include:

• Clear and explicit request for data subject's consent.
• Legal and transparent data collection and processing.
• Minimum data collection for a minimal time.
• Data protection by design through various secu-
rity controls, including multifactor authentication,
end-to-end encryption, and RBAC.

• Personal data should be anonymized.
• The data owner should be able to withdraw consent,
control access, restrict processing, revoke data sharing,
and erase data whenever desired.

• Data subjects should be immediately notified of any data
breach.

III. THE STATE-OF-THE-ART (SOTA) TECHNIQUES
For better understanding, as shown in Table. 3, we have
categorized SOTA techniques to protect PII in vari-
ous domains/applications, including healthcare, smart ana-
lytics applications, mobile and web applications, broad
applications, smart city, and online education applications.

A. HEALTHCARE APPLICATIONS
1) PROACTIVE HEALTHCARE MANAGEMENT
Authors in [30] proposed an intelligent healthcare manage-
ment solution enabled by IoT. The suggested model gathers
data from sensors embedded in various health devices,
including wearable gadgets (smart watches, pacemakers,
etc.), smart modules in ambulances, doctors' workstations
and hospital management systems (HMS software). The
raw data are then forwarded to a central repository through
secure communication protocols for further processing and
analytics. The researchers claim to comply with the Health
Insurance Portability and Accountability Act (HIPPA) by
implementing security and privacy controls and the required
monitoring and audit measures. The authors also mention
the need for strong authentication (RBAC), classification
of PII and non-PII, and controlled access to PII with the
respective user's consent. However, this work lacks proof for
the implementation of such security and privacy controls.
Concerning users' privacy, all devices associated with a

particular user are assigned a unique ID during registration.
The user and device mapping based on the unique ID is stored
on a central server for later use. Consequently, sensor data
collected and transmitted are identified based on the unique
ID that maps them to the respective user/owner. It ensures
that even if malicious users intercept or steal data without
mapping to the user ID, they cannot gain anything.
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FIGURE 2. Patient onboarding and patient data request process.

2) BLOCKCHAIN FOR HEALTHCARE
The digitization of patient data in healthcare in the form
of Electronic Health Records (EHRs) has undoubtedly
improved the overall treatment experience. However, in the
digitized world, there are always threats to data security
and privacy. Hence, security researchers in [31] introduced
a blockchain-based framework for secure storage and
patient-driven sharing of health records according to GDPR.
This work also facilitates building trusted AI models while
ensuring data sources' traceability (provenance) and running
analytics without disclosing PII.

As shown in Fig. 2, during the patient onboarding
process (represented with dark gray arrows), the healthcare
provider first collects patient data. It then segregates PII
from non-PII and bundles the data (PII+non-PII). However,
it is unclear how the researchers separate PII from non-
PII, i.e., whether the classification is done while collecting
information from the patient or at a later stage. The bundled
data are then sent to the identity manager (integral to
the blockchain). The identity manager generates a unique
identifier (ID) for the patient and stores it on the blockchain.
It also generates a private key for the patient, which is
communicated to the patient via email or SMS. Moreover,
the identity manager sends the non-PII data to the EHR
database, and the PII data is sent to the offline database

with its hash stored in the blockchain. In addition, during
onboarding, patients provide the healthcare provider with
a list of permissions for their data. The same is linked to
the patients' private key and stored in the blockchain by
the healthcare provider. Hence, patients with a unique ID,
a private key, and access permissions to their data enable
a patient-driven healthcare ecosystem. Consequently, data
subjects have control over their data and no one can have
access to data without an owner's consent.

On the other hand, to access a patient's data (shown in
rust arrows in Fig. 2), the desired party sends a request for
access to particular data items. The request is verified against
the patient-created data access checklist. The third party can
access the desired data items with the required permissions.
Otherwise, the data owner is alerted concerning data access
requests. If the owner updates the access permissions,
a blockchain-based smart contract updates the data access
checklist. Consequently, transactions concerning data access
are logged in the blockchain for accountability and audit
purposes. The immutable audit trail of data collection and
sharing transactions preserves the provenance of the data and
ensures its ethical use with the consent of the data owner.
The blockchain-based, trustless, distributed, and credible
data collection and sharing framework helps create a trusted
decentralized AI model. However, the proposed framework
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TABLE 3. SOTA personal data processing techniques.
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TABLE 3. (Continued.) SOTA personal data processing techniques.

may have scalability issues with increased users, as the
Proof of Concept (POC) encompassed only a few nodes in
a controlled environment.

3) I-AM
The general public is using several mobile eHealth applica-
tions (apps). These apps tend to access sensitive data related
to users' health. Hence, it is natural for people to be concerned
about their privacy. Most eHealth apps inform users about
using sensitive information, such as location data, heart rate,
step count, exercise history, or fall alert. However, users find
privacy statements/notifications very complex and are often
unaware after reading the privacy notice [32].

Researchers in [33] determine that, generally, the
eHealth apps do not address the users' privacy con-
cerns and usually collect PII that does not conform to

the apps' functionality. For example, a fitness track-
ing app collects contacts, accounts, and phone iden-
tity information. Hence, the researchers introduced an
inform, alert and mitigate strategy to preserve user
privacy [33].

The inform, alert and mitigate (I-AM) approach focuses on
designing and developing privacy-aware interfaces formobile
eHealth apps based on the analysis of some fitness trackers,
weight-loss and medical apps. As shown in Fig. 3, the inform
stage of the I-AM cycle informs a user about the privacy
policy and an app's intended use of PII before it is installed.
Especially the information about data that the appwill collect,
how and where it will be stored, when and with whom it will
be shared, and how it may be used. Similarly, the alert module
warns users of possible privacy risks. The authors suggest
that the alert module should be developed as a separate layer
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FIGURE 3. I-AM - Inform, alert, mitigate cycle.

between the OS and the app for simplicity and early adoption.
Consequently, alert notifications can be displayed as scalable
pop-up windows or small icons on the device status bar,
depending on the alert's severity. Based on the alerts, the
mitigation component provides various options for the users
to reduce the incurred risks. The mitigation strategies may
include:

• Storing data locally instead of forwarding it to the app's
server.

• Transfer aggregated data to the server instead of
individual sensor readings, e.g. sending an aggregated
heart rate calculated over some time rather than an
individual heart rate value at a specific time.

• Filter sensitive PII form data being transferred to the
server, e.g. fall alert.

• Alter data such as the GPS coordinates to hide the actual
location of the activity.

The concept of I-AMmethodology seems to be effective in
educating users about their use of data. However, there may
be practical challenges in integrating the I-AM framework
with the apps' user interface such that the users are not
annoyed by receiving too many notifications. Moreover, the
design of the user interface should not hamper an app's
primary functionality.

B. SMART ANALYTICS APPLICATIONS
1) PRIVACY-PRESERVING MACHINE LEARNING
Researchers in [34] provide a detailed threat landscape with
respect to various systems that employ machine learning
(ML) models. The authors identify three major roles: data
owners acting as the input party, the computation party
performing ML tasks, and the results party. If all of these
roles are played by two or more parties, privacy issues
arise. Data owners should be aware of how their data are
being used, who has access to them, and for how long.
Depending on the threat environment (shown in Fig. 4),
data owners share raw data with the computing party over a
secure channel. The computation party creates feature vectors

using raw data. Suppose that the computation party keeps
the raw data unencrypted and does not delete the feature
vectors after building the ML models. In that case, the
system is vulnerable to insider and external attacks, including
reconstruction, model inversion, membership inference, and
deanonymization attacks.

Reconstruction attacks occur if feature vectors are not
removed after building ML models, as with the Support
Vector Machine (SVM) and k-Nearest Neighbors (kNN).
In such an attack, security researchers exploited gesture
features, including direction and velocity, to reconstruct touch
events on mobile devices. Hence, failure to protect private
data (raw data or feature vectors) can result in authentication
failures causing security breaches and loss of privacy.
Therefore, ML models such as neural networks (NNs) or
ridge regression that do not store feature vectors should be
preferred to avoid reconstruction attacks. Moreover, the ML
models should not be shared with the results party.

An adversary can also build a feature vector similar to the
one utilized in training an ML model by exploiting responses
to the test queries sent by the results party. Such an attack
is termed a model inversion attack. The attacker primarily
generates an average representation of a particular class.
If that class, e.g. represents a face image in the case of
face recognition, then a particular person would be singled
out. Hence, inversion attacks can pose a threat to user
privacy. However, model inversion attacks do not infer any
information about the actual items in the data set or help
determine if a particular sample was in a data set given an
MLmodel. Nevertheless, these attacks can be mitigated if the
results party gets responses to the testing samples with limited
output, such as rounded confidence values or the predicted
class tables. In some cases, the results party may only be
provided with aggregated responses calculated over multiple
testing samples.

Consequently, given an ML model, if attackers want to
confirm the presence of a sample in the data set, they may
launch a membership inference attack. The adversaries may
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FIGURE 4. Threats to ML systems.

use a labeled sample and the probable output of the target
ML model as input to an attack model [47]. The attackers'
objective is to determine the presence of the sample in the
training data set. As a defense, the authors in [47] recommend
that the output of an ML model should be limited to the
class label. However, the proposed approach may mitigate
membership inference attacks in some cases, but may not
completely prevent the attack. In addition, the authors suggest
that DP might be a potent defense against membership
inference attacks.

Moreover, releasing anonymized data in the public
domain does not guarantee user privacy. Netflix released an
anonymized data set containing 100 million users' movie
ratings in 2006. The security researchers deanonymized the
known Netflix users by combining the information extracted
from IMDb and the Netflix data set. Hence, anonymization
alone cannot preserve users' privacy in a hostile threat
environment.

Researchers in [47] present various privacy-enhancing
approaches focused on secure multi-party computations.
Multiple data owners can collectively train ML models
without disclosing sensitive data. Privacy-preserving ML
techniques can be broadly divided into cryptographic
schemes and perturbation approaches. In cryptographic
techniques, the computation parties (servers) train the ML
models on encrypted private data generated by the respective
data owners. Such approaches do not require the input parties
(data owners) to stay online. To ensure data security and
privacy, cryptographic approaches may utilize homomor-
phic encryption, garbled circuits, secret sharing, or secure
processors.
(a) Homomorphic Encryption: Fully homomorphic

encryption [48] supports computations on encrypted
data in the form of addition and multiplication

operations. Similarly, complex functionsmay be built on
simple addition and multiplication operations. However,
most privacy-preserving ML techniques use additive
homomorphic encryption to prevent computation
overheads. For example, the Paillier cryptosystem [49]
performs only addition operations on encrypted data
and multiplication on plaintext. Besides, numerous
data-packing schemes have been developed and used
by different privacy-preserving ML approaches, such
as the collaborative filtering system [50], to augment
the effectiveness of additive homomorphic encryption.
There is a Privacy Service Provider (PSP) and a Service
Provider (SP) in such schemes. The PSP provides
privacy-preserving computation services. On the other
hand, the SP offers computation and storage services.
SP gives suitable privacy suggestions to the data
owners (its customers). Data owners then encrypt their
private data with PSP's public key. The critical security
requirement is that the computation parties, i.e. PSP and
SP, must not collude. The data owners serve as the input
and results parties both.

(b) Garbled Circuit: It is a secure computation mechanism
for two parties. It facilitates the parties holding inputs
x and y to compute the output of a function f (x, y)
such that no information about the inputs x and y is
leaked other than what is inferred by the output of the
function f [51]. For instance, if Alice and Bob want to
see whether they agree to work mutually on a project
without explicitly disclosing their personal preferences
to each other. Accordingly, Alice and Bob's choices can
be represented with the bits 0 or 1. Bit 1 means each of
them agrees to work on the project as a group, and Bit
0 means otherwise. Hence, both of them need to know
the output of an AND gate, i.e., if Alice's bit ‘a’ is 1,
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FIGURE 5. Garbled AND Gate: a) Garbled circuit generator, b) Garbled output, c) Permuted garbled output.

and Bob's bit ‘b’ is 0, then the output of a∧b equal to
0 means both Alice and Bob cannot work on the project
as a group.
As shown in Fig. 5a, Alice is the garbled circuit
generator. She selects four random labels, i.e.,W 0

A , W
1
A ,

W 0
B , and W 1

B . W
0
A is an event that indicates that bit

a = 0 and W 1
A means bit a = 1. Correspondingly,

W 0
B is an event in which bit b = 0, and W 1

B means bit
b = 1. Alice then computes the truth table for the four
possible scenarios; (a = 0, b = 0), (a = 0, b = 1),
(a = 1, b = 0), and (a = 1, b = 1). In the
next step (shown in Fig. 5b), Alice encrypts the output
corresponding to the respective scenarios using a key
K derived through a key derivation function computed
over respective labels (W i

A,W
i
B). Finally, the garbled gate

comprises four permuted ciphertexts (shown in Fig. 5c).
Once Bob receives the garbled gate, he decrypts just a
particular ciphertext to determine the decision on the
group project. To do this, Bob receives the values W a

A ,
W b
B from Alice; since Alice knows a, she can send Bob

W a
A . Here, all the labels (as shown in Fig. 5c), are random

and identically distributed, so Bob cannot infer anything
about a from W a

A . However, it is not easy to send W b
B

to Bob. Alice cannot send both W 0
B and W 1

B to Bob
because Bob will then decrypt two ciphertexts in the
garbled gate. Bob cannot ask for the exact ciphertext
he needs, unless he wants Alice to learn about that.
Therefore, to avoid this, Alice and Bob utilizeOblivious
Transfer [52, 53] so that Bob learns only W b

B without
revealing b to Alice. However, to realize this, Bob
must know when the decryption is correct. Otherwise,
Bob cannot determine which ciphertext gives the right
answer. Hence, just XORing, the encrypted value with
the key, will not work here.
In the above example, Alice garbled a single gate.
In actual settings, Alice and Bob may have multiple
input bits with a more complicated function. Then Alice
will have to garble the entire function circuit, that is,
serving the gate output to other gates as input. Moreover,
rather than encrypting the output of a gate, Alice only

encrypts the label associated with an output bit, for
example, W 0

G or W 1
G. The label is later used to generate

the decryption key for ciphertexts in other gates.
(c) Secret Sharing: This scheme divides a secret into

multiple shares and distributes these shares among more
than one party. An individual share is only useful if all
the shares are combined to reconstruct the share [54].
In a threshold secrete sharing scheme, the secret can be
reconstructed by utilizing only a specific number (t) of
these shares. Similarly, to facilitate privacy-preserving
ML, data owners (input parties) can create multiple
shares of sensitive data and distribute them to the
non-colluding computation servers (computation party)
[55]. Accordingly, each server performs computations
over the shares it receives and outputs draft results.
Later, a proxy or a results party collects all the draft
results and computes the final result. However, to avoid
collusion of the computation servers and boost the
confidence of data owners, it is to be ensured that the
servers are located at different locations and controlled
by different parties.
An exemplary instance of the secret sharing scheme is
ShareMind [56], developed by Cybernetica. ShareMind
is a privacy-preserving system for conducting a Principal
Component Analysis (PCA) computation. It employs
a parallelized approach to the secret sharing scheme.
PCA, primarily used for dimensionality reduction in
large data sets, involves transforming a set of variables
into a smaller one that retains most of the original
information.
The researchers in [57] presented an alternative variation
of the secret sharing scheme. The shares are not sent
to the computation party (servers), but are transmitted
to other input parties (users). The proposed scheme
aggregates user model updates to compute vector sums
and train the NN model. Additionally, users mask their
respective private update vector using their secret value
and the secret shares (distributed among other users).
Moreover, as a precaution against premature protocol
termination due to input parties leaving, users send
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specific secret share and Diffie-Hellman private key to
other users. According to the threshold secret sharing
protocol, if at least t users can contribute to the
protocol with the respective secret share in the last
round, the server, responsible for message routing
between users, performs the final computation. Such a
communication-efficient protocol exhibits a maximum
overhead twice that of its plaintext counterpart and is
well suited for high-dimensional vectors.

(d) Secure Processors: Intel's Software Guard Extension
(SGX) was initially developed to address trust issues
in remote computation by creating a secure execution
environment within an untrusted remote system. It guar-
antees data confidentiality and integrity throughout the
computation process [58]. Presently, SGX is being uti-
lized for performing privacy-preserving computations.
Similarly, researchers in [59] have devised an SGX
processor-based algorithm for data-obliviousML,which
encompasses various ML techniques such as SVM, NN,
k-means clustering, matrix factorization, and decision
trees. The proposed scheme enables multiple data own-
ers to execute a specific ML task collaboratively with
a computation party operating within an SGX-enabled
data center. Despite the possibility of an adversary
compromising all hardware and software components,
the SGX processors remain an exception.
In this approach, a secure channel is created between
end users (data owners) and the enclave. The data
owners then authenticate themselves and verify the
legitimacy of the ML code in the cloud. Subsequently,
the data owners securely upload their sensitive data to
the enclave. Once the data are uploaded, the secure
processor executes the ML tasks. Later, the output
is shared with the results parties through secure and
authenticated channels.

(e) Differential Privacy (DP): DP protects against mem-
bership inference attacks by adding noise to the input
data at every step of an ML algorithm or to the
algorithm’s output [65]. Most DP schemes rely on
a trusted aggregator. However, in Local Differential
Privacy (LDP), the input party (data owner) adds the
noise locally without any involvement of a trusted
party. Moreover, in the case of multiple input parties,
original data privacy can be preserved by employing
DP in distributed learning techniques. In addition, DP is
resistant to post-processing, which means an attacker
cannot compromise data privacy, even if they have
access to auxiliary information. Hence, DP avoids
deanonymization by protecting against linkage attacks.
Based on how the randomness is applied, DP techniques
can be categorized as follows:
Input Perturbation: This type of DP adds noise to the
original data before performing any computation. The
computation process generates a differentially private
output. For example, in PCA, we usually perform
the Eigen-decomposition on the covariance matrix.

However, as a variation, symmetric Gaussian noise is
added to the covariancematrix before performing Eigen-
decomposition [60]. Hence, in the end, a differentially
private matrix is produced instead of projected data.
Algorithm Perturbation: In this approach, iterative
algorithms introduce perturbations to the intermediate
values. For instance, the power method (an interactive
algorithm) can execute Eigen-decomposition for PCA.
Likewise, [61] incorporated Gaussian noise at each
algorithm step, thereby working with the original
covariance matrix to produce DP-PCA. In the same way,
authors in [62] introduced Deep Learning (DL) system
based on DP. They modified the Stochastic Gradient
Descent (SGD) algorithm to introduce Gaussian noise
in each iteration.
Output Perturbation: This methodology focuses on
adding noise to the model generated by running a
non-private learning algorithm. However, in scenarios
where the modified output may lose its value, the
exponential mechanism offers a viable alternative.
To illustrate, if we consider a function f (D, s) that
reveals the proficiency of s on database D, the expo-
nential mechanism selects an output s with a probability
proportional to the function. Consequently, the result
tends to exhibit a bias toward higher-quality instances.
Likewise, DP-PCA can be achieved by approximating
the top k PCA subspace while sampling a random k-
dimensional subspace [63].
Objective Perturbation: This type of perturbation is
typically conducted in two stages in its standard form.
In the initial stage, a random linear term is added
to perturb the objective function. Subsequently, the
perturbed objective function's minima is determined
in the second stage [64]. A study by researchers
in [65] reveals that the resulting minima satisfy the DP
requirements.
However, it should be noted that the objective pertur-
bation only ensures privacy if the mechanism's output
corresponds precisely to the minima of the perturbed
objective. Due to scalability concerns, convex opti-
mization algorithms often employ first-order iterative
methods such as gradient descent or SGD. However,
these methods cannot guarantee exact minima within
a finite time frame because of the dependence of their
convergence rates on the number of iterations. Hence,
it remains doubtful whether objective perturbation, in its
current state, can be effectively employed to reach
minima in resource-constrained settings such as limited
computing power. Consequently, the authors in [64]
propose the Approximate Minima Perturbation (AMP)
approach, which guarantees both privacy and utility by
releasing a noisy approximate minima for the perturbed
objective.

(f) Local Differential Privacy (LDP): To further explore
the DP approach, an LDPmethodology is recommended
when the input parties cannot train an ML model due to
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the lack of information. In LDP, each party first perturbs
its data locally and then forwards the obscured data to the
computing party. For instance, Randomized Response
[66] is one of the oldest techniques of local privacy that
prevents the visibility of sensitive queries to the users.
For example, when the respondent flips a fair coin, they
will answer truthfully if it is a tail. However, if it is a
head, they will flip a second coin, and if head again, they
would reply with “Yes,” while if it is a tail, they would
respond with “No.”
Another technique, Randomized Aggregatable
Privacy-Preserving Ordinal Response (RAPPOR) [67],
gathers crowd-sourcing statistics from end-user client
software. RAPPOR applies a random response to bloom
filters with strong ϵ-DP guarantees. This approach is
utilized in the Google Chrome web browser to collect
client-side statistics, such as categories, frequencies,
and histograms of different values and strings. In cases
where multiple responses are periodically collected
from a user, privacy protection is maintained by
performing a randomized response twice.
For ML-oriented tasks, AnonML [68] is a method
that uses randomized responses to generate histograms
from multiple inputs. Then it uses histograms to create
synthetic data for the training of ML models. This
scheme is recommended when a trusted aggregator is
unavailable and the input parties need more data to build
an ML model independently.

(g) Dimensionality Reduction (DR): To achieve obscurity,
this approach projects data onto a lower dimensional
hyperplane [69]. It should be noted that this trans-
formation is inherently lossy, rendering the accurate
retrieval of the original data from the reduced dimension
state impossible. The reason behind this limitation
is more unknowns than available equations, resulting
in infinite potential solutions. To address this issue,
researchers in [69] propose using a random matrix to
perform dimensionality reduction. However, a random
matrix may offer limited utility. Consequently, alterna-
tive approaches combine unsupervised and supervised
dimensionality reduction techniques, such as PCA,
discriminant component analysis, and multidimensional
scaling. These methods use reduced dimensionality to
balance privacy-preservation and utility by identifying
the optimal projection matrix.
However, researchers in [70] have observed that it is
still possible to approximate the original data from the
reduced dimensions. To address this concern, the authors
suggest integrating DR with DP to achieve secure
data publishing. Furthermore, for data sets containing
samples with utility and privacy labels, [71] proposes a
DR method that enables users to project their data in a
way that makes it difficult to infer privacy labels while
simultaneously maximizing the accuracy of utility label
inference. Although this approach does not eliminate
all privacy risks associated with data, it effectively

controls data misuse when the privacy objective is
known.

FIGURE 6. Federated cloud instances for secure MPC services.

2) CARBYNE STACK
Carbyne Stack is a novel open source technology that
helps build scalable, secure multi-party computation (SMPC)
applications [35]. MPC is a cryptographic technique that
distributes computation between multiple parties so that
no party can see the other parties' data. Carbyne Stack
implements SPDZ-like MPC [72] in the client/server model,
first described by [73]. In this variant of MPC, clients offload
computations to a set of servers that act as the MPC parties.
It does not require a trusted third party. Instead, the Carbyne
stack depends on MPC to ensure the confidentiality of data
throughout its life cycle, that is, at rest, in transit, and while
in use. Moreover, due to the client-server MPC model, the
proposed platform scales well while allowing any number of
clients to collaborate securely on private data.

As shown in Fig. 6, Carbyne Stack federates cloud
instances into multi-party virtual clouds (called Virtual Cloud
Providers (VCPs)) to ensure the storage and processing
of secret-shared data in a distributed, decentralized way.
Each VCP hosts some fundamental services, including
Castor, Amphora, and Ephemeral. Together, these services
implement a fully functional cloud-native MPC party. Castor
stores data-independent tuples generated in the MPC offline
phase and serves them on request to Amphora and Ephemeral.
Whereas, Amphora is a storage service that stores and
retrieves client secrets. Secrets are stored as secret shares
on distributed Amphora instances in a virtual cloud. They
can be used as inputs to an Ephemeral computation or
are created as results of such a computation. Ephemeral
executes programs using the MP-SPDZ MPC framework.
The secrets are fetched from Amphora at the beginning of
an MPC program execution, and later they are written to
Amphora at the end of the execution. Ephemeral fetches
tuples from Castor consumed throughout the execution of the
MPC program.
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Clients using these services can securely offload com-
putations on sensitive data. Carbyne Stack encompasses
cloud-based MPC by leveraging containerization and the
orchestration features of Kubernetes. In addition, to material-
ize flexible routing and deploy MPC as serverless workloads,
Carbyne Stack relies on Istio [74] and Knative [75],
respectively.

C. MOBILE AND WEB APPLICATIONS
1) DETECTION OF PII LEAKAGE IN MOBILE APPLICATIONS
Today, smartphone users are vulnerable to privacy breaches
because most smartphone apps collect and utilize PII [76].
Although PII enables the provision of useful services to
the users, many apps track users' behavior without their
consent [77]. For example, on Android-based smartphones,
the unique Android ID per device can be accessed by any
app without permission. Researchers in [38] observe that
third-party libraries make it difficult to protect PII. In addi-
tion, [78] also highlights that multiple libraries in an app may
utilize the same PII differently. For example, one library may
utilize a user's location for maps and another for targeted
advertisements. Therefore, access to PII cannot be enforced
per app, as a particular library may operate across multiple
apps. Much work has been done to detect and mitigate
leakage of PII in mobile apps. Based on the functionality,
these techniques can be divided into three categories; code
analysis, manipulating the OS and APIs, and network flow
analysis.
(a) Code Analysis: This methodology employs static

analysis of an app's source code or binary to identify
how sensitive information is utilized. For instance,
FlowDroid [36] and Droid-Safe [37] conduct flow
analysis on specified sources and sinks to uncover poten-
tial leaks of PII. Similarly, AndroidLeaks [79] utilizes
taint-aware slicing to detect cases of private information
leakage by users. Another code analysis technique,
Privacygrade [80], decompiles the code of mobile apps
to identify anomalies arising from sensitive API calls
made by third-party libraries. Furthermore, researchers
in [81] apply text mining to the app code to determine
the purpose of accessing user location and contact
lists. The code analysis techniques neither modify the
app functionality at runtime nor perform PII filtering.
Instead, these schemes notify users of probable data
leaks. Such methods are ineffective against dynamic
code loading [82] and reflection approaches. In addition,
many code analysis schemes can detect sensitive data
leakage by relying solely on well-defined permissions
or APIs rather than arbitrary identifiers generated by an
app.

(b) Manipulating OS and APIs: An alternative approach
to code analysis is the modification of the OS, identifica-
tion of APIs that access PII, and subsequent generation
of alert notifications to the respective users [38] and
[39]. Some of the examples include MockDroid [83],
which replaces PII with mock data by modifying the OS

of an Android user. Similarly, TaintDroid [84] provides
a custom Android OS version that allows information
flow tracking from sources (requesting for sensitive
information or PII) to sinks. In another work [85],
researchers resort to binary rewriting to find out if
user interactions in apps cause the leakage of sensitive
information.
Although the above-discussed approaches enhance
the privacy of iOS and Android users, the mobile
device must be rooted or jailbroken to realize these
methodologies.

(c) Network Flow Analysis: This approach detects and
sometimes removes sensitive private information while
it exfiltrates from a device. For instance, [40] employs
a differential black-box fuzz testing scheme to detect
information leakage. The proposed solution injects
various types of inputs into the apps and observes related
changes in the network traffic. Similarly, [41] uses
differential black-box analysis to determine if an app's
network traffic changes when some specific PII (e.g.
ID or a location) is altered or kept the same. However,
the differential black-box-based approaches do not scale
well, as it is practically impossible to generate different
sets of inputs per app for millions of apps out there.
The researchers developed AntMonitor [86] as an
Android VPN service to facilitate sharing network traces
with a central server. It allows users to selectively
turn off traffic at the app level and make choices
regarding forwarding all data or only the headers to the
server. Similarly, PrivacyGuard [87] and Haystack [88]
utilize an Android-based VPN service to intercept PII.
However, these proposed techniques rely on regular
expressions for PII detection, limiting their effectiveness
to specific PII types. For instance, they may need help
identifying PII when an app generates its identifier
or employs non-standard encodings. Another approach
named Recon [76], uses a VPN to forward all user
traffic to a cloud-based proxy and employs heuristics
for PII detection. However, since PII data reside in
the cloud, this methodology raises specific privacy
concerns [42].

2) PrivacyProxy
The authors in [42] introduced a proxy-based [88] privacy-
aware method called PrivacyProxy, which utilizes network
analysis and crowd-sourcing to automatically infer PII.
PrivacyProxy deploys a VPN to intercept and analyze
network data. The proposed scheme mitigates privacy and
security threats by sending cryptographic hashes of sensitive
data (key-value pairs in HTTP requests) to the servers instead
of forwarding all of the user's data to the remote server for
analysis. In thismanner, PrivacyProxy identifies probable PII,
such as email andMAC addresses, phone numbers, and social
security numbers, based on the uniqueness of the hashes,
with each hash representing the content of a specific HTTP
request.
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To observe PII usage by mob apps, PrivacyProxy monitors
the data sent over the network. It segregates network
traffic into different information flows based on an app's
functionality or hosts to whom data is forwarded. To fulfill
this requirement, PrivacyProxy leverages the internal VPN
service of the host smartphone OS. Traditional VPN services
utilizing SSL/TLS or IPSec protocols direct all device
traffic through an encrypted tunnel to remote servers for
data processing and forwarding to the final destination.
In contrast, PrivacyProxy is built upon PrivacyGuard [87],
which uses a custom VPN service that establishes a local
server on the smartphone. Acting as a MITM proxy, the
local server pretends to be the destination for all app-server
communication. Subsequently, the local server forwards each
request to the remote server and facilitates the necessary TCP
handshakes. Moreover, to decrypt SSL/TLS, PrivacyProxy
uses MITM SSL injection.

PrivacyProxy demonstrates adaptability and robustness
against various data obfuscation techniques, such as PII
hashing. Unlike HayStack [88] or PrivacyGuard [87], it does
not require regular expressions or hardcoded rules. Moreover,
this technique monitors more network requests and can detect
PII more accurately. Since PII is detected and cryptographic
hashes are generated on mobile devices, PrivacyProxy
enables users to control access to PII. PrivacyProxy scales
effectively with an increasing number of users and exhibits
greater resilience to changes in data formats compared to
other methods. It relies on valid network requests based on
users' regular app usage patterns rather than fabricated inputs
or modified PII, which improves the likelihood of detecting a
wider range of PII due to its comprehensive coverage.

Regarding implementing crowdsourcing for PII usage
detection in apps, PrivacyProxy monitors the outgoing data
from a mobile device belonging to multiple users (at least
five users) of the same app. The underlying idea is that
the key-value pairs that frequently appear in a specific
device's data streams are likely to be PII, as they are
unique to a particular user. In contrast, key-value pairs that
appear across multiple devices are less likely to be PII.
However, the proposed scheme may not detect PII leakage
if mobile app developers employ custom encryption, non-
standard encodings, or other indirect methods to track users.
Additionally, PrivacyProxy is ineffective against certificate-
pinned apps. While certificate pinning enhances security
by mitigating MITM attacks, it also hampers the ability of
intermediaries to inspect network flows for PII.

D. PRIVACY-PRESERVING TECHNIQUES FOR BROAD
APPLICATIONS
1) SYPSE
Researchers in [43] propose a mechanism named Sypse
for the relational databases to manage users' sensitive
data in a trusted environment. The suggested scheme uses
pseudonymization and separation between PII and non-PII
data to reduce the impact of data breaches. Sypse also allows

users to delete their data by overwriting a portion or all
of the data. The question may arise as to why the authors
use pseudonymization instead of completely anonymizing
users' data, as pseudonymized data can leak the identity
of users through auxiliary data [89] and [90]. Nonetheless,
pseudonymization is still considered a potent strategy against
data breaches while facilitating internal data sharing [91, 92].
Pseudonymization makes it easier to remove information
following a user's request to be forgotten. However, due to
some practical challenges, you often cannot delete all the
personal information of an individual. Hence, to make it
difficult to reassociate a piece of information with a user,
the most endorsed approach is to overwrite some pieces or
complete data for the respective individual.

FIGURE 7. Sypse architecture (with two partitions).

FIGURE 8. Annotated schema.

Accordingly, as shown in Fig. 7, Sypse divides the data
into two partitions, i.e., the Detail-database and PII. Any
personal information that may help identify an individual
and connection information is stored in the PII-database.
Similarly, information other than PII is kept in the Detail-
database. It is imperative to highlight that the information
in the Detail-database is pseudonymized and not completely
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FIGURE 9. GDPR-compliant blockchain-based PII management system architecture.

anonymized or secured with DP or homomorphic encryption.
Hence, it also requires careful handling along with strong
access controls. The Data Definition Language (DDL)
processor is responsible for intercepting schema updates and
maintaining the tables in the respective databases. Similarly,
the Query Processing Engine processes the user queries
according to their corresponding access levels. Finally, the
Transaction Engine routes the updates to the requisite tables
and generates pseudonymized and synthetic data as required.
The databases are administratively independent (separated)
with different access controls for security reasons. Separation
may be achieved through different geographical locations or
virtual private clouds.

The highlight of Sypse is the way it segregates PII from
non-PII. As shown in Fig. 8, the data fields, including
Customer_ID, Name, Street, Gender, Email, Phone number,
Location, and IP address, can be directly associated with
a person. To separate such fields from other data fields,
these are replaced with pseudonymous IDs and stored in
the PII-database. Similarly, any data field that stores explicit
information about a specific individual is treated similarly.
However, even if PII is pseudonymized, analyzing multiple
orders from the same customer ID may help reidentify
a person. Hence, these groups also need to be broken
up to prevent reidentification. Correspondingly, depending
upon the sensitivity of data and the level of anonymization
required, different tables can be dissociated from each other.
For example, the connection between two customer tables can
be broken up to prevent the possibility of reidentification by
combining the fields of these tables. In this context, the iden-
tification of PII and non-PII in data fields is easy; however,
practically, due to the lack of schema discipline, identifying
the group/connection information requires detailed analysis.

Concerning privacy guarantees of the proposed model,
it offers weak privacy compared to DP techniques. Moreover,

anyone accessing both databases (i.e., Detail and PII) can
extract private information. Nevertheless, someone with
access to only the Detail-database cannot infer any PII about
a specific person or correlate information across multiple
tables. In contrast, access to only a PII-database may result
in loss of privacy. Hence, strong access control mechanisms
need to be deployed.

Sypse used and evaluated different strategies for seg-
regating PII and non-PII. The first involves duplicated
tables and columns. A subset (data fields) of the columns
containing sensitive information, or PII (marked for
anonymization), is copied into the PII-database. Syn-
thetic data replace the values in the Detail-database.
One of the limitations of this strategy is that most
update-transactions require both tables to be refreshed.
Additionally, due to the mapping tables, the PII-database
size increases in proportion to the Detail-database. Similarly,
to delete a customer's information, requisite data and
grouping information are removed from the PII-database
tables.

The second strategy is encrypted columns in which all
the PII and connected columns are encrypted. The encrypted
data and encryption keys are maintained in the same table.
Moreover, a different key is stored in the PII-database for each
customer. Nevertheless, a drawback of this technique is that
joins involving real data in encrypted form are very difficult
compared to just synthetic data. This is because all the
encryption keys are checked individually to find the correct
one for a given encrypted order or line item. Finally, the
third strategy is pseudorandom sequencing, which balances
the previous two strategies by maintaining a small-sized PII-
database and efficient joins. Pseudorandom sequencing refers
to taking a hash of the per-customer encryption keys that
make it easy to find an encryption key for a given encrypted
data item.
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Summarily, to provide stricter privacy guarantees, tech-
niques like data partitioning, pseudonymization, and using
synthetic data may be integrated with other approaches such
as homomorphic encryption [93], DP or secure hardware such
as Intel SGX [94].

2) GDPR-COMPLIANT BLOCKCHAIN ARCHITECTURE
GDPR focuses on protecting individuals' information. All
stakeholders handling data must attain the data owners'
consent and ensure secure use without leaking any PII.
Moreover, GDPR also provides the right to forget in which
user data must be erased on request. Hence, researchers
in [44] propose a blockchain-based GDPR-compliant PII
management system. The proposed model involves three
nodes; a user, a controller, and a processor. All nodes
maintain a copy of the blockchain and verify the transactions
before adding a new block. The user is a data owner whose
information is used by other parties. The controller is the
legal or public entity that processes users' PII. In comparison,
the processor is the legal or public party that processes user
information on the controller's behalf.

As shown in Fig. 9, (1) First, the users share their personal
information with the controller. (2) The controller segregates
the PII from non-PII and stores PII in the local database
(LocalDB). (3) Then, the controller computes the hash of
PII and shares a list of PII and non-PII and the hash value
with the user. (4) Later, a smart contract is created based on
the terms and conditions of data sharing between the user
and the controller. A new block, say B1 containing the smart
contract, a hash of PII, and non-PII, is proposed and added
to the blockchain after achieving consensus between the user
and the controller.

Subsequently, if the controller wants to share a user's PII
with the processor for further analytics, (5) it forwards the
list of the user's PII and non-PII to the processor. (6) The
processor then separates the PII from the non-PII and stores
the PII in its LocalDB. (7) The three parties, i.e., the user,
the controller and the processor, then agree on the terms
and conditions of data usage, and the processor creates a
smart contract. Later, the processor proposes a new block
B2 containing the new smart contract, the hash of PII, and
non-PII. The new block is then added to the chain after an
agreement (consensus) is reached between all three parties,
i.e., the user, controller, and processor.

Concerning the right to forget, once the users need to
erase some of their personal information, they inform all the
nodes to delete or modify particular data. The nodes then
verify from the smart contract whether the desired operation
is permitted. If verified, the nodes delete or modify the data.
Later, a list of erased/updated data and its hash is shared
among all the nodes. Finally, the hash of the modified data
is updated on the blockchain. The proposed methodology has
certain advantages, such as; tracking changes to user data
and detecting unauthorized modifications, the right to forget
users' sensitive data and identification of privacy violators.
However, the proposed scheme is still in the development

stages. Moreover, the controller and processor can access the
users' PII stored in their LocalDB, threatening user privacy.

E. SMART CITY APPLICATION
Security researchers in [45] propose “PrivySharing,” a
solution to securely share private data in a smart city
environment based on fine-grained access controls defined
by the user. The proposed framework complies with many
GDPR requirements and utilizes blockchain technology
for fast transaction settlement. As shown in Fig. 10, the
blockchain network is divided into numerous channels
depending on the type of data to be shared. Hence, data
privacy is partially preserved by publishing specific data on
a particular channel. For example, channel 1 shares smart
energy and channel 2 shares smart transport data only with
channel members (stakeholders) concerned.

PrivySharing also ensures the users' right to forget
information. The data can be deleted while its transaction
history remains intact for audit at later stages. Access
control rules are embedded into blockchain smart contracts to
provide user-defined controlled access to data. Hence, users
can control the permissions and duration of data sharing.
In addition, data owners are given an incentive in the form
of digital currency equivalent to the period for which their
data are shared.

The proposed framework ensures data privacy and integrity
according to the wishes of the data owner in various network
settings. It also effectively prevents Sybil and false data
injection attacks. For additional security, data owners can
encrypt their data using symmetric encryption and then share
the decryption keys with concerned stakeholders over other
communicationmedia. The authors claim that it is scalable (in
terms of the number of users) and energy and computationally
efficient framework for secure data sharing. However,
PrivySharing does not explicitly segregate PII from non-PII.

F. ONLINE EDUCATION
Security researchers in [46] present moocRP to address
problems concerning modularity, transparency, and privacy
in the collection, management, distribution, and analysis
of Massive Open Online Course (MOOC) data. Currently,
most universities associated with online higher education
platforms such as edX [95] and Coursera [96] are often
disoriented in managing large data received from providers.
Moreover, another problem is how to quickly and accurately
determine what data is actionable and to which instruc-
tor/professor it is related. Accordingly, moocRP tries to
solve the issues of preparing data before it is securely
shared with the users and later examining it for actionable
information.

The researchers developed an open source tool to ensure
transparency in data collection and background operation of
different data processing and analytics modules of moocRP
on the collected data. Resultantly, the uploaded analytics
and visualizations have the source accessible to all the
users. Moreover, a data model is used only if it discloses
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FIGURE 10. PrivySharing - Network architecture.

information about exposed data elements to the authors
and users of the analytics services. Similarly, in accordance
with the modularity principle, moocRP offers a feature-rich,
user-friendly, and time-saving analytics module to the users.

In addition, to preserve users' privacy, moocRP brings
analytics to the data source, in contrast to perform-
ing analytics centrally on previously collected data.
Researchers/instructors of a particular online course do not
need to upload data to a centralized server; rather, they
can run an instance of the moocRP tool and execute the
desired analytics module locally. This allows researchers
to directly access the transformed aggregate data or other
analytical outcomes necessary to evaluate the correlation
between student activity and the success of a specific course.
In summary, edX retrieves the tracking and database logs
from Amazon S3 servers, and grants users access to raw data
that comprise compressed and encrypted event files. Since
each online course is served by multiple servers, aggregating
data from various sources is required to obtain the complete
event data for a specific course. In contrast, moocRP
offers data cleansing and processing scripts that facilitate
multiple procedures, including data ingestion, decryption,
and visualization of analytics results.

Numerous measures adopted by moocRP are designed to
ensure the security and privacy of data sets. Firstly, registered
users (researchers/instructors) log into moocRP API through
the respective institution's Central Authentication Service
(CAS). In this way, users are authenticated based on existing
CAS instead of implementing another authentication service
with additional overheads. An authenticated user is then
logged into the moocRP services. Once logged in, the
user submits a request for the desired data set using a
request data form. Optionally, moocRP implements separate
authorizations for PII and non-PII versions of a data set.
After a data request is submitted, an administrator either
grants or denies the request, which is then reflected on the
instructor's dashboard. To ensure data confidentiality, the
data set is encrypted using the users' PGP public keys, which
they provide during registration. Subsequently, the encrypted
data set is made available for download using a one-time
download link provided by the server.

Moreover, as shown in Fig. 11, to ensure the security of
the connection between a client and the server against MITM

attacks, moocRP uses the HTTPS protocol. Administrators
of moocRP benefit from additional security features, such as
user management functionalities that include user removal
and editing, deletion of uploaded malicious modules, and
comprehensive log of user activities within the system. These
logs can be parsed to detect any abnormal or suspicious
actions. It is important to note that moocRP operates as a
relatively closed ecosystem, with authorized access limited
to users affiliated with specific institutions.

Additionally, moocRP incorporates a meticulous approval
process for data requests and analytic modules overseen
by the administrators. This process ensures that PII data
remains inaccessible through the analytics feature. Insti-
tutions employing moocRP also enforce security policies
concerning non-PII data. Moreover, data processed by the
browser-based analytic modules are not stored on disk,
mitigating the risk of data interception by a MITM attacker.
However, it should be noted that an attacker with full
privileges to download the data can only access encrypted
analytics. It is worth mentioning that moocRP currently lacks
an automated security screening mechanism for analytic
modules and would benefit from integrating alternative
authentication protocols.

G. ENCRYPTION-BASED SECURITY
Security researchers in [10] propose a broadcast encryp-
tion technique based on Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) to address the weak link in IoT, i.e.
downward communication from the cloud to the end devices.
The concept of ABE is that users should be able to access
encrypted data only when they possess specific attributes,
e.g. the users are located at a specific location and have
security clearance above a certain level. In conventional
ABE approaches, a central server that stores the data
and manages access control is a single point of failure.
In addition, traditional ABE schemes use user attributes for
the description of encrypted data and embed policies in users'
keys. In contrast, in the CP-ABE technique [97], the attributes
represent users' credentials, and the sender that encrypts the
data establishes a policy on how users can decrypt the data.
CP-ABE functions similarly to RBAC.

In CP-ABE, a user's private key is made up of an arbitrary
number of attributes. The sender encrypts the message and
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FIGURE 11. moocRP - data security features.

specifies the access structure based on certain attributes.
For example, the General Secretariat of the International
Criminal Police Organization (INTERPOL) wants to send
a memo secretly to two of its representatives at the
National Central Bureau (NCB) in Estonia and Latvia. The
General Secretariat wants only specific individuals with
desired attributes to be able to decrypt the memo. Hence,
the sender at the General Secretariat can establish the
access structure for the secret memo in the following man-
ner: ((“NCB”) AND (“ESTONIA” OR “LATVIA”) AND
(“CLEARANCE-LEVEL > 4”) OR (“NAME: XYZ”)).
The scheme proposed in [10] improves existing CP-ABE

techniques by outsourcing intensive computations required
for decryption to multiple cloud platforms. Outsourcing
computations was deemed necessary because the computa-
tional complexity increases linearly with an increase in the
attributes (characteristics of access policy) and also due to
the costly operations performed by the receivers to match
their attributes with the access policy. Another reason is that
conventional ABE approaches have high computational costs
for resource-constraint IoT devices.

The given scheme ensures privacy-preserving information
sharing between the cloud and IoT devices. The researchers
present two schemes, i.e., parallel-cloud and chain-cloud
ABE, to provide privacy to data, attributes, and access

policy. The primary advantage of using ABE is reduced
communication complexity compared to unicast approaches,
in which encrypted messages are sent individually to each
device/user. In addition, ABE also avoids complex key
management requirements compared to unicast schemes.
However, the CP-ABE approach provides data security and
privacy in a single segment of the IoT data life cycle, that is,
while disseminating information from cloud platforms to end
users/devices.

• Parallel-Cloud Scheme. In this approach, as shown in
Fig. 12, the users' attributes are divided into n parts,
and each part is outsourced to one cloud server. An end
user with an IoT device has to connect to all n servers
simultaneously. Each cloud server works on the received
access policy and the encrypted message in parallel
and sends interim results to the end user separately.
In this way, the users' attributes are protected compared
to a trusted cloud server. The parallel-cloud approach
supports only AND gate for access structure, offering
increased data privacy with lower overheads. However,
it is less flexible in terms of specifying access policies.

• Chain-Cloud Scheme. In contrast to parallel-cloud, the
chain-cloud scheme allows message receivers to decide
how many and which cloud servers to use and what
attributes are delegated to each cloud. As shown in
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FIGURE 12. Privacy-preserving parallel-cloud targeted broadcast.

FIGURE 13. Privacy-preserving chain-cloud targeted broadcast.

Fig. 13, end users/devices can decide which three sets
of cloud servers they want to connect, thus forming
different communication paths. Moreover, unlike the
parallel-cloud scheme, the sender can encrypt messages
with a more detailed access policy consisting of
k-threshold gates. Each cloud employs a bloom filter
to store the attributes delegated by the receiver. The
cloud servers partially decrypt the encrypted messages
using these attributes by satisfying the respective access
structures.

IV. PRIVACY ENGINEERING
The privacy controls/techniques described in the previous
section are considered insufficient. As a result, a new
field of engineering called Privacy Engineering (PE) has

emerged. It is the practice of applying privacy protections to
personal data while building systems and apps. According
to [98], in the realm of the Software Development Life
Cycle (SDLC), PE can be defined as research and practice
aimed at creating privacy-oriented solutions. Similarly, [99]
defines PE as a technique that enables organizations to
provide sufficient protection to all stakeholders' data. PEmay
involve different activities, but it aims to embed privacy
into systems and apps. For example, developing a code that
minimizes the risk of PII leakage. Similarly, for a user,
PE may involve creating effective privacy controls based on
the user's preferences [100].

Software developers face a significant challenge in imple-
menting GDPR guidelines, particularly privacy-by-design
requirements, to protect user privacy, as highlighted by
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the Internet Privacy Engineering Network (IPEN) [101].
According to Gutwirth et al. [102], the data holder or
controller must incorporate all necessary controls to protect
user privacy before and during data processing. Furthermore,
[103] introduced seven foundational principles of privacy-
by-design, including consideration of user privacy, proactive
and preventive approaches, privacy as the default setting,
privacy-by-design, full functionality, end-to-end security, and
transparency.

Fig. 14 illustrates the PE approaches defined by researchers
in [100], encompassing three key areas: privacy impact
and risk assessment (PIA), model-based design and privacy
requirement engineering. PIA focuses on identifying and
mitigating privacy risks to provide privacy protection [104].
For example, CNIL [105] presents a risk model that includes
privacy threats, inherent vulnerabilities, and potential risk
sources. Similarly, PRIAM is a privacy risk assessment
technique [106] that evaluates risks based on information
collected about seven components: data, risk sources, privacy
vulnerabilities, probable events and harms, and the system
itself. Risks are derived for each category using harm trees.
The harm trees draw the relationships between privacy
weaknesses, potential events, and associated harms.

LINNDUN, another model-based approach, offers soft-
ware engineers a systematic threat assessment using data
flow diagrams (DFD) to depict the flow of personal data
through various processing events [107]. LINNDUN incor-
porates seven threat categories: linking attacks, identification,
non-repudiation, disclosure, detection, non-compliance, and
unawareness. Similarly, various strategies are proposed
in [108] to develop privacy-by-design IT systems and assess
the impact of privacy. These strategies include minimizing,
hiding, separating and aggregating data, enforcing and
maintaining controls, informing users, and demonstrating
privacy compliance.

FIGURE 14. Approaches to privacy engineering.

ProPAn, the Problem-based Privacy Analysis
approach [109], models the problems to identify threats to
user privacy. Using Unified Modeling Language (UML) pro-
files that contain privacy requirements, you can determine the
personal information that requires protection [110]. Adapting
the Security Quality Requirement Engineering (SQUARE)
process [111] is one way to engineer privacy requirements.

There are nine steps in the SQUARE process, including
techniques for deriving security requirements, categorizing
and prioritizing them, and conducting inspections. However,
privacy remains a challenging and elusive concept to fully
incorporate within the SDLC.

V. GAP ANALYSIS
Although the SOTA privacy-preserving techniques discussed
in Section III exhibit some advantages, all the schemes also
have weaknesses. It is therefore difficult to declare that a
particular technique offers end-to-end privacy protection to
the users throughout the data life cycle at worthy costs. For
example, the IoT-enabled intelligent healthcare management
system [30] advocates separating PII from non-PII and strong
access control measures to protect sensitive data. However,
the proposed scheme does not specify the technique for
classifying PII and non-PII data. Similarly, SYPSE [43]
provides fewer privacy guarantees than DP or homomorphic
encryption-based techniques. However, fully homomorphic
encryption [112] with high-performance overheads is suitable
for a limited family of computations [113]. SYPSE also has
significant performance limitations. Similarly, blockchain for
healthcare [31] focuses on secure storage and sharing of
patients' health records while keeping a transparent log of all
transactions. However, it does not mention the mechanism
of segregating PII from non-PII. In addition, the proposed
solution does not appear to be scalable.

Concerning PPML techniques [34], most of these schemes
protect sensitive user data during model training and testing.
However, PII is usually stored on cloud platforms. In addition,
non-privacy-aware ML algorithms are also being widely
used. Existing regulations on the subject may require
organizations to notify users that they are collecting private
data. Consequently, data owners can opt out, but it is
a binary decision. Hence, there is a need for alternative
PPML techniques that must be scalable to meet future
computation and communication costs and emerging privacy
requirements. Similarly, to justify the assumption of PPML
techniques that the computation parties may not collude,
different parties should perform different roles, such as SP
or the PSP. The question remains: How do we trust someone
with the PSP role?What is an ideal business model for a PSP?

The code analysis approaches [36] and [37] analyze
the apps' binary or source code to detect the use of PII.
However, these schemes are ineffective against dynamic
code loading and reflection approaches. They also do not
cater to the arbitrary identifiers generated by the apps.
Consequently, the techniques involving the manipulation of
OS and APIs [38] and [39] are only useful for rooted or
jailbroken mobile devices. Similarly, PrivacyProxy [42] is
inept against custom encryption algorithms, non-standard
encodings, and indirectly tracking users and certificate-
pinned apps. PrivySharing [45] is also a promising work that
shares a particular data type on a specific blockchain channel.
Consequently, a blockchain network may be divided into the
desired number of channels. PrivySharing preserves users'
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privacy, offers user-defined data access controls, rewards
data owners for sharing their data, and ensures compliance
with GDPR. However, it has no intrinsic key management
mechanism for symmetric encryption and does not explicitly
differentiate between PII and non-PII.

Today, PE is a buzzword in the information security
community. It enforces adopting privacy measures to protect
personal data during all stages of SDLC, including the design
and development stages. However, a significant challenge in
fully harnessing the potential of privacy and security engi-
neering lies in the fact that software engineers typically need
more time and autonomy to construct fundamental ethical
systems successfully [114]. It should be noted that while
privacy-by-design effectively outlines the necessary steps
for protecting privacy, it needs to improve the efficiency of
translating privacy requirements into actionable engineering
activities [115].

As shown in Table. 4, we also evaluated the above-
mentioned privacy-preserving techniques in the purview of
some of the most common privacy requirements mandated
by data protection regulations discussed in Section II. The ✓
indicates compliance with the privacy regulation, ✗ implies
non-compliance and – shows that a particular requirement
was not discussed in the respective solution/literature, and its
compliance could not be determined. It can be observed that
almost none of the existing techniques is developed to comply
implicitly with all common data protection regulations. One
reason could be the territorial jurisdiction of the privacy laws.
Since implementing security based on the data protection-by-
design principle always incurs costs overhead, the tech giants
or software houses provide customized solutions per the
customer or regional needs rather than implementing security
as a standard. Therefore, data protection is always a weak
link. Most existing solutions may apply some security and
privacy controls but fail to ensure data protection throughout
their life cycle. Consequently, they onlymeet some of the data
security and privacy requirements.

VI. CURRENT CHALLENGES
The challenges perceived in designing and building
privacy-preserving solutions include the following:-
a. Building Privacy-Aware Database System: A crucial

aspect in developing a database solution that priori-
tizes privacy is automating various steps, in order to
achieve a privacy-first approach through streamlined
processes. One key component is the automation of
schema analysis, where the selection of data fields
for pseudonymization and determining the connections
to be severed should be performed automatically.
This automation relies on persistent analysis of the
database schema and its data. Furthermore, an in-
depth examination of the actual data and reconstruction
of the underlying entity-relationship structure may be
necessary to make decisions concerning PII, foreign
keys, and approximate functional dependencies [43].
Furthermore, databases often consist of multiple distinct

personal entities. For example, within a Transaction
Processing Performance Council (TPC) Benchmark-H
database, a separate employee relation necessitates the
independent pseudonymization of associated personal
data. Consequently, there is a need for comprehensive
research to identify different types of entities present in
a database and to understand their interrelationships.

b. Enforcement/Implementation of Privacy Policies:
The enforcement and implementation of privacy policies
pose significant challenges in the present scenario.
Privacy policies typically define the data being shared,
the associated rules or privacy guarantees, the intended
data users, and the purpose of data usage. However,
the effectiveness of policy implementation on the client
side versus sending the policy along with the data
to computation servers, where trust is required for
adherence to policy rules, remains unclear. In addition,
there may be scenarios when the same organization or
entity controls both the party responsible for performing
computations on data and the party receiving the results.
The following trust issues may emerge in this context
due to the inherent conflict of interest and potential data
misuse.
• Potential for Bias: When the same entity controls
both the computation and the results parties, there
is a risk of bias or favoritism in how the data is
processed or interpreted. The entity may manipulate
the computations or results to serve its interests,
leading to skewed outcomes.

• Lack of Accountability: With the same entity
performing both roles, there might be a need for
more independent supervision and accountability.
If privacy breaches or policy violations occur during
data processing, it could be challenging to hold the
entity responsible, as there are no separate checks and
balances in place.

• Conflicts of Interest: The entity controlling both par-
ties may have conflicting interests in data handling.
For example, they may use the data to maximize
their personal gains instead of using them for the
original purpose. This can result in users' privacy
rights violations.

• Misuse of Data: When an organization controls both
the computation and results functions, there is a risk of
misusing the data beyond the scope defined by privacy
policies. This can lead to unauthorized access, data
breaches, or other privacy violations.

• Lack of Transparency: Transparency is crucial in
data processing, especially concerning sensitive or
personal information. When both parties are under
the same entity's control, they need to be more
transparent about their data handling practices, which
could lead to mistrust of data subjects.

c. Practical Manifestation of Privacy Engineering: No
doubt privacy-by-design is a potent mechanism to
preserve user privacy. However, there is a need to
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TABLE 4. Compliance with privacy regulations.

develop an approach to convert privacy-by-design and
GDPR guidelines into engineering activities within
SDLC or other system development life cycles [100].

d. Development of an Integrated Privacy Protection:
After conducting a thorough gap analysis in Section V,
it has been determined that none of the existing solutions
ensures data privacy across the entire data life cycle.

This encompasses all stages, from data acquisition to
presenting analytics-driven query responses to users.

VII. A WAY FORWARD
There is a requirement for an integrated framework to
ensure end-to-end privacy protection by design based on user
preferences. Data owners need to know what information can
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be collected by an app and how that information will be
processed. Users must always be in the picture of who has
access to their data, for what purpose data is being used, and
for how long it will be used. The users are also concerned
about how their data will be disposed of once not required by
the app/service provider.

Fig. 15 provides an overview of the various facets
encompassing a comprehensive solution to safeguard user
privacy. The proposed solution is a generalized one and can be
tailored according to the specific needs of an application. The
term “end-to-end” denotes all phases of the data life cycle,
including data acquisition, transmission, storage, processing,
and the provision of business analytics. Focusing on the
data acquisition phase, notable challenges include edge
device security, data integrity, excessive data collection, and
adherence to users' consent. Addressing these challenges
requires adopting a robust trust management framework
specifically tailored for IoT devices (serving as data sources)
to uphold the security and integrity of the said devices.

In the realm of user privacy and protection against
excessive data collection by applications, researchers pro-
posed a smart human-computer interface (HCI) [116] and
[117]. The HCI plays a crucial role in ensuring that
users are fully informed about an app's privacy policy,
the types of sensitive data it will collect and process,
and the measures taken to secure the data, all before app
installation. Should a user decline access to certain private
data, the HCI must actively monitor and generate alerts
for any violations. However, app developers must devise
a method for showing app permissions and related alerts
that do not compromise functionality [118]. Furthermore,
the user interface should incorporate a scalable notification
mechanism to enable users to take preemptive measures.
For example, mitigation options should be appropriately
presented based on the level of privacy risk involved. Like the
alert interface, the mitigation interface should improve itself
based on the user's previous choices and may offer options
to configure automatic mitigation action plans for specific
scenarios.

To ensure data privacy during transmission and storage,
it is essential to segregate PII from non-PII and share
the classified data with the requisite security measures.
In this regard, PrivySharing [45] can be further improved
to process PII and non-PII on separate blockchain channels.
Moreover, for enhanced security, PII can be secured using
LDP, lightweight homomorphic encryption, or CP-ABE.
We recommend LDP and homomorphic encryption so that
during the training and analytics stages desired value should
be attained from the collected data while preserving user
privacy. In addition, user-defined access control rules can
be integrated into the blockchain smart contracts to realize
data owners' consent for data sharing. The appropriate data
classification and segregationmeasures, alongwith the access
control rules embedded in smart contracts, will surely protect
against PII leakage and unauthorized sharing without users'
consent.

Subsequently, PPML techniques, such as Federated Learn-
ing (FL), can be employed during semantic labeling and
training of ML models on data sets. One such technology
to watch is Carbyne Stack [35], which uses open source
MPC to offload computations to multi-party virtual clouds.
Regardless of the underlying platform or technology, the
adaptability of PPML techniques may require regular remod-
eling to accommodate emerging advances [119]. It should be
noted that many PPML techniques introduce additional com-
munication and computation overheads, which may impede
the efficient utilization of the vast amounts of available data.
Moreover, there should be a mechanism to manage trust
among FL nodes to protect against maliciously/erroneously
trained models. This can be realized by running every virtual
cloud instance (as in Carbyne Stack) in a trusted execution
environment. In addition, we also need statistical disclosure
control and protection against unauthorized sharing of
processed data.

In PPML, an essential requirement is a provision for
data owners to exercise complete opt out capabilities for
data collection or selectively revoke permission to collect
specific PII. In scenarios where user data are deleted or
unauthorized, ML models must have the adaptability to
prevent the need for retraining. For example, researchers
in [120] proposed a machine unlearning algorithm that
incrementally unlearns without requiring the entire training
process to start anew. Such techniques hold promise in
achieving “right to be forgotten” as mandated by the
GDPR. Additionally, the privacy model should be capable
of generating privacy-preserving responses to address user
queries. The queries or responses can be communicated to
the end users in a privacy-preserving manner using CP-ABE.

It is highly recommended that the concept of PE be
incorporated throughout every stage of the system/software
development life cycle, including the design phase. Addi-
tionally, it is advisable to support the end-to-end privacy-
preserving solution with blockchain or a distributed ledger
technology (DLT), as it offers transparency and facilitates
compliance with GDPR and other pertinent anti-trust laws.
There may be questions about the proposed approach’s
scalability, computation overhead, and feasibility. It is
imperative to note that not every distributed ledger is a
blockchain. Hence, a permissioned DLT such as Corda [121]
can be used to avoid the scalability issues of a typical
blockchain technology. Corda allows enterprises to cus-
tomize the network topology per their business objectives and
security and privacy requirements. Unlike the broadcast of
transactions in blockchain or other DLTs, Corda implements
a peer-to-peer (P2P) transactionmodel, in which a transaction
is only shared with the concerned nodes. For example,
if Alice shares her location information with Bob, the
transaction will only be sent to Bob. No other node in
the network needs to be aware of this transaction. Hence,
all nodes in a Corda network store only the transactions
directly shared with them by other nodes. Consequently, the
nodes avoid storing transaction data that are not related to
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FIGURE 15. End-to-end protection of users' privacy.

TABLE 5. Data security, privacy, and performance issues.

them. Similarly, P2P transaction communication in Corda
ensures low communication complexity compared to the
broadcast nature of various blockchain/DLT technologies
such as Ethereum, Bitcoin, and IoTA.

Concerning computation overheads of processing
encrypted data, instead of fully homomorphic encryption,
semi-homomorphic encryption such as Paillier Transform

can be used. The Paillier Transform preserves user privacy by
facilitating limited analytics based on addition operations on
the encrypted data. Regarding security of transactions during
transmission, Corda uses the Advanced Message Queuing
Protocol (AMQP) over the TLS protocol. AMQP performs
exceptionally well under high load conditions and ensures
reliable message delivery. In addition, TLS guarantees data
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confidentiality and integrity during transmission. Table. 5,
presents possible methodology to resolve various data
security, privacy and performance issues in the proposed
model.

VIII. CONCLUSION
Significant reliance on Big Data as a strategic and economic
asset has placed users at the forefront of privacy threats. Tech
companies and government organizations compete to access,
store, and utilize user data to achieve business or strategic
goals without giving much importance to data owners’
privacy. Therefore, a need was felt to review current SOTA
privacy-preserving data processing techniques to identify
their weaknesses and strengths, including compliance with
privacy regulations. Every scheme has a unique way of
processing PII and non-PII. However, most reviewedmethods
do not specify the exact mechanism and technical details
of segregating PII and non-PII. Moreover, existing solutions
offer fewer privacy guarantees with significant performance
overheads. Consequently, instead of transparently imple-
menting data privacy/security by design, the data owners
are assumed to make the right choice or configure the
desired privacy settings. Similarly, smart analytics providers
employing PPML techniques may store PII in trusted data
lakes or warehouses.

In general, there needs to be more awareness among sys-
tem/software developers regarding PE practices/principles.
Hence, more research must be done to devise a mechanism
to translate the privacy requirements per GDPR, anti-trust
laws, and users' preferences into engineering activities. In this
way, system/software developers would be clear about the
technical aspects of engineering privacy-by-design apps.
In summary, numerous challenges must be overcome to
claim a complete privacy-aware system/application. Key
issues include building a privacy-aware database system,
technical translation of privacy policies, and resolving trust
issues related to ML/PPML models. Consequently, based
on a thorough gap analysis, we propose a possible way to
help develop an end-to-end, transparent, privacy-preserving
data processing framework that can be employed in diverse
applications. The proposed approach aims to empower data
owners to make an informed decision to secure their data and
privacy at any stage of the data lifecycle, from data acquisition
to transmission, storage, processing, and query-response
phase.
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