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Different types of landslides exhibit distinct relationships with environmental conditioning factors.
Therefore, in regions where multiple types of landslides coexist, it is required to separate landslide types
for landslide susceptibility mapping (LSM). In this paper, a landslide-prone area located in Chongqing
Province within the middle and upper reaches of the Three Gorges Reservoir area (TGRA), China, was
selected as the study area. 733 landslides were classified into three types: reservoir-affected landslides,
non-reservoir-affected landslides, and rockfalls. Four landslide inventory datasets and 15 landslide con-
ditional factors were trained by three Machine Learning models (logistic regression, random forest, sup-
port vector machine), and a Deep Learning (DL) model. After comparing the models using receiver
operating characteristics (ROC), the landslide susceptibility indexes of three types landslides were
acquired by the best performing model. These indexes were then used as input to generate the final
map based on the Stacking method. The results revealed that DL model showed the best performance
in LSM without considering landslide types, achieving an area under the curve (AUC) of 0.854 for testing
and 0.922 for training. Moreover, when we separated the landslide types for LSM, the AUC improved by
0.026 for testing and 0.044 for training. Thus, this paper demonstrates that considering different landslide
types in LSM can significantly improve the quality of landslide susceptibility maps. These maps in turn,
can be valuable tools for evaluating and mitigating landslide hazards.
� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Landslides are recognized as a global geohazard that can cause
immense damage to the natural environment, social security, and
human lives (Dai et al., 2002; Samia et al., 2017). As an integral part
of landscape evolution, landslides can be viewed as a continuous,
ever-evolving system, encompassing the past, present, and future
(Reichenbach et al., 2018; Temme et al., 2020). Therefore, research-
ers often analyze the relationship between historical landslides
and environmental factors to predict potential landslide
occurrences in the future (Guzzetti et al., 2005), which is known
as landslide susceptibility.

In the recent decades, landslide susceptibility mapping (LSM)
has become an essential component of hazard assessment and
emergency management, leading to numerous studies focusing in
this field (Huang et al., 2022; Loche et al., 2022). Over the last cou-
ple of decades, various models have been employed for LSM, which
can be broadly categorized into three types: physically-based mod-
els, knowledge-driven models, and data-driven models. Physically-
based models are usually used for modelling at small scales, allow-
ing for a detailed examination of landslide stability and movement
processes based on physical equations (Tofani et al., 2017; Medina
et al., 2021). However, they require numerous detailed parameters,
such as unit weight of soil, cohesion, shear strength angle, and
others (van den Bout et al., 2022). Knowledge-driven models, on
the other hand, rely on expert knowledge to generate reliable
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susceptibility maps by understanding the relationship between
landslides and inducing factors in a particular area (Zhu et al.,
2014). These models perform well in regions with limited histori-
cal landslide inventory, employing methods such as heuristic
model, and multi-criteria decision analysis, among others (Erener
et al., 2016; Du et al., 2020). Data-driven models encompass three
main branches: statistical models, machine learning (ML) models,
and deep learning (DL) models. The effectiveness of these models
largely depends on the availability of a landslide inventory and a
detailed input feature database (Lee and Min, 2001). Statistical
models, for instance, can calculate specific statistical indices that
reflect the internal response of landslides to predisposing factors
(Liao et al., 2022). Various models, such as the information value
(IV) model, weights of evidence model, and logistic regression
(LR) model, have been proposed and applied to ascertain landslide
susceptibility in different regions worldwide (Choi et al., 2012;
Sharma et al., 2015).

Recently, numerous studies have highlighted higher prediction
accuracies of ML models compared to statistical models (Merghadi
et al., 2020; Al-Najjar and Pradhan, 2021). ML models have gained
widespread adoption LSM due to their strong ability to fit complex
nonlinear relationships. Some commonly used ML models for LSM
include Bayesian networks (Tien Bui et al., 2016), support vector
machines (SVM) (Marjanović et al., 2011), random forest (Dou
et al., 2019; Zhou et al., 2021) (RF), artificial neural network
(Gorsevski et al., 2016), and boosted regression tree (Lombardo
et al., 2015). With the rapid development of soft computing tech-
niques, a variety of ensemble learning algorithms and ensemble
classifiers have been proposed to conduct LSM (Zhang et al.,
2022a), such as eXtreme Gradient Boosting (XGBoost) (Wang
et al., 2023; Zhang et al., 2023). For specific task of LSM, the predic-
tive accuracy of different ML models can vary significantly due to
their diverse characteristics and limitations in a given area. As a
result, many investigators compare two or more different ML mod-
els, and then generate the LS map using the best preforming model
(Oh and Pradhan, 2011; Hong et al., 2016). More recently, DL algo-
rithms have shown significant breakthroughs in various fields, and
the most popular DL algorithms in LSM include Convolutional Neu-
ral Networks (CNN) (Youssef et al., 2022), Recurrent Neural Net-
work (Yuan and Chen, 2022), Deep Neural Network (Aslam et al.,
2023), Gated Recurrent Unit Network (Zhang et al., 2022b). Despite
DL models demonstrating higher accuracy compared to conven-
tional ML models and statistic models, the complex modelling
techniques of DL models still require further exploration in LSM.

However, landslides in a given area often comprise different
geotechnical materials (e.g. soil, rock, debris, ice), and can manifest
in different movement types, including sliding, falling, toppling,
flowing, and spreading (Epifânio et al., 2014; Hungr et al., 2014;
Camera et al., 2021). Previous researches have demonstrated that
different types of landslides have distinct relationships with condi-
tioning factors (Thiery et al., 2007; Valdés Carrera et al., 2022). For
instance, Zhou et al. (2018) demonstrated that colluvial landslides
and rockfalls are most influenced by the distance from roads and
altitude. Similarly, Bera et al. (2021) found that in a landslide-
prone area in Sikkim Himalaya, India, slope plays the most signif-
icant role in rockfalls with an IV of 34.92, while soil depth has the
most impact on debris flows with an IV of 28.54. This observation
necessitates the consideration of different types of landslides in
landslide susceptibility assessment. Despite the vast literature on
LSM, relatively few studies have emphasized landslide typology
in LSM. For example, Shou and Chen (2021) individually generated
the susceptibility maps of deep-seated and shallow landslides in
Taiwan, Zêzere (2002) assessed the susceptibility of shallow trans-
lational slides, deep translational movements, and rotation move-
ments in the area North of Lisbon. In another work, Silva et al.
(2018) quantified the susceptibility of falls and slides in Flores
2

Island, Azores archipelago North Atlantic Ocean. Nevertheless,
these studies focused solely on generating a set of susceptibility
maps for different types of landslides, without achieving a better
overall map by considering landslide types collectively. Hence,
LSM considering landslide types remains a challenge and warrants
attention, especially in regions where multiple types of landslides
coexist.

During periods of reservoir water fluctuation or the rainstorm
season, various types of landslides occur in the Three Gorges Reser-
voir area (TGRA), posing a significant threat to the residents (Tang
et al., 2019; Zhou et al., 2022a, 2022b). Despite numinous previous
studies on LSM in the TGRA, none have considered landslide types.
To address this gap, this study proposed a new stacking framework
to integrate different types of landslides, and a landslide-prone
area located in the middle and upper reaches of TGRA was selected
as the test area. Landslides in this region were categorized into
reservoir-affected landslides, non-reservoir-affected landslides,
and rockfalls. LSM was conducted for each of the three types of
landslides using LR, RF, SVM, and DL model (Resnet-18), respec-
tively. Additionally, LSM was performed for all landslides collec-
tively. By validating the models using the AUC value, the
susceptibility of three types landslides was calculated using the
best individual model. Subsequently, a map considering all land-
slide types was produced by stacking the susceptibility maps of
each type. This paper aims to improve the reliability and scientific
rigor of the LSM with these results. The findings are expected to
provide a reliable basis for future site layout planning and road line
selection in the area.
2. Study area

The study area is located in Chongqing Province, southwestern
China, in the middle and upper reaches of the TGRA (Fig. 1). Geo-
graphically, it extends between 107�5502200E, 30�2402500N and
108�5302500E, 31�1405800N, covering an area of nearly 3457 km2,
with altitude ranging from 200 to 1400 m. The climate is character-
ized as subtropical monsoon, with an annual average precipitation
ranging from 1050 to 1700 mm, and an average yearly temperature
of 10 to 18 �C. Most rainfall is concentrated in the monsoon season,
typically occurring between May and September. According to data
from the China Meteorological Administration (https://data.cma.
cn), the maximum monthly precipitation of 711.8 mm occurred
in July 1982, and the maximum daily precipitation of 243.3 mm
occurred on July 16, 2007.

Geologically, the study area is situated in the typical ejective
fold mountain region of the eastern Sichuan basin (Fig. 2a). It is
characterized by narrow and steep anticlines with broad synclines
(Fig. 2b) (Hu et al., 2009). The study area features a series of arc-
shaped fold structures that are parallel to the Yangtze River, trend-
ing at 70�–80� and convex to the northwest. Jurassic red beds (J2-3)
cover 78.15% of the study area, except for the Triassic limestone
exposed in the core of the Tiefeng anticline and Fangdou anticline.
Due to the Yanshanian tectonic activity between 170 and 70 Ma,
the block has experienced prolonged uplift, leading to varying
degrees of erosion of the upper Jurassic strata, while the middle
and lower strata have developed relatively fully with continuous
deposition (Xu et al., 2017). The lithology mainly comprises sand-
stone, mudstone, shale, shell shale, and limestone. There is slight
metamorphism, and no igneous intrusion.

The topography of this region is influenced by several factors,
including lithology, the uplift and deformation process of folds,
and the erosion by rivers, characterized by a parallel ridge-and-
valley area (Xiao et al., 2019). The newer formations (mudstones
and shales) in the syncline core are more susceptible to erosion,
forming broad platform-like hills. In contrast, the older and more
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Fig. 1. (a) Location of the study area in China; and (b) the digital elecation model (DEM) showing the landslide locations.

L. Yu, Y. Wang and B. Pradhan Geoscience Frontiers 15 (2024) 101802
resistant formations (limestones) in the anticline core give rise to
the formation of narrow mountains (Hu et al., 2009). The Yangtze
River meanders through the valley at the core of the Wanxian syn-
cline. As the Yangtze River and its tributaries cross the ridge
through water gaps, they converge at almost right angles, creating
a lattice-like drainage pattern.

3. Material and methods

3.1. Overall workflow

The study was conducted following these main steps:

(i) Preparation of the landslide inventory: Historical landslides
were collected from various sources, and then were divided
into three types: reservoir-affected landslide, non-reservoir-
affected landslide, and rockfall (type I, II, III).

(ii) Selection of the landslide causal factors: Firstly, 16 landslide
influencing factors were chosen, and they were normalized
to a range of 0.00–0.99 by using the IV model. Then, the mul-
ticollinearity among factors was quantified by the Variance
inflation factors and Tolerances. After eliminating factors
with collinearity, 15 conditioning factors were set as inputs
for LSM.

(iii) Construction of the train and test datasets: Four landslide
sample sets (including 733 landslides, 387 landslides I, 231
landslides II, and 115 landslides III, respectively) were used
3

as positive samples, and an equal number of non-landslide
samples randomly selected from landslide-free areas as neg-
ative samples. Each positive and negative sample set was
split into 70% of training and 30% of testing.

(iv) Building the models and generating landslide susceptibility
maps: This step can be divided into two parts: the first part
involves producing the traditional map using LR, RF, SVM,
and DL models with the dataset of all landslides; the second
part focuses on generating the susceptibility map that con-
siders landslide typologies. The final susceptibility index is
obtained by stacking three susceptibility indexes, each pre-
dicted by the best-performing model for different landslide
typologies.

(v) Comparing and analyzing the difference between the two
maps: We compared the differences between the traditional
map and the map considering landslide typologies. To illus-
trate the reasons for the difference, we analyzed three sepa-
rate maps (maps of landslides I, landslides II, and landslides
III). Fig. 3 illustrates the detailed workflow of this procedure.

3.2. Analysis of landslide inventory

3.2.1. Landslide inventory
Mapping landslide boundaries and constructing a spatial data-

base from the landslide inventory are curial steps in LSM. Cur-
rently, ensuring the availability, effectiveness and efficiency, and
accuracy of the landslide inventory database is considered a chal-



Fig. 2. (a) Geological map; and (b) profile of the study area.
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lenging task (Guzzetti et al., 2012). In this case study, the LSM was
compiled using various sources, including historical landslide
records from the Chongqing Institute of Geological Environment
Detection (spanning from 1965 to 2022), geological field investiga-
tion lasting for five months (conducted from July 2020 to Septem-
ber 2020 and from October 2021 to November 2021), as well as
previous geotechnical reports and literature. During the field sur-
vey, we compared, validated and supplemented details of each
landslide, such as area, boundary, volume, failure type, triggering
event, landslide type, and date of occurrence, among others. Addi-
tionally, we updated the information on 50 new landslides in the
study area during the heavy rainfall period in July 2020 (with a
monthly accumulated rainfall of 440.2 mm). Finally, a total of
733 landslides were mapped as polygons, covering an area of
approximately 55 � 106 m2, representing 12% of the study area.
4

The size of landslide scars varies significantly, ranging from
346 m2 to 1.407 � 106 m2. The depth of landslide sliding surfaces
range from 0.2 to 42.7 m, and their volumes between 45 m3 to
2.9 � 107 m3.

3.2.2. Landslide types
In this study case, 733 landslides were divided into three cate-

gories: (i) reservoir-affected landslide, which is caused by drastic
changes in hydrological conditions resulting from the periodic fluc-
tuation of the reservoir water; (ii) non-reservoir-affected landslide,
induced by torrential rainfall or various human activities; and (iii)
rockfalls, which is a geologic process of rapid downward move-
ment of rock and small rock slide (hereinafter called type I, II, III).

A watershed is an area of land that drains rainfall or snowmelt
into a specific waterbody, including streams, lakes, rivers, and the



Fig. 3. Workflow of this study.
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ocean (Tekin and Çan, 2022). As shown in Fig. 4, it is evident that
the hydrogeology of landslides which outside of the Yangtze Riv-
er’s watershed was not affected by the changes in reservoir water
level. According to this point of view, 387 landslides within the
watershed region were classified as type I, whereas 231 landslides
outside were classified as type II. Then, 115 rockfalls and a few rock
slides were classified as type III (Fig. 5). The watershed boundaries
of the Yangtze River were extracted from DEM data using the
Hydrology Analysis Tool of ArcGIS.
Fig. 4. Reservoir-affected landslides and non-reservoir-affe

5

In the field investigation, the stability of landslides was catego-
rized into three states: stable, limited stable, and unstable based on
recorded deformation signs for each landslide (Table 1). Overall,
24.5% of landslides were found to be stable, showing no signs of
deformation. Approximately 54% of landslides were classified as
limited stable, indicating that minor disturbances could potentially
cause the landslide to be reactive. Meanwhile, 21.5% of landslides
were categorized as unstable due to significant deformation, such
as new cracks on buildings or the landslide surface, rolling stone
cted landslides are divided by the first watershed line.



Fig. 5. (a) The study area location; (b) detailed spatial distribution of different types of landslides; (c) rockfall poses a serious threat to residents’ safety; (d) the foot of
reservoir-affected landslide submerged by water; and (e) non-reservoir-affected landslide caused by road construction.

Table 1
Characteristics of three types landslides.

Characteristics Category Number of landslides

L. I L. II L. III

Volume (�104 m3) Small (<10) 67 91 89
Medium (10–100) 239 119 26
Huge (100–1000) 76 21 0
Extra huge (>1000) 5 0 0

Depth (m) Shallow (<10) 246 191 /
Medium (10–25) 130 39 /
Deep (>25) 11 1 /

State of stability Stable 96 61 23
Limited stable 194 128 73
Unstable 97 42 19
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failure, etc. The volume of reservoir-affected landslides is mainly
medium and huge (about 61.7% and 19.6%). In contrast, the volume
of non-reservoir-affected landslides is smaller, with 51.5% being
medium landslides and 39.4% being small landslides. According
to the statistics of drilling data and field surveys, most of the
deep-seated landslides are reservoir-affected landslides, and the
sliding surfaces of those landslides are mainly arc-shaped or
linear-shaped. However, about 82.6% of non-reservoir-affected
landslides are shallow landslides with a depth of less than 10 m.

Furthermore, the violin plot shows the differences in the size of
landslide scars and distance to the Yangtze River among these
three types of landslides. As shown in Fig. 6, the area distribution
of the type I landslides is relatively scattered, except for several
very huge values, which are mainly concentrated at 993 m2. The
area distribution of landslides of type II and III is more concen-
trated than type I, with values of 725 m2 and 767 m2, respectively.
Regarding the characteristic distance to the Yangtze River, type II
6

landslides are relatively uniform, mainly concentrated in the range
of 4 km to 11.5 km. Landslides of type I and III are mainly concen-
trated at 0.7 km and 2 km, respectively.

3.3. Landslide causal factors

Landslides are influenced by a series of dynamic and static fac-
tors, which are used as the input data for LSM. In various geological
settings, dynamic factors mainly include rainfall, earthquake,
changes in underground water, etc., while static factors include
lithology, faults, landform variations, etc. (Guzzetti et al., 2005).
Although there are numerous studies focusing on LSM, there are
no universal rules regarding the selection of landslide causal fac-
tors (Merghadi et al., 2020). In this study case, we considered the
triggering mechanisms of different landslides, and selected 16 fac-
tors for LSM, including altitude, slope, aspect, curvature, topo-
graphic position index (TPI), degree of relief, topographic wetness



Fig. 6. Spatial distribution characteristics of different types of landslides in the study area: (a) distance from the Yangtze River; and (b) the area of each landslide.
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index (TWI), bedding structure (BS), lithology, soils, distance to
Yangtze River, distance to streams, distance to faults, distance to
roads, land use, and vegetation (Fig. 7). Table 2 outlines the data
source of these 16 causal factors. In addition, rainfall is main factor
changing the water balance on hillslopes and affecting slope stabil-
ity in the TGRA. Unfortunately, the collected rainfall data have low
resolution and cannot provide detailed and accurate data for LSM
in this study.

Many literatures have shown that topographic factors play a
primary role in LSM, and the maps of these factors are usually
derived from the digital elevation model (DEM) (Dai et al., 2002).
In this study, we obtained a 25 m � 25 m resolution DEM from a
topographic map, and selected seven topographical factors (alti-
tude, slope, aspect, curvature, TPI, degree of relief, SPI and TWI)
for conducting LSM. Lithology, BS, and soils are static factors
related to the material basis of landslides, and we obtained them
from the geological map and soil map of the region. The lithology
units were classified into twelve groups based on the age of depo-
sition. BS reflect the attitudes of the slope aspect and rock layer (Yu
et al., 2022), and it was divided into five categories: anaclinal slope
(BS1), anaclinal oblique slope (BS2), dip slope (BS3), dip slope
(BS4), and transverse slope (BS5). According to the field investiga-
tion and extensive literature (Zhou et al., 2018), the potentially
impacted distance of trains, national highways, and other roads,
were set at 1000 m, 500 m, and 200 m, respectively. The potential
impacted distances of the Yangtze River and streams were set at
1000 m, and 500 m, respectively. Distance maps of faults, Yangtze
River, streams, and roads were produced using the Euclidean dis-
tance analysis tool in ArcGIS 10.6.

3.4. Factor normalization

In LSM, feature normalization is useful in reducing overfitting
and improving model performance (Yu et al., 2022). The normal-
ization process used in this study consists of two parts: (i) for con-
tinuous factors (e.g., altitude, slope, etc.), each factor was classified
into a suitable number of sub-classes on average. Then, sub-classes
with similar IV were recombined into new classes; (ii) for factors
with categorical and nominal data (e.g., lithology, soil, etc.), the
value of each category was directly calculated using the IV model.
Finally, all landslide conditional factors were normalized between
0.01 and 0.99, as shown in Supplementary Data (Table S1).

3.5. Landslide susceptibility models

3.5.1. Information value
The Information Value (IV) model is a statistical model pro-

posed by Yin (1990), and IV is a fundamental concept in informa-
7

tion theory that measures the amount of information carried by
an event or message. The IV model is commonly used in predicting
slope stability, landslide susceptibility, and quantifying the corre-
lation between landslide occurrence and its conditional factors.
In this study, the IV model was used to quantify the value of each
category of landslide causal factors.

3.5.2. Logistic regression
Logistic Regression (LR) is a generalized linear algorithm from

the field of statistics used to solve binary classification problems
(Erener et al., 2016). The LR model is the most frequently used
model in LSM because it is computationally efficient and can effec-
tively describe the linear relationship between landslide occur-
rences and multiple conditioning factors. In essence, LR connects
the occurrence (1) or absence (0) of landslides to a logistic function
with the landslide causal factors, and the function can be expressed
as:

yðxÞ ¼ 1
1þ e�hTx

ð1Þ

where, the independent variable y refers to the occurrence proba-
bility of landslides, and the independent variable x refers to the
landslide conditional factors.

3.5.3. Random forest
The Random Forest (RF) model is a nonlinear ensemble ML

model based on multiple weak learners (Decision Trees) (Dou
et al., 2019). It has been widely applied in various fields, including
classification, regression, feature selection, and anomaly detection.
When solving classification problems, the RF model aggregates the
class predictions of the training samples by voting from each tree’s
predicted class. Numerous studies have demonstrated that RF is a
powerful and flexible tool for generating landslide susceptibility
maps, achieving accuracies of over 90% in different geological envi-
ronments (Hong et al., 2016; Dou et al., 2019). The main advantage
of the RF model is its ability to effectively reduce overfitting, and
demonstrate robustness to missing data, imbalanced data and
outliers.

3.5.4. Support vector machine
Support Vector Machine (SVM) is a supervised ML model exten-

sively used for classification and regression tasks (Marjanović et al.,
2011). Its primary aim is to find an optimal hyperplane that max-
imally separates different classes in the feature space. Compared
with the RF model, the SVM model performs well in capturing lin-
ear or nonlinear relationships between features, even when deal-
ing with small datasets (Merghadi et al., 2020). However, the
SVM often requires significant computational resources, and can



Fig. 7. Landslide causal factors of the study area: (a) slope, (b) aspect, (c) TPI, (d) curvature, (e) degree of relief, (f) TWI, (g) bedding structure, (h) distance to faults, (i) distance
to Yangtze River, (j) distance to stream and (k) distance to road. (l) land use, (m) soil, and (n) vegetation.
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Fig. 7 (continued)

Table 2
Data sources for landslide causal factors.

Input data Data source Data type Resolution (scale) Causal factors

Topographic map (DEM) Obtained from the Chongqing Institute of
Geological Environment Detection (CIGED) (http://
www.caghp.org/standard.php)

Polygon 1:10,000 (25 m � 25 m) Altitude, slope, aspect, curvature, TPI,
degree of relief, SPI and TWI

Geological map Obtained from CIGED and field survey Polygon 1:50,000 Lithology
Bedding structure
Distance to faults
Distance to streams

Land use map Obtained from CIGED Polygon 1:10,000 Land use
Distance to roads
Distance to Yangtze River

Soil map China Resource and Environment Science and Data
Center (https://www.resdc.cn/data.aspx?DATAID=
145)

Polygon 1:1,000,000 Soils

Remote sensing map Derived from the Sentinel-2A on the Google Earth
Engine

Grid 25 m � 25 m Vegetation

L. Yu, Y. Wang and B. Pradhan Geoscience Frontiers 15 (2024) 101802
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be sensitive to parameter tuning. The performance of the SVM
model mainly depends on the kernel function options (‘linear’,
‘polynomial’, ‘radial basis function (RBF)’, and ‘sigmoid’) and other
hyper-parameters (‘C, penalty function or regularization parame-
ter’, ‘Gamma, the kernel coefficient’, and so on). In this study case,
the grid-based search method was utilized for tuning the models.
3.5.5. Deep learning model
In this study, we selected residual learning network (ResNet-

18), a typical CNN architecture proposed by Kaiming He in 2015
(He et al., 2016), to conduct LSM. ResNet-18 is composed of resid-
ual building blocks, and the structure of a residual building block is
shown in Fig. 8a. In the residual building block, the final output is
the sum of two parts: one part is the input data X directly output
without any operation, which is named a shortcut connection or
skip connection; the other part is the fitting output by the stacked
convolution layers.

In the process of residual learning, the skip connection does not
have any parameters, and increasing the number of residual blocks
does not add too much additional parameter burden to the model.
As a result, ResNet can easily improve performance by consider-
ably increasing the depth, and are wieldy used for the landslide
detection and susceptibility modelling (Liu et al., 2021; Aslam
et al., 2023).
3.5.6. Stacking method
Stacking is an ensemble learning technique that combines the

predictions of multiple individual base learners to form a stronger
and more accurate generalization model. It was proposed by Smyth
and Wolpert (1999), and consisted of two key steps (Fig. 9): the
first step is the basic learning step, and the second step is the
meta-learning step. In the first step, each individual base-
classifier is trained to generate predictions. In the second step,
the meta-classifier is used to combine the base models’ predictions
and generate the final prediction. Increasing the number of base
models can theoretically enhance the stacking model’s perfor-
mance by capturing different data features. However, adding
redundant models may not provide additional benefits and could
lead to overfitting. In this study case, the basic-classifiers of the
stacking framework were LR, RF, SVM and DL model, while the
meta-classifier was LR.
Fig. 8. Residual learning: a building block.
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3.6. Accuracy assessment

Since LSM is a binary classification task, the Receiver Operating
Characteristic (ROC) curve and Area Under the Curve (AUC) are
used to validate the performance of the models in this study
(Merghadi et al., 2020). The ROC curve reflects the relationship
between the True Positive Rate (TPR) and False Positive Rate
(FPR) at various threshold settings. The closer the ROC curve is to
the top-left corner, the better the model’s performance. AUC is cal-
culated from the ROC curve, and used to quantify the overall per-
formance of the models. The AUC value ranges from 0 to 1,
where a higher value indicates better discrimination and a more
accurate model. According to the study by Sreenivas and
Venkataratnam in 2006, AUC can be divided into five levels: Poor
(0.5–0.6), Average (0.6–0.7), Good (0.7–0.8), Very Good (0.8–0.9),
and Excellent (0.9–1).

4. Results

4.1. Analysis of causal factors

4.1.1. Multicollinearity analysis
In the database of landslide causal factors, it is common to

observe a phenomenon where certain factors have a strong corre-
lation with each other, especially in topographic factors (Yu et al.,
2022). This multicollinearity can often lead to a reduction in the
model’s performance. To address this issue, we use statistical mea-
sures such as Variance inflation factors (VIF) and Tolerance to
detect and quantify the extent of multicollinearity in the landslide
causal factors. VIF is an index that measures how much the vari-
ance of the estimated regression coefficient is inflated due to mul-
ticollinearity (Lin et al., 2011). The VIF for the predictor variable xj
can be computed as follows:

VIF ¼ 1
1� R2

xj jx�j

ð2Þ

where, 1� R2
xj jx�j

represents the coefficient of determination (R-

squared) from the regression model of xj on the remaining predictor
variables.

Tolerance is the reciprocal of VIF and provides an alternative
perspective on multicollinearity. Typically, when VIF � 5 or toler-
ance � 0.2, it indicates that the factors have a multicollinearity (Lin
et al., 2011). In this study case, based on four landslide inventory
datasets, the multicollinearity analysis of 16 landslide causal fac-
tors was developed by SPSS software (Table 3). The result indicated
that Slope is collinear with RDLS. After remove RDLS, there is no
collinearity among the remained 15 factors.

4.1.2. Comparative importance analysis of different landslide types
Quantifying feature importance is valuable for identifying the

most influential variables in landslide occurrence, understanding
the underlying relationships among landslide causal factors, and
building interpretable susceptibility models (Reichenbach et al.,
2018). RF can provide feature importance rankings, which are
quantified by aggregating the impurity decrease (usually measured
using the Gini impurity or information gain) caused by each fea-
ture across all decision trees in the forest (Yu et al., 2022).

Therefore, the feature importance values of the 15 landslide
predisposing factors were computed using the attribute ‘‘fea-
ture_importance” of the RF model in Anaconda software. Higher
values for a factor indicate a greater influence on landslides. The
results showed that the 15 influencing factors had different
impacts on different types of landslides in the study area (Table 4).
The two most significant contributing factors for the landslide
inventory datasets of all landslides, reservoir-affected landslides,



Fig. 9. The structure of Stacking method.

Table 3
The tolerances and VIF of causal factors.

Factor All landslides Non-reservoir-affected
landslides

Reservoir-affected
landslides

Rockfalls

Tolerances VIF Tolerances VIF Tolerances VIF Tolerances VIF

Altitude 0.533 1.875 0.566 1.767 0.554 1.806 0.581 1.720
Slope 0.192 5.207 0.193 5.193 0.192 5.202 0.192 5.197
Aspect 0.868 1.152 0.879 1.138 0.868 1.151 0.829 1.206
TPI 0.802 1.247 0.799 1.046 0.815 1.227 0.715 1.399
Curvature 0.893 1.119 0.890 1.123 0.895 1.117 0.908 1.101
RDLS 0.187 5.361 0.188 5.317 0.186 5.375 0.189 5.294
TWI 0.628 1.591 0.695 1.439 0.638 1.568 0.636 1.571
Lithology 0.706 1.416 0.973 1.027 0.713 1.402 0.776 1.289
BS 0.994 1.006 0.923 1.083 0.981 1.020 0.866 1.154
Fault 0.777 1.287 0.826 1.211 0.844 1.185 0.750 1.333
Yangtze 0.657 1.522 0.619 1.616 0.734 1.363 0.813 1.229
Stream 0.928 1.078 0.840 1.190 0.942 1.061 0.945 1.058
Road 0.875 1.142 0.956 1.046 0.879 1.137 0.864 1.158
Land use 0.670 1.494 0.883 1.132 0.680 1.471 0.777 1.288
Soil 0.574 1.742 0.935 1.027 0.561 1.781 0.676 1.480
Vegetation 0.376 2.658 0.651 1.535 0.368 2.720 0.499 2.004

Table 4
The important value of causal factors.

Factor All landslides Non-reservoir-
affected
landslides

Reservoir-
affected
landslides

Rockfalls

Altitude 0.097 0.148 0.235 0.238
Slope 0.027 0.094 0.032 0.122
Aspect 0.026 0.061 0.034 0.030
TPI 0.034 0.052 0.030 0.019
Curvature 0.021 0.063 0.025 0.037
TWI 0.021 0.066 0.026 0.046
Lithology 0.190 0.096 0.023 0.120
BS 0.025 0.041 0.029 0.021
Fault 0.051 0.044 0.030 0.029
Yangtze 0.132 0.058 0.237 0.035
Stream 0.126 0.059 0.034 0.053
Road 0.048 0.066 0.045 0.058
Land use 0.050 0.047 0.079 0.037
Soil 0.090 0.070 0.071 0.054
Vegetation 0.060 0.035 0.072 0.100
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non-reservoir-affected landslides, and rockfall were Lithology and
Distance to Yangtze River with values of 0.190, and 0.132, Altitude
and Distance to Yangtze River with values of 0.235, and 0.237, Alti-
tude and Lithology with values of 0.148, and 0.096, and Altitude
and Slope values of 0.238, 0.122, respectively.
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4.2. Landslide susceptibility modelling

First, we created four training and testing datasets, each con-
sisting of inventory events for all landslides, reservoir-affected
landslides, non-reservoir-affected landslides, and rockfalls. Each
dataset was split with 70% landslide samples for training and the
remaining 30% for testing, and its distribution was shown in
Fig. 10. Simultaneously, an equal number of non-landslide samples
were randomly selected from the landslide-free zone to balance
the dataset.

When the data distribution in both the training and testing sets
is similar, the assessment outcomes of a model can more precisely
indicate its performance in practical applications (Zhou et al.,
2022a, 2022b; Qiu and Zhou, 2023a, 2023b). The train and test
datasets, which cover all types of landslide samples, were used to
conduct the distribution analysis in this study. As shown in
Fig. 11, violin plots were employed to display the distribution of
continuous factors, and frequency distribution histograms were
utilized for discrete factors. It can be seen that the distribution of
the training and testing datasets is mainly consistent, ensuring
the reliability of the model testing.

Secondly, four models, namely LR, RF, SVM, and DL, were con-
structed to compute the landslide susceptibility index. In the train-
ing process, the three ML models were built using the scikit-learn
library (Sklearn) in Anaconda software, and the best hyper-



Fig. 10. The distribution of all types’ landslides in training and testing datasets.
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parameters for these models were tuned by the ‘‘Grid-SearchCV”
module in Sklearn (Table 5). The DL model used in this study,
ResNet-18, is composed of four residual blocks, each containing
two convolutional layers with a kernel size of 1� 3. After the resid-
ual blocks, a global average pooling layer computes the average
value of each input feature (where is 1 � number of landslide cau-
sal factors � 1). The output of the global average pooling layer is
then fed into a fully connected layer with a Softmax activation
function for the final two classifications (where is landslide: 1,
non-landslide: 0). Several related parameters were set up: the
batch size is 64, the number of epochs is 100, and the dropout rate
is 0.2.

After training, the AUC was used to compare the performance of
the four models, and the best model for reservoir-affected land-
slides, non-reservoir-affected landslides, and rockfalls were
selected as the basic learner for the Stacking framework. Table 6
lists the AUC of all models, and Fig. 10 shows the ROC curve of
the train and test datasets. The DL model achieved excellent per-
formance in all landslides, reservoir-affected landslides and rock-
falls, with AUC of training and testing are 0.922 and 0.854, 0.956
and 0.919, 0.968 and 0.855, respectively. The RF model outper-
formed the other models for non-reservoir-affected landslides,
with AUC values of 0.867 for training and 0.720 for testing (see
Fig. 13).

Finally, the susceptibility indexes of reservoir-affected land-
slides, non-reservoir-affected landslides, and rockfalls were used
as input data, and the final susceptibility index was calculated
using the Stacking method, with the highest AUC values of 0.966
for training and 0.880 for testing (Table 6).

4.3. Landslide susceptibility maps

For clear interpretation and analysis purposes, the landslide
susceptibility indexes of models are classified into five categories:
Very High (10%), High (20%), Moderate (20%), Low (20%) and Non-
susceptibility (30%). Consequently, this study generated a total of
five maps (Fig. 11).

5. Discussion

An accurate landslide susceptibility map plays a pivotal role in
mitigating geological disasters, reducing human and economic
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losses, and enhancing land use efficiency in mountainous regions
(Guzzetti et al., 2020). Although numerous methodologies for
LSM have been developed, especially with the exploration of ML
and DL algorithms, few approaches consider the impact of land-
slide types on LSM. In this study, new ensemble frameworks were
proposed to generate the landslide susceptibility map, considering
landslide types. Hence, in this discussion section, we focus on: (i)
major factors of different types of landslides, (ii) model perfor-
mance comparison and analysis, and (iii) the spatial distribution
of difference between different maps.

5.1. Importance analysis of causal factors

Due to significant differences in predisposing events, failure
mechanisms, and displacement mechanisms, the same factor can
have varying impacts on the occurrence of different types of land-
slides in an area (Loche et al., 2022). In this study case, the impor-
tance value of 15 landslide causal factors was quantified using the
RF model, and the relationships between different categories of
each factor and landslides were computed using the IV model.
Among these 15 factors, Altitude, Lithology, Slope, and Distance
to Yangtze River play vital roles in the LSM. The details of these
four factors are discussion as follows.

In this study, altitude has proven to be crucial for all types of
landslides, with IV values of 0.238 for rockfalls, 0.235 for
reservoir-affected landslides, and 0.148 for non-reservoir-affected
landslides, respectively. Although the importance of factors can
vary depending on the local setting and geological conditions,
many previous studies have also proven the effectiveness of alti-
tude in LSM (Marchesini et al., 2014; Budimir et al., 2015). There-
fore, it is essential to obtain high-quality DEM data and utilize
detailed morphometric factors when conducting LSM for any type
of landslides. Furthermore, the IV model reveals that the impor-
tance of different altitude subcategories varies significantly
between the three types of landslides. The most important subcat-
egories for reservoir-affected landslides, rockfalls, and non-
reservoir-affected landslides are [50 m, 170 m], [170 m, 300 m],
and [300 m, 430 m], with IV values of 2.235, 1.073, 0.439, respec-
tively. This finding aligns with the field investigation in our study,
which revealed that the foot of reservoir-affected landslides is
mainly located at altitudes between 120 m and 170 m, where
the Yangtze River’s intense erosion occurs (Tang et al., 2019).
Simultaneously, rockfalls are usually distributed within the eleva-
tion range of 170 to 300 m and, together with the reservoir-
affected landslide, exhibit a composite chain-like characteristic of
‘‘falling or toppling above, and sliding below”.

Lithology is the most important for all landslides, the second
most important for non-reservoir-affected landslides, and the third
most important for rockfalls, with importance values of 0.19, 0.096,
and 0.12, respectively. However, it has minimal importance for
reservoir-affected landslides, with an importance value of only
0.023. This result is unusual, but reasonable. According to the
statistics in Supplementary Data (Table S1), 78.15% of the study
area is covered by J2-3 lithology, and 93.83% of reservoir-affected
landslides occurred in the bedrock of J2-3. From this perspective,
the reason may be that the age of the formation may not provide
enough information to conduct LSM for reservoir-affected land-
slides. More detailed geological information, such as lithological
classification and structural units, is needed for LSM. Similar to
the previous findings of Segoni et al. (2020), which explored the
performance of six parameters involving different geological infor-
mation in LSM, this work emphasizes the importance of utilizing as
much geological information as possible, regardless of its accuracy
or scale.

Distance to Yangtze River is the most important factor for
reservoir-affected landslides, with an importance value of 0.237.



Fig. 11. Comparison of training and testing datasets distribution.

Fig. 12. The ROC curves for landslide susceptibility assessment: (a) training and (b) testing.
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However, it is less important for other types of landslides (0.094 for
non-reservoir-affected landslides and 0.032 for rockfalls). It is evi-
dent that the rockfalls occur in high-slope terrain in the study area,
and the IV model shows that the slope categories within [42.5�,
68�], [6.5�, 15�], [25.5�, 32�] the most important for rockfalls,
reservoir-affected landslides, and non-reservoir-affected land-
13
slides, with IV values of 1.073, 0.210, 0.117, respectively. Altitude
and distance to Yangtze River were the two most important factors
for reservoir-affected landslides, and the importance values of
related factors were less than 0.08. This result indicates that these
two factors significantly impact the occurrence of reservoir-
affected landslides.



Fig. 13. Landslides susceptibility maps of: (a) all landslides, (b) all landslides considering landslide types, (c) reservoir-affected landslides, (d) non-reservoir-affected
landslides, and (e) rockfalls.

Table 5
Optimized parameters of five models and search spaces.

Model Parameters Search space Best value (grid search with 5-fold cross validation)

LR C [10�3–103] 0.1
Solver Newton-cg, lbfgs, liblinear, sag Liblinear

RF Number of base estimators [10–500] 130
Maximum tree depth [2–20] 17

SVM Kernel function Linear, RBF, Sigmoid RBF
C [10�3–103] 5
Gamma [10�3–103] 0.3

DL Loss function Cross-entropy loss Cross-entropy loss
Active function ReLU, Tanh, Sigmoid, Linear ReLU
Optimization algorithms Stochastic Gradient Descent (SGD), Root Mean

Square Propagation (RMSProp), Adaptive Moment
Optimization (Adam)

Adam

Learning rate [10–5–1.0] 0.3
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5.2. Model validation and comparison

Recently, with the rapid development of computation, more
attention has been focused on exploring ensemble methods and
ML techniques in LSM. Many previous studies have shown that
14
ensemble methods outperform other typical ML models in various
geological settings, effectively capturing the nonlinear relationship
between landslide causal factors and landslide occurrence (Dou
et al., 2020). However, most of the research has compared ensem-
ble frameworks that integrate different base classifiers with other



Table 6
The AUC of the models during the training and testing process.

Landslide types LR RF SVM DL Staking

All landslides Train 0.780 0.858 0.853 0.922 0.966
Test 0.796 0.805 0.665 0.854 0.880

Reservoir-affected landslides Train 0.869 0.863 0.886 0.956
Test 0.858 0.853 0.861 0.919

Non-Reservoir-affected landslides Train 0.664 0.867 0.678 0.939
Test 0.570 0.720 0.574 0.616

Rockfalls Train 0.843 0.932 0.850 0.968
Test 0.833 0.815 0.831 0.855
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ML models. There is currently no study that effectively combines
susceptibility zonation for different landslide types based on
ensemble strategy.

In this study, three ML models (LR, RF, SVM), and a DL model
(Resnet-18) were used to conduct LSM, and then the best models
for different types of landslides were selected as the basic learner
for Stacking methods. The AUC results showed that DL model out-
performed other typical ML algorithms in modelling all landslides,
reservoir-affected landslides and rockfalls, with improvements of
0.036 to 0.121 for training and 0.022 to 0.189 for testing. This find-
ing is consistent with several recent studies, which also demon-
strated that DL models can achieve advanced predictive ability in
LSM when hyper-parameters are suitably tuned and built with
high quality and sufficient training samples (Youssef et al., 2022;
Yuan and Chen, 2022). In the modelling progress of non-
reservoir-affected landslides, the RF model showed the best perfor-
mance with an ROC of 0.867 for training and 0.720 for testing.
Therefore, the DL model was considered as superior tool to map
the landslide susceptibility in this study. Overall, when compared
with directly modelling all landslides using the DL model, the
Stacking method increased the AUC by 0.044 for training and
0.026 for testing. Although the improvement may appear modest,
Fig. 11b clearly demonstrates that considering different types of
Fig. 14. Confusion matrix results of (a) DL model of training, (b) Stacking method of t
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landslides led to more accurate predictions of landslides located
away from the Yangtze River. The confusion matrix is a table used
to evaluate the performance of classification models, aiding in
detecting model bias and variance and uncovering model weak-
nesses to support subsequent enhancements (Zhou et al., 2022a,
2022b). Therefore, we validated the susceptibility results from
the DL and Stacking models using three performance evaluation
indices: Recall, Precision, and F1 score (Fig. 14). The results show
that the Stacking model performed better than the DL model in
Recall, Precision and F1 score.

In addition, we gathered data from several previous studies on
LSM conducted in similar geo-environmental regions. These stud-
ies by Xiao et al. (2019), Zhang et al. (2016), and Guo et al.
(2019) reported AUC values of 0.801 (RF model), 0.73 (K-means
model), and 0.808 (weights of evidence model), respectively.
Hence, it is reasonable to conclude that LSM considering types of
landslides in our study was advised a powerful strategy to generate
a high-quality landslide susceptibility map.

5.3. Comparison of landslide susceptibility maps

In landslide susceptibility research, most scientists typically
focus on comparing different models in the same area based on
raining, (c) DL model of testing, and (d) Stacking method of testing, respectively.
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AUC, OOBE (out of bag error), or a set of indices from the confusion
matrix (including recall, sensitivity, specificity, and so on)
(Reichenbach et al., 2018). Although these quantified indices can
easily and directly indicate which model performs better, there
may still be some differences in the spatial distribution pattern
of two maps with similar AUC values (Xiao et al., 2020). Therefore,
after combining the landslide susceptibility from the three types of
landslides, it is necessary to visually inspect the different type’s
landslides, and further explore whether the differences between
these maps are randomly and uniformly distributed or follow some
regular spatial patterns.

In this study, we believe that the landslide susceptibility map
calculated by the Stacking method was the most accurate map
with the largest AUC value. This map was selected as the bench-
mark (abbreviated as the final map hereafter), while the other four
maps were treated as the maps to be tested. Since landslide sus-
ceptibility represents the probability of where a landslide is likely
to occur (with values between 0 and 1), the difference between the
LSI of the map to be tested and the LSI of the benchmark map was
defined as their difference (with values ranging from �1 to 1).
When the LSI of the benchmark map, we consider it to be underes-
timated, shown with red color. Conversely, if it is overestimated, it
is shown with blue color.

To better investigate the differences between these maps, the
value of the difference was divided into several levels: severely
Fig. 15. Comparison map of (a) all landslides map, (b) reservoir-affected landslides map,
respectively.
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underestimated (<�0.6), moderately underestimated (�0.6 to
�0.3), mildly underestimated (�0.3 to �0.1), approximate (�0.1
to 0.1), mildly overestimated (0.1–0.3), moderately overestimated
(0.3–0.6), severely overestimated (>0.6). Finally, four comparison
maps were generated using the raster calculation tool in ArcGIS
(Fig. 15).

It is evident that the overestimation and underestimation
points in these four comparison maps are not evenly distributed
and show distinct orientations. In the comparison between the
final map, considering landslide types, and the original map with-
out landslide types, the overestimation points are mainly located
in the area after the first watershed with the Yangtze River, and
the two small valleys on the north part of the study area; while
the underestimated points are situated in the hill area with eleva-
tions of 700–800 m (Fig. 15a). In the comparison of the reservoir-
affected landslides susceptibility map and the final map, the over-
estimation points are concentrated on the slopes where non-
reservoir-affected landslides occur, while there are few underesti-
mation points, which are distributed in the reservoir slopes
(Fig. 15b). In the comparison of the non-reservoir-affected land-
slides susceptibility map and the final map, the difference level is
mainly several overestimated points, and the overestimation
points are concentrated on both sides of the Yangtze River
(Fig. 15c). In the comparison of the rockfalls susceptibility map
and the final map, a significant number of overestimated points
(c) non-reservoir-affected landslides map, and (d) rockfalls map with the final map,



Table 7
Statistics of the comparison maps.

Comparison
map

Several
overestimated

Moderate
overestimated

Mild
overestimated

Approximation Several
underestimated

Moderate
underestimated

Mild
underestimated

Fig. 15a 0.18 (0.02) 1.57 (0.39) 5.73 (1.45) 82.02 (71.81) 0.60 (3.83) 3.36 (9.93) 6.55 (12.56)
Fig. 15b 0.01 (0.01) 0.21 (0.32) 1.75 (1.38) 87.61 (81.53) 0.78 (4.06) 3.26 (5.15) 6.39 (7.54)
Fig. 15c 0.68 (0.42) 3.16 (1.51) 7.41 (2.55) 70.13 (28.00) 6.09 (45.71) 6.09 (13.39) 6.44 (8.42)
Fig. 15d 0.19 (0.03) 2.03 (0.65) 6.29 (1.66) 78.00 (56.01) 2.45 (15.02) 4.93 (14.56) 6.11 (12.08)

Note: 0.18 (0.02) means Proportion of each comparison level in total area (Proportion of landslide in total landslide).
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are located in the southern part of the study area, while the under-
estimation points are relatively scattered throughout the study
area (Fig. 15d).

Based on these four comparison maps and the five landslide
susceptibility maps in Section 4.3, we further demonstrate the
necessity, reliability and accuracy of considering landslide types
when conducting LSM in this study area. In the map modelling
without landslide types for all landslides, the LSI of 7.48% pixels
is lower than the LSI of the final map (overestimation), and
10.51% pixels is larger than the LSI of the final map (underestima-
tion). This result shows that the susceptibility of study area is
slightly decreases after considering landslide types, which is con-
sistent with the conclusion of field survey. A large number of land-
slides located in the riverside area, leading to the overestimation of
susceptibility in that region. Furthermore, we counted the propor-
tion of landslide samples in ten difference levels, and the result
shows that after considering landslide types, the LSI of 1.84% land-
slides samples was decreased, while the LSI of 26.32% landslides
samples was increased (Table 7). It can be said that LSM consider-
ing different landslide types can effectively improve the accuracy
of susceptibility map, especially in areas outside the influence of
reservoir water.

As stated in the research of Reichenbach et al. (2018) modelling
with limited information on types of landslides has adverse conse-
quences on the practical application of an accurate susceptibility
map. We believe that in the TGRA or other similar area with land-
slides induced by reservoir impoundment, it is significantly neces-
sary to separate reservoir-affected landslides form other landslides
in LSM. Several studies have also supported this idea. For example,
research by Shu et al. (2021) showed that the accuracy of landslide
susceptibility map increased by 1.5% to 5.4% by integrating the
landslide susceptibility index of two landslide typologies: shallow
landslides and debris flows. Similarly, Zhou et al. (2018) conducted
LSM by combining the susceptibility of colluvial landslides and
rockfalls in Longju (China), and demonstrated that the separation
of landslide types for LSM can improve the prediction accuracy
by 0.041 to 0.119. Hence, we suggest that landslides induced by
reservoir should be separately recorded to form an event inventory
of landslides (proposed by Guzzetti et al. (2006)), which is associ-
ated with a triggering event, such as reservoir construction and
operation, torrential rainfall, earthquake, or snowmelt event (Liu
et al., 2023; Zou et al., 2022).

6. Conclusions

This study presents a new framework for LSM in a mountain-
area located in the middle and upper reaches of TGRA, China by
considering different landslide types. Firstly, we divided 733 land-
slides into three types, which are reservoir-affected landslides,
non-reservoir-affected landslides, and rockfalls. Next, four land-
slide inventory datasets and 15 landslide conditional factors were
trained by three ML models (LR, RF, SVM), and a DL model (Resnet-
18), respectively. Then, the models with highest AUC were used to
compute the susceptibility of three types of landslides, respec-
tively, and the Stacking method was designed to integrate the sus-
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ceptibility of the three types. We compared the susceptibility map
considering landslide types with maps of the three types landslides
and the map without separating landslide types. All results showed
that LSM considering different landslide types effectively improved
the accuracy of susceptibility map, with an increase in AUC by
0.041 to 0.119. Overall, this study provides a new approach to
achieving high-quality susceptibility mapping in TGRA. High-
quality susceptibility maps can help in the implementation of land
use planning and reduce the losses caused by landslides. Hence,
this study successfully considers the multiple landslide problem
in LSM, and provides a new approach for achieving high-quality
susceptibility mapping. At the same time, the proposed methodol-
ogy can effectively map landslide susceptibility in other areas
where multiple multi-types of landslides exist. Future research
should focus on exploring more unique features associated with
different types of landslides and, with the development of ensem-
ble techniques and ML algorithms, make more attempts to build
advanced models that consider landslide types for LSM in various
environments.
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