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Introduction
Since the beginning of social media, our online activities transformed how we interact 
with others, which has changed our social networks. Social media allow us to commu-
nicate and interact with others through sending direct messages, sharing opinions and 
information, as well as commenting on others’ content. Interactions over social media 
platforms may play an effective role in the quick and worldwide proliferation of news 
and can shape the opinions of users. Although the social media proved to be an effec-
tive way to influence the public opinion, we know that not all users play the same role 
in this process. An example of that is ‘influencers’ who are seen as key players in the 
propagation of the information quickly and effectively (Zareie and Sakellariou 2021). 
Spread of influence, in particular, has gained a lot of attention in recent years as vari-
ous research groups and commercial companies try to understand how people’s opin-
ions and decisions can be influenced and potentially changed and to what extent we are 
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receptive to others’ opinions. How does the influence spread in networks? is a question 
for which many researchers from variety of fields try to find answer. This includes phys-
ics (Buldyrev et al. 2010), ecology (Fath et al. 2007), biology (You et al. 2003) and net-
work science (Zhang et al. 2016).

Many studies focus on how to quantify the influence of nodes in a complex network 
(Guo et al. 2016; Lu and Dong 2019) with the hope that if the most influential nodes are 
chosen to propagate a given phenomenon, then the spread of this phenomenon will be 
optimal. One of the avenues to explore, in the search for more effective ways to assess 
the influence potential of a given node, is to look into the direction of control over com-
plex networks. We know that any network can be fully controlled if we control every 
single node, but this is a very costly approach which in most cases is not feasible (Nacher 
and Akutsu 2012). Thus, one of the goals of research in the space of network control is to 
find a minimum number of driver nodes that enable us to control a given network.

There are a few notable works in this regard such as very recently, a recommender 
system to identify more influential nodes to increase the efficiency of spreading process 
is proposed by (Vitoropoulou et  al. 2021) is one such example. Previously, in another 
related work, Koutsopoulos et.al, proposed a low-complexity heuristic algorithm to 
build a recommender system to achieve efficient coverage of nodes (Koutsopoulos 
and Halkidi 2018). We used the control approaches in influence models in the hope to 
achieve the efficient coverage of nodes with a smaller set of influential seed nodes.

There are conceptual similarities between driver nodes in the network control space 
and seed nodes in the spreading processes, and the goal of this study is to explore the 
possibility of using driver nodes as seed nodes and proposing and developing new seed 
selection strategies for spread of influence inspired by driver node concept. Control can 
be seen as a “stronger” version of influence (Watts and Dodds 2007). Driver nodes Driver 
nodes, are nodes which can be directly controlled by external inputs, and these nodes 
play a crucial role in controlling all the other network nodes (Qin et  al. 2023). While 
seed nodes are the nodes that can be identified by employing different seed selection 
strategies traditionally relying on the node degree based seed selection. Which means 
the nodes that have a higher node degree can be the seed nodes and these nodes work 
as the basis of the first set of seed nodes which are then used to propagate the influence 
spread process which has been explained at length in the Section 1.1.2. The hypothesis is 
that the influence can spread effectively (affect a bigger number of nodes) through driver 
nodes than when using other, traditional seed selection strategies. Thus, we use driver 
nodes and their rankings with the aim of getting bigger influence coverage. It means that 
we focus on maximising the number of nodes influenced in smaller number of iterations 
by utilising minimum seed size.

The aim of this paper mainly revolves around utilising the concepts from the field of net-
work control and apply those to improve the spread of influence in the network by using 
seed selection methods based upon driver nodes.

To address this goal, the following research questions are explored and answered in 
this study: 

1	 Research Question 1 (RQ1): How can the concepts from network control be used in 
the spread of influence field?
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2	 Research Question 2 (RQ2): How effective can be the implementation of concepts 
originating from the control field in the influence field?

Based upon the research questions, main objective of the paper is defined as: “To 
develop and validate new seed selection methods that are utilised concepts from net-
work control field.”

To achieve this research objective, we begin by proposing new methods for seed selec-
tion that utilize the concept of driver nodes. The methods were developed by identifying 
global-level driver nodes. We define the methodology in Sect.  in detail which explains 
the experimental setup to test the proposed seed selection methods with globally iden-
tified driver nodes, hence helps in achieving the research objective. In short there are 
three main steps in the methodology which are defined as:-

•	 Seed selection from traditional methods, for example, highest node degree.
•	 Seed selection from driver-based methods, where driver nodes are the basis for seed 

nodes set.
•	 Influence spread process by using Linear Threshold Model.
•	 A comparison of efficiency and effectiveness of traditional and driver-based seed 

selection methods in spreading influence in synthetic and social networks.

The paper’s main contribution is the development and validation of newly manufactured 
seed selection methods that helped bring together control and influence fields. The effi-
cient and effective seed selection method(s) have been identified from a set of various 
methods.

In this paper, Sect.  describes the related work including influence and control in com-
plex networks. Section   describes the detailed experiment setup of the experiments 
being conducted to answer the research questions. Section   describes the results and 
their comprehensive analysis. Lastly, the conclusion and future work are discussed in 
Sect. .

Background
This section provides a brief overview of influence in complex networks, influence 
models, seed selection strategies, and the effectiveness of influence spreaders. Then, 
we explore and present the main concepts behind network control, such as methods to 
identify and rank driver nodes.

Influence in complex networks

Spreading models are widely used to simulate the propagation of information, influence, 
opinion, content, virus, etc., over a complex network to see how many nodes can be 
affected and how fast they can be affected when different approaches are used (Kempe 
et al. 2003). Our research focuses on developing new strategies for choosing a set of seed 
nodes as source spreaders (a.k.a. seeds).

There are two most commonly used influence spreading models, namely the Linear 
Threshold Model (LTM) and Independent Cascade Model (ICM) (Kempe et al. 2003). 
For this research, we use LTM for influence spread in synthetic as well as real social 
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networks. The same model is used across all the experiments to enable comparison of 
results across the whole study.

Regardless of the spreading model, at the beginning we need to select at least one node 
as a seed node which starts the spreading process. We can do it at Random, like in the 
case of epidemic models, or we can use some heuristics. Some of the most commonly 
used methods, where top ranked influential nodes are selected, are Degree Centrality, 
Betweenness Centrality, Closeness Centrality, PageRank, LeaderRank, ClusterRank, 
K-Shell, Hill-climbing, HITS, ARL and Social Position (Banerjee et al. 2020; Musiał et al. 
2009; Erlandsson et al. 2016) (see Sect. ).

Spreading models

There are dozens of spreading models designing to model a specific spreading process, 
for example, epidemiological models like SI, SIS or SIR (Pastor-Satorras and Vespignani 
2001), awareness spreading models like UAU (Zang 2018), UAF (Scatà et al. 2016), opin-
ion formation models like Voter model (Holley and Liggett 1975) or innovation spread-
ing models like Bass model (Bass 1969). For full description of those we refer the reader 
to some of the recent survey papers in this area e.g. (Banerjee et al. 2020; Bródka et al. 
2020). However, as mentioned above, in this paper we focus on influence spread where 
the two most commonly used influence spreading models, are the Linear Threshold 
Model (LTM) and the Independent Cascade Model (ICM) (Kempe et al. 2003). In both 
models, we can distinguish between active nodes, which spread the influence, and inac-
tive ones that do not. As the number of iterations or cascading spread cycles increases, 
we observe how the spread progresses and how many nodes change their status and 
become active.

Independent Cascade Model (ICM) The main idea behind ICM is a common phenom-
enon defined in the field of behavioural economics and network theory, which occurs 
when a number of people make the same decision in a sequential order (Kempe et al. 
2003). An information cascade model works in two steps: (i) first step is that an individ-
ual must encounter a scenario with a decision (yes or no) only then a cascade can begin; 
(ii) second step includes outside factors, that can influence this decision (DuanW 2009). 
In ICM, an active node u attempts to influence all of its inactive neighbours but the suc-
cess of the node u in activating its inactive neighbour v depends on the activation prob-
ability (a.k.a. propagation probability) of the edge from u to v (each edge can have its 
own value and the value u → v can be different from v → u ). Regardless of its success, 
the same node will never get another chance to activate the same inactive neighbour. 
The process ends when no further node gets activated.

Linear Threshold Model (LTM) In LTM the idea is that a node becomes active if a suf-
ficient part of its neighbourhood is active. Each node u has a threshold t ∈ [0, 1] . The 
threshold represents the fraction of neighbours of u that must be active in order for u 
to become active (e.g., how many of our friends have to switch to iPhone to push us to 
switching as well). At the beginning of the process a small percentage of nodes (seeds) is 
set as active in order to start the process. In the next steps a node becomes active if the 
fraction of its active neighbours is greater than its threshold (D’Angelo et al. 2016) and 
the whole process stops when no node is activated in the current step. The linear thresh-
old model (LTM) postulates that the thresholds are constrained by a linear relation to 
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each other and therefore are completely defined by the first threshold t0 and the linear 
increase δ as the sequence progresses (Kempe et al. 2003):

Seed selection strategies

As mentioned at the beginning of this subsection, to initiate the process we need to 
select at least one seed node as a seed node which will start the spreading process. We 
can do it at random, like in case of epidemic models, or we can use some heuristic to 
select the most optimal seed set which meets our needs, e.g. the total number of acti-
vated people will be the highest possible (advertisement campaign) or the total number 
of activated people will reach some threshold within some period (presidential cam-
paign). Many different seed selection strategies have been developed to address different 
challenges, constraints and requirements. A brief description of most often used meth-
ods is included below.

•	 Random Seed Selection (R): In random seeds are selected Randomly from the node 
set of each network. Random seed selection is the baseline method to be used in 
comparing other seed selection methods.

•	 Degree Seed Selection (D): It starts by ranking the nodes according to degree cen-
trality, and selecting a number of nodes with the highest values of degree measure 
(Lü et al. 2016).

•	 Closeness Centrality Seed Selection (C): It dictates that a top percentage of number 
of nodes should be selected as seeds based upon their higher closeness centrality val-
ues (Lü et al. 2016).

•	 Betweenness Centrality Seed Selection (B): In this method a top percentage of num-
ber of nodes is selected as seeds based upon their higher betweenness centrality val-
ues (Lü et al. 2016).

•	 Kempe Seed Selection (K): It is a generalisation of hill-climbing algorithm where the 
seed set is constructed in the following way. For each node in the network, we run 
the spreading process (or predefined number of steps of the process) and evaluate 
each node potential to activate as many other nodes as possible. We add the best 
node to the seed set. For the following nodes we do the same, but we evaluate each 
node potential in combination with all the nodes already in the seed set i.e. for the 
second node we check every combination of the first node in the seed set with all 
remaining nodes to find the best couple; for the third node we check every combina-
tion of the first two nodes in the seed set with all remaining nodes to find the best 
trio, etc. We continue adding nodes until we consume our seeding budget, i.e. reach 
the predefined size of the seed set. This approach on average produce the solution 
which is (1− 1

e ) of maximum solution and outperforms centrality based methods 
like D, C or B. The disadvantage is that since we need to run the spreading process 
for  Nk times (where k is the size of the seed set) it is very time-consuming, costly in 
terms of resources and hardly applicable for any real world solution (Kempe et  al. 
2003).

(1)ti + 1 = ti + δ.i.
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•	 PageRank: It selects a top percentage of number of nodes as seeds based upon their 
higher PageRank.

•	 LeaderRank: In this method, a top percentage of number of nodes is selected as seeds 
based upon their higher LeaderRank values (Lü et al. 2011).

•	 ClusterRank: In this method a top percentage of number of nodes is selected as seeds 
based upon their higher ClusterRank values (Chen et al. 2013).

•	 K-Shell decomposition: This method starts by selecting a top percentage of number 
of nodes as seeds based upon their higher K-Shell values (Wei et al. 2015; Liu et al. 
2015).

•	 TwitterRank: In TwitterRank, a top percentage of number of nodes is selected as 
seeds based upon their higher TwitterRank values (Weng et al. 2010). TwitterRank is 
an extension of PageRank algorithm, designed to measure the importance of Twitter 
users taking into account similarity between users and the links between them.

•	 ShaPley value-based Influential Nodes (SPIN) algorithm: In ShaPley a top percent-
age of number of nodes is selected as seeds based upon their higher ShaPley value 
(Narayanam and Narahari 2010).

•	 Optimal Influencers: In this method, optimal seeds are identified using optimal 
percolation, i.e. by evaluating the size of the giant connected component after the 
removal of the seed nodes (Morone and Makse 2015).

•	 ARL: In this approach, authors use Association Rule Learning (ARL). Thanks to the 
use of association rules and the simple assumption that people who often start a dis-
cussion, in which many other people then take part, are important for a given com-
munity, authors developed a new ARL method. It can find key people on “raw” data 
without the need to project users interaction towards objects (posts and comments) 
to the social network of interactions between users, which we need to use “tradi-
tional” methods to finding key users such as node rank or PageRank. The evalua-
tion showed that there is no statistically significant difference between the results 
achieved by ARL and PageRank, and by omitting the expensive network projection 
process, ARL is on average 36 times faster than the node degree and 70 times faster 
than PageRank (research was conducted on 108 different datasets coming from pub-
lic Facebook pages) (Erlandsson et al. 2016, 2017).

Out of these methods, the traditional seed selection methods such as D, R, B, C and K 
are most frequently used methods. Their usefulness is already established (Kempe et al. 
2003). So, we mean to utilise these as our basis to bring together the control methods 
and influence models.

Control in complex networks

Control in complex networks is primarily based upon the structural controllability the-
ory. Structural Controllability states that there is a set of driver nodes to which if exter-
nal inputs or control signals are injected they can control a complex directed network. 
This framework allows identifying the driver nodes set in any given network. Over the 
years, many researchers have generated some notable research in this area has recently 
attracted a lot of attention (Liu and Barabási 2016; Zañudo et al. 2017; Guo et al. 2018; 
Zhang et al. 2019). Any network can be fully controlled if we control every single node 
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but, as we mentioned in the sec., this is a very costly and often not feasible approach. 
Thus, the control method of a complex network is defined by determining the minimum 
number of driver nodes that are required to control the whole system. Previously Maxi-
mum Matching Algorithm (Zhou and Ou-Yang 2003), Minimum Dominating Set (MDS) 
(Nacher and Akutsu 2012), Control Profiles (Ruths and Ruths 2014), and Preferential 
Matching Algorithm (Zhang et al. 2019) were proposed to identify driver nodes. Once 
the driver nodes are identified, they can be ranked to determine which nodes are more 
critical from the perspective of network control. This can be done using such approaches 
as: control centrality (Liu et al. 2012), control range (Wang et al. 2012), control capacity 
(Jia and Barabási 2013) and control contribution (Zhang et al. 2019). We use centrality 
based ranking methods to prioritise more influential driver nodes in our experiments. It 
has been shown in relevant studies that nodes with higher value of centrality measures 
are more influential and can be used to influence the network (Chen et al. 2012).

Driver nodes selection methods

Below we name and briefly describe methods that has been used to identify driver nodes 
in relevant research. Maximum Matching Algorithm: This algorithm treats a network 
as a bipartite graph (Harary 1972). For a directed network G, where V(G) is the node 
set and E(G) is the edge set, with N = |V | and L = |E| . A subset of edges in G is called 
a matching M if no two edges in M have a node in common. A node vi is matched by M 
if there is an edge of M pointing to vi , otherwise vi is unmatched. A path P is said to be 
M − alternating if the edges of P are alternately in and not in M. An M-alternating path 
P that starts and ends at the unmatched nodes is called an M augmenting path. A match-
ing with the maximum number of nodes is called a maximum matching M∗ . A match-
ing M is called a perfect matching if all of the nodes of G are matched by M and number 
of unmatched nodes are then called the driver nodes (Hopcroft and Karp 1973; Zhou 
and Ou-Yang 2003).

Minimum dominating set (MDS) Another development is the optimisation procedure 
for undirected networks which determines the minimum dominating set of nodes which 
are required to control the network (Nacher and Akutsu 2012). MDS is the smallest sub-
set of nodes such that every node of a network either belongs to this subset or is adjacent 
to at least one node in this set. The central idea behind Minimum Dominating Set (MDS) 
is that each node can control all of its neighbours simultaneously, but this signal cannot 
propagate any further. In this method the driver nodes are identified by the minimal set 
such that every node is separated from another one by at most one interaction (Nacher 
and Akutsu 2012, 2013). MDS tells us that each driver node can control its associated 
nodes independently. MDS further states that each non-driver node is controllable if it is 
at least adjacent to one driver node. It has been used to identify control variables in pro-
tein interaction networks (Wuchty 2014) and characterise how disease genes perturb the 
human regulatory network (Wang et al. 2015). A dominating set of a graph G is a subset 
D of the vertices of G such that every vertex v of G is either in the set D or v has at least 
one neighbour that is in D. A minimum dominating set (MDS) is the smallest possible 
dominating set.

Control profiles (Ruths and Ruths 2014) proposed an idea of building control pro-
files of complex networks. Those profiles can be calculated by the minimum number of 
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independent controls (Nc) required for full control of a complex network which is the 
sum of the number of source nodes Ns , external dilation points Ne , and internal dilation 
points Ni (Ruths and Ruths 2014). The set of nodes can also be identified by maximum 
matching algorithm, as explained earlier in this section. Maximum matching algorithm 
provides us with accurate results but with expensive running time on large networks 
(Ruths and Ruths 2014). By counting source and sink nodes in linear time, we obtain a 
relatively good lower bound on the number of controls. In terms of time complexity, this 
approach is an improvement over the maximum matching algorithm (Ruths and Ruths 
2014).

Preferential Matching algorithm (Zhang et  al. 2014) proposed an algorithm to find 
driver nodes by using preferential matching. They had designed an iterative preferential 
matching method in which nodes are sorted in the ascending order of their degrees and 
they are denoted as M as the number of preferential matching nodes. The method starts 
from the sub graph H0 with the lowest-degree node ranked first; at each iterative step i, 
the sub graph Hi is extended by adding the node with the i–th rank, and the maximum 
matching of Hi is calculated based on the previously obtained maximum matching of 
H(i − 1) . This process is repeated until the sub graph Hi is equal to the whole network 
or until M preferential nodes have been added. Then, a maximum matching of a graph 
G is obtained. Preferential matching makes sure to find out the maximum number of 
matched nodes of Hi from the first i ranking nodes. It also ensures that a high-degree 
node is not matched in early steps because the node is not included in the early sub-
graphs. Hence, the matching order of the nodes becomes quite similar to the predefined 
order of node degrees (Zhang et al. 2014).

Ranking driver nodes

The significance of a node in controlling the overall network can be determined by rank-
ing driver nodes. Some of the methods are described below.

Control centrality It calculates the ability of a single node to control a directed 
weighted network. In a directed network without loops the control centrality of a node 
is uniquely determined by its layer index i.e. Cc(i) = li where Cc(i) represents the control 
centrality of node i and li represents the layer index of that node (Liu et al. 2012). In a 
directed star each node can be labelled with a unique layer index, it means that the leaf 
nodes are in the first layer i.e.,bottom layer and the central hub is in the second layer 
i.e.,top layer. In this case the control centrality of the central hub equals its layer index 
(Liu et al. 2012).

Control capacity It quantifies the likelihood that a node is driver node. A φ(i) is defined 
as the fraction of MDS’s in which node i is included. The method utilises a random sam-
pling method to measure control capacity from different MDS’s (Jia and Barabási 2013) 
The probability of node i to be part of a minimum set of driver nodes as P(Di) , is called 
“control capacity” K (Jia and Barabási 2013).

Control range When a node quantifies the size of the sub-network that the node can 
effectively control, i.e., the number of nodes, controlled by one driver node (Wang et al. 
2012). Therefore a sub–network which can be fully influenced by the node is called its 
control range (Wang et al. 2012). For the control range Ri of node i, it is defined by first 
calculating how many nodes i controls, when it is a node in some minimum dominating 
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sets. The set of nodes that i controls according to this definition is denoted by that is 
denoted by Ni . Ri is chosen as the maximum value of Ni over all possible minimum dom-
inating sets. For nodes with K = 0 , it means that i never appears in any minimum domi-
nating sets.

Control range similarity It is measured as structural similarity between two nodes 
(Wang et al. 2012). There can be many different maximum matchings of the same net-
work. The method identifies the two different matchings of the same network, to gather 
two minimum input sets a.k.a driver nodes. Therefore, the common sub–network con-
trolled by two input sets is defined as control range similarity.

Control contribution It describes that for one minimum set of driver nodes, each driver 
i controls a non-overlapping sub-network of size Ni , which can be identified based on 
the corresponding cactus structure. A cactus is defined as a connected graph in which 
any two cycles in the graph have at most one vertex in common. Depending on which 
cactus structure is obtained, Ni can vary, and its distribution is f (Ni) . This allows us to 
define the average 〈Ni〉 overall minimum sets of drivers in which node i is a driver. We 
eventually define the probability that a given node is part of the sub-network of size Ni 
as P(Ni) . In the following, the two measurements about P(Di) and P(Ni) are combined 
to define the measure control contribution, Ci . Let MDSi denote the set of all driver node 
sets, which include node i that combines the two parameters Control Range and Control 
Capacity and is calculated as (ControlRange ∗ ControlCapacity) (Zhang et al. 2019).

Node ranking by gravity method In this research work (Yi-Run et al. 2022), the impor-
tance of a node is calculated based upon the idea of a number of cores as the mass of 
the object. The method considers both local topology information and global position 
information, based on the gravity formula in Newtonian mechanics, and integrates mul-
tiple attribute information of nodes, including nodes, The centrality of the kernel, and 
the structural hole characteristics of nodes.

Isolating centrlaity (ISC) In this work (Ugurlu 2022), authors compare and analyze the 
centrality measures for detecting important nodes. The proposed centrality measure 
is based upon identifying the isolating nodes, which is calculated by looking into the 
degree of the node and its neighbor nodes with the minimum degree. Isolating Central-
ity (ISC) of a node is the product of its degree and its isolated coefficient (Ugurlu 2022).

Controllability of complex networks

Controllability is the ability to control a given system. Before going into control, we ana-
lyze if it is at all possible to control the system. It means that we need to quantify the 
ability to steer a dynamical system to a desired final state in a finite time (Liu and Bara-
bási 2015). For example, the act of balancing a stick on our hand. We know from our 
experience that this is possible, suggesting that the system must be controllable (David 
1979). The scientific challenge is to decide for an arbitrary dynamical system if it is con-
trollable or not, given a set of inputs (Liu and Barabási 2015). Considering the control-
lability of complex systems there are two independent factors that contribute towards 
it. Both factors have a level of complication, which limits the advances in this field. One 
of the factor is the system’s architecture, represented by the network encapsulating how 
the components interact with each other; and second one are the dynamical proper-
ties that depict the time-dependent interactions between the components. Hence, the 
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controllability can be achieved only in the systems where both these perspectives are 
taken into account, for example, as it has been done in the case of control in biological 
networks (Wuchty 2014). Recent advances towards quantifying the topological charac-
teristics of complex networks (Strogatz 2001; Whalen et al. 2015; Newman et al. 2006) 
have shed light on the role of system’s architecture in its controllability. Studies reveal 
that structure-only methods fail to properly characterise control, because there can 
be many different variations of possible dynamics that may occur in the networks (Liu 
and Barabási 2016; Zhang et al. 2019; Albert and Barabási 2002; Strogatz 2001; Zañudo 
et al. 2017; Sun and Ma 2017; Guo et al. 2018; Wuchty 2014; Delpini et al. 2013; Jia and 
Barabási 2013; Liu et al. 2011; Pasqualetti et al. 2014; Menichetti et al. 2014; Wang et al. 
2012; Wang and Chen 2003; Lombardi and Hörnquist 2007; Chen et al. 2014; Gates and 
Rocha 2016). So, we not only need to consider/study the node behaviour, but also need 
to incorporate other factors, like role of links (Jia and Barabási 2013) and control profiles 
(Ruths and Ruths 2014) in the controllability of the complex networks. There is a sub-
stantial amount of work that has been done regarding the structural controllability of 
complex networks. In Chen (2022), we found out that, most of the controllability robust-
ness techniques revolves around the local structure of the network for example, chain 
motifs and cycles. The global properties that effect the efficiency and effectiveness of 
controllability yet to be seen.

Comparative analysis of controllability frameworks and future challenges

The following points emphasize the challenges that are part of this research area.

1.	 Structural controllability methods find the driver nodes to control the network. To 
find an optimal and energy efficient driver nodes still remains to be an area worth 
exploring further (Yan et al. 2012). There is a need to work out an optimal solution to 
find a set of driver nodes that can be used to further propagate control/influence in 
the network.

2.	 Then, the complexity of choosing a smaller set of driver nodes arises. It means, given 
this number, the largest possible subset of the network can be controlled. If we have 
to restrict to this smaller set, we should have a ranking of driver nodes that allows us 
to pick those that have the largest impact on controlling the network. Existing meas-
ures for such a ranking, for example control capacity, and control range, are not best 
suited because they only focus on one aspect of driver nodes, either their probability 
to become a driver or the size of the sub-network they control. Control contribution 
combines both of these two aspects (Zhang et al. 2019).

3.	 In the literature, a categorisation of techniques according to the type/kind of network 
they can control is still missing. To further elaborate this point, there is a need to 
look into the network structural measures and their relationship with different con-
trol measures. For example, a question that, “Which network structural measures are 
in correlation with the control measures such as driver nodes?” is still needed to be 
explored.

4.	  From the literature survey, we find out that, an intersection of control methods and 
influence models needs to be explored further. We know that there are various seed 
selection methods i.e., traditional seed selection are already in use, when spreading 
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the influence in overall network. But, a large amount of work is needed to find out an 
optimal seed set. We believe that by employing new ways, specifically driver nodes 
identification methods to identify driver nodes, and then rank those driver nodes by 
using seed selection methods and other criteria can be beneficial in maximizing the 
influence spread process in the overall network.

5.	  Many studies focus on how to quantify the influence of nodes in a complex network 
(Guo et al. 2016; Lu and Dong 2019) with the hope that if the most influential nodes 
are chosen to propagate a given phenomenon, then the spread of this phenomenon 
will be optimal.

Research questions and methodology
We see little work done in the space where techniques for finding driver nodes are used 
to support seed selection strategies; thus, we explore and address this research gap. 
Below are the research questions that are defined for this study.

RQ1–How can the concepts from network control be used in the spread of influ-
ence field? The main focus of RQ1 is to find out if it is feasible to use concepts from the 
field of network control in the context of influence spread and if so, how it can be done. 
To answer RQ1, we propose new methods that utilise driver nodes as seeds in influ-
ence spreading. First, we decide on the method that will be used to select driver nodes. 
This can be any of the approaches described before: maximum matching (Hopcroft and 
Karp 1973), minimum dominating set (Nacher and Akutsu 2012), control profiles (Ruths 
and Ruths 2014) and preferential matching (Zhang et al. 2014). To keep the consistency 
across all the experiments, and because, it is considered a benchmark approach to iden-
tify driver nodes across various kinds of networks, we use Minimum Dominating Set 
approach. The next decision point is to select a technique to rank the identified driver 
nodes so the obtained ordered list can be used in the seed selection process. This can be 
done using various approaches, including methods presented in the sec. , for both rank-
ing the driver nodes or ranking seed nodes for influence models. The obtained ranking 
is used to extract seeds from all identified driver nodes. We have used centrality meas-
ures to rank driver nodes, please see sec.   for details. We also propose a new method 
based upon the centrality measures to rank the driver nodes. The details of this method 
is given in sec.  . The top nodes from the created ranking are used as seeds to investi-
gate the effectiveness of using driver nodes and their ranking in the seed selection pro-
cess. The first research question RQ1 and work that is done to answer it can be seen as 
an initial step to develop a framework where we use network control concepts (driver 
nodes selection and ranking) in the context of influence spread in networks. RQ2–How 
effective can be the implementation of concepts originating from control field in 
the influence field? To answer RQ2 we need to measure the effectiveness of the driver 
nodes selection and ranking approaches when we use them as seed selection strategies 
in influence models. When we run experiments, we need to be able to assess to what 
extent the methods identified in RQ1 are able to improve the influence spread over the 
traditional seed selection approaches. The evaluation of seeding strategies on different 
networks is done on the basis of how much influence the seed nodes are going to spread 
a.k.a coverage of influence, with respect to the spreading time (Jankowski et al. 2018). So, 
the seed selection method which results in shorter spreading process time and/or has 
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bigger coverage influence over the network can be regarded as more effective than the 
others. “Control meets influence” is an idea where we first identify driver nodes in a 
given network and apply them as seeds in influence model to see the result of influence 
spread in the network. Figure 1 presents the main stages of the proposed research setup. 
It defines the inputs, process, and outputs of the conducted research. From the same 
figure we can see that we utilise traditional seed selection strategies such as random (R), 
degree centrality  (D), betweenness centrality  (B) and Kempe seed selection  (K). The 
major outputs will include a comparison by network and a comparison by seed selection 
method. In network comparison, we observe the percentage of nodes influenced in each 
network. In method comparison, we compare the performance of seed selection strate-
gies. The performance is measured on the basis of total number of iterations it takes for 
each method to obtain the highest influence in each network based upon a certain seed 
set size. Detailed experiment set-up is presented in the next section.

Experiment setup
In order to bring concepts from control space into the influence agenda, we propose 
to use Minimum Dominating Set  (MDS) to identify driver nodes and then rank those 
driver nodes using the same ranking methods as in case of seed selection strategies. 
Additionally, we propose new method—Driver Degree Closeness Betweenness (DDCB) 
ranking method that first identifies MDS set and then rank the driver nodes on the basis 
of their average degree, betweenness and closeness centralities. A percentage of ranked 

Fig. 1  Control meets influence. The general concept for evaluating the usefulness of driver nodes selection 
methods in seed selection for influence spread problem
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driver nodes are then used as seeds. Linear Threshold model is used to simulate the 
spread of influence over both randomly generated networks (using random, small-world 
and scale-free models) and real social networks. A description of both randomly gener-
ated and real networks is included in the next subsection.

Networks

This section includes the tables and figures describing the networks used during our 
evaluation.

•	 Figure 2 shows the Random, Small-World and Scale-Free networks sizes (i.e., num-
ber of nodes) plotted against their densities. We generated ten network profiles of 
each Random, Small-World and Scale-Free networks of size ranging from number 
of nodes equal to 100, 200, 300, 400 and 500. We kept the connections such that 
to make sure that networks are always connected. In total, 750 networks were gen-
erated. This includes the networks starting from smaller densities such as (0.05) to 
the highest density (1). Density is increasing for every network type when the nodes 
are from 100–500, due to increase in number of edges. Sometimes it took ten itera-
tions to generate networks with varying sizes and densities, with the goal of achiev-
ing the highest density, i.e., 1. More details of network characteristics is given in 
Supplementary Material. From Table  S1, Table  S2 and Table  S3, We observe that 
the larger the number of edges, the greater the density of the network. Also, other 

Fig. 2  Size vs. density in Random, Small-World and Scale-Free networks
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centrality parameters, such as, degree, closeness and eigenvector centralities tend to 
increase when the network size and density increases. Betweenness centrality tend 
to decrease as the network size and density increases. As we note that number of 
driver nodes decreases as the density increases in Sadaf et al. (2021). So, naturally, 
the assumption can be by taking into account these centrality measures, we will have 
an optimal driver nodes set that can be ranked based upon centrality measures to 
determine the influential seed set. The details of which comes later.

•	 Table 1 includes information about twenty-two real social networks used during our 
experiment and their network structure measures, i.e., the number of nodes, number 
of edges, and corresponding network density. The networks were downloaded from 
Stanford Large Network Dataset Collection repository (Leskovec and Krevl 2014).

•	 Figure 3 shows the densities of social networks with their number of nodes in a loga-
rithmic scale chart.

Experiments

To be able to answer the research questions, we designed the following experiments. 

1	 Building Network Profiles: To enable systematic analysis of both traditional and 
driver–based seed selection strategies, the experiments are conducted on synthetic 
networks, including Random (R), Small-World (SW) and Scale-Free (SF) network 

Table 1  Network structure measures (social networks)

Network Name Ref. Nodes Edges Density

Zachary’s Karate Club Z (Zachary 1977) 34 78 0.13903

Facebook FB (McAuley and Leskovec 2012) 4039 88234 0.01082

Twitter Twitter (McAuley and Leskovec 2012) 23371 32832 0.00120

Diggs-Friends Diggs (Hogg and Lerman 2012) 1924000 3298475 2×10
−6

Youtube Youtube (Yang and Leskovec 2015) 1134891 2987625 4×10
−6

Ego-gplus Ego (McAuley and Leskovec 2012) 23629 39195 0.00140

Librec-ciaodvdnetwork LC (Kunegis 2013) 4658 33116 0.03050

Librec-filmtrust-trust LF (Guo et al. 2014) 874 1309 0.03430

petster-frienships-hamster-uniq PF (Rossi and Ahmed 2015) 1858 12534 0.07260

musae-facebook-edges MFb (Rozemberczki et al. 2021) 22470 171002 0.00670

Deezer-HR-edges DHR (Rozemberczki et al. 2019) 54574 498202 0.00330

Deezer-RO-edges DRO (Rozemberczki et al. 2019) 41774 125826 0.00140

Deezer-HU-edges DHU (Rozemberczki et al. 2019) 47539 222887 0.00190

musae-git-edges MG (Rozemberczki et al. 2021) 37700 289003 0.00400

lastfm-asia-edges L (Rozemberczki and Sarkar 2020) 7624 27806 0.00950

fb-artist-edges FbA (Rozemberczki et al. 2019) 50516 819306 0.00640

fb-athletes-edges FbAT (Rozemberczki et al. 2019) 13867 86858 0.00900

fb-government-edges FbG (Rozemberczki et al. 2019) 7058 89455 0.03590

fb-new-sites-edges FbN (Rozemberczki et al. 2019) 27918 206259 0.00530

fb-politician-edges FbP (Rozemberczki et al. 2019) 5909 41729 0.02390

fb-public-figure-edges FbPF (Rozemberczki et al. 2019) 11566 67114 0.01003

fb-tvshow-edges FbT (Rozemberczki et al. 2019) 3893 17262 0.02280
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models as well as real social networks. For comparison purposes, we generated all 
the networks with same number of nodes and edges. In order to achieve that, we 
used the method previously applied in Wahid-Ul-Ashraf et al. (2018). We generated 
720 networks with 100, 200, 300, 400 and 500 each for Random, Small-World and 
Scale-Free. More details of the networks is also given in our previous work (Sadaf 
et al. 2021).

	 For social networks we used twenty two social networks available in SNAP library 
(Leskovec and Krevl 2014).

2	 Traditional Seed Selection: The methods that are being used in this section are, ran-
dom seed selection (R), degree seed selection (D), closeness centrality seed selection 
(C), betweenness centrality seed selection (B), Kempe seed selection (K) and addi-
tionally the degree, closeness and betweenness centrality seed selection (DCB) where 
a top percentage of number of nodes is selected as seeds based upon their average of 
higher degree, closeness and betweenness centrality values. R, D, C, B and Kempe 
are most commonly used seed selection methods. We used these methods to find 
out their usefulness in comparison to the new methods.

3	 Driver Seed Selection: One of the contributions of this study is a creation of novel 
driver-based seed selection strategies. It is a methodological advancement where 
network control concepts are used in the influence modelling space. First, we identify 
the driver nodes for each of the network and then we use those driver nodes to define 
the seed nodes set. The driver nodes are identified by using the Minimum Domi-
nating Set (MDS) method. MDS has been calculated to show the number of driver 
nodes in the network using MDS method as described in Nacher and Akutsu (2012). 
Although MDS is a NP-hard problem, reduction rules are a great way to obtain a 
reduced minimum dominating set, a.k.a Branch and Reduce Algorithm (Weihe 
1998). By applying this algorithm, we get a reduced minimum dominating set a.k.a 
driver nodes. Ranking of driver nodes been previously shown that influential nodes 
often have higher centrality values (Chen et  al. 2012). We focus on ranking driver 
nodes using various centrality values. Additionally we use Kempe approach to rank 
driver nodes and as a baseline we use random approach. All proposed ranking strate-

Fig. 3  Network density verses number of nodes in social networks (adapted from Sadaf et al. 2021)
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gies are outlined below. In Driver–Random Seed Selection (DR), we select nodes at 
random from all the driver nodes and they create seed set. In Driver–Degree Seed 
Selection (DD), we rank the driver nodes in by their degree values and the top ranked 
nodes become seed nodes. In Driver–Closeness Seed Selection (DC), we rank the 
driver nodes by their closeness centrality values and the top ranked nodes become 
seed nodes. In Driver–Betweenness Seed Selection (DB), we rank the driver nodes by 
their betweenness centrality values and the top ranked nodes become seed nodes. In 
Driver–Degree–Closeness–Betweenness Seed Selection (DDCB), we rank the driver 
nodes by averaging the sum of each node’s degree, closeness and betweenness cen-
trality values. In Driver–Kempe Seed Selection (DK), we rank the driver nodes based 
upon their potential to influence the network. The node which is able to spread influ-
ence to more number of nodes is ranked higher and in each iteration every new node 
is evaluated together with those already in the seed set. At the end, the nodes which 
are able to spread influence to maximum number of nodes are remained in the final 
seed set, which is pre-defined for the further analysis.

4	 Simulating Influence Spread by using LTM: We use both traditional and driver-based 
seed selection methods to obtain the seed sets and we use those sets as the input to 
the LTM model to investigate how the spread progresses. In LTM, each agent acti-
vates if the number of its active neighbours is bigger or equal than its current activa-
tion threshold. We used Bootstrap Percolation to determine the thresholds for LTM. 
Bootstrap percolation is a process of spread of “activation” on a given network with 
a given number of initially active nodes. At each step those vertices which have not 
been active but have at least ≥ 2 active neighbours become active as well (Janson 
et al. 2012).

Results and analysis
Eleven seed selection methods (i.e. Random, Degree, Closeness, Betweenness, Degree–
Closeness–Betweenness, Kempe, Driver–Random, Driver–Degree, Driver–Closeness, 
Driver–Betweenness, Driver–Kempe and Driver–Degree–Closeness–Betweenness) 
have been tested on synthetic and real world networks. LTM was used to ensure consist-
ency of the results across the board. The findings are discussed from the perspective of 
(i) synthetic and (ii) real networks.

Results from synthetic networks

Results from synthetic networks include impact of network density on percentage of 
nodes influenced and a comparison of all seed selection methods with respect to num-
ber of nodes influenced within given time budget and time needed to achieve 100% 
coverage.

Impact of network density on no. of influenced nodes

We analysed the influence in networks through the lens of the network density. Fig-
ure 2 shows size and density for all the generated networks. We can see that we have 
networks from lowest to highest densities for each of the given sizes i.e.number of nodes. 
Table 2 shows a comparison of the low and medium density networks with nodes from 
100-500 with seed sizes 1% , 10% , 20% , 30% , 40% and 50% in all Random, Small-World 
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and Scale-Free networks. The range of low densities is from 0.12 to 0.16, and the range 
for medium densities is from 0.60 to 0.64. We considered 20 iterations for LTM as a 
benchmark, because most of the networks reach 100% influence within 20 iterations for 
networks with medium densities. For complete graphs (density equal to 1), it is observed 
that all networks reached the maximum influence in less than 20 iterations, regardless 
of the seed selection method. Table 3 shows the percentage of influenced nodes in Ran-
dom, Small-World and Scale-Free networks when the density is low. We can see that 
for the lowest tested density, i.e., 0.1 the range of level of influence for different network 
sizes is between 15.5−−25% when the seed size is 1% . For medium density networks 
it lies between 57% and 79% for all the methods when the seed size is 1% (Table 4) for 
network with N = 100 . That means, more iterations are required with 1% seed size 
to achieve a 100% influence in all network types and sizes i.e. from 100 to 500 nodes. 

Table 2  The average percentage of influenced nodes in all generated networks, with seed sizes up 
to 50% after 20 iterations

N - number of nodes, Net. - Network model, D - network density, L - low and M - medium density. The 100% influence is 
shown in bold font

Seed size 1% 10% 20% 30% 40% 50%

N Net. D Percentage of influenced nodes

100 R L 20.0 33.0 49.0 67.0 78.0 89.0

M 59.0 88.0 97.0 100.0 100.0 100.0
SW L 30.0 49.0 58.0 64.0 82.0 93.0

M 57.0 92.0 99.0 100.0 100 100.0
SF L 18.0 51.0 67.0 79.0 87.0 100.0

M 62.0 100.0 100.0 100.0 100.0 100.0
200 R L 16.0 30.0 42.0 53.0 78.0 87.0

M 67.0 79.0 82.0 98.0 100.0 100.0
SW L 16.5 40.0 54.0 67.0 78.0 89.0

M 67.0 91.0 100.0 100.0 100.0 100.0
SF L 15.5 40.0 56.0 67.0 79.0 98.0

M 88.0 100.0 100.0 100.0 100.0 100.0
300 R L 25.0 46.0 57.0 68.0 78.0 82.0

M 64.0 88.0 97.0 100.0 100.0 100.0
SW L 26.0 46.0 67.0 73.0 84.0 92.0

M 60.0 84.0 98.0 100.0 100.0 100.0
SF L 24.6 49.0 57.0 66.0 79.0 87.0

M 87.0 96.0 100.0 100.0 100.0 100.0
400 R L 21.0 44.0 55.0 61.0 87.0 92.0

M 77.0 100.0 82.0 97.0 100.0 100.0
SW L 22.0 45.0 56.0 68.0 72.0 88.0

M 71.0 82.0 98.0 100.0 100.0 100.0
SF L 28.0 46.0 64.0 71.0 87.0 99.0

M 76.0 100.0 100.0 100.0 100.0 100.0
500 R L 25.0 42.0 57.0 61.0 78.0 83.0

M 77.0 88.0 98.0 100.0 100.0 100.0
SW L 26.0 35.0 65.0 76.0 78.0 87.0

M 60.0 72.0 78.0 89.0 92.0 100.0
SF L 29.3 39.0 56.0 63.0 78.0 87.0

M 64.0 75.0 100.0 100.0 100.0 100.0
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Table 4 shows the percentage of nodes influenced for seed selection methods in R, SW, 
and SF networks when density is medium and seed size is 1% . For complete networks 
all nodes in all networks are influenced. As we increase the seed set size we can see 
that the percentage of nodes influenced are started to increase regardless of density or 
size(number of nodes) of the network. But for maximum seed size 50% , the 100% influ-
ence is reached in medium as well as low densities networks within 20 iterations. It is 
also important to point out that in synthetic networks, the small size networks are able 
to reach influence faster as compared to large size networks. A point of interest is the 

Table 3  Percentage of influenced nodes when the density is low and seed size is 1%

The highest percentage is bolded

Nodes 100 200 300 400 500

Networks Methods Percentage of influenced nodes

R R 20.0 16.0 25.0 21.7 14.6

D 23 17.5 25.7 22.2 15.2

C 25.0 17.5 23.7 22.7 15.8

B 27.0 18.5 24.7 23.2 16.2

DCB 27.0 18.5 25.67 23.25 16.2

K 28.0 19.0 26.0 23.5 16.4

DR 23 17.5 25.7 22.2 15.2

DD 29.0 20.5 25.7 34.75 37.8

DC 31.0 21.5 28.7 35.2 38.2

DB 32.0 22.0 29.0 35.5 38.4

DK 33 22.5 29.3 35.7 38.6

DDCB 37.0 24.5 30.7 36.7 39.4
SW R 27.0 16.5 26.0 22.0 15.2

D 27.0 17.5 25.7 22.25 15.6

C 27.0 18.5 24.3 23.25 16.2

B 28.0 19.5 24.3 23.0 16.2

DCB 28.0 19.5 26.3 23.0 16.2

K 30.0 20.5 27.0 23.5 16.6

DR 30.0 18.5 24.7 23.0 16.2

DD 35.0 20.0 25.33 37.8 39.0

DC 41.0 21.0 28.0 24.2 17.2

DB 43.0 22.0 28.7 24.7 17.6

DK 42.0 21.5 28.3 24.5 17.4

DDCB 46.0 23.0 29.3 39.4 40.0
SF R 18.0 15.5 24.7 28.0 13.6

D 20.0 16.5 25.3 28.7 14.2

C 21.0 17.0 23.3 21.75 14.6

B 22.0 17.5 23.7 22.2 15.4

DCB 22.0 17.0 25.7 21.0 14.0

K 23.0 18.0 26.3 22.5 15.6

DR 22.0 17.5 26.0 29.5 25.2

DD 30.0 21.5 26.3 24.2 17.0

DC 32.0 22.5 29.3 24.7 17.4

DB 33.0 23.0 29.7 25.0 17.6

DK 31.0 22.0 29.0 24.5 17.2

DDCB 37.0 25.0 31.0 33.25 28.2
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increase and decrease in density, which allows the methods to remain efficient regard-
less of the increase in number of nodes if the density is also increasing. But if the size 
(i.e. number of nodes) are increased but density is decreased that the influence process 
will be effected greatly as we can see from the Tables 3 and  4. A few observations from 
the experiment suggest that firstly, it takes more iterations when the seed size is smaller, 
i.e., 1% of the total number of nodes. Secondly, fewer iterations are required to achieve 
more influence when the densities are higher, regardless of the network topology. Lastly, 
for complete graphs, we need fewer iterations regardless of the type of network or seed 

Table 4  Percentage of influenced nodes when the density is medium and seed size is 1%

The highest percentage is bolded

Nodes 100 200 300 400 500

Networks Methods Percentage of influenced nodes

R R 59.0 66.0 56.3 47.2 50.6

D 61.0 67.0 56.7 48.0 51.4

C 61.0 67.5 57.0 48.2 52.0

B 63.0 68.5 57.7 48.7 52.4

DCB 63.0 68.0 58.0 49.0 52.0

K 64.0 69.0 58.0 49.0 52.6

DR 62.0 68.0 57.7 48.5 52.2

DD 70.0 71.5 61.3 95.2 75.8

DC 72.0 72.5 62.0 95.7 76.2

DB 73.0 73.0 62.3 96.0 76.4

DK 74.0 73.5 62.7 96.2 76.6

DDCB 78.0 75.5 64.0 97.2 77.4
SW R 57.0 65.5 56.3 47.2 52.0

D 62.0 67.0 56.7 48.0 52.4

C 63.0 68.5 57.7 48.7 52.4

B 64.0 69.0 57.7 48.5 53.0

DCB 64.0 69.0 58.0 48.0 53.0

K 66.0 70.0 58.3 49.0 53.4

DR 62.0 68.0 57.7 48.5 53.0

DD 65.0 69.5 58.7 49.2 59.0

DC 67.0 70.5 59.3 49.7 59.4

DB 69.0 71.5 60.0 50.2 59.8

DK 68.0 71.0 59.7 50.0 59.6

DDCB 71.0 72.5 60.7 50.7 60.2
SF R 59.0 65.5 55.7 46.5 60.2

D 61.0 66.5 56.3 47.2 60.4

C 62.0 67.0 56.7 47.5 60.6

B 63.0 67.5 57.0 47.7 61.0

DCB 63.0 67.5 56.0 47.5 60.0

K 64.0 68.0 57.3 48.0 61.2

DR 63.0 67.5 57.0 47.7 61.0

DD 71.0 71.5 59.7 49.7 62.6

DC 73 72.5 60.3 50.2 63.0

DB 74.0 73.0 60.7 50.5 63.2

DK 72.0 72.0 60.0 50.0 62.8

DDCB 78.0 75.0 62.0 51.5 64.0
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selection method used. From the above observations, we can say that density and seed 
set size play an important role in determining the efficiency of influence spread in terms 
of the percentage of influenced nodes. However, as we can see from the results, the seed 
selection method also matters.

Percentage of nodes influenced

We present a comparison of seed selection methods in the form of the percentage of 
gain in the influence of DDCB over Random, Small-World and Scale-Free networks 
in Table 5. The percentage of gain of influence for the DDCB method is calculated by 
subtracting from the percentage of nodes influenced by DDCB the percentage of nodes 

Table 5  Average percentage gain of DDCB method over R, D, C, B, DCB, K, DR, DD, DC, DB, and DK 
methods in Random (R), Small-World (SW) and Scale-Free (SF) networks

Seed set size is expressed as % of the total number of nodes. Each cell in the table shows the average and standard 
deviation of percentage gain of DDCB over other methods

Seed Size

N M 1% 10% 20% 30% 40% 50%

R R 1.51±.11 8.2±.06 6.18±.03 4.87±.03 3.31±.03 1.49±.02

D 9.74±.11 7.56±.06 5.64±.03 4.41±.03 2.97±.03 1.26±.02

C 9.64±.10 7.74±.05 5.72±.03 4.49±.03 2.91±.02 1.21±.02

B 9.08±.05 7.46±.02 5.43±.01 4.02±.01 2.64±.01 1.02±.01

DCB 9.08±.01 7.74±.07 5.44±.04 4.49±.03 2.64±.06 1.21±.03

K 8.79±.55 7.18±.53 5.15±.21 3.79±.45 2.46±.03 .92±.02

DR 8.95±.11 7.00±.06 5.11±.03 3.95±.03 2.64±.03 1.02±.02

DD 2.26±.06 2.26±.06 2.05±.01 2.07±.01 1.07±.01 .77±.01

DC 1.69±.08 1.69±.09 1.54±.02 1.61±.04 .77±.05 .61±.51

DB 1.41±.03 1.41±.04 1.28±.05 1.38±.09 .61±.45 .54±.35

DK 1.12±.29 1.13±.45 1.02±.35 1.15±.85 .46±.65 .46±.07

SW R 5.33±.05 3.97±.02 4.02±.02 4.59±.04 2.21±.03 1.08±.02

D 4.7±.05 3.41±.02 3.49±.02 4.13±.04 1.9±.02 .95±.01

C 4.08±.02 3.92±.01 5.41±.01 4.82±.02 3.26±.03 .91±.01

B 3.95±.03 3.11±.01 3.33±.01 3.81±.03 1.15±.01 .71±.01

DCB 3.95±.03 3.41±.03 5.41±.01 3.8±.02 1.15±.05 .90±.04

K 3.4±.04 2.51±.01 2.8±.02 3.30±.03 .90±.05 .54±.06

DR 4.26±.05 2.85±.02 2.95±.02 3.80±.04 1.15±.02 .70±.01

DD 1.69±.06 1.71±.06 1.31±.01 2.05±.01 1.02±.01 .54±.02

DC 1.12±.91 1.12±.34 1.02±.04 1.64±.36 .82±.34 .38±.57

DB .57±.21 .57±.04 .51±.11 1.23±.34 .61±.28 .23±.43

DK .85±.04 .85±.38 .77±.08 1.43±.91 .72±.54 .31±.59

SF R 6.97±.06 5.97±.03 5.13±.02 4.36±.03 3.43±.04 1.61±.02

D 6.36±.06 5.41±.03 4.56±.02 3.90±.03 3.15±.04 .14±.02

C 5.79±.04 5.13±.03 4.00±.02 3.44±.02 2.99±.03 1.38±.02

B 5.49±.06 4.85±.02 4.00±.01 3.46±.02 2.87±.03 1.15±.02

DCB 5.79±.91 5.13±.65 4.00±.37 3.46±.91 .87±.11 .91±.31

K 5.21±.55 4.57±.87 3.72±.84 3.23±.04 2.72±.06 1.05±.13

DR 6.05±.06 4.85±.03 4.00±.02 3.46±.02 2.87±.03 1.15±.02

DD 2.15±.06 2.15±.06 2.26±.05 1.79±.04 .92±.01 .61±.01

DC 1.54±.04 1.54±.08 1.70±.93 1.30±.08 .72±.11 .50±.26

DB 1.22±.33 1.23±.54 1.41±.09 1.02±.06 .61±.73 .40±.34

DK 1.85±.11 1.84±.03 1.97±.93 1.54±.05 .82±.17 .53±.66
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influenced when using other methods (i.e. R, D, C, B, DCB, K, DR, DD, DC, DB, DK, 
DDCB). The overall gain for Random, Small-World and Scale-Free networks for a par-
ticular number of nodes is calculated by taking the average gain over all generated net-
works of one size (i.e N = 300 ). We compute the gain using the level of influence after 
20 iterations, as this is the earliest point that the DDCB (and hence any) seed selection 
method reaches 100% influence. We noted that, as expected, the percentage gain of 
DDCB method is the highest over Random seed selection method (i.e. 10.51%) in Ran-
dom networks. However, Table 5 shows that the DDCB method outperforms all evalu-
ated seed selection methods.

Additionally, the results in Tables  3 and 4 show that the traditional seed selection 
methods do not perform as well as their ‘sibling’ driver based methods. By ‘sibling’ 
method, we denote a pair of methods where ranking is done using the same approach, 
but one is a driver-based method (only driver nodes are ranked) and the other is not (all 
nodes are ranked). It could be because none of the ranking methods incorporates the 
fact that even the highest degree node can be clustered. As a cluster in a network is a set 
of densely connected nodes that is sparsely connected to other clusters in the network, 
so it is unnecessary to target all the highest degree nodes that may be in only one or few 
clusters. That is why, we have more influenced nodes in driver based methods overall. 
The driver nodes are selected in a way to enable control over the whole network and 
not only its parts, so they provide better coverage of the network. These observations 
suggest that if we rank driver nodes based on centrality measures when they are to be 
used as seeds, the influence spread process produces better results than the benchmark 
methods such as randomly generated seeds or most commonly used degree based meth-
ods. Table 5 shows the results when 1% , 10% , 20% , 30% , 40% and 50% of driver nodes are 
selected as seeds. With the increase of the seed set size, the difference in the percentage 
of nodes influenced by different methods becomes negligible. Thus, the advantage of the 
DDCB method is more critical when we have low budget for seed selection, and we can 
target only small number of nodes which, arguably, is a case in majority of situations. 
The highest percentages (greater than 9 percent) are highlighted in bold font in Table 5.

Critical difference diagrams

Figure 4 shows a comparison between all the methods used to generate influence over 
all of the generated networks. The critical difference diagram shows whether the results 
(expressed as % of nodes influenced) for various methods are significantly different from 
each other. The confidence level used is α = 0.05 . Critical difference diagrams use the 

Fig. 4  Critical difference diagram for generated networks



Page 22 of 31Sadaf et al. Applied Network Science            (2024) 9:38 

Wilcoxon-Holm method (Holm 1979) to determine the statistical significance of the 
results. The lower the rank (further to the right) the better performance of a model 
under the particular masking rate compared to the others on average. Horizontal line 
segments group together methods with ranks that are not significantly different in terms 
of spreading influence. The percentage of number of nodes influenced is calculated for 
each method for seed sizes 1% , 10% , 20% , 30% , 40% and 50% . The diagrams show that, in 
generated networks, driver based methods are critically different from traditional seed 
selection methods in terms of percentage of influenced nodes. Moreover, the DDCB 
method consistently outperforms other methods and ranks as no. 1 across the board. 
Other driver–based methods, with exception of random approach (DR), although they 
outperform traditional methods, are not statistically significantly different between each 
other. When looking at the traditional methods there is more statistically significant dif-
ference between centrality based methods, e.g., degree and closeness centrality ranking 
methods are worse than betweenness centrality.

This indicates that the key to good seed selection method is rather the fact that we first 
select driver nodes and rank those than the ranking method itself. Selecting driver nodes 
enables to effectively reduce number of nodes to be ranked and in the same time ensures 
that selected nodes are good influencers as they can control the underlying structure.

Results from real social networks

This section contains the results from real social networks.

Percentage of influence gain by DDCB method over other methods in the social networks

Table  6 shows the percentage of influence gained over all other methods by DDCB 
method after 100 iterations. We can see that over Random method, percentage gain is 
the highest. It can be seen, that DDCB method gained more influence over traditional 
methods as compared to driver based methods. This means that driver based methods, 
regardless the applied ranking method, do increase the spread of influence over a net-
work. We observe an increase of number of influenced nodes as the process progresses. 
This leads to the reduction of gain achieved by DDCB over other methods and eventu-
ally, when 100% of influenced nodes is achieved, there is no gain.

Percentage of nodes influenced

We can see from the results that driver–based methods of seed selection (DR, DD, DC, 
DB, DK, DDCB) are able to achieve full influence i.e. when all nodes are activated in 
less iterations than traditional methods (R, D, C, B, K). With 25% nodes selected as seed 
nodes for DDCB method, in all the networks, all nodes are activated in 100 or fewer 
iterations. For R and D methods, for Twitter, FbN, DRO, DHU, FbA, DHR, YouTube and 
Diggs networks it took more than 100 iterations to achieve 100% influence, additionally, 
for R method and Twitter, DRO, FbA, DHU, DHR, YouTube, and Diggs natworks it took 
more than 100 iterations to reach 100% influence. The networks are distributed to be 
represented in three figures, which are divided on the basis of the similarities between 
their network densities. We can also notice in Figs. 6 and  7 that for such networks as 
YouTube, Diggs, DRO, DHU, FbT and FbN the spreading dynamic (trend-lines) based 
on R and D seed selection start slowly (below y = x line) but then pick up as number of 
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iterations increases. This clearly means that if we are looking for fast influence spread, in 
less number of iterations and with small percentage of seed size, we cannot just rely on 
Random or Degree based methods. Spreading dynamic for driver–based methods shows 
faster influence spread as compared to traditional seed selection methods. That means, 
driver nodes are the influential nodes and then ranking of those nodes based on central-
ity measures enabled to extract the most influential ones. It means that driver nodes that 
were originally used as nodes that can control network can also be used as seeds and can 
actually provide faster influence spread.

The DDCB method shows promising results, but this could also be due to the network 
structural measures, e.g. density of the underlying social network. Thus, we look into the 
densities of the selected networks. We can see in case of lower density networks, such as 
Diggs (0.000002), YouTube (0.000004), Twitter (0.00012) and Ego (0.00014), the trend-
line for all the methods starts lower than for the networks with high density such as FB 
(0.01) or ZKC (0.13). It is worth noting that for all networks, for seed size 25% , DDCB 
method achieved 100% influence in less than 100 iterations, which can be seen from the 
trend-lines in Figs. 5,  6 and  7. The point to be highlighted here is: networks with higher 
densities and smaller size (e.g. ZKC) show a trend-line which depicts the quickest pos-
sible influence spread as compared to the rest of the networks. Figures 5,  6 and  7 show 
the percentage of nodes influenced as a function of number of iterations of spreading 
process for different seed selection methods and seed set size of 25% . The results show 

Table 6  Gain of DDCB over R, D, C, B, DCB, K, DR, DD, DC, DB and DK in real social networks

Seed set size is 25% of the all nodes. Each cell in the table shows the percentage gain of DDCB over other methods after 100 
iterations

R D C B DCB K DR DD DC DB DK

FB 24.68 23.03 23.94 24.94 24.15 23.59 20.59 20.59 21.19 21.28 20.14

ZKC 8.18 2.00 1.82 1.09 0.95 0.73 0.18 0.18 0.27 0.00 0.00

Twitter 33.81 25.83 25.8 25.78 19.16 25.77 22.81 22.8 22.74 22.06 20.22

Diggs 38.49 36.05 35.76 35.47 35.37 38.21 19.11 17.89 16.67 15.53 18.85

Youtube 39.00 33.02 32.12 31.79 31.59 32.92 2.51 1.71 0.91 0.11 2.45

Ego 20.83 13.34 13.33 13.33 16.15 20.81 8.64 8.62 8.14 8.05 7.89

LC 30.84 24.62 24.61 24.61 24.52 30.81 21.4 21.23 20.98 20.65 21.06

LF 15.29 8.62 8.56 8.34 8.25 8.33 7.38 7.35 7.20 6.86 8.11

PF 7.62 4.66 4.43 4.21 4.13 4.25 1.94 1.78 1.64 1.60 1.71

MFb 21.44 20.16 20.11 20.11 20.10 20.11 14.07 13.80 19.70 19.43 13.80

DHR 36.77 33.42 32.21 31.00 30.90 33.20 5.78 5.26 4.73 4.21 5.01

DRO 38.43 33.74 33.42 33.22 33.12 33.45 12.50 12.40 12.13 11.94 33.18

DHU 42.4 33.77 33.52 33.33 33.13 37.85 25.35 25.02 24.84 24.61 24.33

MG 27.54 25.43 25.07 25.25 25.07 25.34 15.14 14.49 14.05 9.35 13.86

L 24.55 23.25 23.04 22.82 22.79 22.81 17.34 17.11 16.75 16.71 16.70

FbAR 37.97 30.40 30.18 29.95 29.93 30.30 28.43 28.14 27.85 27.56 28.28

FbA 45.29 30.45 30.05 29.55 39.87 44.89 31.28 30.83 30.28 29.46 31.01

FbG 19.95 18.22 17.93 17.71 18.18 18.20 12.97 12.75 12.39 12.13 12.68

FbN 28.82 21.03 21.00 20.95 20.96 21.01 11.85 11.64 11.18 11.10 11.40

FbP 26.73 20.90 20.76 20.40 20.87 20.89 14.89 14.47 14.15 13.90 14.31

FbPF 34.61 30.21 29.85 29.57 29.39 29.48 25.30 25.12 24.85 24.21 25.21

FbT 23.93 20.84 23.70 23.29 16.73 16.77 18.37 17.46 12.71 12.36 16.63
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that DDCB obtained momentum from the very start of influence spread in all the net-
works, despite their size. That clearly means, that if we aim to achieve faster influence, 
i.e., more nodes activated in shorter time, then DDCB is the right choice. That will allow 

Fig. 5  The percentage of influenced nodes in each iteration (the trend-lines for all simulation cases) for 
different seed selection methods and for Z, Youtube, Diggs, and PF networks. Seed set size is 25%

Fig. 6  The percentage of influenced nodes in each iteration (the trend-lines for all simulation cases) for 
different seed selection methods and for LF, FB, FbT, LC, FbP, FbG, L, FbPF, and FbA networks. Seed set size is 
25%
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us to decrease our time (the number of iterations) needed to spread influence in the net-
work, and we can achieve faster influence by using smaller seed set size. If we look at the 
shape of trend-lines from Figures S6, S7 and S8, we see a lift-off in trend-lines of DDCB 
method.

Number of iterations needed to influence the network

Figure 8 shows different seed set sizes and the number of iterations each method needs 
to achieve 100% influence. We sorted the networks in ascending order of their densities 
to see clearly that the sparser networks needs more iterations to complete the process, 
irrespective of the seed set size. We worked on achieving the maximum influence by 
continuing the influence spread to whatever number of iterations is needed. Overall, the 
number of iterations starts to reduce in all networks when the seed set size increases 
from 5% to 15% and to 25% . We can see a drop in the number of iterations as we increase 

Fig. 7  The percentage of influenced nodes in each iteration (the trend-lines for all simulation cases) for 
different seed selection methods and for MFb, FbN, Ego, Twitter, FbAR, DHU, DRO, DHR, and MG networks. 
Seed set size is 25%

Fig. 8  Number of iterations needed to reach 100% of influenced nodes using different seed selection 
strategies: a Traditional Seed Selection, b Driver Seed Selection, c DDCB Seed Selection. Seed set sizes are 5% , 
15% and 25%
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the seed size and also as the density of a network increases. This means that some of the 
strategies to get 100% of nodes activated are (i) to increase the seed size or (ii) to run the 
process longer. But this is not always possible, for example due to resource limitation.

In Fig. 8, we can see that DDCB method, outperforms both driver based and tradi-
tional seed selection methods, and can be used when we want to see more nodes influ-
enced in less time (iterations). We can also see that even driver method, where seeds 
are ranked in the highest degree, helps propagate influence faster than when using 
traditional seed selection methods. From the same figure, we can see that Diggs net-
work takes maximum iterations, i.e. up to 300 when seed size is 5% , to achieve maxi-
mum influence when we use traditional seed selection methods. What is more, when 
we increase the seed size to 15% or 25% , we see a sudden drop in number of iterations 
needed. But still the number of iterations remain higher in Diggs than the rest of the 
networks. Since Diggs is the lowest density (0.000002) network, we can say our results 
from simulated networks are relevant here as well. Where we say that the denser the net-
works, the faster the influence spread. We can see a drop in number of iterations for the 
same network from Fig. 8, where we compared different seed sizes for driver based seed 
selection methods. This result indicates that, even in networks with varying structures, 
driver based methods outperforms the traditional seed selection methods.

Critical difference diagram for social networks

We see similar results (Fig. 9) as we have seen earlier for the generated networks. We 
found out that all driver–based methods yield statistically better results as compared to 
their traditional counterparts. This can mean that, if we identify nodes as driver nodes 
first before selecting them as seeds, it increases their potential to influence more nodes 
in the network in less iterations as compared to traditional seed selection methods. 
Not all traditional methods are significantly different from each other. We can see high 
resemblance in the results of D, K and B methods. If we look at their counterparts meth-
ods based on driver nodes DR, DK and DB respectively they are significantly improved 
than them.

Time complexity and execution times

From the experiments results, we can see that driver based methods can influence more 
number of nodes in the networks under consideration. However, there is complexity 
connected with calculating the driver nodes and ranking. Since our main focus is on cal-
culating the percentage of the nodes influenced, that is why we talk about in how many 

Fig. 9  Critical difference diagram for real networks
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iterations we can reach the maximum influence. There is complexity connected with 
calculating the driver nodes and ranking. But our main focus is on calculating the per-
centage of the nodes influenced. We have analysed the execution times for all the seed 
selection methods in the biggest network, i.e., Youtube. The most important observation 
is that when comparing all the methods, DDCB method takes fewer iterations (i.e. 26, 
20 and 16 at 5%, 15% and 25% seed nodes) to complete the influence process, which is to 
influence all the nodes. Also, all the driver based methods in comparison to traditional 
methods require almost half the iterations to influence 100% of the nodes of the net-
works. All the comparisons are done for 5%, 15% and 25% seed set sizes respectively. DR 
in comparison to R (77, 74 and 70) takes 37, 32 and 28 iterations to influence the nodes 
in the networks. DD in comparison to D (75, 74 and 60) takes 35, 30 and 28 iterations. 
DC in comparison to C (69, 63 and 62) takes 39, 35 and 30 iterations. DB in comparison 
to B (63, 59 and 55) takes 43, 40 and 32 iterations. DK in comparison to K (61, 57 and 
49) takes 38, 32 and 25 iterations. Hence, comparing to all the methods, DDCB method 
is more efficient than any other method in terms of number of iterations that it takes to 
influence the overall network nodes. However, despite the fact that driver nodes have 
higher theoretical complexity, on the other hand, these can be quite useful in the influ-
ence spread in synthetic and social networks because driver-based seed selection meth-
ods require fewer iterations to influence all nodes.

Table 7, shows the time it takes to execute the algorithms for the methods.

Conclusion and future work
In this study, we used driver nodes selection methods as seed selection strategies in the 
influence spreading process to evaluate how they affect the spread time and the influ-
ence number of influenced nodes, both in generated and real social networks. This is the 
first research that brings the fields of control and influence together and proposes new 
seed selection methods that are inspired by concepts from control theory. We have com-
pared traditional seed selection methods (R, D, C, B, DCB and K) with driver based seed 
selection methods as their sibling methods (DR, DD, DC, DB, DDCB and DK). We can 
draw very clear key conclusions based upon the obtained results.

First, based on Sect.  we can say that all driver based seed selection methods outper-
forms the traditional seed selection methods in terms of percentage of influenced nodes 
in generated networks as well as real social networks. We further conclude that, if we 
have a better seed selection set at the beginning of the spreading process, it is high 
chance that the more number of nodes will be influenced as compared to when we just 
apply traditional seed selection methods. Moreover, even if we do random seed selec-
tion from driver nodes, they perform better than any of the traditional seed selection 

Table 7  Time complexity of calculating different measures

Centrality Complexity

Degree O2

Closeness O(N ∗ E ∗ d) , where d is the diameter

Betweenness O(N ∗M+ N ∗ 2 ∗ logN)

Driver Nodes O(N2
.5)
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strategies. The main contribution here is the fact that, when applying driver based seed 
selection methods, even if the seed size is small those methods are able to achieve higher 
number of influenced nodes. Hence, if driver based seed selection methods are used, we 
need smaller seed set for achieving 100% influence in the network. Our results converge 
from generated networks as well as from social networks. Secondly, we learn that, for 
sparse networks where density is very low, percentage of influenced nodes is higher in 
driver based seed selection methods as compared to traditional methods. We see this 
phenomenon for generated and real networks such as Youtube and Diggs, which are 
the lowest density networks. We see that even in these networks with small seed sizes 
driver based methods outperforms their sibling methods. If we complete graph, 100% 
influence can be achieved, regardless of the seed selection method the influence process 
is quick. When density is 1, all seed methods work in the same way – they become ran-
dom. Important conclusion here is when we compared the percentage of influence in 
lowest and medium density networks for random and as well as social networks. From 
this comparison /revWhen we analysed the time complexity of seed selection methods, 
we see that, identifying driver nodes is a very complex task, but we do not need to calcu-
late centrality measures for all nodes and the number of iterations required to reach the 
100% influence in a network reduces when we use driver based methods. Thus, actually 
we are able to save time and resources. To conclude, 100% influence can be achieved, 
regardless of the seed selection method the influence process is quick. When density is 
1, all seed selection methods work in the same way – they become random. The impor-
tant thing to note is if the network density is very low, like in the case of Diggs network 
(0.000002), the driver based methods outperforms traditional methods in terms of num-
ber of iterations needed to achieve 100% coverage. For synthetic networks, we see the 
maximum gain that DDCB method has achieved over other techniques is 10.51% which 
is substantial average gain over Random seed selection method when seed size is 1% as 
shown in Table  5. The fact that DDCB method outperforms all others for small seed 
sizes, shows that it has great potential in situations with limited budget where only small 
number of nodes can be initially activated. This can be concluded based upon the per-
centage of influenced nodes in all generated networks. Those results are also confirmed 
by the experiments on real networks.

Our work identifies the relative performance of different seed selection methods in 
terms of influence spread in a wide variety of network structures, however further work 
can be done in identifying the characteristics of the individual nodes which lead to them 
serving as highly effective seed nodes. A deeper understanding of the structural contri-
butions of individual nodes may lead to further improvements to seed selection meth-
ods. Driver based methods show improvement over traditional seed selection methods 
in both synthetic and real–world networks. Results for DDCB are very promising, as 
this method consistently outperforms other seed selection methods in both kinds of net-
works. The observed usefulness of our novel approaches addresses the research question 
“How can the concepts from network control be used in the spread of influence field?” of 
the research topic.

Finally, we can conclude that in order to achieve maximum influence in fewer itera-
tions, not only density but also seed size and ranking method of driver nodes are impor-
tant. A further improvement to this may be to identify communities within the network 



Page 29 of 31Sadaf et al. Applied Network Science            (2024) 9:38 	

and target seed selection methods at the community rather than at the whole network 
level.
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