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A B S T R A C T

Computer vision-based methods for civil structure’s vibration displacement measurement have emerged as useful
tools in the recent years. These methods offer several benefits including non-contact measurements, cost-
effectiveness, and the ability to capture full-field displacement. Yet, there remain certain challenges.
Measuring vibration displacement in 3D typically requires multiple cameras, adding complexity to camera
configurations. Moreover, existing methods relied heavily on physical markers or natural key points. Placing
physical markers on structures is often impractical, and natural key points are difficult to detect on structures
with few distinct features or during rapid movements. Contrary to previous approaches, this paper presents a
novel technique that uses a monocular camera for 3D displacement measurements. This technique obviates the
need for physical markers or the reliance on natural key points, representing a significant advancement. Central
to the method is a deep neural network designed to predict 3D mesh deformation directly from a single image
input, combined with an initial 3D cube mesh input. A synthetic 3D dataset is generated to train the neural
network. In the testing phase for real structures, advanced video segmentation method is employed to remove the
background in order to enhance the prediction accuracy. The practical efficacy of this methodology is validated
in a laboratory through a series of experimental tests on beam structures, demonstrating reliable results and
application potentials.

1. Introduction

Structural vibration displacement serves as an important indicator of
structural performance therefore can be used for civil structural health
monitoring (SHM) [1–3]. By analysing the vibrations, engineers can
extract the structural integrity and potential vulnerabilities inherent
within the system. When a structure is subjected to external forces, such
as vehicular traffic on a bridge or wind forces on a wind turbine, it
undergoes certain displacements. Anomalies in the expected displace-
ment patterns can be indicative of structural deficiencies or material
fatigue [4,5]. Continuous monitoring of these displacements facilitates a
proactive approach to structural maintenance. It allows for the early
detection of potential issues, enabling timely interventions. This ensures
the safety and life of the structure and optimizes the economic aspects by
preventing costly repairs. Post-intervention evaluations are equally
crucial. By comparing displacement data before and after repair or

retrofit interventions, engineers can quantitatively assess the efficacy of
the measures undertaken. If the post-repair displacements align more
closely with the expected patterns, it indicates a successful intervention.
Conversely, continued anomalies might necessitate further investigative
measures or additional corrective actions.

Traditional methods for displacement measurement typically
involve the use of contact sensors such as linear variable differential
transformers (LVDTs), strain gauges and so on. These sensors are
attached to the surface of the structure to measure the movement or
deformation of the structure under load. While traditional methods can
provide accurate measurements, they are often limited to localized
measurements, requiring multiple sensors to monitor the behaviour of
the entire structure. For example, LVDTs can only measure the move-
ment or deformation of a particular point on the structure. This limita-
tion can result in a partial understanding of the structural behaviour,
leading to missed opportunities for early detection of damage or
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deformation. Additionally, these methods may require invasive instal-
lation procedures, such as drilling holes or attaching sensors to the
structure, which can damage the structural integrity. The installation of
conventional sensors can be time-consuming, labour-intensive, and may
necessitate temporary disruptions to the structure’s function or use [6].
Moreover, the maintenance and calibration of these sensors over time
can add to the long-term costs and logistical challenges of structural
monitoring.

There has been a significant shift towards non-contact sensors, which
offer the advantage of measuring displacements without physically
touching the target. Laser displacement sensors [7] are among the most
precise non-contact measurements. However, their effective range is
limited, and require a static platform for installation to ensure consistent
and accurate measurements. Satellite-based remote sensing techniques
can also be used to measure displacement of structures. The common
technique is Global Navigation Satellite System (GNSS) [8–10], which
uses signals from satellite navigation systems to measure displacement
of structures. This technique is particularly useful for monitoring large
structures such as bridges or dams that may be difficult or dangerous to
access for installation of traditional sensors for displacement measure-
ment. Satellite-based remote sensing techniques have limitations
including low resolution due to the size of the satellite sensor and dis-
tance from the ground, as well as environmental factors such as atmo-
spheric conditions and vegetation that would affect the measurements.

Computer vision-based displacement measurement techniques offer
several advantages over traditional monitoring techniques, as they can
provide full-field measurements, capturing the deformation of the entire
surface of a structure rather than just sparse points [11]. Dense mea-
surements can provide a more complete picture of the structural
behaviour and can aid in the detection of damage, fatigue, or defor-
mation. Being a form of remote sensing, computer vision techniques are
especially beneficial for monitoring structures that are challenging to
access or where the installation of conventional sensors might be
impractical. Furthermore, these methods are relatively easy to set up,
eliminating the need for intricate installations or specialized equipment.
Additionally, their cost-effectiveness, due to reduced equipment and
maintenance expenses, makes them an attractive option for structural
health monitoring.

Over the past two decades, computer vision-based displacement
measurement systems have undergone significant development. As
these systems have evolved, there has been a notable improvement in
both of their application scenarios and measurement accuracy. The

current computer vision-based measurement systems can be categorized
into two classes: 2D displacement systems [1,12–17] and 3D displace-
ment systems [11,18–22]. As shown in Fig. 1(a), the camera imaging
process inherently reduces dimensions, projecting 3D objects from the
world coordinate system onto a 2D image coordinate system. In such a
transformation, the depth information d, is lost. As illustrated in Fig. 1
(b), 2D displacement measurement systems are designed to capture only
the in-plane displacements that occur parallel or approximately parallel
to the image plane. In contrast, 3D displacement measurement attempts
to capture additionally the out-of-plane movement, which are perpen-
dicular to the camera’s imaging plane. Measuring out-of-plane
displacement presents significantly more challenges compared to
in-plane displacement measurement, primarily due to the absence of
depth information in images.

Due to the inherent characteristics of various structures and the
diverse loadings they are exposed to, out-of-plane displacements are
often unavoidable. Firstly, structures frequently experience dynamic
loads, such as wind, seismic activity, or vehicular traffic. These forces
can induce not only in-plane movements but also complex three-
dimensional displacements. Secondly, even when a structure’s move-
ment is primarily one or two-dimensional, it is often challenging to
achieve a camera position perfectly so the imaging place is parallel to
the movement. Environmental constraints, installation hurdles, or the
necessity to view multiple aspects of a structure can hinder ideal camera
placement.

Over the past decades, many measurement systems have been
designed to measure the out-of-plane displacement, many harnessing
the capabilities of depth sensors [23] or relying on multi-camera arrays
[19,24] for accurate measurements. The depth sensors are commend-
able in their efficacy, but are accompanied by inherent challenges. For
example, they are susceptible to environmental variables. Ambient
lighting, shadows, and reflections can introduce anomalies in their
readings. The cost factor further compounds the issue; high-quality
depth sensors often come with a significant price tag. Given these
challenges, multi-camera measurement systems have gained popularity
[11,19–21,24]. These systems leverage multiple cameras to capture
different perspectives of a structure. By leveraging images from various
viewpoints, they can reconstruct a 3D representation of the structure’s
movements, recovering the lost depth information in single-camera
setups. Park et al. [19] introduced an approach that explores the utili-
zation of a multi-camera based motion capture system (MCS) for
capturing 3D displacements of structures. Their findings underscore the
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Fig. 1. Depiction of in-plane and out-of-plane displacements in relation to the pinhole camera model. (a) Emphasizes the pinhole camera model, highlighting the
inherent limitation in capture depth information; (b) Demonstrates both in-plane and out-of-plane movements of a specific point.
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potential of MCS in offering a more comprehensive recording of struc-
tural behaviours, especially in scenarios where torsional and lateral
movements coexist. Shao et al. [11] introduced a computer vision-based
approach for full-field 3D vibration displacement measurement without
the need for artificial targets. Utilizing a binocular vision system, the
method captures both in-plane and out-of-plane vibration displacements
in civil structures. A significant advancement of this study is the inte-
gration of deep learning-based key point detection and matching algo-
rithms, enabling highly precise target-free measurements. Wang et al.
[21] introduced a binocular vision measurement system for structural
health monitoring, leveraging the SIFT-based improved LSM algorithm
(SLSM). This system, equipped with a 4 G cellular module, allows for
real-time image uploading and processing. However, multi-camera
setups pose their own set of challenges in real applications.
Multi-camera configurations demand rigorous calibration to achieve
uniform depth perception from diverse angles. Techniques like key point
matching, while effective, are computationally demanding and intricate,
amplifying the system’s complexity. Additionally, synchronizing mul-
tiple cameras is also a difficult task.

Recently, the use of monocular camera systems for out-of-plane
displacement measurement has emerged as a promising technique, of-
fering several advantages over multi-camera configurations. At its core,
the monocular approach, relying on just a single camera, stands out for
its simplicity and cost-effectiveness. There is no need for the complex-
ities of multi-camera installations, or the intricate calibration processes
that come with ensuring multiple cameras synchronize and align
correctly. The recent strides in deep learning have significantly
bolstered this approach. Contemporary research, empowered by deep
learning advancements, has demonstrated the potential of monocular
cameras in gauging out-of-plane movements [25–27]. In recent work,
Sun et al. [27] presented an approach that harnesses monocular vision
combined with deep learning-based pose estimation to effectively
measure 3D displacements using just a single camera. Leveraging virtual
rendering, the authors adeptly created extensive training datasets
derived from 3D models of target structures, thereby circumventing the
labour-intensive task of manual annotations. While the method show-
cases significant potential for accurate rigid body displacement mea-
surements, it exhibits limitations in detecting displacements when the
structure undergoes deformation, suggesting further enhancements are
required to tackle non-rigid body dynamics. Shao et al. [26] introduced
a measurement system that leverages the capabilities of a monocular
vision system for 3D full-field displacement measurement in civil
structures. The system combines advanced key point detection and
tracking algorithms for in-plane displacement measurement with
advanced deep learning techniques for out-of-plane depth estimation.
This fusion allows for the measurement of 3D displacement using just a
single stationary camera. The experimental results highlighted the sys-
tem’s capability in accurately capturing the in-plane vibration
displacement responses. However, the accuracy of out-of-plane mea-
surements, while commendable, is far from comparable to the in-plane
measurements.

The measurement for both in-plane and out-of-plane displacement
can be divided into target-based and target-free approaches. The former
requires the placement of artificial markers on the structure, which
simplifies the tracking process for computer vision algorithms and en-
hances accuracy. However, the installation of these markers can be
labour-intensive and time-consuming, and their presence limits the full-
field displacement measurements. On the other hand, target-free
methods capitalize on the natural features of the structure or the pat-
terns of ambient light and shadow to ascertain displacement. With the
integration of advanced algorithms, such as SIFT [28], SURF [29], and
KAZE [30], and the incorporation of deep learning techniques like
Superpoint [31], these methods can extract and track natural features
over time to determinemovement. However, structures that lack distinct
textures can pose significant difficulties for target-free measurement, as
the absence of unique visual features can hinder accurate tracking and
measurement. Similarly, structures undergoing rapid movements can
introduce motion blur or exceed the tracking capabilities, leading to
potential inaccuracies.

This paper proposes a method centering on the concept of mesh
deformation, obviating the need for key point detection. Essentially, a
mesh serves as a skeletal framework of an object, constructed from
vertices, edges, and faces that collectively represent the object’s three-
dimensional form. Mesh deformation involves manipulating these
vertices, much like moulding clay, to allow for alterations in the object’s
shape. Fig. 2 shows a simple example of a 1D mesh structure composed
of ten vertices. Initially, the mesh is presented as a straight line. When
the positions of these vertices are altered, deformation of the mesh is
observed. The displacement of the vertices from the initial to the
deformed mesh can be measured. The greater the number of vertices in a
mesh is, the more comprehensive the full-field displacement can be
captured.

Analogous to children moulding clay based on a reference picture,
this study utilizes an initial mesh cube as a simple yet malleable 3D form,
akin to a piece of unshaped clay. This analogy serves to illustrate the
adaptability of the mesh deformation approach, where the initial mesh,
like clay, is flexible and can be shaped or adjusted. The mesh deformable
neural network enhances this malleability, allowing it to modify the
vertices of the mesh in 3D based on a single reference image. This
technique ensures that the mesh adapts holistically to structural move-
ments, rather than focusing solely on isolated key points. Each vertex in
the mesh correlates to a specific point on the structure, and as the
structure moves or displaces, its representation in the image shifts
accordingly. The altered image informs the neural network to adjust the
vertices’ positions, effectively capturing the mesh deformation that re-
flects the structural changes.

This vertex-focused approach, which prioritizes the collective
deformation of mesh vertices over isolated key point tracking, offers a
robust and holistic framework to structural displacement measurement.
This is especially advantageous in scenarios where traditional methods
might fail. To train a neural network capable of inferring mesh defor-
mation from a single image, a large synthetic dataset is generated. This

Initial 1D Mesh Deformed 1D Mesh Mesh Vertices

Fig. 2. An example of 1D mesh deformation. Each circle represents a vertex.
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dataset encompasses a wide range of deformed meshes and corre-
sponding images captured from various viewpoints. To eliminate the
effect of background in testing, a robust vision model Track Anything
(TAM) [32] is utilized to segment the desired structure from each frame
of the structural vibration video. By integrating TAM, a significant
improvement in measurement accuracy is observed.

The proposed approach offers three advantages over traditional
methods. Firstly, the method is characterized by its 1) target-free na-
ture, eliminating the need for key point tracking or the placement of
physical markers on the structure. This not only streamlines the moni-
toring process but also reduces potential errors that might arise from
marker placement or tracking discrepancies. Furthermore, 2) out-of-
plane displacements are captured using monocular vision, a signifi-
cant advancement from conventional techniques that often require
multiple cameras or sensors. 3) A full-field view of structural move-
ments is provided by emphasizing mesh deformation over individual key
points, ensuring a comprehensive understanding of structural dynamics.
This is especially pivotal for structures that cannot be adequately rep-
resented by isolated key points or when the movement is not indicative
of rigid body motion.

The remainder of this paper is structured as follows: Section 2 in-
troduces the generation of the dataset, the intricacies of the mesh
deformation neural network, and an introduction to TAM. The efficacy
of the proposed vision measurement system is then assessed in Section 3
through a series of vibration tests conducted on beam structures. Section
4 provides a comprehensive discussion of the proposed measurement
methodology. Conclusions are drawn in Section 5.

2. Methodology

In the development of this 3D displacement measurement system, a

systematic and multi-step process is followed, as illustrated in Fig. 3. At
the outset, a custom-made dataset is generated using the 3DGEN [33]
synthetic dataset generation tool. The generated dataset serves as the
training data for the mesh deformation neural network model. This
model can predict the deformations of the 3D mesh based on a single
image. Before testing the model, a crucial preprocessing step is carried
out using TAM [32] to eliminate the background from the test video.
TAM’s primary function is to enhance the videos by isolating the object
of interest from its background. This segmentation process involves the
elimination of all background elements, a necessary step given the
absence of background in the training dataset and the challenges asso-
ciated with generating a diverse background within the dataset. Elimi-
nating the background ensures that the subsequent analysis remains
unpolluted by any irrelevant objects. The outcome of this integration is a
series of deformed 3D meshes. An assumption of this methodology is the
existence of at least one stationary point within the civil structure. This
assumption is not only logical but also practical, as most civil structures
inherently possess a fixed foundation. By measuring the distance be-
tween the stationary vertex (vertices) and the dynamic ones within each
deformed mesh, the displacement can be measured. Since the mesh
deformation network is trained on images from various viewing angles,
it allows the flexibility of positioning the camera at any desired place,
ensuring accurate out-of-plane displacement measurements.

2.1. 3D mesh deformation neural network

The deformation of the 3D mesh relies on a combination of deep
learning and numerical methods. Convolutional neural network (CNNs)
is used to translating 2D changes into 3D meshes. Alongside deep
learning, analytical methods are used to calculate the deformations of
structures under various loading conditions, guiding the training of the
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neural network.
As shown in Fig. 4, the mesh deformation neural network operates

using an encoder-decoder architecture. This network takes in a single
monocular image and an initial mesh, then produces a deformed mesh
corresponding to the input. For the feature extraction phase, residual
neural network (ResNet) [34] serves as the encoder, effectively
capturing the significant details and patterns in the input image. Sub-
sequently, 1D CNNs are employed as the decoder, reconstructing the
deformed mesh from the feature map extracted by ResNet. This com-
bination allows the network to adaptively shape the mesh based on the
intricacies and details perceived in the monocular image.

The encoder serves as a foundational component in various neural
network architectures. Its primary role is to compress and transform raw
input data into a more compact and informative representation. The
encoder of the mesh deformation neural network takes in a monocular
RGB image as input and extracts high-level features from the image
using a series of convolutional layers. ResNet-18 has been selected as the
backbone for feature extraction. This specific variant of the ResNet
family, with its optimized depth, is characterized by a balance between
computational efficiency and the ability to identify intricate patterns in
the data.

The ResNet-18 architecture is delineated with 18 layers, of which 17
are convolutional and one stands as a fully connected layer. Initially the
structure is a 7 × 7 convolutional layer featuring a stride of 2, promptly
succeeded by a max pooling layer. Subsequently, the 16 layers evolve
into a series of residual blocks. Each block encompasses two 3 × 3
convolutional layers, integrated with a shortcut connection capable of
sidestepping one or several layers. A distinguishing feature of this ar-
chitecture is its residual nature, facilitating a more streamlined training
process and elevating performance in deep neural networks. Every
convolutional layer in ResNet-18 is followed by batch normalization, a
strategy that greatly enhances the stability and accelerates the training
phase. Before reaching the final fully connected layer, a global average
pooling layer is incorporated, effectively diminishing the number of
parameters and mitigating the risk of overfitting. A comprehensive
layout of the ResNet-18 structure can be referenced in Fig. 5.

The decoder of the model is a 1D CNN that takes the combined
feature representation from the encoder and the vertices of the original
mesh as input and generates deformed vertices. In the proposed neural
network model, the initial operation begins with the output from the
encoder. Subsequently, the output from the encoder is expanded along a
new dimension to match the size of the original mesh, which contains
the 3D coordinates of the vertices. This expansion effectively replicates
the encoder’s output for each point in the original mesh. Finally, the
expanded encoder output is concatenated with the vertex tensor along
the feature dimension. This concatenation operation combines the
image-derived features with the 3D point data, creating a comprehen-
sive feature representation. The decoder is defined with four convolu-
tional layers and three batch normalization layers. The first three layers

use the Rectified Linear Unit (ReLU) [35] activate function, while the
last output layer uses the hyperbolic tangent (tanh) activate function.

During training, three loss functions are used: Chamfer loss, edge
length regularization loss and a surface normal smooth loss [36].
Chamfer loss measures the average proximity of each vertex in one set
(prediction) to its nearest neighbour in the other set (ground truth). The
loss is bidirectional: it calculates the distance from every point in the
first set to its closest point in the second set and vice versa, then com-
bines these distances to produce a comprehensive measure of point set
dissimilarity. The core advantage of the Chamfer loss lies in its ability to
provide a robust distance metric even when two-point sets have different
cardinalities or are sparsely sampled. The formula of the Chamfer loss is
provided as:

lCD(P,Q) =
1
| p |

∑

p∈P
min
q∈Q

‖p − q‖22 +
1
|q|

∑

q∈Q
min
p∈P

‖p − q‖22. (1)

where P and Q represent the group of predicted vertices and ground
truth vertices. The first term in the equation calculates the average
minimum squared distance from each point in P to Q, and the second
term does the opposite, from each point in Q to P. In the domain of 3D
mesh analysis, accurately capturing the underlying structural charac-
teristics of mesh is important.

To penalize flying vertices, an edge length regularization loss [36] is
added:

ledge =
∑

p

∑

k∈N (p)
‖ p − k ‖22, (2)

where p for a vertex in the predicted mesh, k for a neighbouring vertex of
p. The edge length regularization loss is a quantitative measure that
assesses the variations in the lengths of edges formed by pairs of adjacent
vertices in a 3Dmesh. Utilizing the edge loss in optimization tasks serves
a dual purpose: it not only aids in producing geometrically consistent
models but also ensures that the resultant structures adhere closely to
the intricate nuances of the target data.

For an enhanced characterization of high-order geometric proper-
ties, a surface normal loss term [36] is added as:

ln =
∑

p

∑

q=argmin(‖p− q‖22)

⃦
⃦〈p − k, nq〉

⃦
⃦2
2, s.t. k ∈ N (p). (3)

where p and q are corresponding vertices in P and Q, found during the
computation of a preceding distance-based loss (such as Chamfer loss).
The term k represents a neighboring vertex of p and N (p) is the set of
such neighbors. nq is the observed surface normal from the ground truth.
The inner product between two vectors is denoted as 〈 • , • 〉. The overall
loss is a weighted sum of two losses, lossoverall = lCD + 0.05ledge +
0.025ln.
The Adam optimizer [37], utilizing its default parameters, is used to

update the network’s weights. The initial learning rate is configured at
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1× 10− 3, and adjustments are designed to be made at three pivotal
epochs: firstly, at the 15th, subsequently at the 25th, and ultimately at
the 35th, culminating in a total of 50 epochs for the entire training
duration. At each designated epoch, the learning rate undergoes a
decimation by a factor of ten, a strategy orchestrated to ensure nuanced
weight adjustments that foster model convergence. The training exploits
the computational capabilities of four Nvidia TITAN RTX GPUs. With a
batch size of 128, the training process is streamlined, and to further
expedite data loading, all mesh files are converted to NumPy files,
facilitating swift 3D mesh loading.

2.2. Point registration for metric displacement measurement

In the field of Structural Health Monitoring (SHM), measurement of
metric displacement like millimetres, is of paramount importance. The
process of point registration is a critical role in this context. Specifically,
the objective is to align two disparate sets of points - typically a synthetic
mesh predicted by the neural network to the actual coordinates in the
world system. This alignment ensures that the spatial locations captured
in the synthetic representation correspond to the real-world, thereby
facilitating accurate evaluation of structural health metrics.

For 3D vertices registration, an initial alignment is applied to roughly
bring the synthetic representation to the real-world coordinate system.
This is achieved through Singular Value Decomposition (SVD). As pre-
viously noted, civil structures often have fixed portions that remain
invariant over time. These static regions offer an advantageous oppor-
tunity for point registration, as they can serve as reference points to
facilitate the alignment process. While a minimum of three non-collinear
points can theoretically define a unique plane in three-dimensional
space, a greater number of fixed points is generally advantageous. Uti-
lizing more fixed points improves the constraint on the transformation
parameters, thereby enhancing alignment accuracy.

The fixed points on the synthetic mesh are denoted as P, while their
corresponding locations in the real-world coordinate system are repre-
sented by Q. The centroids Cp and Cq represent the geometric center of
the point sets P and Q, respectively. Mathematically, the centroid is
defined as the average of all the points in the set.

Cp =
1
N

∑N

i=1
pi (4)

Cq =
1
N

∑N

i=1
qi. (5)

here N is the number of points in each set, and the sum runs over all

these points. This average captures the "center of geometry" of the
points, providing a key point around which alignment can be more
naturally achieved. The original point sets are transformed into Pʹ and Qʹ

by subtracting their corresponding centroids. This is for SVD-based
methods, as it aligns both sets around the origin, facilitating easier
computation of rotational and translational transformations.

pʹ
i = pi − Cp (6)

qʹ
i = qi − Cq. (7)

The cross-covariance matrix H is then calculated to find the optimal
rotation that aligns the two centered point sets Pʹ and Qʹ. It is calculated
as:

H =
∑N

i=1
pʹ
iq

T́

i . (8)

This matrix essentially captures the spatial relationships between
corresponding points in two-point sets. Then, SVD decomposes the
matrix H into three other matrices U, S, and V:

H = USVT . (9)

The columns of U and V are the left-singular and right-singular
vectors, and S is a diagonal matrix containing the singular values.
These matrices help to extract the optimal rotation for alignment. The
rotation matrix R is computed as the product of V and the transpose ofU:

R = VUT . (10)

In case the determinant of R is negative, which would imply a
reflection, it is corrected using:

R = Vdiag(1, 1, − 1)UT (11)

Finally, the translation vector t aligns the centroids of the trans-
formed P and Q:

t = CQ − RCP (12)

After obtaining an initial registration (R, t) through SVD, the Itera-
tive Closest Point (ICP) algorithm [38] is employed to fine-tune this
alignment. ICP iteratively minimizes a cost function E, defined as the
sum of squared Euclidean distances between each point pi in P and its
closest point qi in Q. Specifically,

E =
∑N

i=1
‖qi − (Rpi + t)‖2, (13)

where R is the rotation matrix and t is the translation vector. The al-

Fig. 6. Sampled segmentation results from the Tracking Anything method.
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gorithm commences with an initial guess for R and t, provided by the
prior SVD-based registration, and refines these parameters until a
specified convergence criterion is met. This iterative optimization en-
sures that P is closely aligned with Q, thus providing a refining point
alignment. Once the alignment parameters (R, t) are obtained, they can
be applied to the entire synthetic mesh to mapping it to the real-world
coordinate system.

2.3. Background removal

Due to the absence of background in the training dataset and the
need to minimize distractions during analysis, it is necessary to remove
the background in the video frames during the test phase. A large vision
model, Tracking Anything [32], is employed to remove the background
from each frame of the video. This adaptation ensures that the model’s
focus remains primarily on the foreground elements, resulting in more
precise and targeted analyses.

TAM is a deep learning model for interactive video tracking and
segmentation, requiring only minimal user input, such as a handful of
clicks on a video sequence. The TAM, begins with an initialization
process using Segment Anything [39], enabling users to create a precise
mask representation of the chosen object with just a few clicks. This
mask is then tracked in subsequent video frames using XMem [40],
which conducts semi-supervised Video Object Segmentation (VOS).
While XMem predictions are generally satisfactory, instances of subop-
timal mask quality are refined using SAM again. This refinement process
harnesses parameters from XMem as prompts to produce a more pol-
ished segmentation mask. Notably, as the model progresses, challenges
in distinguishing objects in intricate scenarios become evident, espe-
cially in extended videos. To address this, an option for manual human
correction during inference is introduced, empowering users to adjust
the mask in the current frame when needed. This integrated approach
offers a comprehensive solution for tracking objects in diverse video
contexts. Some sampled results of the TAM are shown in Fig. 6. In
addition to employing TAM to segment the desired structure from the
background, random cropping is implemented during the training phase
of the network. Random cropping is used to simulate scenarios where
parts of the structure may be obscured or where the boundary lines
between the structure and its background are not distinctly clear. By
training the model on these modified images, its ability to accurately
identify structural features under less-than-ideal conditions is improved,
ensuring more reliable displacement measurements across a variety of
practical situations.

3. Experimental test for beam structures

3.1. Experiment setup

Beam structure is chosen as the test samples for our experiments

since they exist in many complex structures. For example, the structures
shown in Fig. 6 can all be decomposed into beam structures of various
sizes and analysed by components separately. Two beams are employed
for testing: a wooden beam with dimensions of 1200 × 30 × 8 mm and
an aluminium beam measuring 1000 × 60 × 3 mm. Each beam is
configured as a cantilever, with one end securely anchored to the wall
using a clamp to ensure it remains fixed. The schematic of this setup is
illustrated in Fig. 7(a), while the on-site experimental setup, including
the positioning of the sensors and other components, is illustrated in
Fig. 7(b). The free end of the beam is tapped by hand to induce vibra-
tions. For visual recording of the vibrations, a phone camera (iPhone
14Pro) is utilized for filming the experiment. The videos are captured at
a resolution of 1920 × 1080 and a frame rate of 155fps (frames per
second). The camera in this experiment is pointing towards the move-
ment direction of the object at an unknown angle, so that there always
exist out-of-plane movements within the video. Notably, the camera’s
location varies between the two experiments. This variability in camera
positioning is designed to verify that the measurement system can
measure displacement from any angle. The system is able to capture the
full-field vibration of the whole beam in 3D. For comparison purpose,
two LDS Keyence IL300 sensors with a frequency of 200 Hz are installed
on the back of the structure to measure the displacement in the vertical
direction, providing the ground truth data for our experiments. Without
loss of generality, one of these LDSs is positioned at the beam’s
midpoint, while the other is placed at approximately the ¼ length of the
beam from the support.

3.2. Training data generation

The availability of a sufficient dataset is crucial to train a neural
network effectively. Due to the lack of real 3D data of civil structures, a
synthetic dataset of beam meshes is generated using the customisable
data generation system 3DGEN [33]. This dataset consists of two parts:
3D mesh models and the corresponding rendered images from various
viewpoints. Base mesh models are crafted to retain a length, width, and
height ratio consistent with the beam specimen. From these base 3D
mesh models, deformed 3D meshes are generated by applying analytical
solutions for the deflection of cantilever beams under a point load,
which is given by:
⎧
⎪⎪⎨

⎪⎪⎩

y(x) = −
P
6EI

(
3lx2 − x3 − 3lx20 + x30

)
, x ≤ x0

y(x) = −
P
6EI

(
3lx2 − x3 − 3lx20 + x30 + 3(x − x0)

(
x20 − lx0

) )
, x > x0

(14)

where l is the length of the beam, E is the Young’s modulus, x0 is the
location that load is applied and I is the moment of inertia of the beam’s
cross-section. Point loads are applied at 20 uniformly spaced locations

(a)                                                        (b)

ClampBeam Camera

Top View

Side View

Main View

W
al

lBeam

W
al

l

Beam
Beam

Wall

LDS

LDS 1 LDS 2

Fig. 7. Experimental Test Setup: (a) Actual photograph showcasing the real-world setup; (b) Schematic diagram illustrating the arrangement and components.
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along the beam structures’ length. At each of these locations, 250
distinct loading intensities are employed. For every individual mesh,
images are captured from 100 different viewpoints. Cumulatively, the
dataset comprises 5000 deformed meshes and 500 K images. All 3D
meshes undergo normalization using the min-max method [33]. Each
generated 3D mesh comprises 6146 vertices, a measure of mesh gran-
ularity that ensures comprehensive full-field displacement measure-
ments of simple beam structures. This vertex density is specifically
selected based on the complexity of the structure being modelled and the
precision required for accurate displacement analysis. The data gener-
ation was conducted using the Pyrender API and was completed about
10 h on a 12th Gen Intel(R) Core (TM) i7–1255 U CPU. Some examples
of the training data are shown in Fig. 8.

3.3. Results of wood beam vibration testing

Fig. 9 presents a sample of a reconstructed 3D mesh of the wooden
beam. At the top of the figure, a segmented input image is displayed,
while. While certain detailed portions of the reconstructed mesh exhibit
minor issues, the overall 3D form reconstructed is commendably
accurate.

LDSs are used at two specific points on the actual beam structure, and
corresponding points on the reconstructed mesh are identified and
tracked. These selected vertices within the mesh are consistently
monitored across all reconstructed meshes throughout the video.
Displacement measurements are derived by calculating the changes in
these vertex positions from one frame to another, ensuring that the

measurements derived from the vision-based method closely align with
the LDS ground truth. Fig. 10 compares the displacement histories
measured by the proposed vision-based method with the ground truth
displacements captured by LDS. The green lines signify the results from
the proposed method, while the blue dashed lines depict the LDS
recorded ground truth. Fig. 10(a) shows the displacement time history of
a point in the area where Laser 1 is installed, while Fig. 10(b) shows that
of a point from the Laser 2 installation area. It can be clearly observed
that the measurements derived from the vision-based method closely
align with the ground truth.

The Cross-Correlation Coefficient (CCF) and Mean Absolute Per-
centage Error (MAPE) between the measurement displacement time
histories from the two methods are detailed in Table 1. CCF is defined as
follows for displacement measurements ai from sensors and bi from
proposed vision-based method:

CCF =
1
n
∑n

i=1

(
ai − μa

σa

)(
bi − μb

σb

)

, (15)

where μa, μb are the means, and σa, σb are the standard deviations of
signals ai and bi, respectively. The Cross-Correlation Function (CCF)
produces values within the range of − 1 to 1, where higher values signify
increased similarity between the compared signals. MAPE values span
from zero to infinity, with decreased values signifying greater accuracy.
It assesses the relative errors in readings from vision-based methods in
comparison to laser sensor readings.

Fig. 8. Training data examples generated by 3DGEN. Illustrating meshes subjected to varying levels of force at the free end.

Input Image

Sampled Images of Output 3D Mesh

Fig. 9. Rendered images from various viewing angles of a 3D mesh reconstructed from a single image of the wooden beam.
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MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
ai − bi
ai

⃒
⃒
⃒
⃒× 100%. (16)

It is evident from the table that the proposed measurement system
delivers accurate measurements. The CCF exceeds 0.94, and the MAPE
remains below 30 %.

The time history displacement data, measured by the proposed
vision system and lasers, is processed using the Fast Fourier Trans-
formation (FFT) to transition to the frequency domain. This assists in
pinpointing the vibration frequencies of the structure. As illustrated in
Fig. 11, the proposed vision system successfully identifies vibration
frequencies, which align closely with those captured by the lasers.

3.4. Results of aluminium beam vibration testing

Fig. 12 displays the reconstructed 3Dmesh of the aluminium beam. A
notable observation from the visualization is that the thickness of the
beam has not been accurately captured. The reconstructed 3D repre-
sentation appears flattened. This discrepancy can be attributed to the
thinness of the aluminium beam, which is just 3 mm, making it chal-
lenging to reconstruct the height accurately. However, it is observed that
this discrepancy in reconstruction does not cause major issue later for
the estimation of the full-body deformation.

Fig. 13 presents the time history of the vibration of the aluminium
beam captured by the vision-based approach and the Laser sensors, in
which 12(a) and 12(b) show the performance in the area of Laser 1 and
Laser 2 respectively. It can be clearly seen that the readings from the
vision-based approach demonstrate a strong correlation with the ground
truth. An analysis of the CCF and MAPE between both data trajectories
can be found in Table 2. Fig. 14 depicts the frequency domain
displacement of the aluminium beam. The obtained fundamental vi-
bration frequency, measured at 2.4390 Hz, is exactly the same by the

(a)

(b)
Fig. 10. Time history of vibration measurement for the wooden beam at two locations: (a) Vision vs. Laser 1; (b) Vision vs. Laser 2.

Table 1
Displacement error analysis of wooden beam vibration test.

Location CCF MAPE (%)

Laser 1 0.9430 29.97
Laser 2 0.9513 28.98
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two methods.

4. Conclusion

In this paper, a target-free method for 3D displacement measurement
using a monocular camera is introduced. This method is entirely target-
free, eliminating the dependence on artificial markers or natural key
points. A novel mesh deformation neural network is trained on synthetic
data, allowing for the prediction of displacement at any point on the
structure. Furthermore, an advanced video segmentation neural
network is utilized to isolate structures from background, enhancing the
robustness of the measurement system. The efficacy of this approach is

validated through two experimental tests on beam structures. The
measured displacement time histories closely align with the ground
truth obtained by conventional lasers, with CCF exceeding 0.94 and
MAPE staying below 30 %. The observed highMAPE can be attributed to
a combination of factors related to equipment specifications and
computational constraints. Notably, there is an inherent discrepancy in
the data acquisition rates, with the camera operating at 155.83fps and
the laser at 200 Hz. Additionally, due to the current computational
limitations associated with the Tracking Anything [32] segmentation
process, the camera’s resolution is reduced, necessitating the
down-sampling of videos to 50fps. Concurrently, the ground truth data
from laser is adjusted to 50 Hz to align with the down-sampled videos.

(b) 

X: 4.0881
Y: 1250.23

X: 4.0881
Y: 1497.99

(a) 

X: 4.0248
Y: 3592.08

X: 4.0248
Y: 4129.55

Fig. 11. FFT spectra of wooden beam time history vibration displacements measured by the proposed vision approach and displacement sensors: (a) Laser 1 vs.
vision method; (b) Laser 2 vs. vision method.

Input Image of Steel Beam

Sampled Images of Output 3D Mesh

Fig. 12. Rendered images from various viewing angles of a 3D mesh reconstructed from a single image of the aluminium beam.
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This down-sampling process introduces synchronization challenges be-
tween the laser data and video, potentially leading to the observed
larger percentage errors.

While the proposed method offers a significant step forward in
displacement monitoring of civil structures, there are many ways it can
be further improved. The following points encapsulate the key obser-
vations and suggest trajectories for future research that could potentially
amplify the method’s practicability. 1) Complex Structures:While the
current network performs admirably in measuring the responses of
simple structures such as beams, it struggles with more intricate struc-
tures like transmission towers. The network can only approximate a

general shape for those structures, falling short in precisely measuring
their displacement. A future priority should be refining the network’s
capability to comprehend for vibration measurements of more complex
structures accurately. 2) Vibration Video Constraints: For the method
to work effectively, the entire structure must be visible in the vibration
video, with a few fixed reference points on the structure. This restriction
potentially limits the method’s applicability to small or medium-sized
structures. Adapting the network to infer deformations from partially
obscured images to large structures, would be a valuable advancement.
3) Measurement of Minor Displacements: Another area for
enhancement is the capability to measure minor displacements, which
are often critical in damage detection analysis. Current limitations
include the resolution of the camera system and the neural network’s
ability to discern subtle changes in the mesh deformation. Future im-
provements could involve integrating higher resolution imaging tech-
nologies and enhancing the neural network’s sensitivity through
advanced training techniques that focus on minor movements.

(a)

(b)
Fig. 13. Displacement time histories of the aluminium beam: (a) Vision vs. Laser 1; (b) Vision vs. Laser 2.

Table 2
Error analysis of aluminium beam displacement measurements.

No. CCF MAPE (%)

Laser 1 0.9812 18.35
Laser 2 0.9810 23.43
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