
Geoscience Frontiers 15 (2024) 101815
Contents lists available at ScienceDirect

Geoscience Frontiers

journal homepage: www.elsevier .com/locate /gsf
Focus Paper
Artificial Intelligence: A new era for spatial modelling and interpreting
climate-induced hazard assessment
https://doi.org/10.1016/j.gsf.2024.101815
1674-9871/� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on behalf of China University of Geosciences (Beijin
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Centre for Advanced Modelling and Geospatial
Information Systems (CAMGIS), School of Civil & Environmental Engineering,
Faculty of Engineering and IT, University of Technology Sydney, NSW 2007,
Australia.

E-mail address: biswajeet.pradhan@uts.edu.au (B. Pradhan).
Abhirup Dikshit a, Biswajeet Pradhan a,b,c,⇑, Sahar S. Matin a, Ghassan Beydoun a, M. Santosh d,e,f,
Hyuck-Jin Park c, Khairul Nizam Abdul Maulud b

aCentre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil & Environmental Engineering, Faculty of Engineering and IT, University of
Technology Sydney, NSW 2007, Australia
b Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
cDepartment of Energy and Mineral Resources Engineering, Sejong University, Choongmu-gwan, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
d School of Earth Sciences and Resources, China University of Geosciences Beijing, Xueyuan Road, Beijing 100083, China
eDepartment of Earth Sciences, University of Adelaide, Adelaide, South Australia, Australia
f Faculty of Science, Kochi University, Kochi 780-8520, Japan
a r t i c l e i n f o

Article history:
Received 3 October 2023
Revised 7 February 2024
Accepted 28 February 2024
Available online 4 March 2024
Handling Editor: E. Shaji

Keywords:
Artificial Intelligence
Explainable AI (XAI)
Climate change
Spatial modelling
Natural hazards
a b s t r a c t

The application of Artificial Intelligence in various fields has witnessed tremendous progress in the recent
years. The field of geosciences and natural hazard modelling has also benefitted immensely from the
introduction of novel algorithms, the availability of large quantities of data, and the increase in compu-
tational capacity. The enhancement in algorithms can be largely attributed to the elevated complexity of
the network architecture and the heightened level of abstraction found in the network’s later layers. As a
result, AI models lack transparency and accountability, often being dubbed as ‘‘black box” models.
Explainable AI (XAI) is emerging as a solution to make AI models more transparent, especially in domains
where transparency is essential. Much discussion surrounds the use of XAI for diverse purposes, as
researchers explore its applications across various domains. With the growing body of research papers
on XAI case studies, it has become increasingly important to address existing gaps in the literature.
The current literature lacks a comprehensive understanding of the capabilities, limitations, and practical
implications of XAI. This study provides a comprehensive overview of what constitutes XAI, how it is
being used and potential applications in hydrometeorological natural hazards. It aims to serve as a useful
reference for researchers, practitioners, and stakeholders who are currently using or intending to adopt
XAI, thereby contributing to the advancements for wider acceptance of XAI in the future.
� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The UN Office for Disaster Risk Reduction (UNDRR) defines
modelling as a ‘‘qualitative or quantitative approach to determine
the nature and extent of disaster risk, including identifying poten-
tial hazards and their characteristics like location, intensity, fre-
quency, and probability”. In the context of natural hazards,
modelling can be construed as a non-structural measure contribut-
ing to risk management. The global population is estimated to
grow more than 11 billion by 2100 (United Nations, 2019). This
increase will lead to tectonic shifts in the number of people living
in the cities, which could reach 75% (Angel et al., 2012). Growing
evidence of global climate change, driven by rising greenhouse
gas emissions (Hallegatte, 2009), will have profound impacts on
natural hazards, potentially increasing their occurrences and caus-
ing severe economic and human losses. It is estimated that by
2030, the total urban land in high-frequency flood zones will rise
by 33% compared to 2015 (Güneralp et al., 2015).

For a long time, researchers have aimed to examine the impact
of climate change and natural hazards, considering various charac-
teristics such as frequency, duration, severity, spatial extent, and
timing, among other parameters. Such analysis aims to examine
past observations and analysing possible future occurrences. The
techniques employed can be broadly categorised into physical
models, statistical models, or a combination of both. Various
research articles have addressed different aspects of climate
g).
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change and natural hazards characteristics. As an example,
Schneiderbauer et al. (2021) reviewed studies related to natural
hazards risk perception in mountain regions related to climate
change. The study identified critical gaps in current research and
emphasized the need for more multidisciplinary research, along
with risk characterisation over space and time. Gariano and
Guzzetti (2016) reviewed landslide-climate studies and noted a
geographical bias in their distribution, with large parts of the world
remaining uninvestigated. One key finding highlighted the impor-
tance of focussing on emission scenarios, and downscaling tech-
niques, rather than solely describing the controlling factors when
examining worst-case scenarios. This approach could potentially
overestimate or underestimate landslide hazards and risk. How-
ever, among the various research articles on climate change and
natural hazards modelling, no study has investigated Explainable
Artificial Intelligence (XAI).

In simple terms, XAI refers to the AI models whose output can
be understood by humans. In the past two decades, machine learn-
ing has played a pivotal role in advancing climate change studies in
the field of natural hazards. Numerous studies have extensively
explored the applications of machine learning, leading to a better
understanding of natural hazards and its characteristics. However,
there is now a growing consensus within the scientific community
and practitioners that relying solely on machine learning may not
be adequate for effective mitigation strategies. As a result, XAI is
gaining prominence to enhance the acceptance of ML approaches
in decision-making purposes and improving modelling outcomes.
Although focussed on machine learning applications have gained
wide acceptability in recent years, we now recognize a gap in the
transparency of these models, driving the timely need to shift
the focus towards XAI. This study focuses on hydro-
meteorological natural hazards, specifically on droughts, floods,
landslides, and extreme events. We perform an overview of XAI
studies for the above-mentioned natural hazards, highlights key
findings, and provides a pathway for future course of actions
required to ensure wider acceptability of XAI among both the sci-
entific community and practitioners.
2. How climate change is impacting natural hazard events

According to the latest findings from the Intergovernmental
Panel on Climate Change (IPCC), each of the past four decades
has been consecutively warmer than any preceding decade dating
back to 1850. Quantitatively, the global surface temperatures have
seen a rise of 0.84 �C to 1.1 �C in the first two decades of this cen-
tury compared to 1850–1900. And the IPCC is ‘‘unequivocal” in
saying: ‘‘humans are to blame for this global warming”. The Paris
Agreement of 2015 set out a goal of limiting global temperature
rise to 1.5 �C. After a major setback in 2020, when the United States
withdrew from the climate accord (Schiermeier, 2020), things are
back on track and necessary steps are being taken to limit the tem-
perature rise. Although, this is not a perfect measure to tackle glo-
bal warming, this was the major step taken by global leaders, like
the Antarctic ozone hole debacle. A study by Farinosi et al. (2020)
analysed how a decrease in global warming, achieving the targets
set out in Paris Agreement would affect the exposure of global pop-
ulation to droughts, floods, and heatwaves. The results indicate
that limiting the temperature increase to <2 �C would lead to a
50% reduction in exposure to these events in Africa, Asia, and the
Americas, and a 40% reduction in Europe and Oceania. If the tem-
perature rise is limited to 1.5 �C, further decrease of 10%–30% is
expected across the globe. Additional efforts to limit it to 1.5 �C
would further reduce the exposure by about an additional 10%–
30% in all the areas considered.
2

The economic losses due to climate change are staggering, with
estimated daily loss of US$202 million, killing 115 people over the
last 50 years, according to a report from the World Meteorological
Organization (WMO). The frequency of disasters has also increased
five-fold during this period, with more extreme events being
reported. However, an improvement in early warning systems
and disaster management has led to decrease in casualties by a fac-
tor of 3. Fig. 1 shows a broad overview of natural hazards in 2022
captured by NatCatSERVICE.

The impacts of climate change on the Earth’s atmospheric con-
ditions is due to an increase in greenhouse gas emissions that con-
tribute to a warmer atmosphere capable of holding more moisture.
As per the Clausius–Clapeyron equation, a 1� increase in atmo-
sphere warming can hold 7% higher moisture content, potentially
leading to more intense rainfall in a shorter time, provided if the
conditions are right (Coumou and Rahmstorf, 2012; Cattiaux and
Ribes, 2018; Dikshit et al., 2022a,b). This leads to increase in
hydrometeorological hazards like landslides and flash floods. On
the other hand, warmer temperatures enhance evaporation, which
reduces surface water, alters the timing of water availability, and
dries out soils and vegetation (Coumou and Rahmstorf, 2012). This
leads to periods of low rainfall drier than they would be in cooler
conditions leading to drought like conditions. Additionally, the rise
in atmospheric moisture content results in an increased supply of
latent energy that fuels storms. This leads to a higher potential
intensity of tropical storms as sea surface temperatures increase
(Coumou and Rahmstorf, 2012).

The study of climate change impacts on natural hazards has lar-
gely focussed on two broad aspects. The first group of studies has
focussed on analysing the climate model outputs under different
scenario and studying its characteristics at different spatial scales.
Although model outputs have their fair share of success, care must
be taken when examining and interpreting the outputs. The classi-
cal case of computational simulations failing short was during the
ozone hole crisis. In this instance, the models failed to account for
the activation of ozone-depleting chlorine species, a process that
takes place on and within polar stratospheric cloud particles at
exceptionally low temperatures. Whereas, the second group of
studies has focussed on examining the likelihood of extreme
events, which have garnered more attention in recent times due
to their rising occurrences. The catastrophic 2019/20 Australian
bushfires known as ‘‘Black Summer” event have been linked to
flash drought, an extreme event which has been gaining promi-
nence in the last two decades. Such events have both short-term
impacts like air quality, health, loss of human and animal lives
and long-term impacts including vegetation structural changes,
ecohydrological damages and several others.

Although the trend of rising global temperatures is quite appar-
ent, it is harder to gauge the precise impact of climate change on
specific extreme weather events – including hurricanes, typhoons,
floods, wildfires, and heat waves. The studies on climate model
outputs is straightforward, and its analysis provides an outlook
towards the future of natural hazards, which typically shows a
greater number of such incidences with increased risk and vulner-
ability. The next section focusses on these aspects providing a
broader idea of the impact of climate change on different hydro-
meteorological natural hazards.
2.1. Droughts

Droughts are episodic water deficient conditions prevailing in
an area for shorter and/or longer durations (Dai, 2013). Several
studies show an increase in global warming may lead to more
droughts in this century, as a result of low rainfall in the subtropics



Fig. 1. An overview of global natural hazards that occurred in 2022 (Source: NatCat Services).
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and the warmer temperatures leading to increase in evaporative
demand (Dai et al., 2018). Vicente-Serrano et al. (2020) argued that
heightened water uses efficiency of plants in response to rising CO2

levels might decrease the evaporative demand, thus potentially
alleviating drying. However, ascertaining a direct correlation
between droughts and global warming can be tricky as they are
variable and can occur every year or every few years, lasting for
years or even decades, causing different levels of dryness. This
complexity makes droughts difficult to discern random events
from events caused by human-induced warming. In a recent work,
Williams et al. (2020) studied human-induced climate change con-
tribution to 21st century megadrought in the Western USA and
northern Mexico using rainfall data, modelled temperature, and
relative humidity, and found human-induced warming to con-
tribute about 46% to the severity of drought.

The study by Cook et al. (2015) suggested the likelihood of
megadroughts (droughts lasting for 10 years or more, such as the
Australian Millennium Drought) – is projected to increase from
the present 12% to 60%–80% dependent on different climate sce-
narios. There have been numerous studies showcasing the varia-
tion of drought characteristics across the globe for different
climate scenarios. Such analysis is largely dependent on the
drought indices, region and time period used to examine future
drought scenario. Chiang et al. (2021) used drought indices, Stan-
dardised Precipitation Index (SPI) and Standardised Precipitation
Evaporation Index (SPEI) at 6-month scale and highlighted a shift
in drought frequency, drought duration and drought intensity dis-
tributions due to anthropogenic forcing. Cook et al. (2020) exam-
ined drought dynamics (rainfall, soil moisture and runoff) from
the outputs of Coupled Model Intercomparison Project (CMIP6).
The study found a significant increase in drying response in soil
moisture and runoff compared to rainfall during the warm seasons
(April–September) in Northern Hemisphere.
3

2.2. Landslides

Landslide is the movement of a mass of rock, debris, or earth
under the influence of gravity (Hungr et al., 2013). The movement
of these masses could be either flowing, sliding, toppling, falling, or
spreading, or a combination of these (Gariano and Guzzetti, 2016).
Mountains, where these hazards usually occur are called as ‘‘sen-
tinels of changes” and respond quickly and effectively than any
other geographical environments to climate changes (Beniston,
2003). The impact of climate change on landslides can be through
multi-ways, an increase in rainfall and temperature would lead to
increasing landslide incidences and in a form of consecutive events
occurring post other natural hazards such as wildfires, heatwaves.
Ravanel et al. (2017) revealed that the 2015 heatwaves in Western
Europe leading to rockfalls was most likely a result of the warming
of rock-wall permafrost from the 2003 summer heatwave. The sen-
sitivity of landslides may also depend on landslide type, landslide
size and its depth (Crozier, 2010). Shallow landslides which are
mostly triggered by short-term rainfall can be more influenced
by the parameter changes in short-term, like, rainfall intensity.
However, deep-seated landslides would be affected by long-term
hydrometeorological changes like changes in the monthly rainfall,
groundwater, and seasonal snow cover (Bernardie et al., 2021).

Gariano and Guzzetti (2016) conducted an extensive examina-
tion of landslide research in the context of climate change. Their
study performed an initial global evaluation of the prospective
impact of landslides and revealed a rise in the occurrence and
severity of rainfall-triggered landslides. This increase also trans-
lated to a higher number of individuals exposed to landslide risks.
An interesting study on climate change impacts on landslides was
conducted by Maraun et al. (2022), whereby the authors used a
decade-old landslide event in Austria and simulated the event for
a future climate scenario. The study focussed on four different sce-
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narios under the possible regional hydrometeorological changes
and found the landslide occurrence probability to increase by
66% in a worst-case scenario but could also decrease by 20% in a
much drier soil condition and heavier rain scenario The suggestion
was that if the Paris Agreement target were achieved, the associ-
ated alterations in land cover would effectively offset the conse-
quences of climate change.

2.3. Floods

Floods are defined as the ‘‘overflowing of the normal confines of
a stream or other body of water or the accumulation of water over
areas that are not normally submerged”. Floods can have multiple
forms, including, river (fluvial) floods, flash floods, urban floods,
pluvial floods, sewer floods, coastal floods, and glacial lake out-
burst floods (GLOF). Changes in rainfall (intensity, duration, timing,
phase—rain or snow), and temperature patterns (impacting soil
freezing, snow and ice melt and ice jam formation) can affect flood
characteristics in a changing climate (Kundzewicz et al., 2014).

One of the first research works on global flood risk under cli-
mate change using outputs of 11 climate models was performed
by Hirabayashi et al. (2013). The study showed an increase in flood
frequency in some parts of the world (SE Asia, Peninsular India,
east Africa), and decrease in flood frequency in other parts of the
world for an ensemble of projections under high-concentration
scenario. It also showed an increase in flood exposure would
depend on the degree of warming. Arnell and Gosling (2016) stud-
ied the impacts of climate change on global river flood risk using a
global hydrological model [Macro-scale—Probability-Distributed
Moisture model.09 (Mac-PDM.09)] and 21 climate models at a spa-
tial resolution of 0.5�. The estimates of the impacts vary across
regions dependent on the use of climate models, however, gener-
ally, a consensus among the models was found. The results suggest
an increase in flood magnitude across humid tropical Africa, south
and east Asia, and consistent decreases around the Mediterranean,
central America, central Europe.

2.4. Extreme events

The number of extreme weather events has surged dramatically
in the past two decades, primarily due to increasing global temper-
atures and other climate shifts. Climate change will aggravate
weather extremes, a uniform consensus among the scientific com-
munity. However, a fundamental issue with weather extremes is its
definition, which has also been echoed by the National Academy of
Sciences (2016) which argued a specific definition criterion along
with a set of objective events to be used. Cattiaux and Ribes
(2018) comprehensively discussed this important aspect and found
a lack of spatiotemporal scale in extreme weather-related studies a
major issue for defining such events. The authors proposed a four-
pronged approach to define weather extremes, with a key focus on
the specific event having a null probability of reoccurrence.

Extreme weather events are caused by strong and narrow bands
of westerly winds known as jet streams, which flow above the
Earth’s surface. These currents are generated when cold air from
the poles clashes against hot air from the tropics, leading to likeli-
hood of hydrometeorological hazards. This leads to periods of unu-
sual hot and cold weather patterns along the same latitude, and
such precarious weather can remain for days or weeks leading to
flash drought, heat waves and even fires (Chowdhary et al., 2019).

The impact of weather extremes on hydrological natural haz-
ards is different across their characteristics. As an example,
Sharma et al. (2018) found that despite increasing rainfall
extremes, floods do not increase. An increase in rainfall should lead
to more flooding is based on the fact of catchment specific condi-
tions being invariant and streamflow is generated from rainfall
4

alone. On the contrary, floods are dependent on various factors
including location, rainfall duration, antecedent catchment condi-
tions. Diffenbaugh et al. (2017) quantified the uncertainty associ-
ated with global warming impacts by calculating the severity
and probability on four different metrics (hottest month, hottest
day, driest year, and the wettest 5-d period) using the Community
Earth System Model (CESM) Large Ensemble (LENS) dataset. The
results suggest an increase in the severity and probability of the
hottest month and hottest day of the year by more than 80%.
Whereas the probability of the driest year has increased by 57%
and the probability of the wettest 5-d period by 41%. Flash
droughts (Otkin et al., 2018) which are extreme dry events affect-
ing agriculture outputs, streamflow and reduction in soil moisture
have also seen a rise over the past four decades. In a recent study
by Christian et al. (2021), flash drought hotspots were identified
with the highest frequency occurring in tropics and sub-tropics.
Alizadeh et al. (2020) analysed the frequency of compound dry
and hot extremes over the contiguous United States using
ground-based observations in the last century and found an alarm-
ing rate of increase in rare dry-hot extremes.
2.4.1. Understanding extreme events
The physical explanation of some extreme events is simple, for

example, an increase in mean temperature will lead to increase in
heat events and decrease in cold extremes, considering all the
parameters to be same. But, if the distribution of temperature is
shifted, similar to the concept of ‘‘Overton Window”, the number
of extremes (both hot and cold) will increase (Rahmstorf and
Coumou, 2011). This simply means that the concept of ‘‘normal”
weather conditions changes as extremes get more common. It
means accurate predictions of such events are difficult, as other
parameters change in the new normal weather condition and an
in-depth examination is required.

Statistical analysis of extreme climate events in the tail of the
distribution is a go-to approach to study these events. For instance,
Cattiaux and Ribes (2018) used a traditional return period approach
focussing on the probability of an extreme event to be null com-
pared to the commonly used risk-based approach which uses con-
ditioning to the concurrent climate state. As these events are, by
definition, rare, such events are characterised by a small sample
leading to an uncertain analysis of such events. Therefore, statistical
analysis of extreme events can be challenging. Naveau et al. (2020)
provided details of the different statistical methods for extreme
event likelihoods in climate science. Although different statistical
approaches can help to understand if a recent extreme event has
significant difference than expected in an unchanging climate.
However, this has two key problems: (i) Statistics can explain if a
recent extreme event was significantly different from stationary
or previous extreme events. But it does not address the causative
variable, such as human-induced or natural factors or a combina-
tion of both. (ii) The statistics of extreme events are difficult to exe-
cute, given a lack of definition. As a consequence, the tails of the
probability density function become ill-defined, and assuming a
Gaussian distribution is not valid. Moreover, there exist numerous
potential extreme events across diverse regions, timeframes, and
weather variables (Ren et al., 2018). Coumou and Rahmstorf
(2012) suggested three important requirements to carry out a com-
prehensive statistical analysis of extremes, which are: (i) single,
comparable extreme type; (ii) time-series selection based on objec-
tive criteria, and (iii) a long-running high-quality data.
3. What is XAI

The exact definition of Explainable AI (XAI) is debatable and is
often underspecified (Guidotti et al., 2019). XAI broadly refers to
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the ability to explain a process in understandable terms to a
human (Doshi-Velez and Kim, 2017). When using XAI, two terms
are frequently used, interpretability and explainability, which are
often used interchangeably. Interpretable models refer to the use
of a single model capable of comprehending the internal mecha-
nisms of a model, whereas explainable models involve the use of
a secondary model to explain the outcomes of the primary model
(Rudin, 2019). Despite arguments against the use of explainable
models, citing potential biases and misleading outcomes (Rudin,
2019), some instances show minimal errors. These errors can be
mitigated by scrutinizing the impact of explanations on algorith-
mic aversions and avoiding an over-reliance on algorithmic advice
(Balagopalan et al., 2022).

XAI can enhance the understanding of causation by providing
insights into the internal workings of complex models. Unlike
purely correlational approaches, that identify associations between
variables, XAI methods, such as model-agnostic techniques or
transparent model architectures, can reveal the causal relation-
ships embedded within the data. For example, by visualizing fea-
ture importance or highlighting decision pathways, XAI allows
researchers to identify and interpret factors contributing to specific
outcomes. This transparency aids distinguish between mere corre-
lations and causal factors, empowering users to make informed
decisions and gain a deeper understanding of the underlying
mechanisms governing a system.

In the context of hydro climatic natural hazards, we define
interpretability or explainability as the ability to understand the
underlying processes of different variables directly or indirectly
leading to its occurrence. Google’s whitepaper suggests the use of
explainability for the following purposes:

� Improvement in transparency via shared understanding
between the human and AI.

� Making more informed human decision when AI is used as a
decision aid.
Fig. 2. General flowchart of the use of machine lear

5

� Allow debugging if and when system behaves unexpectedly.
� Supporting fair auditing for regulatory requirements.
� Supporting generalization ability and trust to significant levels.

As there is an increasing use of machine learning (ML)
approaches to better understand different aspects of natural haz-
ards, XAI is an important catalyst in advancing our comprehension
of ML uses in this field. Often, ML models can lead to incorrect con-
clusion, as the underlying mechanism is not very well-studied.
Broadly, the use of ML models in natural hazard modelling involves
selecting multiple factors (also known as controlling factors) which
are fed into the model for regression or prediction purposes
(Fig. 2).
3.1. Input variables

The choice of the predictors as input variables for any ML model
is arguably the first and most important step in its application. The
input variables generally have four ‘V’ characteristics, which are
volume, velocity, variety, and veracity (Reichstein et al., 2019). Vol-
ume refers to the massive amounts of data that are generated,
while velocity refers to the speed at which the data is produced
and changes. Variety highlights the diverse sources of data, which
can include climate data, vegetation data, and other data types.
Veracity refers to the uncertainty associated with the data, which
can pose challenges for accurate analysis and decision-making.

The volume and variety of data can be overwhelming. In natural
hazard modelling, as a variety of factors can influence the severity
and impact of these hazards. For example, rainfall data from a sin-
gle flood event could generate data from multiple weather stations
and create a data volume challenge. Similarly, water scarcity data
can generate a considerable volume of information from different
sources. The ‘variety’ aspect refers to the diverse types and sources
of data, which could be divided into three: satellite imagery, cli-
mate models and ground-based observations (Dikshit et al.,
ning approaches for natural hazard modelling.
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2022a,b). Climatic variables like temperature and precipitation,
show high-volume and high-velocity changes, while remote sens-
ing data, such as vegetation indices, exhibit high-volume and
diverse data types. As an example, for landslides, data on topogra-
phy, geology, precipitation, vegetation cover, and soil moisture are
needed for effective analysis and prediction (Malamud et al., 2004;
Guzzetti et al., 2006). For studying the floods, data from rain
gauges, stream gauges, radar, and satellite remote sensing are used
to estimate precipitation and water levels (Yang et al., 2021). In
droughts, data on precipitation, temperature, soil moisture, vegeta-
tion indices, and streamflow are required for monitoring and fore-
casting (AghaKouchak et al., 2015; Ge et al., 2016). The variety of
these data types and sources presents challenges in terms of data
integration and compatibility, as well as quality control.

In the context of ‘velocity’ characteristic, examples include
rapidly changing drought conditions which requires monitoring
changing conditions in near real-time, particularly when frequent
updates are needed to support informed decisions on crop irriga-
tion by farmers. Similarly, floods generate vast amounts of data
that need to be processed quickly to provide accurate information
on the flood’s severity and risk. Finally, veracity which is arguably
the most challenging part as data to analyse any hazard requires
data from different sources and may have varying degrees of qual-
ity, completeness, and accuracy. As an example, global catalogues
of landslides (Froude and Petley, 2018), floods (de Bruijn et al.,
2019) and droughts (Spinoni et al., 2019) exist which primarily
focus on major catastrophic events, albeit, small, non-
catastrophic are often difficult to capture. Similarly, climatic and/
or surface data may be incomplete or of varying quality dependent
on the sources and various interpolation techniques (Dikshit et al.,
2022a,b). Over the last decade, this aspect has seen tremendous
progress, especially for remote sensing-based satellite data. Like,
examining vegetation activity during extreme dry events necessi-
tates the use of long-term fine spatio-temporal resolution vegeta-
tion indicators. Recent advances like, Europe’s S-5P satellite,
carrying TROPOMI launched in 2017, providing daily Solar-
Induced Chlorophyll Fluorescence (SIF) (Guanter et al., 2015) or
the Advanced Himawari Imager (AHI) on board the Himawari-8
(Bessho et al., 2016) providing various vegetation data at 10-
minute intervals are leading the front which would eventually sup-
port better understanding of various biomes as and when more
data is available.

The selection of different variables among a myriad of available
information can be tricky, and researchers often rely on assump-
tions, prior knowledge, and/or statistical techniques like correla-
tion statistics, transforming variables, filtering approaches and
several others. Although these approaches provide valuable infor-
mation, often these approaches have major drawbacks, such as
manual selection bias, computationally expensive, interactions
among variables and lack of robustness. The involvement of XAI
can significantly enhance the utility and reliability of ML models
in natural hazard modelling.
3.2. Climate models

The examination of future hazard scenarios relies on the results
of Global Circulation Models (GCM), which represent the physical
processes in the atmosphere, ocean, cryosphere, and land surface.
GCMs are an integral part of the Coupled Model Intercomparison
Project (CMIP) data archive (Taylor et al., 2012). Over the course
of two decades, these CMIP projects have undergone iterative
improvements, with each iteration proving to be better than its
predecessor in terms of accuracy and reliability. However, some
key issues with the use of these models exist:
6

(i) Distinguishing anthropogenic-induced climate forcing from
internal variability – This represents a significant challenge
when assessing the effects of global climate change at regio-
nal levels (Stocker et al., 2014). While General Circulation
Models (GCMs) can distinguish between these two types of
forcings, analyzing their intertwined interactions and the
resulting impacts on climate variability remains challenging
(Labe and Barnes, 2021). This issue is commonly referred to
as a ‘‘signal-to-noise problem” within the climate research
community. It is because the warming signs due to long
timescales and the atmospheric concentrations of green-
house gases due to anthropogenic activities is juxtaposed
to the background noise of natural climate variability
(Santer et al., 2011). Presently, distinguishing it involves
the use of large ensembles of climate model simulations
(Deser et al., 2020). Recently, researchers have attempted
to use XAI to solve this challenge, like, Barnes et al. (2020)
trained neural networks to predict the year using maps of
annual-mean temperature or rainfall) from climate model
simulations.

(ii) Climate prediction – One of the key challenges is climate
prediction at different timescales, including subseasonal,
seasonal and decadal. Typically, climate prediction utilises
sea surface temperature (SST), which is the principal forcing
variable of the atmospheric circulation that drives regional
climate (Goddard et al., 2001; Hao et al., 2018). Neural net-
works have shown improvements in predictive skill across a
range of scales (Ham et al., 2019). However, as Toms et al.
(2020) aptly puts the current use of ML focusses on max-
imising the accuracy of the network’s output, while the
interpretation is merely used in conjunction to confirm the
high accuracy of the model with reasonable consistency
from physical theory. The focus should be shifted to inter-
pretation rather than output, as some of the recent works
have shown (McGovern et al., 2019; Toms et al., 2020). The
same can be applied to weather forecasting problems.
3.3. Examining the outputs

The outputs are finally analysed based on various metrics, such
as accuracy, precision, root mean squared error, variable impor-
tance plots and several others. Apart from examining statistical
metrics, researchers attempt to understand the variable interac-
tions using plots which determines the overall weights of the neu-
ral networks. Although these approaches provide key insights, it
does not offer insights into model behaviour and identification of
biases. XAI approaches can overcome this challenge by examining
different aspects of model behaviour. Such as for prediction prob-
lems, which is usually a time-series data, it can provide key infor-
mation on the importance of variable at different temporal lengths
and explain how variables interact amongst themselves to reach a
specific outcome. For classification problems, XAI models can spa-
tially identify the relevance of variables and provide insights about
any spatial differences.

However, due care must be taken when explaining a specific
event from the characteristics of other variables. Although the
explanation process can provide physical understanding
(Trenberth et al., 2015; Vautard et al., 2016), a non-
comprehensive understanding of the conditioning processes gen-
erally confuses or changes the relevant climate change questions.
For a specific atmospheric circulation pattern, certain natural haz-
ards can become less frequent, while being more frequent
generally.
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4. Using XAI effectively

Addressing the input data challenges requires integration of
advanced data analytics techniques with traditional hydrological
and meteorological data. Integrating XAI with traditional hydrolog-
ical and meteorological data can offer promising opportunities for
effective management of hydrometeorological natural hazards. XAI
models can be broadly classified into two types: (i) Primary (Ad-
hoc) and (ii) secondary (post-hoc) model.

4.1. Primary model

Primary models refer to a single model which can perform the
necessary task and explain the model outcomes also known as
interpretable models (Dikshit et al., 2022a,b). Without going into
the detail of these examples, it focuses on scenarios where this
approach can be useful. Some of the examples include,

Attention Models – Attention-based models are more appropri-
ate which can identify important regions or features within images
(Bahdanau et al., 2014). The attention mechanism of the model
assigns weights to different regions, allowing the model to focus
more on the most critical regions. In the context of climate change,
attention-based models can be used to identify the regions where
vegetation cover is most affected by climate change, or the areas
where changes in soil moisture have the greatest impact on the
occurrence of natural hazards.

Neural Backed Decision Trees (NBDT) – An interpretable model
that combines the interpretability of decision trees with the power
of deep neural networks can be better alternative for identifying
the vulnerable regions by creating a heatmap (Wan et al., 2020).
The NBDT model uses a decision tree to divide the input data into
smaller sub-regions and then applies a deep neural network to
each sub-region to make predictions. This can be particularly use-
ful in situations where policymakers need to understand the
underlying reasons for a model’s predictions and allocate resources
accordingly.

Generalized Additive Models (GAM) – These models can be
used to identify non-linear relationships between input features
and the target variable (Hasti and Tibshirani, 1995). This can help
in better understanding the impact of climate change on natural
hazards and their severity. One of the main challenges with the
above-mentioned models is its ability to effectively incorporate
both spatial and temporal information.

Graph Neural Networks (GNN) can prove to be an effective tool
to exploit the interrelationships among the variables and predict
the likelihood of natural hazards. For extreme dry events, like, flash
droughts GNNs can exploit the complex relationships between
multiple variable types which could be used to either develop a
robust prediction model and/or distinguish flash drought events
from heatwave events.

4.2. Secondary model

Secondary models explain the model outcomes using a different
algorithm based on the outcomes of a primary model. Some exam-
ples include:

Shapley Additive Explanations (SHAP) – Th genesis of the model
began in game theory with the aim to quantitatively calculate the
contribution of single player in a multi-player game (Shapley,
1953). The aim was to objectively divide the total gain among
the players based on individual’s contributions to the outcome.
The solution was to provide the fair reward to each player and
assign a unique value using features like local accuracy, consis-
tency, and null effect (Shapley, 1953). Lundberg and Lee (2017)
used this simple concept in the field of ML and has significantly
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improved understanding of the model outputs. SHAP provides dif-
ferent explainers depending on the type of ML models used and
these explainers can be interpreted using different plots, which
are summary plot, dependence plot, individual force plot and col-
lective force plot. The details of different explainers and plots were
described in detail by Christoph (2019). It’s use cases include selec-
tion of input variables to be fed into the model as well as examin-
ing the final outputs. The examination of the final outputs using
SHAP plots are often used for different natural hazard problems,
including landslide susceptibility modelling (Al-Najjar et al.,
2022); drought prediction (Dikshit and Pradhan, 2021), flood sus-
ceptibility modelling (Pradhan et al., 2023).

Local Interpretable Model-agnostic Explanations (LIME) – It is a
simple model which explains the model by focussing on the neigh-
bourhood of the prediction as opposed to explaining the model
globally (Ribeiro et al., 2016). The above are examples of specific
models, and this is not an exhaustive list. There are several other
models, like, layerwise relevance propagation (Toms et al., 2020)
and more models will be developed overtime which will address
the shortcomings of the available models.
5. XAI in different natural hazards

This section describes the different explainability studies con-
ducted for hydrometeorological hazards, providing details on the
processes used and the outcomes. For this, a Scopus based search
with the terms ‘‘explainable*” OR ‘‘interpretable*” was used in con-
junction with ‘‘landslide*”, ‘‘flood*” and ‘‘drought*” from 1 January
2011 to 31 December 2022. Only journal articles written in English
were considered for the review. A total of 3122 articles were iden-
tified and subsequently categorized based on the annual distribu-
tion of studies conducted for each hydrometeorological hazard.
Fig. 3 shows the spatial map of different studies conducted globally
along with the number of research articles for each hazard. The
landslide studies have been marked as red circles, flood studies
have been marked in blue and drought as light brown. The regions
highlighting the country where XAI based study was conducted. It
does not represent the actual study areas and is not a representa-
tive of different XAI based methods being used. This emphasises
the rise in XAI based studies in the last decade, where the most-
studied disaster is flood (53.3%), followed by landslide (25.9%)
and drought (20.8%). As the figure shows the African continent
has the least number of studies in this domain, prompting
researchers to use XAI based approaches to study the continent.

The case studies have been divided into two categories: (i) XAI
studies using a primary model, and (ii) XAI studies using a sec-
ondary model as described in the previous sections.

(i) XAI studies using primary model.

Maxwell et al. (2021) used Explainable Boosting Machines
(EBM) to predict the probability of slope failure in West Virginia,
USA. EBMs are a type of Generalized Additive Model (GAM). The
model outputs provide information on how the model uses the
predictors rather than providing estimations. Such an approach
works well for regression purposes, however, for classification
problems with EBM, the contributions of features are expressed
as log odds and not probabilities. Dikshit et al. (2022a,b) used an
attention-based model to forecast drought index for Eastern Aus-
tralia. The results show the importance of including climatic vari-
ables as inputs along with the short-term and long-term
dependencies of input variables for forecasting at different lead
times, thereby providing a holistic view of interpretable models.



Fig. 3. Spatial distribution of the research papers for XAI-related studies for different hydrometeorological natural hazards.
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(ii) XAI studies using secondary model.

Al-Najjar et al. (2022) used SHAP to examine the variable
importance and impact of individual predictors for landslide sus-
ceptibility mapping in south-western Bhutan using two ML models
(random forest and support vector machines). The study shows the
difference in SHAP summary plots using RF and SVM, highlighting
the benefit of using RF over SVM for the specific case study. Similar
study for landslides and floods was also conducted by Ekmekcioğlu
and Koc (2022), using Extremely randomized trees (ERT) coupled
with the particle swarm optimization (PSO) model for Kentucky
river basin, USA. However, individual force plots explaining the dif-
ferences in variable interactions for a true and false landslide/non-
landslide was not conducted in these studies. Collini et al. (2022)
used different ML models to predict landslide evens using static
and time-varying variables and later explained the model out-
comes using SHAP. The model outcomes were interpreted for both
global and local feature relevance, showcasing the variable impor-
tance and interdependencies to achieve the final output. Dikshit
and Pradhan (2021) used SHAP to explain the model outcomes
for drought forecasting in Eastern Australia. The results showcase
how different input variables interact for known drought and
non-drought conditions, replicating the behaviour found in
physical-based models. Chakraborty et al. (2021) used XGBoost
model in conjunction with SHAP to forecast the long-term ground-
water level under different future climate scenario. The study
showcases the dependencies and interactions among the variables,
in a complex human-natural system, not captured well by linear
models. Rampal et al. (2022) developed an interpretable deep
learning model to improve rainfall downscaling over New Zealand
and found the model capable of learning complex and physically
plausible relationships.
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6. Discussions and future directions

Machine learning has and will play a vital role in understanding
the mechanisms of any hydrometeorological event. As available
data and computational capacity improve, ML models including
XAI models will play a central role in understanding and examining
natural hazards. Over the last two decades, significant improve-
ment has been achieved with the advancements in neural net-
works, thus enhancing our capability to understand natural
hazards. However, policymakers and several researchers preferred
to stay away from this technological advancement, as natural haz-
ards are dynamic in nature and any action taken based on MLmod-
els will need transparency and accountability. Wrong prediction
resulting from an output of a modelling study can be costly in real
world decision making. Using XAI can assist in mitigating future
events and develop strategies for effective natural hazard manage-
ment, response, recovery, and resilience. However, there are key
areas where the traditional ML modelling approaches can be ben-
efitted with the use of XAI (Fig. 4).

(i) Data Availability and dimensionality reduction – A good ML
model is hungry for data and the availability of high-quality
data remains a challenge. There has been significant pro-
gress in the retrieval, storage, and use of different datasets,
yet there exists incomplete, inconsistent, or outdated data,
a common finding in developing and under-developed coun-
tries. This could also involve the need of domain expertise in
certain situations, such as collection of landslide inventory
data. The use of XAI approaches can help to remove the man-
ual process involved.
The examination of natural hazards usually involves several
input variables of varied types. Processing such a dataset is



Fig. 4. Future directions of the use of XAI for climate-induced hazard assessment.

A. Dikshit, B. Pradhan, S.S. Matin et al. Geoscience Frontiers 15 (2024) 101815
time-consuming and computationally expensive. Identifying
the optimum predictors, along with removing the redundant
variables, can reduce data dimensionality without a
decrease in model performance. The selection of variables
can involve statistical and/or expert knowledge. XAI can help
to identify the key variables without any bias, such as study-
ing susceptibility modelling for different hydrometeorologi-
cal natural hazards include different variable types (e.g.,
geological, geomorphological, meteorological and vegeta-
tion) and feeding these variables into a ML model can lead
to overestimation. Implementing XAI techniques, like SHAP
can help to identify only the key variables and reducing
the number of variables.

(ii) Data explanation – Although, XAI models have opened new
research directions, there are challenges with the wide-
spread application of such models, especially for decision-
making purpose. XAI has the capability to answer the ques-
tions like what data has been used to train the model and
why that data was chosen. For example, by analysing data
on past floods or droughts, an XAI model can determine
the environmental variables (like, temperature, precipita-
tion) impacting such events at various spatial (local to glo-
bal) and temporal (daily to multi-year) scales. This
meaningful information will help researchers and ML devel-
opers to build more robust models and assist with further AI
system development. Similarly, it can also be applied for
other research questions such as explaining individual pre-
dictions by identifying the key features in case of examining
flood inundation depth for urban areas which could help to
identify critical urban features like, proportion of impervious
surface and the distance of drainage channel that con-
tributes to increased flooding. Other cases of application
include analysing spatial variable relationships between
event and non-event locations in cases of drought and land-
slide. The examination of such interrelationships can help to
understand why a region suffered from a natural hazard and
other regions within a localised context did not. Similarly,
the benefits of these models can also be replicated to other
hazards, which would help to understand the importance
of variables in a quantitative manner. These models can also
be used to identify the most important features within data-
set before serving as input to the model. This process would
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in turn help in removing redundant variables with a definite
reason and not solely relying on multicollinearity tests like,
variance inflation factor. However, there is need for interdis-
ciplinary research involving deep understanding of the
underlying science and data analysis to effectively under-
stand the XAI outputs.

(iii) Intrinsically interpretable models and benchmarking –
Rudin (2019) made an important distinction in the use of
secondary and primary XAI models. The article emphasized
the need to use intrinsically interpretable models for high-
stakes decision making and avoid the use of post-hoc models
for such purposes. Hence, some researchers are focusing on
the development of self-explainable models, and examining
the differences in the use of both these approaches would be
key for the acceptance of XAI in the broader community.
In general, the utilization of XAI is often confined to applying
these methods to benchmark problems, a common practice
in the field of computer science, where users are expected
to have a predefined understanding of what the outputs
should resemble. However, this typically relies on an indi-
vidual’s subjective visual assessment of the output and their
prior comprehension of the problem, both of which are sus-
ceptible to biases. To address this issue, Mamalakis et al.
(2021) introduced the concept of ‘‘attribution benchmark
datasets” with the aim of achieving comprehensive and
interpretable XAI or falsifiable XAI research, as proposed
by Leavitt and Morcos (2020). In these datasets, synthetic
inputs and outputs are meticulously designed and generated
in a manner that allows each input feature to be objectively
derived, serving as a reliable benchmark for the evaluation
of various XAI approaches.

(iv) Transparency – Another challenge revolves around ethical
considerations, including issues of transparency and
accountability. Like, XAI models should be developed with
appropriate data collection and management practices to
ensure that they do not reproduce or perpetuate existing
biases. This could also include the use of ML models for pre-
dicting extreme events which would be biased given most of
the extreme events do not have a definite definition.
Although XAI has great potential to provide deeper insights
on extreme events, it is important to understand it examines
the relationship based on the data ignoring the underlying
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physical process. For an evolving concept, due care must be
taken before applying an ML model to model or interpret the
XAI outputs.

(v) Transferability – XAI can address a major problem in natural
hazard modelling, which is model transferability. Often
models are developed for specific natural hazards, which
are not translated to other similar hazards. By providing
insights to how a model reaches its decisions, XAI can be
useful to adapt and apply in similar contexts, where the
underlying triggering factor is common. It is crucial to
acknowledge that comprehending the internal workings of
a model can enhance its reusability. Nonetheless, making
an incorrect assumption in this regard can have severe
repercussions (Caruana et al., 2015). Transferability should
consistently align with the inherent characteristics of an
explainable model, but it’s important to note that not every
transferable model should automatically be deemed
explainable (Arrieta et al., 2020).

7. Conclusion and way forward

The beginning of 21st century saw a boom in machine learning
applications in geosciences and natural hazards modelling, which
has improved our understanding of natural hazards and Earth sys-
tem in general. As the acceptance of neural networks grew, ques-
tions began to arise around its black-box nature. Hence, a new
field of study, known as Explainable Artificial Intelligence (XAI)
has emerged in recent years, which focuses on understanding the
model behaviour in a manner that humans do. Significant advances
using XAI have been made in the field of computer science, medi-
cine and more recently geosciences and natural hazard modelling
is recognising its significance. This article is a comprehensive
review of the nuances involved with XAI, providing details about
different XAI approaches, case studies and future directions of
work.

The future research directions for XAI in climate-induced
hydrometeorological natural hazards should address limitations
observed in traditional machine learning models. Key areas of
focus include integrating XAI with decision support systems to
enhance decision-making during hazardous events. Exploring cau-
sation within XAI is another avenue, aiming to develop models that
not only predict climatic events but also illuminate intricate causal
relationships between various factors. Real-time explainability is
crucial, necessitating frameworks that offer transparent insights
into AI model predictions promptly. Human-AI collaboration
becomes paramount, exploring interfaces that facilitate meaning-
ful interactions between AI systems and human experts. Given
the complexity of extreme events, XAI can offer unique insights,
such as identifying key variables leading to abrupt shifts in precip-
itation patterns. These research directions are pivotal for address-
ing challenges associated with data-driven models.

In summary, the key takeaways from this article are:

(i) XAI is gaining prominence and a potential solution to the
‘‘black box” problem in AI. Presently, the focus is on the
application of different models to specific scenarios, which
should be extended to improve the model accuracy, under-
standing and data handling challenges.

(ii) It highlights the various cases of application which could be
explored using different XAI techniques and are yet to be
explored, in the context of hydrometeorological natural haz-
ards in the face of climate change.

(iii) Natural hazards have a unique problem of historic poor-
quality data and a present rich-data quality, that can provide
comprehensive insights into such events using XAI. Empha-
10
sizing more XAI studies can help tackle longstanding chal-
lenges effectively.
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