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Water is a vital resource supporting a broad spectrum of ecosystems and human activities. The quality
of river water has declined in recent years due to the discharge of hazardous materials and toxins. Deep
learning and machine learning have gained significant attention for analysing time-series data. However,
these methods often suffer from high complexity and significant forecasting errors, primarily due to non-
linear datasets and hyperparameter settings. To address these challenges, we have developed an innovative
HDTO-DeepAR approach for predicting water quality indicators. This proposed approach is compared with
standalone algorithms, including DeepAR, BiLSTM, GRU and XGBoost, using performance metrics such as
MAE, MSE, MAPE, and NSE. The NSE of the hybrid approach ranges between 0.8 to 0.96. Given the value’s
proximity to 1, the model appears to be efficient. The PICP values (ranging from 95% to 98%) indicate that the
model is highly reliable in forecasting water quality indicators. Experimental results reveal a close resemblance
between the model’s predictions and actual values, providing valuable insights for predicting future trends.
The comparative study shows that the suggested model surpasses all existing, well-known models.

1. Introduction (1996) reviewed techniques for identifying patterns in water quality.
The author discussed parametric and non-parametric techniques that
account for seasonality by segmenting the data based on the assumption
of a monotonic trend. The analysis is helpful for policymakers and

regulators involved in timely water quality management.

Water quality plays a crucial role for the inhabitants of ecosystems.
Significant changes in aquatic environments have occurred during the
last several decades due to point and non-point source pollution. As a
result, concerns regarding the purity of river water have been raised.
Agricultural and industrial activities, municipal wastewater, soil ero-
sion, rising temperatures, and heavy metal pollution (mining) are the
anthropogenic factors that possess a negative impact on water qual-

In this river basin, numerous short-term studies have been con-
ducted to examine the geographical and temporal variability of physic-
ochemical parameters in connection to anthropogenic influences

ity (Vlad et al., 2012; Uddin et al., 2021; Wator and Zdechlik, 2021).
One of the most challenging issues is identifying both the sources of
pollution. Time series forecasting aids in detecting unusual patterns
or anomalies in water quality data over time. Sudden increases or
decreases in parameter concentration (pH, dissolved oxygen, turbidity),
pollutant concentrations, biological contamination, leakages in sewage
pipes, or other environmental changes might threaten aquatic ecosys-
tems or human health (Yousefi et al., 2021). In this manuscript, multi-
ple time-series models are employed to forecast water quality indicators
based on the temporal pattern of data collected over time. Esterby

(Chakrapani and Subramanian, 1990; Subramanian, 1980; Sundaray
et al.,, 2006, 2011). The population residing in the vicinity of the
river basin relies entirely on it for irrigation and industrial purposes.
Therefore, water quality is a matter of concern for future usage.

The Water Quality Index (WQI) (Horton, 1965) is a valuable tool
for analysing and reporting the overall quality of water in a particular
region. It is calculated using the weighted arithmetic WQI technique
to estimate the suitability of water for human consumption, irriga-
tion, and other applications. The deterioration in water quality in
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rivers, exacerbated by rapid population growth, poses a serious global
threat. The WQI model primarily consists of parameter selection, sub-
index processing, parameter weighting, and the aggregation function
steps (Uddin, 2020). However, subsequent research has revealed con-
cerns about ambiguity with the weighting technique. The rank sum (RS)
approach was used by Uddin et al. (2022b). The results indicate that
the RS technique is more dependable than other strategies for handling
uncertainty in the WQI model. Miyittah et al. (2020) assessed the
contamination status of a lagoon system using multivariate statistical
tests. Kumar et al. (2021) evaluated pollution levels over 49 years
using a Cartesian coordinate system and trend analysis of water quality
indices (WQI). In addition, studies were conducted to analyse the influ-
ence of urban expansion on river water quality, using a modified NSF
WQI to quantify regional changes (Parween et al., 2022). WQI plays a
cardinal role in determining the health and quality of river ecosystems,
although its values may not accurately represent the true state of
water quality. Hence, a new approach using artificial intelligence was
undertaken to forecast based on qualitative classes (Georgescu et al.,
2023). Long-term physiological characteristics were assessed using the
Comprehensive Pollution Index (CPI) and Environmetrics (Dimri et al.,
2021), classifying and simplifying large datasets. Machine learning
algorithms, including XGBoost and KNN, outperformed other methods
in predicting water quality classes. To address uncertainty in WQI
models, a Monte Carlo simulation technique was employed, and the
Gaussian Process Regression (GPR) approach was used to predict uncer-
tainty at each sample location (Uddin et al., 2023d). An accurate and
improved Iris WQI was proposed by Uddin et al. (2023e) for evaluating
transitional and coastal water quality, minimizing model uncertainty.
The WQM-WQI approach proved to be more successful because of
bias-free assessment.

Additionally, a new data-driven technique was established to eval-
uate trophic levels in intermediate and coastal waters, indicating nu-
trient levels and potential algal growth. The Assessment Trophic Status
Index (ATSI) model, combined with machine learning algorithms, is a
viable approach for evaluating trophic conditions (Uddin et al., 2023g).
Future research may focus on integrating emerging pollutants and so-
cioeconomic factors into water quality indices. Moreover, the inclusion
of socioeconomic factors in indices would offer a more comprehensive
assessment. Traditional testing procedures for monitoring water quality
characteristics are time-consuming and limited to specific regions due
to extensive field sampling and expensive laboratory analysis. These
limitations highlight the challenges faced by traditional approaches in
estimating water quality at geographical scales (Song and Kim, 2009).

In the age of enormous data collection, the application of compu-
tational intelligence (CI) methods in various hydrological settings has
been rising with a focus on modelling techniques. Arya and Zhang
(Arya and Zhang, 2015) deployed the ARIMA approach for time se-
ries analysis to forecast dissolved oxygen and surface water tempera-
ture. Antonopoulos et al. (2001) used statistical techniques to assess
monthly time series of water quality metrics and discharge. To choose
the optimum theoretical distribution for the data, the X?-test and
the Kolmogorov-Smirnov (K-S) test were performed. Arya and Zhang
(2017) applied a copula-based Markov process to simulate water qual-
ity time series. One of the most crucial indicators for summarizing the
state of surface water is the concentration of dissolved oxygen. Csédbragi
et al. (2017) adopted four linear and non-linear models for forecasting
dissolved oxygen concentration. It revealed that non-linear models
outperformed the linear models. Deng et al. (2021) implemented and
upgraded artificial neural networks (ANN) and support vector machines
(SVM) to precisely forecast the algal development and eutrophica-
tion in the harbour. The findings showed that ANN was preferable
for generating excellent outcomes with immediate response, whereas
SVM was appropriate for correctly selecting the optimum model but
required a longer training period. To predict the spatial and temporal
fluctuations of water quality indicators, machine learning (ML) tech-
niques were developed in conjunction with the Environmental Kuznets
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Curves (EKC) (Deng et al., 2022). Georgescu et al. (2023) studied non-
linear relationships between water quality and flow status parameters.
The cascade-forward network (CFN) and radial basis function network
models were employed as reference models.

Deep learning models excel in capturing deep correlations in data,
making them ideal for modelling the intricacies of water quality dy-
namics. These models are valuable for predicting water quality metrics,
especially when relationships between these indicators are challenging
to specify using traditional methods. Hyperparameter tuning in deep
learning is an important feature that has a substantial influence on the
performance, convergence time, and generalization ability of neural
network models. Choosing the best values may result in models with
higher accuracy, reduced error rates, and better performance on a
variety of tasks. Researchers have developed several metaheuristic
techniques to produce accurate results. Takieldeen et al. (2022) de-
veloped a novel optimization technique dipper throated optimization
(DTO) derived from dipper throated birds. It has an exceptional hunting
strategy that involves rapid bowing movements. DTO is scrutinized
and contrasted to particle swarm optimization (PSO) (Kennedy and
Eberhart, 1995; Poli et al., 2007; Xiang and Jiang, 2009), whale op-
timization algorithm (WOA) (Ge et al., 2023; Guo et al., 2020), grey
wolf optimizer (GWO) (Mirjalili et al., 2014; Faris et al., 2018; Cuong-
Le et al., 2022), and genetic algorithm (GA) (Mirjalili and Mirjalili,
2019; Srinivas and Patnaik, 1994; Kuo et al., 2006) to demonstrate its
effectiveness. Khullar and Singh (2022) employed the BiLSTM approach
to predict river water quality.

Several recent investigations have indicated that the WQI model
generates significant ambiguity in its modelling process due to the
overestimation of the index by the aggregation function (Abbasi and
Abbasi, 2011; Chang et al., 2020; Uddin et al., 2023c). Due to the
unreliability of previous WQI methodologies, a few researchers have
lately applied the ML methodology to minimize model uncertainty
and forecast WQIs accurately (Bui et al.,, 2020; Hassan et al., 2021;
Othman et al., 2020; Kouadri et al., 2021; Khan et al., 2022). Ad-
dressing eclipsing and ambiguity issues in water quality forecasting
requires careful consideration of model construction and data quality.
Numerous studies have been carried out on the prediction of critical
water quality indicators. To estimate river water quality, researchers
explored multiple prediction models, including independent ML, deep
learning (DL), and hybrid models. While dealing with complex or
dynamic systems, standalone models may lack resilience. Many stan-
dalone models provide point estimates without explicitly quantifying
uncertainty (Irwan et al., 2023). Therefore, metaheuristic approaches
are intended to effectively search a wide search space. They excel at
identifying excellent solutions throughout the whole hyperparameter
field, making them beneficial for global optimization (Liu et al., 2021;
Morales-Hernandez et al., 2023).

However, most research has concentrated on the water quality index
and parameter point prediction (Pany et al., 2023; Islam et al., 2022;
Zheng et al., 2023). But there are no studies on probabilistic water
quality time series forecasting in the Mahanadi River system.

The manuscript determines the pattern of the water quality param-
eters in the future. To achieve this goal, a novel hybrid hidden dipper
throated optimization- deep autoregressive (HDTO-DeepAR) model has
been developed. To measure its robustness four standalone methods
(DeepAR, BiLSTM, GRU, XGBoost) are employed. The information sup-
plied in the study has numerous ramifications and relevance in the
realm of environmental management. BOD is a crucial indicator that
determines the degree of organic pollution in water bodies. The vari-
ations in pH content, which are reliant on external environmental
conditions, emphasize the dynamic aspect of water quality. Elevated
sulphate levels can have implications for both ecological and human
health. High sodium concentrations may lead to diminished soil per-
meability, poor aquatic life, and human health difficulties. Elevated
chloride levels may harm freshwater ecosystems by harming aquatic
plants and animals. Water temperature changes can have a significant
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effect on the metabolic rates, reproduction, and dispersal of aquatic
species. Temperature changes can also influence nitrogen cycling and
overall ecosystem dynamics. The findings of the study give vital insights
into environmental management by giving information on changes in
major water quality measures and the accuracy of forecasting models.
This data may be used to drive decision-making processes aimed at
conserving and improving water quality in the study region. As per
the author’s knowledge, forecasting of water quality parameters in the
Mahanadi River basin using the proposed method has not been carried
out previously.

The remaining part of the manuscript is organized as follows: Sec-
tion 2 demonstrates the methodology, whereas Section 3 delves into
the results. Section 4 explains the discussion. Section 5 elaborates on
the conclusion.

2. Methodology

A detailed breakdown of the study area, data collection, preprocess-
ing methods, and the proposed method is described in this portion.

2.1. Study area

The Mahanadi River basin in India is chosen as the study area.
The river’s catchment area spans several states including Madhya
Pradesh, Odisha, Jharkhand, and Maharashtra, covering a drainage
area of 1,41, 589 square kilometres (4.3 per cent of India’s geographical
area) (Samuel et al., 2017; Kurwadkar et al., 2022; Konhauser et al.,
1997). Owing to its rich mineral resources and dependable electricity
supply, the basin provides a favourable industrial environment. Promi-
nent industries situated around the basin include aluminium factories
in Hirakud and Korba, a paper mill near Cuttack, and an Iron and
Steel plant at Bhilai. Additionally, other industries thrive on coal, iron,
and manganese mining. An increasing rate of population within a
confined area continually stresses the environment and may lead to
the degradation of water quality. Major repercussions of urbanization
include a significant shift in land use, a rise in built-up areas, solid
waste landfilling, and sewage disposal (Ouyang, 2005). The monitoring
stations chosen for the analysis are Brajrajnagar D/S, Sambalpur D/S,
and Sonepur D/S stations. Increased water use, inadequate sewage
infrastructure, and a lack of wastewater treatment facilities have a
substantial impact on water resources. As urbanization progresses,
agricultural lands and unpaved roads are being paved, resulting in
increased surface imperviousness. Surface water bodies suffer severe
pollution from untreated sewage and contaminated urban runoff, ren-
dering them unsuitable for supplying fresh water to cities. The majority
of the excess dissolved metals are triggered by industrial and urban
pollutants (Hussain et al., 2020; Samantray et al., 2009). The alarming
pollution not only degrades water quality but also endangers human
health, disturbs the balance of the aquatic environment and affects
economic growth. Despite the fact that enterprises have taken every
precaution to achieve zero effluent status, there is widespread concern
about air, land, and water contamination. Therefore, an initiative has
been taken for proper water quality forecasting at various stations of
the study area for better management in the future. The monitoring
stations in the Mahanadi River is shown in Fig. 1.

2.2. Data collection and pre-processing

The data used in this manuscript were obtained from the Cen-
tral Pollution Control Board (CPCB), India. Water quality data were
collected for six indicators from three stations within the Mahanadi
River system, specifically Brajrajnagar D/S (S1), Sambalpur D/S (S2)
and Sonepur D/S (S3). Fig. 1 shows the details of the monitoring
stations in the Mahanadi River. The data is available on a monthly
basis from 2001 to 2022. The water quality indicators include sodium,
temperature, BOD, pH, chloride, and sulphate. Samples are collected
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from a well-mixed portion of the river (mainstream) 30 cm below
the water’s surface using a weighted bottle. The CPCB laboratory
is recognized by the National Accreditation Board for Testing and
Calibration Laboratories (NABL), a constituent board of the Quality
Council of India. Consequently, the water laboratory implements to all
quality assurance procedures for diverse analytical tasks. Various inter-
laboratory programmes are employed on a regular basis to evaluate
laboratory bias. Quality assurance measures primarily include sample
control and documentation, standard analytical procedures, analyst
qualifications, equipment maintenance, data reduction, validation, and
analytical quality control (CPCB, 2020).

Data preprocessing is a pivotal step in deep learning that includes
preparing and cleaning the data prior to feeding into a model. The
missing values are imputed using the interpolation method. Thereby,
the outliers are identified and removed to avoid noise in the data. Later,
the features are normalized to a common scale to ensure convergence
during training. For performance assessment, 80% of the data is taken
for training, 10% for validation, and 10% for testing.

2.3. Hidden dipper throated optimization

The Hidden Dipper Throated Optimization (HDTO) method is based
on a new concept that categorizes birds into two groups: swimming
birds and flying birds. This approach was motivated by the unique
hunting style and quick bow motions. The two forms of birds cooperate
with each other to locate food. This presumption is allocated to the
exploration and exploitation groups in order to explore the search space
for the optimum solution (Abdelhamid et al., 2023; Takieldeen et al.,
2022; Abdelhamid et al., 2022). These groups of birds are distinguished
by their locations and velocities.

S, S12 S13 e Sig
S21 S22 S23 e Spy

S=|s31 832 833 . 83, @
1St Si2 813 .- Sip
U Wp W3 e Uy
g1 HUpp Upz .o Uy

U=\luzy Uzp U3z ... U3, (2)
Y41 Wi W3 o - Uy

where, s, , represents the yth dimension and the x position of the bird,
for x € [1,2,3,....,11 and y € [1,2,3,.....,n] and its velocity in y,,
dimension is represented by u, ,. The fitness functions for birds in the
search space are dictated by f = f}, f5, f3. ..., f;, which is defined using
the matrix below:

S1(s11s S120 S135 ovs S1a)
S2($0,15 8205 823, -vs Spn)

s=1/3(531> S32, 833, s S3,) 3)
Filsis S120 S135 - Sin)

In a fitness assessment that takes into account each bird’s success rate
in locating food, the fitness score of the mother bird is the greatest
conceivable. Numbers are sorted in decreasing order while sorting. The
initial HDTO strategy that the optimizer used to monitor the swimming
bird is based on the equations shown below to be considered for
changes in the position and velocity of the members of the population:

S(t+ 1) = 545 (t) — Dy.| D5y, (1) — s(2)] 4

Where s, is a normal bird position, s,,,, is the best bird position and
s(t + 1) is the updated bird position.

D, =2dp, —d )

D, =2p, (6)
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Fig. 1. Water quality monitoring stations in the Mahanadi River.

2
t

‘ 2<1 <T> ) ”
where, d changes from 2 to 0 exponentially, and 7,,, is the total
number of iterations. u(r + 1) is the velocities of the bird at iteration
t + 1. The second DTO process is based on the following equations for
updating the flying bird’s location and velocity. The new position of
flying bird is updated as below:

s+ D) =ut+1)+s0) ®

where s(7+1) is the new position of a normal bird. The updated velocity
of each bird is estimated as:

u(t + 1) = Dau, + Dypi(Spes; (1) = 5(1)) + Ds5pr(Sgpes: — 5()) 9

The DTO algorithm can be written as:

t)— D, .|K|,ifP < 0.5
s(t + 1) — Sbest() 1 | | 1 (10)
u(t +1) + s(7), otherwise
K= DZ‘Sbest(t) =St a1

Where sg,,.,; denotes the global best solution. The current iteration’s
index is marked by t, while the next iteration’s index is denoted by
t+ 1. The D,, D,, and D5 are weight values. Whereas, D4, and D5 are
constants. The values of P, p;, and p,, are chosen randomly in the range
[0, 1].

2.4. DeepAR

Deep Autoregressive (DeepAR) (Salinas et al., 2020) forecasting
method that uses an autoregressive recurrent neural network (AR RNN)
to train a global model instead of fitting separate models for each
time series like other conventional models. It generates credible prob-
abilistic forecasts and uncertainty estimates based on previous data.
Amazon developed the technique, which is renowned for its capacity
to expand by leveraging a variety of variables. The model takes a
series of past values and predicts the next value in the sequence. It
utilizes a combination of LSTM and fully connected layers to capture
the underlying patterns and relationships in time series data, and it is
trained using a backpropagation and gradient descent technique. The
algorithm encodes the input time series during the training phase. Once

Algorithm 1 DTO Algorithm()

Require: Optimized solution for the hidden layer of DeepAR
1: Initialize population position s;(i = 1,2, 3, ...,1) with I birds, veloc-
ity u;, objective function f;, iterations T,,,,, parameters of t = 1, r/,
r, R, Dy, D,, D5, Dy, Ds

2: Calculate f, for each bird’s position s;

3: Identify Best bird position s,,,,

4: whiler<T,,, do

5: fori=1:i<i+1do

6: if P <0.5 then

7: Update the position of the swimming bird as:
8: S(t+ 1) = 4o () = Dy | Dy.spey (1) — s(1)]

9: else
10: Update the velocity of the flying bird as:
11: u(t + 1) = Dyu; + Dyry(Speg (1) — 5(2)) + Dsry(Sgpesr — 5(1))
12: Update the current flying bird position as:
13: s+ 1) =s@)+u@+1)
14: end if
15: end for
16: Calculate f; for each bird
17: Setr=1t+1
18: Update P, D, D,
19: Find the best position s,,,,

20: Set SGbest = Shest
21: end while
22: Return the best bird s,

trained, the model’s effectiveness is assessed using assessment measures
tailored to the forecasting job. The context window is produced by
processing a defined number of historical observations over a given
amount of time. To fine-tune the model and increase its accuracy,
hyperparameters such as learning rate, layer count, and batch size
are modified. The hyperparameter settings of the HDTO-DeepAR is
illustrated in the Table 1. The objective of DeepAR is to simulate the
conditional distribution as shown in Eq. (12).

R(pi,IOZTlpi,l:IO—l) 12)

where, T is the end of the forecast window, p; ., =1 is the past values,
and ¢, is the start of the forecast range. [1 : 7,—1] and [t : T] represents
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the conditioning range and prediction range respectively. The DeepAR
model forecasts the prediction range as per the conditioning range.

DeepAR assumes that R(p;,.71p;.1,-1) includes likelihood factors.
These factors are presented in Egs. (13) and (14).

T
R(p; . 71pi 1 :xo—l) = H Rp; (s 1:0-1)

1=t

r 13)
=[] rw. 10,0
t=tg
hiy=hhi_y,pis-1,0) 14

where, h;, is the output of the hidden state constructed by LSTM
cell parametrized by 6. The standard deviation(c) and mean(u) are
derived from the hidden state #;, and become the parameters of the
gaussian likelihood function. The model attempts to generate a gaussian
distribution that produces predictions that are near the target variable.
DeepAR trains (and predicts) a single data point each time, therefore
the model is known as autoregressive.

Hence, the Gaussian likelihood (1) is determined in the following
Eq. (15).

I(plu,0) = 2z0%) "2 exp(—(p — ) /(262) @1s)
2.5. HDTO-DeepAR

Fig. 2 illustrates the overall structure of the proposed optimized
hybrid model, featuring densely connected layers. The learning rate,
number of hidden layers, dropout rate, batch size, number of cells,
and epochs are subjected to optimization using the HDTO algorithm.
To optimize the number of instances, the initial training phase begins
with an ample number of iterations and early stopping with minimum
tolerance intervals. The batch size is the total number of training sam-
ples utilized in a particular training cycle. Traditionally, mini-batches
are used to train networks faster, and a smaller batch size consumes
less memory. Initial training is carried out with a considerable number
for the maximum number of epochs to optimize it. The model works
reliably at a 0.001 learning rate with 3 hidden layers. A high learning
rate may allow the model to converge fast, but it may also exceed
the minimum, resulting in oscillations or divergence. A poor learning
rate, on the other hand, may cause sluggish convergence, causing the
model to get trapped in local minima. The stability of the training
process is dependent on hyperparameter optimization. An improper
learning rate may cause numerical instability, leading the optimization
process to diverge or oscillate. A consistent learning rate leads to a
steady and dependable training approach. This technique produced
an overfitting-free model and offered an approximate range for the
number of instances. Later, The input layer of DeepAR receives a
time series of past values. The embedding layers are utilized to process
the model’s features. The LSTM layers are used to capture temporal
dependencies in time series data. These layers include a memory cell
that may retain information from earlier timesteps, allowing the model
to track long-term relationships in the data. The fully connected layers
uncover underlying patterns and correlations in time series data. The
output layer generates the predictions for the subsequent time step and
takes the form of a probability distribution as per the task.

3. Results

This section summarizes the findings of the innovative methodology
for predicting water quality. Table S1 in the supplementary file contains
statistical data on water quality indicators.
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Table 1

Hyperparameter setting of HDTO-DeepAR.
Hyperparameter Value
Learning rate 0.001
Number of hidden layers 3
Cell type LSTM
Dropout rate 0.1
Batch size 64
Number of cells 40
Epochs 70

3.1. Performance metrics

The present research employs several statistical metrics to assess
the computational ability to predict water quality. Model performance
is evaluated using metrics such as mean squared error (MSE), mean
absolute error (MAE), mean absolute percentage error (MAPE), Nash—
Sutcliffe efficiency (NSE) and prediction interval coverage probability
(PICP). Nash and Sutcliffe (1970), Xiong et al. (2020), Uddin et al.
(2023a), Uddin (2020). MSE computes the average squared difference
between actual and predicted data. MAE is expressed as the average
absolute difference between actual and predicted values. MAPE stands
for the mean of the absolute percentage errors (Uddin et al., 2022a,
2023d). The Nash-Sutcliffe efficiency (NSE) is a normalized statistic
that indicates the relative amount of the residual variance in com-
parison to the observed data variance. NSE scores vary from O to 1,
with 1 signifying a perfect match and values less than 0 indicating that
the observed data’s mean exceeds the model. The negative NSE result
indicates an inefficient model efficiency (Uddin et al., 2023f; Sharif
et al., 2022). The statistical indices are calculated using the formula
as described below:

L — A. 2
MSE = 20 =) (16)
n
1 n
MAE = " Z lyi = i1 an
i=1
s Ji—v
MAPE = ~ Z | 22— % 100% 18)
i3 i
n A
L = 5)?
NSE=1- Lyz 19)
Zi:l (yi - yi)
where,

y; = actual value

¥; = predicted value

y; = mean actual value

n = number of observations in the dataset

The lower values of MSE, MAE and MAPE signify reduced prediction
bias and higher prediction ability. Naturally, analysts prefer an NSE
value near 1 for optimum model performance.

Ensuring the predictability of forecasts is critical for the utility
and credibility of any forecasting model. Prediction reliability refers
to the consistency and accuracy of projected results in comparison to
actual observed events. The prediction interval coverage probability
(PICP) is used to assess prediction reliability (Park et al., 2020; Arora
et al., 2022). The mean of the decision variable d; is used to calculate
PICP. The expected frequency with which data fall inside the prediction
interval range is used to evaluate the prediction values’ reliability (Jin
et al., 2019).

PICP = (l Z d;) x 100 (20)
n i=1

The prediction values are reliable if the PICP > 95% (Jin et al., 2019).
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Fig. 2. Proposed architecture for water quality forecasting.

3.2. Forecasting of water quality

The outcome of the proposed methodology is compared to those of
the four base models in order to assess its robustness.

Figs. 3(a) to 3(c) shows the probabilistic forecasting of BOD for

Brajrajnagar D/S, Sambalpur D/S, and Sonepur D/S station. The value
of BOD was found to be decreasing with respect to time. The forecasting
result reveals that BOD is lying between 0.5 mg/l to 5 mg/l. It has
shown a very good accuracy using HDTO-DeepAR as compared to other
standalone deep learning and machine learning methods. Table 4 repre-
sents the error estimates of the models in Brajrajnagar D/S, Sambalpur
D/S, and Sonepur D/S station. The MAE and MAPE for HDTO-DeepAR
in Brajrajnagar D/S are found to be 0.11 and 8.331 respectively and
in Sambalpur D/S station, the MAE and MAPE accounted for 0.21 and
10.155. Likewise, the MAE and MAPE for the Sonepur D/S station are
found to be 0.11 and 8.851 respectively. The model’s NSE is determined
to range between 0.89 and 0.96. The proposed model has a closer
agreement with the forecasted value. NSE values range from —oo to 1.
A score of 1 shows that the expected and observed values are perfectly
matched, whereas lower values suggest a worse fit. A negative NSE
indicates that the mean of the observed data is a better predictor
than the model. The MSE for Brajarajnagar D/S, Sambalpur D/S and
Sonepur D/S are 0.018, 0.113 and 0.018 that can be visualized in
Fig. S7 in the supplementary file. The BOD of any aquatic system
is an extremely significant indicator for assessing water quality and
developing management plans to conserve water resources.

Chloride is an essential water quality characteristic that is often
evaluated in surface water bodies owing to its potential consequences
for environmental, ecological, and human health. Elevated chloride
levels may indicate the existence of pollution sources such as road
salt (sodium chloride) runoff, industrial discharges, and wastewater
effluents. Monitoring chloride levels may aid in identifying places
that need pollution prevention and control measures. The probabilistic
forecasting of Chloride is illustrated in Figs. 4(a), 4(b), and 4(c). There
is no discernible pattern present in the Chloride dataset. Its forecasted
value lies between 3 mg/] to 60 mg/1. The estimated forecast is found
to be less than 30 mg/l for Sambalpur D/S and Sonepur D/S stations.
Whereas, there is a little spike of about 45 mg/l in the Brajrajnagar
D/S station. Table 6 shows the error evaluation of Chloride forecasting.
The MAE, MSE MAPE, and NSE of Brajrajnagar D/S using the proposed

method are found to be 1.16, 4.134, 8.437, and 0.92. Sambalpur D/S
station accounted for 1.26, 3.275, 10.241, and 0.89 of MAE, MSE,
MAPE, and NSE. Similarly, the MAE, MSE, MAPE and NSE in the
Sonepur D/S station are seen to be 1.11, 2.5398, 10.342, and 0.87
respectively.
pH quantifies the degree of acidity or alkalinity of water on a
logarithmic scale ranging from O to 14. It is an inherent feature that
determines the health, quality, and ecological balance of surface water
ecosystems. Extreme pH values may stress or even kill aquatic life,
resulting in changes in species composition and probable reductions in
biodiversity (Gorde and Jadhav, 2013). Forecasting has been carried
out to overcome these severe scenarios and maintain ecological balance
in the future. As shown in Figs. 5(a), 5(b) and 5(c), the pH is seen to
be maintaining its range between 5.5 to 10 and there exists no trend.
Furthermore, the worst-case scenario indicates a value ranging from 4
to 14. Table 5 demonstrates the error evaluation of pH forecasting for
the three stations. HDTO-DeepAR has outperformed the other methods
in the three cases. The MAE, MSE, MAPE, and NSE are found to lie be-
tween 0.67 to 0.76, 0.6 to 0.9, 8.5 to 9.8, and 0.8 to 0.85. The graphical
representation of MAPE is shown in Fig. S8 in the supplementary file.
Although sodium is a necessary element, its presence in surface
water may have both natural and man-made consequences. Elevated
sodium levels in surface water may have a deleterious impact on
sensitive freshwater creatures. Therefore, it is necessary to monitor the
sodium concentration in water (Khatri and Tyagi, 2015). As shown in
Figs. 6(a), 6(b), and 6(c), there is no constant pattern present in three of
the stations. The forecasting results indicate the value is approximately
lying between 0.5 mg/1 to 60 mg/1. Table 2 reflects the error estimation
of sodium forecasting. The errors of the proposed HDTO-DeepAR are
found to be less as compared to the other methods. The error percent-
age varies from 8.4 to 9.4. The absolute error is observed to be lying
between 0.8 to 1.2 and the squared error ranges from 1.1 to 1.9.
Sulphate is a vital nutrient for aquatic plant and microbial develop-
ment. It is discharged into bodies of water through natural processes
such as weathering of sulphur-rich rocks and minerals. Excessive sul-
phate levels in runoff may cause eutrophication and oxygen depletion
in aquatic bodies. Meanwhile, regular monitoring is required to prevent
potentially dangerous disturbances (Bhateria and Jain, 2016).The prob-
abilistic forecasting of Sulphate is shown in Figs. 7(a), 7(b), and 7(c) for
Brajrajnagar D/S, Sambalpur D/S and Sonepur D/S respectively. The
errors of sulphate forecasting are listed in Table 7.
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Comparative analysis of HDTO-DeepAR with standalone methods for Sodium forecasting.

WQ Parameter Station Model name MAE MSE MAPE NSE
HDTO-DeepAR 1.01 1.809 9.409 0.95
DeepAR 1.05 2.245 10.024 0.86
Brajrajnagar D/S BiLSTM 1.95 5.852 17.254 0.84
GRU 2.15 6.261 19.223 0.80
XGBoost 2.41 7.571 23.941 0.78
HDTO-DeepAR 0.96 1.219 9.203 0.95
DeepAR 1.21 3.245 11.235 0.89
Sodium (mg/1) Sambalpur D/S BiLSTM 1.62 3.621 15.445 0.85
GRU 2.09 5.584 20.314 0.8
XGBoost 2.42 7.398 23.569 0.77
HDTO-DeepAR 0.83 1.154 8.453 0.93
DeepAR 1.01 1.547 9.457 0.87
Sonepur D/S BiLSTM 1.478 3.531 14.379 0.82
GRU 1.94 4.934 20.351 0.79
XGBoost 2.137 5.996 22.676 0.76
Table 3
Comparative analysis of HDTO-DeepAR with standalone methods for Temperature forecasting.
WQ Parameter Station Model name MAE MSE MAPE NSE
HDTO-DeepAR 2.52 7.335 9.725 0.85
DeepAR 3.12 11.245 11.324 0.74
Brajrajnagar D/S BiLSTM 3.52 16.323 13.921 0.71
GRU 3.66 18.024 14.417 0.69
XGBoost 5.39 39.428 21.194 0.66
HDTO-DeepAR 2.64 10.714 10.832 0.87
DeepAR 2.79 11.074 10.834 0.86
Temperature (°C) Sambalpur D/S BiLSTM 2.84 11.091 10.835 0.83
GRU 4.97 32.001 18.971 0.79
XGBoost 5.65 42.341 21.205 0.76
HDTO-DeepAR 2.52 9.664 9.191 0.82
DeepAR 3.42 12.912 11.213 0.8
Sonepur D/S BiLSTM 3.57 20.193 12.939 0.79
GRU 5.76 46.509 21.202 0.75
XGBoost 6.13 53.265 22.125 0.71

Temperature is a significant variable in aquatic ecosystems im-
pacting a variety of physical, chemical, and biological processes. It
has a direct impact on the metabolic rates, growth, and reproductive
activities of aquatic species. The metabolic rates of most of the species
increase when the temperature rises, resulting in larger energy needs
and faster development rates. Warmer water temperatures may re-
duce dissolved oxygen levels, possibly straining or suppressing aquatic
life (Mugwanya et al., 2022; Volkoff and Rgnnestad, 2020). As shown in
Table 3, the MAE, MSE, MAPE, and NSE using the proposed method are
found to be between 2.5 to 2.6, 9.6 to 10.7, 9 to 10.8, and 0.82 to 0.87.
As a result, monitoring and comprehending temperature fluctuations is
crucial for successful aquatic resource management and conservation.
The NSE findings suggest that the model works efficiently. Moreover,
the probabilistic forecasting of temperature can be visualized in Fig. 8.
The PICP is calculated using Eq. (20) to evaluate the reliability of
the forecasting model. Based on the PICP values of BOD, pH, sodium,
sulphate, temperature, and chloride forecasting, the expected frequency
ranges from a prediction interval of 95% to 98%. Hence, according to a
comparative study, it is found that the proposed HDTO-DeepAR method
outperformed the other techniques in terms of prediction accuracy and
reliability.

4. Discussion

The proposed study contributes by filling the research gap in the
methodological approach to forecasting water quality indicators in the
Mahanadi River basin, India. It introduces an improvement in the
forecasting technique by combining the hidden dipper throated opti-
mization and DeepAR. Training the DeepAR model is computationally
challenging and time-consuming. It is difficult to choose the right
values of the hyperparameters (Bischl et al., 2023). To overcome this
challenge, HDTO method is used in the hidden layer to optimize the
hyperparameters.

The study identified the possibility of a decrease in the BOD content
in the succeeding years until 2025. A decrease in BOD is often seen
as an indication of improved water quality, signifying a reduction
in organic pollution and an improvement in the health of aquatic
ecosystems (Dutta et al., 2020). Chloride content follows a similar trend
as past patterns, as shown in Figs. 4(a), 4(b)and 4(c). The pH level may
rise or decrease based on anthropogenic and natural environmental
conditions such as hospital trash disposal, acid rain, and other potential
influences (Khatri and Tyagi, 2015). Sodium content remains the same
as per historical pattern. However, it might rise at a certain stage
in Brajrajnagar D/S and Sambalpur D/S stations due to industrial
discharge, agricultural runoff and runoff from urban areas. Sulphate
content appears to be increasing in the future. The temperature of
surface water follows patterns similar to the historical pattern.

There has been essentially no study on water quality time series
forecasting in the Mahanadi River. The comparative analysis relies on
literature from different river basins. As mentioned in Siami-Namini
et al. (2019), Khullar and Singh (2022), BiLSTM operates well due to
its backward and forward processing. Due to flaws in regularization
approaches, the procedure cannot provide good results. Compared to
simpler models, optimizing BiLSTMs might be more difficult because
of their increased complexity and several hyperparameters. The opti-
mization techniques can be incorporated to reduce the error rate and
improve the forecasting accuracy (Uddin et al., 2022b,a, 2023i; Ding
et al., 2023; Uddin et al., 2022c).

Additionally, GRU is chosen for analysis due to its simpler architec-
ture, which can be useful for training the model easily within a short
period. Handling information with the single gating mechanism in GRU
may seem challenging (Mei et al., 2022).

Furthermore, XGBoost is a popular ensemble high-performance and
versatile machine learning method (Uddin et al., 2022b). It has the
capability to visualize each decision tree and analyse the feature im-
portance score. Several recent research studies have also indicated that
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Table 4
Comparative analysis of HDTO-DeepAR with standalone methods for BOD forecasting.
WQ Parameter Station Model name MAE MSE MAPE NSE
HDTO-DeepAR 0.11 0.018 8.331 0.95
DeepAR 0.19 0.211 11.854 0.9
Brajrajnagar D/S BiLSTM 0.35 0.218 24.251 0.64
GRU 0.41 0.239 31.846 0.59
XGBoost 0.44 0.303 33.242 0.54
HDTO-DeepAR 0.21 0.113 10.155 0.89
DeepAR 0.23 0.114 10.098 0.87
BOD (mg/1) Sambalpur D/S BiLSTM 0.31 0.134 15.939 0.73
GRU 0.49 0.299 25.207 0.57
XGBoost 0.57 0.479 29.072 0.55
HDTO-DeepAR 0.11 0.018 8.851 0.96
DeepAR 0.14 0.028 12.312 0.94
Sonepur D/S BiLSTM 0.17 0.042 13.116 0.89
GRU 0.35 0.173 27.759 0.76
XGBoost 0.41 0.234 29.784 0.67
Table 5
Comparative analysis of HDTO-DeepAR with standalone methods for pH forecasting.
WQ Parameter Station Model name MAE MSE MAPE NSE
HDTO-DeepAR 0.67 0.615 8.702 0.85
DeepAR 0.81 1.124 11.234 0.79
Brajrajnagar D/S BiLSTM 0.99 1.378 12.823 0.77
GRU 1.55 3.095 19.793 0.74
XGBoost 2.38 6.774 29.409 0.68
HDTO-DeepAR 0.76 0.784 9.709 0.83
DeepAR 0.98 1.459 12.875 0.79
pH Sambalpur D/S BiLSTM 1.12 1.668 14.231 0.76
GRU 1.18 1.689 15.128 0.72
XGBoost 1.54 3.301 19.674 0.67
HDTO-DeepAR 0.75 0.839 9.607 0.84
DeepAR 1.17 1.124 12.973 0.81
Sonepur D/S BiLSTM 1.23 2.005 15.586 0.77
GRU 1.39 2.709 17.661 0.72
XGBoost 1.8 4.428 22.916 0.68
Table 6
Comparative analysis of HDTO-DeepAR with standalone methods for Chloride forecasting.
WQ Parameter Station Model name MAE MSE MAPE NSE
HDTO-DeepAR 1.16 4.134 8.437 0.92
DeepAR 1.7 4.356 9.954 0.91
Brajrajnagar D/S BiLSTM 1.8 4.941 16.298 0.85
GRU 1.97 5.056 17.934 0.82
XGBoost 2.07 10.856 18.633 0.79
HDTO-DeepAR 1.26 3.275 10.241 0.89
DeepAR 1.79 4.724 11.571 0.83
Chloride (mg/1) Sambalpur D/S BiLSTM 1.86 5.231 17.828 0.79
GRU 2.27 7.039 19.953 0.77
XGBoost 2.48 7.568 23.385 0.75
HDTO-DeepAR 1.11 2.539 10.342 0.87
DeepAR 1.38 2.864 11.972 0.85
SonepurD/S BiLSTM 1.45 3.484 14.577 0.83
GRU 1.74 4.007 17.682 0.81
XGBoost 2.19 6.495 21.453 0.75

the XGBoost algorithm is good at predicting WQIs (Uddin et al., 2022a,
2023h,g; Khan et al., 2022). Despite the regularization process, the
model has faced overfitting (Tong et al., 2023).

In this research, a novel hybrid approach is proposed for water qual-
ity forecasting. Additionally, four standalone methods are used to com-
pare the robustness of the hybrid technique. The standalone methods
faced challenges of overfitting due to poor hyperparameter tuning with
bounded datasets. As a result, an appropriate optimization strategy is
employed in HDTO-DeepAR method. Although the proposed approach
may include external variables, their investigation and exploitation
may be restricted. Integrating external data effectively might be dif-
ficult in several cases. It is based on learned data representations and
may not gain as much from human feature engineering as certain tra-
ditional models. This constraint might be problematic in circumstances
when expert knowledge is useful for enhancing predictions.

The findings of this study could assist water resource managers and
policymakers in effectively allocating resources. It enables them to fore-
see changes in water quality and take preventive action to guarantee
the supply of clean and secure drinking water. The study generates a
probability distribution for forecasting future sequences based on past
data. Many times, addressing intermittent and irregular characteristics
can be challenging. In such cases, the training procedure in DeepAR
can be modified (Jeon and Seong, 2022). Forecasting aids in more ef-
fective maintenance activity scheduling, lowering costs and downtime.
It can provide early warning systems in situations when water quality
unexpectedly declines due to chemical spills or natural catastrophes.
Water quality time-series forecasting aims to project the future values
of several parameters based on previous data. However, various sources
of uncertainty may impair the accuracy of these estimates. Weather
factors, seasonal variations, and biological dynamics may all contribute
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Table 7
Comparative analysis of HDTO-DeepAR with standalone methods for Sulphate forecasting.
WQ Parameter Station Model name MAE MSE MAPE NSE
HDTO-DeepAR 0.63 0.681 12.109 0.92
DeepAR 0.71 1.126 13.754 0.89
Brajrajnagar D/S BiLSTM 0.74 1.138 16.534 0.85
GRU 1.01 1.654 20.614 0.79
XGBoost 1.32 2.596 27.364 0.73
HDTO-DeepAR 0.64 1.285 10.737 0.94
DeepAR 0.97 2.269 11.394 0.92
Sulphate (mg/1) Sambalpur D/S BiLSTM 1.12 2.509 12.411 0.88
GRU 1.26 2.534 25.793 0.74
XGBoost 1.51 3.393 26.481 0.69
HDTO-DeepAR 0.53 0.507 13.841 0.91
DeepAR 0.69 0.685 14.246 0.90
SonepurD/S BiLSTM 0.73 0.731 15.743 0.88
GRU 1.45 2.805 26.751 0.82
XGBoost 1.58 3.641 31.606 0.78
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Fig. 5. Probabilistic forecasting of pH using HDTO-DeepAR for (a) Brajrajnagar D/S.
(b) Sambalpur D/S. (c) Sonepur D/S.

to unpredictable oscillations. Pollutants may enter water bodies as a
result of human activities such as industrial discharges, agricultural
runoff, and urban expansion. As these activities are dynamic, it is
difficult to predict their influence on water quality. Inaccuracies in
sampling methodology, equipment calibration, and laboratory analysis
may also affect the predictability of historical data. The key component
of uncertainty is its capacity to influence decision-making and resource
management (Uddin et al., 2023a,b; Gani et al., 2023). However,
HDTO-DeepAR operates in uncertain situations by using a probabilistic
method. It not only delivers point predictions but also prediction
intervals that reflect the degree of uncertainty associated with each
prediction.

This research does not consider external environmental factors that
affect surface water quality. However, the water quality may also be
impacted by external agents and heavy metals from industries. The
analysis uses a smaller dataset, while a larger dataset would be more
efficient for forecasting. The proposed method does not provide a direct
measure of uncertainty in its forecasts. The computing resources needed
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Fig. 6. Probabilistic forecasting of Sodium using HDTO-DeepAR for (a) Brajrajnagar
D/S. (b) Sambalpur D/S. (c) Sonepur D/S.

for training and deploying DeepAR models may be costly, particularly
for large-scale forecasting tasks.

5. Conclusion

In this manuscript, six models: HDTO-DeepAR, DeepAR, Bi-LSTM,
GRU, and XGBoost are implemented to forecast the water quality
indicators in the Mahanadi river basin, India. Parameters used for fore-
casting include BOD, chloride, pH, sodium, sulphate and temperature.
The probabilistic forecasting reveals BOD and chloride concentration
might face a decreasing trend over time. On the other hand, there is a
possibility that pH might lie between 4-14. Likewise, sodium shows a
decreasing trend in Brajrajnagar D/S and Sonepur D/S during 2023 —
2025. whereas it takes a peak in Sambalpur D/S. Sulphate concentration
might vary approximately between 2 mg/1-40 mg/1 in Sambalpur D/S
and Sonepur D/S. However, in Brajrajnagar D/S station the value
might lie between 1 mg/1-50mg/l. The temperature can lie between
10 °C-50 °C in all the stations. The PICP value demonstrates that
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Fig. 7. Probabilistic forecasting of Sulphate using HDTO-DeepAR for (a) Brajrajnagar
D/S. (b) Sambalpur D/S. (c¢) Sonepur D/S.

HDTO-DeepAR is the most reliable for projecting water quality. The
recommended approach is efficient in producing probabilistic forecasts
with high accuracy and can determine complicated patterns like season-
ality and uncertainty increase over time. Industrial activities, sewage
disposal and agricultural runoff are the most influential factors to affect
the water quality. The results of the output show a probable chance of
extreme increase and decrease in the water quality concentration in
future.

It is evident that water quality is also affected by various other envi-
ronmental factors. These factors are not considered in this manuscript,
which is a limitation. In future, the study can be carried out by
incorporating multiple covariates for more precise forecasting.
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