
Procedural Content Generation

for Emergent Gameplay

by Kyle T. Hammer

Thesis submitted in fulfilment of the requirements for the

degree of

Master of Science (Research) in Computing Sciences

under the supervision of Dr. Jaime Garcia & Prof. William

Raffe

University of Technology Sydney

Faculty of Engineering and Information Technology

October 2023

Certificate of Original Authorship

I, Kyle Hammer, declare that this thesis is submitted in fulfilment of the requirements for the

award of Master of Science (Research) In Computing Sciences Degree, in the Faculty of

Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I

certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Kyle T. Hammer

i

Production Note:
Signature removed prior to publication.

© Copyright Kyle Thomas Hammer, October 2023,

All Rights Reserved

ⅱ

Acknowledgement

I would like to express significant gratitude to my supervisor, Dr. Jaime Garcia, for his consistent

guidance, mentorship, and invaluable insights throughout the research process. He always made

time to offer advice and critiques whenever required and has been supportive both inside and

outside the academic space. Dr. Garcia encouraged and inspired me to take up research, which I

will always be thankful for. His dedication and expertise have been the pillars supporting my

work, and the work within this thesis could not have been completed without his guidance.

I would also like to extend my sincerest thanks to Associate Professor William Raffe, my

co-supervisor, whose constructive critiques and support significantly contributed to shaping this

research. In addition, he has also supported me in my future game development endeavours by

giving me the necessary skills throughout my Bachelor's and Master’s Degrees, which I will be

forever thankful for. His expertise in the field provided valuable insights for my research journey

and undoubtedly shaped the foundations of my research.

A special thank you goes towards Associate Professor Nico Pietroni, who served as the chair for

my progression assessments, offering valuable feedback and direction for the project

throughout multiple stages of my research journey. I would also like to offer special thanks to Dr

ⅱ

Baki Kocaballi, the assessor expert for my progressions assessments, for their thorough

evaluations and constructive feedback, which were indispensable in enhancing the quality of

this thesis.

Special recognition goes to the Australian Government for its Research Training Program, which

has provided me with a scholarship to support my research endeavours financially. This

opportunity was critical in allowing me to focus on my academic goals.

My appreciation goes to the University of Technology Sydney for providing a supportive and

conducive academic research environment. Their facilities, resources and community were

integral to completing my research project.

I would like to give thanks to the volunteers who expressed interest in my research project by

participating in the "Procedural Content Generation for emergent gameplay" prototype

experiment. Their input and time spent were invaluable to this research, and I could not have

obtained significant enough data without them.

To all my friends who have been with me throughout this journey, your emotional and moral

support has been invaluable. You helped me through the difficult moments in life and made the

good times even better.

Finally, a very special thank you to my family: My parents, Nenita and Alex Hammer, my siblings,

Liam and Chloe Hammer, and my fellow academic Uncle Norman Domigpe. Your love,

encouragement, and faith in my abilities have motivated me through this path in academia.

Thank you for your support throughout my research journey and life.

ⅲ

Abstract

The addition of emergent gameplay is a highly sought-after feature in games for both players

and developers alike. Emergent gameplay refers to occurrences in games where the interaction

of systems results in something unexpected, exciting and surprising, similar to a chain reaction

that provides additional benefits or challenges for the player. Emergence in games does come

with its own design challenges, but its inclusion offers excellent benefits by rewarding players’

game knowledge when experimenting with interactions.

Many well-renowned games that involve emergent gameplay are games that make use of

procedurally generated content (PCG), which allows for a more expansive spectrum of

possibilities for the player to take. A few factors that increase emergence have been identified in

the current literature; however, the list can be expanded and investigated further. For instance,

the instability factor, most commonly achieved through procedural generation, has been seen to

create more opportunities for emergent gameplay but is only occasionally necessary. Games

with minimal randomness, like Legend of Zelda: Breath of the Wild (2017), have the potential for

many emergent possibilities despite this.

This thesis aims to investigate the following research questions to obtain a better understanding

of the nature of emergence and how to create it:

● How do developers design for emergent gameplay?

● How can PCG be used to assist with the creation of emergent scenarios?

ⅴ

The first part of the investigation examines academic literature, developer conferences and talks

to find the common factors between systemic games that help create emergence. The findings

from these sources will provide multiple perspectives to answer how developers design games

for emergent gameplay. This will also be used to form the foundations of an emergent

framework. The framework’s objective will provide developers with an easy-to-understand

chart to evaluate their emergent game development projects and compare them with other

emergent games. Another part of the investigation will involve investigating several generative

techniques and creating a framework to identify which PCG methods will be suitable for

facilitating an emergent environment. This will reveal the relationship between PCG and

emergence and show how generative techniques can support the creation of emergent

scenarios. After the completion of the frameworks, a testing session will commence where

participants will play a short roguelike prototype with their in-game actions observed for

emergent behaviour. The results of the testing session can then be charted onto the framework

to understand what elements of the prototype can be improved to create more emergence.

ⅵ

Contents

Certificate of Original Authorship.. 2

Acknowledgement... 1

Abstract... 2

Contents.. 4

List of Figures and Tables..8

1. Introduction...1

1.1 Introduction... 1

1.2 Overview and Research Questions...1

1.3 Hypothesis.. 5

1.4 Research Purpose and Significance... 6

1.5 Research Methodology.. 6

1.6 Key Contributions..8

1.7 Thesis Structure... 8

1.8 Conclusion..10

2. Literature Review..11

2.1 Introduction.. 11

2.2 Roguelikes.. 11

2.3 Emergence..15

2.4 Procedural Content Generation.. 22

2.5 Methodology... 27

2.6 Conclusion..29

3. Development of The Framework..30

3.1 Introduction.. 30

3.2 Factors for Emergence - Established Factors..30

3.2.1 Increasing Interactions... 30

3.2.2 Reducing Constraints...31

3.2.3 Adding More Subjects..32

3.2.4 Creating Instability... 32

3.2.5 Adding Meaning... 33

3.3 Factors for Emergence - Additional Factors.. 33

3.3.1 Keeping Rules Consistent...34

3.3.2 Offering More Player Agency..34

3.3.3 Encouraging Experimentation...35

3.4 PCG for Emergence...37

3.4.1 PCG Games Following Emergent Factors.. 37

3.4.2 Tile-Based Approaches... 37

3.4.3 Emergence through Storytelling...38

3.4.4 Creating Instability... 38

3.5 Conclusion..39

4. Applying the Framework.. 40

4.1 Introduction.. 40

4.2 The Emergent Framework.. 40

4.2.1 Spelunky..41

4.2.2 Noita..41

4.2.3 The Legend of Zelda: Breath of the Wild...42

4.2.4 Minecraft... 43

4.2.5 Don’t Starve..43

Table 4.2: Classifying games under the Emergent Framework.................................... 44

Figure 4.2: Chart representing the games under the Emergent Framework..........44

4.3 PCG for Emergence Framework..45

4.3.1 Spelunky Map Generation Method...47

4.3.2 Spelunky Room Generation Method... 47

4.3.3 RandomWalk.. 48

4.3.4 Binary Space Partitioning.. 48

4.3.5 Cellular Automata..48

4.3.6 Wave Function Collapse..49

4.3.7 Grammars... 50

4.3.8. Constraint Solvers.. 50

Table 4.3 PCG for Emergence Framework. A low score represents high instability,
while a high score represents high consistency.. 51

Figure 4.3 Chart representing the PCG for Emergence Framework........................... 51

4.3.9 Framework Effectiveness...52

4.4 Conclusion..52

5. Developing a Prototype for Emergence... 53

5.1 Introduction.. 53

5.2 Features vs. System Requirements..53

Figure 5.2.1 The input samples for Wave Function Collapse...55

Figure 5.2.2 The output samples for level 1, generated by Wave Function Collapse
56

Figure 5.2.3. The Spelunky Map Generative Method, shown to generate a path
from the start to the goal...57

5.3 Using the Prototype - Project Quiver..59

Table 5.3.1: Movement and Camera Controls...60

Table 5.3.2: Bow and Arrow Controls.. 60

Table 5.3.3: Application controls... 60

Figure 5.3.1: The Project Quiver menu screen...61

Figure 5.3.2: The player performing a perfect shot... 62

5.4. Prototype Potential... 62

5.5. Conclusion...62

6. Validating the Prototype through the Framework... 64

6.1 Introduction.. 64

6.2 Preparation for Prototype Testing...64

6.3 Prototype Observations..67

6.4 Prototype Analysis..68

6.4.1 Emergent Occurrences..68

6.4.2 Analysis against the Emergent Framework... 70

Figure 6.4.1a: Project Quiver’s perceived emergence rating on a radar chart.......71

Table 6.4.2b: Project Quiver’s perceived emergence rating vs emergent games.. 72

Figure 6.4.2b: Project Quiver’s perceived emergence rating on a radar chart vs
emergent games..72

Table 6.4.3: Participants perception of emergent factors... 74

Figure 6.4.3 Participants' perception of emergent factors on a bar chart............... 74

6.4.4 Participant Data Analysis...75

6.4.5 Justification behind the ratings - Emergent Factors...77

6.4.6 Justification behind the ratings - Project Quiver..79

6.5 Conclusion..81

7. Outcomes and Conclusion.. 82

7.1 Introduction.. 82

7.2 Research Outcomes.. 83

7.3 Limitations and Future Directions...84

Bibliography.. 87

1. Referenced Papers...87

2. Other Sources.. 88

Appendices...90

Appendix A - Designing Project Quiver...90

A.1 Project Quiver’s Design Map Part 1...90

A.2 Project Quiver’s Design Map Part 2...91

A.3.0 Project Quiver Feature to Emergent Factors - Key and Ratings................................92

A.3.1 Project Quiver Feature to Emergent Factors - Procedural Elements......................93

A.3.2 Project Quiver Feature to Emergent Factors - Game Systems................................... 94

A.3.3 Project Quiver Feature to Emergent Factors - Items..96

A.3.4 Project Quiver Feature to Emergent Factors - AI...97

A.3.5 Project Quiver Feature to Emergent Factors - Challenges...98

Appendix B - Project Quiver Observation Data..99

B.0 Appendix B data.. 99

B.1 Participant understanding of emergence...99

B.2 Elements of the Emergent Definition*...99

B.3 Participant Playstyle/Prioritisation...100

B.4 Frequently used resources...100

B.5 Bow Charge Style..101

B.6 Participant Initial Skill Level... 101

B.7 Participant Skill Level Change Over Time..101

B.8 Participant Furthest Level..102

B.9 Participant Highest Score... 102

B.10 Participant Understanding of Level Generation...102

B.11 Participants Perception of Emergence...103

B.12 Presence of unintended scenarios... 103

B.13 Participants on Factors that Increase Emergence...104

Appendix C - Emergent Scale Rubric... 105

List of Figures and Tables

4. Applying the Framework.. 40

Table 4.2: Classifying games under the Emergent Framework.................................... 44

Figure 4.2: Chart representing the games under the Emergent Framework..........44

Table 4.3 PCG for Emergence Framework. A low score represents high instability,
while a high score represents high consistency.. 51

Figure 4.3 Chart representing the PCG for Emergence Framework........................... 51

5. Developing a Prototype for Emergence... 53

Figure 5.2.1 The input samples for Wave Function Collapse...55

Figure 5.2.2 The output samples for level 1, generated by Wave Function Collapse
56

Figure 5.2.3. The Spelunky Map Generative Method, shown to generate a path
from the start to the goal...57

Table 5.3.1: Movement and Camera Controls...60

Table 5.3.2: Bow and Arrow Controls.. 60

Table 5.3.3: Application controls... 60

Figure 5.3.1: The Project Quiver menu screen...61

Figure 5.3.2: The player performing a perfect shot... 62

6. Validating the Prototype through the Framework... 64

Figure 6.4.1a: Project Quiver’s perceived emergence rating on a radar chart.......71

Table 6.4.2b: Project Quiver’s perceived emergence rating vs emergent games.. 72

Figure 6.4.2b: Project Quiver’s perceived emergence rating on a radar chart vs
emergent games..72

Table 6.4.3: Participants perception of emergent factors... 74

Figure 6.4.3 Participants' perception of emergent factors on a bar chart............... 74

Appendices...90

Appendix A - Designing Project Quiver...90

A.1 Project Quiver’s Design Map Part 1...90

A.2 Project Quiver’s Design Map Part 2...91

A.3.0 Project Quiver Feature to Emergent Factors - Key and Ratings................................92

A.3.1 Project Quiver Feature to Emergent Factors - Procedural Elements......................93

A.3.2 Project Quiver Feature to Emergent Factors - Game Systems................................... 94

A.3.3 Project Quiver Feature to Emergent Factors - Items..96

A.3.4 Project Quiver Feature to Emergent Factors - AI...97

A.3.5 Project Quiver Feature to Emergent Factors - Challenges...98

Appendix B - Project Quiver Observation Data..99

B.0 Appendix B data.. 99

B.1 Participant understanding of emergence...99

B.2 Elements of the Emergent Definition*...99

B.3 Participant Playstyle/Prioritisation...100

B.4 Frequently used resources...100

B.5 Bow Charge Style..101

B.6 Participant Initial Skill Level... 101

B.7 Participant Skill Level Change Over Time..101

B.8 Participant Furthest Level..102

B.9 Participant Highest Score... 102

B.10 Participant Understanding of Level Generation...102

B.11 Participants Perception of Emergence...103

B.12 Presence of unintended scenarios... 103

B.13 Participants on Factors that Increase Emergence...104

Appendix C - Emergent Scale Rubric... 105

Chapter 1

Introduction

1.1 Introduction

The project investigates the concepts of emergence and procedural content generation (PCG) in

games and explores their relationship. Emergent gameplay refers to the occurrences where the

interaction of game systems results in something unexpected and often exciting, similar to a

chain reaction that provides additional benefits or challenges for the player. Emergence in

games does come with its own design challenges, but its inclusion offers excellent benefits by

rewarding player’s game knowledge when experimenting with interactions. While not a

requirement for emergence, PCG has been shown in existing games to be an effective tool for

generating unique game scenarios, requiring extra creativity for players to solve. The

relationship between PCG and emergence is evident in genres like the generated open-world

and roguelikes.

1.2 Overview and Research Questions

Emergent behaviour in games is typically defined as “...the appearance of new possibilities that

arise from the interplay between game mechanics” (Juul, 2005). Many games are designed

around this fact, where game systems interact with each other to create scenarios that lead to

unpredictable situations and more exciting player stories.

1

Examples of interplaying mechanics are easily encountered in The Legend of Zelda: Breath of the

Wild (2017), thanks to its many systems and interactable objects. As an example of an emergent

scenario, a player may come across an enemy encampment filled with treasure chests and

exploding barrels during their travels. Their initial plan is to shoot a flaming arrow to set off the

exploding barrels from a distance and clear out the camp; however, after firing the arrow, they

realise that the thunderstorm overhead extinguishes the flame, making the arrow useless to

their plans. With this new revelation, the clever player decides to pivot their plan and sneak

closer, throwing a rusty broadsword to the barrels once in close enough proximity. Although this

does not have an immediate effect, it is not long before the sword begins to spark and soon

enough, lightning strikes down on the sword, setting off the explosive barrels and clearing the

enemy camp for the player to reap all the rewards. The interplay between the player’s weaponry

and the game’s weather system initially thwarted the player's plan but also opened new routes.

Both are examples of emergent gameplay in action.

Emergent gameplay has a widespread appeal to players and developers for several reasons.

Players can use a game’s dynamic systems to formulate unique, meaningful plans and make

choices that are not limited to the binary options of other games. An interplay of mechanics can

generate new situations throughout a game’s world, allowing developers to bypass the need to

generate individual scripted events. Players who come across these situations can observe the

behaviour of these interactions and discover ways to utilise them to their advantage. A player

might even discover a system interaction that was unintended by the game’s designers (Leijnen

& Veen, 2016) but later refine and implement it as a more common mechanic to facilitate more

player options. Emergence can also create drama when an unexpected interplay of mechanics

occurs to benefit or put a foil in a player’s plans.

Building a game for emergent gameplay is challenging for developers for several reasons. One

common hurdle for developers is the unexpected consequences that can arise from game

2

mechanic interaction. For example, if a developer is to add water to their game for the player to

dive and swim through, they will need to decide how the water will interact with other game

elements. Will enemies also have the ability to swim? Does the player require a breath meter?

Should enemies also have a breath meter? These mechanics and their corresponding

interactions must be considered and reconsidered upon introducing new dynamic systems.

Even before implementing dynamic systems and player testing, it can be daunting to identify

effective ways to make a game more emergent. A lack of knowledge of the nature of emergence

could result in an under-utilisation of emergent systems in the games industry, resulting in

fewer systemic games, a term used to describe games that contain systems linked and designed

to influence each other.

Another challenge for emergence is the reliance on the player’s actions. Unlike a game’s tutorial

or storyline, emergence cannot be forced upon the player due to its nature, only incentivised.

This player-driven design philosophy makes it so that even if a developer plans to create an

emergent game, there is no guarantee as to whether the players will take the opportunity to

encounter these unique scenarios. Although there are ways to increase the likelihood of an

emergent scenario, it will take frequent player testing and observations to get the emergent

behaviour right. The challenge of creating emergence formulates the first research question,

“How do developers design games for emergent gameplay?”

Some research has already been conducted on increasing the frequency of emergent scenarios. A

design tool has been developed that lists additional methods to create more emergence: creating

new interactions, removing player constraints, adding more subjects, adding connections

between game mechanics and real life and creating instability (Paananen, 2020).

3

The design tool proves to be successful in creating instances of emergence. However, further

experimentation may need to be conducted to evaluate the tool's effectiveness. Investigating

additional ways to create emergence can expand on the existing tool. Another extension could be

adapting the tool to apply to specific genres or areas of games, such as roguelikes or procedural

content generation. Procedural content generation, or PCG for short, is a programmatic way to

generate content. Through the use of specialised algorithms, an extensive range of varied

content can be created through automatic generation (Raffe, 2014). For example, PCG can be

responsible for generating something simple like the weapon stats in Borderlands (2009) or

something far more complex like the vast worlds of No Man’s Sky (2016). A strong focus on the

emergence of PCG or a particular genre like roguelikes can increase the appeal to players,

especially the archetype of players that enjoy experimenting and exploiting a game’s systems.

The instability property of generating emergence is a particular area of interest as it involves

using randomness to create novel scenarios and allows the player to experiment within those

scenarios. Randomness is commonplace in games and forms the backbone of many games that

rely on PCG to create unique scenarios for the player to encounter. The flexibility of PCG

algorithms has made it very popular for game developers, and the randomness of PCG often

results in a higher replayability factor due to the extra gameplay variety.

PCG is a vast research space with various ways to randomise countless subjects. It can be

challenging to pick out a suitable algorithm that works best for the designer’s vision while

maintaining the emergent nature of a game. Furthermore, it is very challenging to predict

whether the chosen procedural method will positively increase emergence and whether it will

be more effective than an alternative algorithm. These issues pose another research question:

“How can PCG be used to create emergent scenarios?”

4

The thesis aims to extend the knowledge of emergence in games past the state represented in

current academic literature. The extended outcome will then be developed into a framework

that can be used as an evaluation tool to see why existing games are successful or are struggling

with creating emergence. In addition, the relevant factors should also be applied to PCG to

measure their emergent possibility space, which may reveal a more significant link between PCG

and emergent gameplay. Finally, a prototype will be developed based on the framework's

principles and tested for occurrences of emergence and its impact on gameplay. The prototype

should be created in a game genre that promotes PCG and emergent interactions. The roguelike

genre was chosen for this purpose as it heavily relies on its PCG and has the potential to

facilitate an emergent environment. The open-world genre was also considered, however,

roguelikes were considered in scope for the project and better suited for rapid prototyping.

1.3 Hypothesis

After conducting the literature review, the following issues were identified:

● The current state of literature represented for emergence in games (RQ1. How do

developers design games for emergent gameplay?)

● The use of procedural content generation to create emergent scenarios (RQ2. How can

PCG be used to create emergent scenarios?)

These would then be developed into the following hypotheses:

● The current state of the literature on emergence in games can expand to include

additional factors and techniques

● Procedurally generated content can be evaluated under the lens of emergence to help

promote its inclusion in games

5

1.4 Research Purpose and Significance

Most sources published mention emergence as one of the advantages of PCG but often choose a

different topic path to accompany it, such as using AI in PCG or finding the best-suited PCG

method to suit their project needs. This leaves a gap for further investigation to be done on how

PCG creates emergence as well as how it can have an impact on gameplay.

Emergent gameplay is a sought-after feature in many games as it gives players a sense of

self-accomplishment for finding solutions the developers may not have planned. However, due

to the unpredictable nature of emergence, creating numerous or meaningful emergent scenarios

proves challenging to design. A better understanding of emergence and its applications in games

can be obtained by studying the nature of emergence.

Procedural content generation is a more heavily researched field of study in game development

for many reasons. It has versatile applications for many game systems and a solid appeal to

developers who use it for varied content and replayability. The area of PCG continues to grow

with newmethodologies and techniques being developed for broad and niche applications. A

deeper look into several different PCG methods can help shed light on what PCG attributes and

techniques are better suited to creating emergent gameplay scenarios. It could also result in

discovering new PCG techniques or finding a new hybrid of PCG techniques that work well

together to create emergent gameplay.

1.5 Research Methodology

The research phases are as follows:

Phase 1: Literature review

● Evaluate the existing literature on procedural content generation, roguelikes and

emergent gameplay.

6

● After gaining a foundational knowledge of the topics of interest, conduct a literature

review to present the current state of the literature.

● Implement different procedural algorithms to understand better how they function.

Phase 2: Development of the framework

● Widen the search for procedural algorithms to consider for emergent testing.

● Discover the factors that PCG has that enable the creation of more emergence.

● Performmore PCG experiments to understand the generative methods further.

● Develop a framework to make comparisons between generative methods to streamline

the process of choosing a generator for an emergent game.

● Look into factors for increasing emergence that may be underrepresented or absent

from current literature.

● Develop a framework based on established principles and newly discovered factors of

creating emergence.

Phase 3: Applying the framework

● Apply the framework to commercial emergent games as an evaluation tool.

● Choose a combination of PCG algorithms that would be a suitable mix of randomness

and consistency for an emergent game prototype under the newly established

framework.

● Develop a PCG prototype that will be tested for emergence scenarios, keeping the

emergent factors in consideration.

● Recruit participants to test the prototype for emergent gameplay.

Phase 4: Analysing the results under the framework

● Participants to test the prototype, with observations made on emergent gameplay

occurrences.

● Analyse the results from the noted observations.

● Resulting data to be applied to the Emergent Framework to identify areas of strength

and weakness.

7

1.6 Key Contributions

The key contributions of this thesis are as follows:

● A modern, wide-ranging literature review on emergent gameplay, with information on

the benefits it provides to players and developers and the current methodology used to

create it. Supplementary literature reviews on procedural content generation and

emergent gameplay have also been conducted for their link with emergent gameplay.

● The Emergent Framework: A framework used to support the development of emergent

games, built upon the factors that promote emergence to point out areas of weakness.

● The PCG for Emergence Framework: A supplementary framework to the Emergent

Framework to compare generative methods for their instability versus consistency to

find the ideal method or combination of methods for their emergent game.

● The validation of the framework by applying it to commercial emergent games and to

Project Quiver, a game prototype looking to increase interesting and engaging emergent

interactions.

1.7 Thesis Structure

Chapter 1 introduces the topic of emergence and the challenges of developing a game with

emergent systems in mind. Through this chapter, research questions have been developed to

gauge the current understanding of emergence, how the field can be expanded, and discover

what role procedural content generation plays in this process.

Chapter 2 establishes a background for the research by investigating the current literature on

emergence, PCG and roguelikes. The investigation results in the development of a literature

review that aims to be an in-depth look at the topics and establish potential gaps in the

literature, some of which will be investigated further in the thesis.

8

Chapter 3 covers the foundational development of the framework by compiling the currently

known literature into factors that are used to increase emergence. It also expands on this list by

adding additional factors to creating emergence and takes a deeper look into how PCG can be

used to facilitate an emergent game.

Chapter 4 uses the framework foundations covered in Chapter 3 and applies them to released

titles to evaluate and compare them under the lens of emergence. In addition, several PCG

algorithms were also selected and evaluated under the PCG for Emergence Framework, which

compares the instability and consistency of the algorithms against each other.

Chapter 5 uses the Emergent Framework’s factors to support the development of an emergent

game prototype, Project Quiver. The prototype considers the effect each feature has on

emergence and selects a suitable mix of PCG algorithms through the PCG for emergence

framework.

Chapter 6 looks to test the Project Quiver prototype for emergence in an experiment that

observes the participant’s interactions. The experiment participants also take part in an

interview to gauge their familiarity with the concepts of emergence, revealing what the general

gaming audience believes to be emergent. At the end of the experiment, the results will be

analysed and charted on the Emergent Framework to identify the factors the prototype might be

lacking.

Chapter 7 gives a summary of the information learnt from the literature review, the

development of the framework and the experiment. The results will provide an overview of

emergence, PCG and roguelikes and specify the directions the prototype can take to become

more emergent.

9

1.8 Conclusion

In summary, this chapter establishes the groundwork for an in-depth exploration of emergent

gameplay and a glimpse into how procedural content generation PCG contributes to emergence.

To further understand these mechanics and their influences on player experiences, the research

methodology breaks down this process into the phases that will be covered in the following

chapters, starting with the literature review in Chapter 2. This study aims to compile a set of

principles that game developers can refer to and chart on the emergent framework. The

emergent framework is to be used as a tool to support the creation of more emergent games.

10

Chapter 2

Literature Review

2.1 Introduction

This literature review aims to delve deep into three intertwined concepts—roguelikes, emergent

gameplay, and procedural content generation (PCG), and discuss the links between the concepts.

The information covered in this chapter is from various sources, mainly from academic journals

and conference papers. The methodology section goes into more detail in the selection process

behind the sources selected for the review. The literature review hopes to shed light on the

current state of knowledge and identify research gaps that future studies can cover.

2.2 Roguelikes

The roguelike genre of games has its roots in 1980 with the release of the game known as Rogue

(Izgi, 2018). Developed by a small team in Unix, Roguewas a game that used an ASCII display to

represent a dungeon crawling experience, complete with a main character, fightable monsters

and items all represented through different letters. Its thematic inspirations tie back to fantasy

novels like J. R. R. Tolkien’s books (Izgi, 2018) and tabletop experiences such as the increasingly

popular Dungeons & Dragons (Ho et al., 2016), which also contributed to its growth in popularity

upon distribution. Thanks to its appealing theme and unique game mechanics, which was not

seen then, Rogue had grown massively in popularity.

11

A combination of Rogue’s core features was what ended up spawning the roguelike genre. A

roguelike game's primary game design components are PCG, short for procedural content

generation, and permadeath, short for permanent death (Wilson, 2020). PCG techniques are

considered the backbone of roguelike games as they are responsible for generating land, maps,

items, rewards, enemies and resources of the game. PCG is not necessarily limited to those

factors as it can also be applied to audio, dialogue trees, mission objectives, behaviour patterns

and more (Melotti & Moraes, 2019) depending on the needs of the roguelike. Permadeath is a

mechanic that works contrary to many modern games. It punishes players for failure by

permanently killing the player character upon losing, removing their current progress (Wilson,

2020).

Although permadeath may seem like a harsh mechanic at a glance, this system can support the

growth of player mastery, where the player must progress through the game multiple times to

learn from their previous mistakes and make improvements accordingly. Ebia and others in

Influencing Game Dynamics in A Roguelike Game Through Procedural Content Generation Using

Genetic Algorithmmention how permadeath in roguelikes works well with its PCG counterpart

(Ebia et al., n.d.). Permadeath can incentivise replayability thanks to new and exciting

playthroughs and experiences whenever a new game starts. Wilson (2020) evaluates

permadeath in the context of roguelikes to gauge its effect on player engagement. It helps shed

light on how the permadeath mechanic may affect playtime, perceptions of fun, perceptions of

content, perceptions of difficulty and discourages death. The findings show that permadeath

increased the user’s perception of fun and discouraged deaths but did not increase user

playtime or the player’s perception of difficulty.

The discouragement of death corroborates Parker’s (2017) evaluation of the effects of

permadeath in roguelikes. The paper, The Culture of Permadeath: Rogulikes and Terror

12

Management Theory, evaluates roguelikes through the lens of terror management theory and

discusses how it can be applied to increase the resilience of the roguelike community.

Despite the previous studies on the permadeath mechanic, its inclusion in games and its effects

on players still have little coverage, leaving a gap for more studies to understand its nature

better. The advantages and disadvantages of the mechanic could be analysed more thoroughly to

discover whether its inclusion in games would benefit the core gameplay loop. Permadeath is

known to have a profound effect on replayability but also has a reliance on its pairing factors like

PCG. This area could be investigated to discover how the mechanic could increase game

replayability. Permadeath is also known to affect player mastery, how much a player improves in

a game over time, although howmuch it affects players compared to a non-permadeath game

has yet to be evaluated.

Standard features in roguelike games include a high level of difficulty (Wilson, 2020), character

progression (Ebia et al., n.d.) and factors that are a part of the Berlin Interpretation. The Berlin

Interpretation, created in 2008, was a definition developed to better identify games as

roguelikes through a series of high and low-value factors (Izgi, 2018). These factors are as

follows:

High-Value Factors

● Procedural World Generation

● Permadeath

● Turn-Based Combat

● Grid-Based Combat

● Non-modal

● Complexity

● Resource Management

13

● Player vs. World

● Exploration and Discovery

Low-Value Factors

● Single player character

● Player-like monsters

● Tactical challenge

● ASCII display

● Dungeon like level generation

● Presentation through numbers

With the Berlin Interpretation being defined in 2008, it has had its fair share of controversy as to

whether the definition holds up to the modern-day games industry. The roguelike community

have argued that its definition is outdated and restrictive for such an open genre (Izgi, 2018)

and that adding selective factors to the definition does not necessarily make a game more

roguelike. With roguelikes becoming more commonplace in modern games, these combative

arguments resulted in the definition being condensed down to its core elements, PCG and

permadeath.

A comparison between some of the earlier and later roguelike games may help better identify

how the genre has evolved. Xavier Ho and others discuss some of the earliest roguelike

influences in their paper Finding Design Influence within Roguelike Games (Ho et al., 2016). Hack

(1982) and later NetHack (1987) could be seen as some of the earliest examples of roguelikes as

they built upon the mechanics of Roguewith an expanded arsenal of items and monsters.

Further evolutions included Angband (1990) with its one hundred levels of generated dungeons

and the Japanese title responsible for spawning the Mystery Dungeon series Torneko no

14

Daibōken: Fushigi no Dungeon (1993), which translates to Torneko's Great Adventure: Mystery

Dungeon. More recent titles of the roguelike genre include Spelunky (2008) and its sequel,

Spelunky 2 (2020), a cave exploration game that uses roguelike concepts with platformer

mechanics. Slay the Spire (2017) is a deckbuilding game that cleverly uses roguelike progression

and player choice to build the player’s deck. By comparing the modern iterations of roguelikes to

the past, the genre's evolution becomes clearer. Many of today’s roguelikes are less restricted to

the dungeon-like approaches of the past and experiment with mixing unique mechanics and

genres to create novel experiences and new subgenres.

2.3 Emergence

Emergent behaviour or emergence is a general term that can be used to define the occurrence of

unpredictable behaviour resulting from dynamic systems (Ampatzidou, 2019). With the

interaction of systems creating new behaviours, emergent products end up being referred to as a

whole that is worth more than the sum of its parts. This definition is no different in games,

where the simple systems of a game create complex behaviours, often resulting in emergent

gameplay (Hokkanen et al., 2018).

Developers typically start planning for emergent gameplay by looking at systems as a series of

inputs, outputs, and rules. British video game journalist Mark Brown, most well known for his

work as Game Maker’s Toolkit, explains this phenomenon by taking an example from the Far Cry

series. Within Far Cry'sworld, wild animals roam around with specified inputs that they listen

for, such as if players or enemies are nearby, and outputs where they broadcast themselves to

the world (Brown, 2018). When an input and output match, a rule is followed, referring to the

action taken by the systems involved. In the case of a wild animal and enemy interaction, the

rule that follows is likely one where both parties initiate combat. This example gives a simple

15

proposal to generate system interactions, and with enough of these interactions taking place in

unexpected circumstances, more emergent gameplay can be produced.

Games that are characterised by their many interacting systems are referred to as systemic

games and can result in games with high emergence. The open-world genre contains many

examples of systemic games, often including numerous systems with multiple interactions. The

somewhat recent Nintendo installation of the Zelda franchise, Breath of the Wild (2017), is a

systemic game with many emergent gameplay opportunities thanks to its many dynamic

systems. The electricity system, a subset of the game’s elemental system, is built to have many

interactions with other systems. These interactions include increasing shock damage and the

blast range while it rains and attracting lightning to metal weapons during a thunderstorm.

Another system in the game has the Bokoblins, the grunt enemies of the game, run towards

weapons on the ground to arm themselves when they are alerted by the player’s presence. By

knowing these systems, an observant player may decide that during the next thunderstorm, they

can place a metal weapon in an enemy’s near vicinity, resulting in them picking up the weapon

upon becoming alerted and getting a nasty lightning strike soon after.

Harvey Smith, a co-creative director for Arkane Studios, heavily promotes this systemic design in

the award-winning game series Dishonoured (2012) and Deus Ex (2000). Harvey is known to be

a big early proponent of immersive sim games and has given conference talks and interviews

about systemic level design (2002). In an interview conducted by NoClip, Harvey mentions how

he wanted the Dishonoured series to service multiple playstyles whilst still maintaining a “power

fantasy” aspect (2018). Thanks to the game's many systems, a player could adopt a more

offensive ability approach to deal with enemies or utilise the game’s stealth systems to take out

enemies without being noticed. In these games, the threat and tension of enemies are very much

present, which makes it even more satisfying when a player outsmarts the enemies through

their knowledge of the game's systems.

16

Emergence has a significant appeal for players and developers alike, making it a popular feature

in modern games. For players, it allows more freedom and possibilities through the interactions

between systems. Players are given a series of familiar systems, a game’s ‘building blocks,’ so to

speak, to build their own solutions to solve problems and scenarios thrown at them by the

game’s designers. Some solutions players come up with might not even have been considered by

the game’s designers, which may seem like a downside. However, it often leads to a more

rewarding experience for the clever players who experiment with the game’s ruleset (Leijnen &

Veen, 2016). Sometimes, if the game’s designers discover the interaction early on, it can

transform into a main mechanic.

Another appeal for emergence is that it can result in more drama and surprise. A player may be

able to put their devised solution in motion; however, they might not have accounted for all the

other factors in their plan. These unaccounted factors can result in a chaotic chain of events

where the player must learn and adapt to their changing situation. In the mission-driven indie

roguelike Streets of Rogue (2017), a player might hire a gang of people to help assassinate a

target, only for them to be put in more danger by encountering an aggressive rival gang on the

trek to the target. Emergence allows freedom over how players play the game and creates

unique and memorable experiences (Hokkanen et al., 2018).

In Penelope Sweetser’s thesis paper, An Emergent Approach to Game Design – Development and

Play, she describes a prevalent problem in game worlds at the time that still holds relevance in

games today (2006). “Within games, enjoyment of the gameplay hinges on the game world.

However, game worlds are often static and highly scripted, which leads to restricted and shallow

gameplay that can detract from player enjoyment.” To enhance the player experience in a game

world, it is proposed that emergence in games could enhance player enjoyment in areas where

game worlds are weak. Sweetser would then develop the EmerGEnT system; a proof of concept

to show how emergence can be incorporated into a game’s environment, objects, and agents.

17

Her work would continue in the following years with the release of her publication Emergence in

Games (2008).

The implementation of emergence is not without its issues. Being a very player-focused way to

design a game, attempting to build a game for emergence typically results in extra playtesting

and development hours to see if players are utilising emergent strategies as intended. A

developer may give players hundreds of unique ways to approach a problem in-game; however,

the solution will not be emergent if players only use one or two basic strategies to solve the

problem. One of the reasons players might do this is a lack of incentive to use unique strategies.

Another reason might be the issue of poor game balancing.

Balancing systems in a systemic game is important so that dominant strategies are not the only

options chosen. A systemic game’s strength comes from its variety of options to tackle different

in-game situations; however, as mentioned by Civilisation developer Soren Johnson, “Given the

opportunity, players will optimise the fun out of a game” (Johnson, 2011). Because of this,

players are likely to be drawn to the most powerful and often quite boring game strategies. This

makes balancing all the more important to encourage experimentation, one of the attributes that

contribute to emergent gameplay. Developers must spend extra time balancing systems to

ensure players are not always selecting the same option.

Emergent strategies also run the risk of operating outside the developer’s vision. This form of

unintended emergence runs the risk of breaking the immersion of a game and, in some cases,

may even break the game entirely. In cases where developers are implementing new interactions

and subjects, they must also observe the effects of the new interactions in case previous

mechanics break due to their introduction.

18

Emergence that was once unintended might be a welcome addition to a game if discovered early

enough, offering new, unexpected ways to play a game. The project Plusminus is an example of

this, developed to use simple systems to create complex behaviour (Hokkanen et al., 2018). A

player had discovered an unintentional mechanic by launching themselves through the game’s

magnetism system. This process was set up by layering two objects on top of one another and

having the player stand on the top object. The player could then set the bottom object to ‘repel’,

resulting in the top object launching into the air alongside the player standing on top. After

discovering this interaction through playtesting, the developers were able to implement the

mechanic as a potential solution to some of the scenarios the player could encounter in the

game. Breath of the Wild has similar unintended system interactions that are present today and

are commonly used for speedrunning, a practice where an objective needs to be achieved at the

lowest possible time. If a player happens to be drawing their bow while shield surfing whilst

also landing on top of an enemy, they unexpectedly get launched super high into the air from an

exploit in the game's physics System. This technique can be perfected to traverse the extensive

plains of the game more quickly, making it an essential time saver for the speedrunning

community.

Creating emergence is not as simple as implementing multiple system interactions, however, as

there are many other factors that developers have to take into account. The rules of a system

must maintain consistency; otherwise, players will have issues pulling off emergent plans.

Suppose a player can set wooden objects on fire but cannot set an enemy wooden watchtower

on fire. In that case, the game’s believability and the player’s willingness to experiment with that

system in the future are reduced. Systems also need a reason or catalyst to interact with each

other. The open-world Bethesda studio game The Elder Scrolls V: Skyrim (2011) contains many

different factions, some of which hold hostile rivalries with each other, but does not capitalise on

these interactions enough throughout the large world of Skyrim. As a result, the modding

19

community developed mods to add more factions and increase the number of random

encounters on Skyrim’s roads to add more chaos and instability while travelling.

A systemic game also needs to encourage experimentation of its systems so that players can

discover the game's interactions. A stealth game might involve several tactics to bypass security

through distractions, hacking or messing with the ventilation system. However, if the easiest

solution is to kill all the guards, then there is little room to test emergent strategies. Players must

be incentivised to try strategies that are not always the same or have restrictions to stop the

dominant strategies. Missions or quests in a systemic game that only have one or a few solutions

also fall prey to the same issues as players will continue to follow the linear instructions given by

the game. Emergence should be captured by offering players different game systems and letting

them use their knowledge of those systems to solve problems.

Despite emergent gameplay being a problematic feature to capture in games, developers and

academics have studied emergence to understand its nature better. Stefan Leijnen and Fjodor

van Veen write a short paper describing the mechanics of a game as “...building blocks that,

properly combined, provide new degrees of freedom left for the player to explore” (2016). It

provides a unique perspective on emergence where the limitations of the player’s experience

can result in an expansion of tactics from the player. More information about the nature of

emergence was further investigated with the identification of emergent factors in Paananen’s

thesis Designing a Game for Emergent Gameplay (2020).

Identifying ways to apply more emergence is highly relevant, especially in a game heavily relying

on PCG elements. Paananen categorises different ways to design for emergent gameplay, which

are as follows:

20

1. Increase interactions - Interactions both apply to player actions as well as non-player

subjects and gameplay systems.

2. Reduce constraints - Have multiple ways to achieve goals and avoid limiting player

actions.

3. Add more subjects - Including more player actions and systems that interact with the

previous systems.

4. Create instability - Utilising randomness for novel scenarios and encouraging the player

to experiment. Have subjects act without player input.

5. Add meaning - Connections between game mechanics and real life.

Combining these techniques increases the likelihood of more emergent scenarios appearing

significantly.

While a significant identification of highly impactful factors for emergence, more factors still can

come into play to extend this framework. Factors such as maintaining game rule consistency and

increasing player agency are additional factors that can be used to increase emergence. Further

investigations could also be conducted on the impact of certain factors, such as a deeper look

into instability and, consequently, PCG.

This thesis uses the existing factors and literature on emergence and expands on that knowledge

with additional emergent factors. These factors were constructed into a tool that was then

tested by applying it to a custom game product, which was then play-tested and observed to find

more emergent gameplay scenarios.

21

2.4 Procedural Content Generation

Procedural content generation, or PCG for short, is defined as the programmatic generation of

content (Raffe, 2014) and has been prevalent in many games in some form or another. While a

game without PCG would have artists and designers use tools to build the content within their

game, PCG allows developers to expedite the process through algorithms and parameters that

become responsible for generating the content. The term content can be used to cover a wide

variety of game elements and does not necessarily have a limit on what can be procedurally

generated. In the context of roguelikes, the most commonplace randomly generated elements

are the maps, enemy placements, and items. However, other roguelikes and other genres play

with PCG to create new creatures, stories, behaviours and more.

PCG can prove especially useful for developers needing more resources to manually create vast,

detailed worlds or a diverse pool of items and equipment. This versatility has made PCG very

popular in the indie scene, but it also has its fair share of use by larger studios looking to create a

large variety of content. One of the more common applications for PCG in games is terrain

generation. The game Darwinia (2005) generates its landscapes through simple fractal methods

on a low-resolution height map (Raffe, 2014). Having game elements be procedurally produced

allows developers more time to focus on other aspects of their projects, like polish and

handcrafted content.

Another significant appeal of PCG for developers and players is the content variety produced

through random generation. PCG can create a near-infinite amount of content (Gellel & Sweetser,

2020), resulting in a near-infinite amount of game variations. This extensive content variation

can allow players to experience unique playthroughs with their own stories, items, personal

goals, and more. It may also result in a higher quantity of emergent scenarios, where the player

can tailor their own stories through their gameplay experiences or feel clever for finding

22

solutions to unique problems that a designer did not explicitly plan. The high content variation

also helps support a game’s replay value and hours of play, so long as each variation of the game

feels different enough from the last playthrough. PCG variation is not only limited to gameplay

elements but can also be used for visual diversity. SpeedTree is a tool that procedurally generates

natural-looking trees in games to add extra detail and variation (Gellel & Sweetser, 2020).

With PCG being such a versatile tool for games, it is natural that games use a wide variety of

different PCG methods. Some game developers will retrofit existing PCG methods into their

products, while others will make custom algorithms from scratch to best suit their needs.

Spelunky (2008), for example, uses a custom PCG algorithm to generate its many rooms and

levels. Each overall level is split into a four-by-four grid of rooms. A random room in the top row

is assigned as the entry point room, which determines the player's spawn point. The algorithm

then needs to generate what is referred to as the ‘critical path’, a series of rooms that connect to

reach the goal. The critical path process starts by having the entry room pick an adjacent room

to the left, right or below. The selected room then picks another adjoining room, excluding the

previous one, continuing until the bottom row is reached. The room's chosen direction is

randomised; however, it is weighted to favour specific directions to ensure that most levels are

not just a pitfall to the exit. All critical path rooms will have open areas connecting to adjacent

path rooms so the player can traverse the level without additional tools. If the critical path

attempts to go down while at the bottom row, then that room is considered the goal, the room

the player must go to complete the level. This results in a snake-like level structure that the

player must descend to get to the next area.

The procedural level generation of Spelunky does not end there, however, as each room that is

not assigned to the critical path still generates a layout with random open and closed-off

entrances. There is a possibility that these rooms contain extra loot for the player or a shortcut

to the goal if the player possesses bombs and ropes, but because the rooms are not on the path,

23

there is no guarantee as to what may appear in those side rooms. These additional rewards for

exploration add more surprise and luck elements to the game. The individual rooms also contain

a bit of PCG within them by randomly spawning enemies, treasure, and platforms for more

variety and to make it less evident that the player may have seen the same room before.

The way that Spelunky’s PCG and gameplay are designed is to encourage more emergent

gameplay scenarios. Some emergent scenarios arise as a product between the game’s PCG

system and other gameplay systems, like utilising exploding enemies to create new paths to

traverse.

Many other roguelike projects have taken different approaches to their PCG to achieve a

particular goal. Melotti and Moraes (2019) use a Novelty Search approach to generate roguelike

Dungeons that have quality outputs and fulfil the specified needs of the designer. The quality of

generated content can be evaluated in several ways, such as having diverse output variations

and reducing malformed content. Malformed content is used to describe content that affects the

dynamics of a game in a negative way, such as issuing players challenges that are impossible or

are a jump in difficulty, leading to less balance and player engagement overall. The Novelty

Search approach is used to create quality generation by encouraging diverse, innovative results

that also contain a solution to deal with the malformed content problem efficiently.

Gellel and Sweetser (2020) evaluate several different PCG approaches to roguelikes and state

their strengths and weaknesses. These techniques are Markov Chains and RandomMarkov

fields, Cellular Automata, Grammars, Machine Learning, Evolutionary Algorithms and Player

Experience Models. After thoroughly evaluating the different methods, a hybrid approach of

Context-Free Grammars and Cellular Automata-Inspired Behaviour is chosen. The Context-Free

Grammars approach is selected to enforce generation rules, resulting in only valid missions

being generated. The structural rules allow for a good level of control, and the process quickly

24

enforces its specified rules. The Cellular Automata approach complements the Grammar

system's weaknesses by producing natural-looking spaces without the structure and order

drawbacks. Alongside the benefits of building naturally convincing environments, the system is

fast-acting and runs at a low cost. By combining the two approaches, Gellel and Sweetser

produce a roguelike dungeon generator that capitalises on the selected approaches' benefits

while minimising the drawbacks.

Togelius and others, in their paper Search-Based Procedural Content Generation: A Taxonomy and

Survey, give one of the earliest examples of how PCG can be dissected, in this case, for better

classification (2011). In their work, PCG is broken down into factors, such as offline vs. online

generation, to better distinguish PCG techniques from each other.

With the rise in popularity of PCG methods in research, there are still PCG options that can be

applied to roguelikes that may not have been considered before, including the ability to facilitate

the occurrence of more emergent gameplay. Paananen (2020) investigates numerous ways to

increase emergence in the context of a PCG game. Included are some excellent foundations for

how a game can be designed for more emergent scenarios, with the support of the game’s level

generation. Despite this, there is still room to expand upon the foundations of emergent

gameplay, and additional research could be conducted on other PCG methods to promote more

emergent gameplay scenarios. One example of this is Wave Function Collapse.

Wave Function Collapse, or WFC for short, is a PCG algorithm developed by Maxim Gumin that

generates bitmap patterns through an input sample bitmap pattern (Gaisbauer et al. 2019). This

algorithm, more specifically, is referred to as the overlapping model of WFC. The algorithm

starts by observing an input pattern provided by the game designer, which will be deconstructed

and used to generate the output. The size of the input can be scaled to be smaller, larger or the

same size as the output and will be broken down into input sections that are a size of N x N. N is

25

a significant parameter of WFC as it determines how big the input sections should be which is

particularly relevant for the output.

The output process of WFC is split into three phases: observation, propagation, and

backtracking. The observation phase picks an input tile of the size N x N and gives it a single

random solution from the remaining possibilities (Parker, 2018). The propagation phase has the

choice further propagated throughout the output grid, removing any tile possibilities that don’t

match the input model. The backtracking phase occurs if the observation and propagation

phases end up with an unsolvable contradiction and cannot be continued, reverting to a new

observation phase attempt. Due to the nature and importance of the value N, lower values tend

to result in a more chaotic, random output, while a higher value will look more similar to the

input model.

There also exists a more widely adopted model of WFC with specified rules for its tile

placement, as opposed to inferring adjacency rules through an input image. The simple

tiled model is a WFC algorithm that uses complex tile rules to restrict the adjacency between

tiles with different semantics (Chen et al., 2020), making it a popular choice for developers

looking for more control over their game’s level generation.

WFC has seen use in projects like Bug with a Gun (2018) to generate platform levels and by

Gaisbauer and others to build cities (Gaisbauer et al. 2019). In the context of the city builder, a

section of the map from The Bard’s Tale (1985) was adopted as the input for WFC to produce

new city outputs. The simplest versions of WFC contain rules that determine which tiles can go

next to which; however, more expansions of this model can be considered, such as tile

reflections and symmetry (Karth and Smith, 2017). The algorithm has also seen some

applications in 3D space, such as in Marian 42’s infinite procedurally generated city (2019) or

Martin Donald’s island generator demonstration (2020).

26

WFC potentially has applications as the level generator in a roguelike game; however, one

considerable issue to overcome would be the malformed content issue. The roguelike designer

would need a way to evaluate the quality of the WFC output, then modify the parameters and

adjust the algorithm to create more ideal results. Furthermore, WFC does not account for

elements that are mandatory for the level, which means that factors like the player’s spawn

point and goal will likely need to be added after the generation output. An additional pass must

be made to ensure the goal is reachable from the spawn point.

2.5 Methodology

Literature was found through a number of different peer-reviewed databases, with the most

common one being IEEE Xplore. Other databases include Springer, ACM Digital Library, Charles

University Digital Repository, Proquest, AAAI publications and the 1st International Joint

Conference of DiGRA and FDG. Other relevant papers were shared through the supervisor and

co-supervisor’s recommendation.

To find relevant academic sources, the two primary searches carried out were for PCG and

emergent gameplay. The first search on PCG contained quite a few papers on the topic, so the

literature selected were either papers that focused on a new or novel approach, such as WFC or

Novelty Search, or papers with a similar topic, such as classifying characteristics of PCG to

achieve a specific goal.

The second search involved looking for papers focusing on emergence and emergent gameplay.

Since there is less literature on emergence in games, most modern sources were used upon

discovery. Most of the current literature focuses on how emergence can reinvent game rules or

look into ways to create more emergence.

27

The term roguelike was also used early to filter and narrow down the results of PCG sources. It

was not uncommon to see papers that covered roguelikes also mention emergence as one of the

genre’s many benefits. This benefit created a helpful link between the two leading search terms.

Sources were filtered to be less than ten years old to stay up to date with the current point of

literature. Emergence is also a topic that has seen more popularity in recent years, which has

resulted in most sources being recent and relevant. There were some exceptions to the literature

where some older sources were used. Search-Based Procedural Content Generation: A Taxonomy

and Survey (2011) was chosen for its early dissection of PCG into factors. Rabin’s definition of

emergence was one of the five definitions of emergence given to participants for the experiment

in section 6. The ending part of the definition, “... behaviour that occurs when simple

independent rules interact to give rise to behaviour that was not specifically programmed into a

system” (Rabin, 2004), provides an interesting take that not all participants had agreed with,

making it worthy of discussion.

Ebia and others’ paper Influencing Game Dynamics in A Roguelike Game Through Procedural

Content Generation Using Genetic Algorithm provides some valuable information on roguelikes

and procedural content generation, however, the date of the paper is not listed. Despite this, It is

assumed to be at least from 2014 or after, as the most recent source used in the paper is from

2014. Sweetser’s thesis paper, An Emergent Approach to Game Design –Development and Play

(2006), is considered a very early source; however, the topic and usage of PCG algorithms make

it highly relevant for this thesis.

28

2.6 Conclusion

In synthesising the literature on roguelikes, emergent gameplay, and procedural content

generation (PCG), it becomes evident that these concepts, while distinct in their origins and

nuances, have many links with each other. Roguelikes can become a testbed for emergent

gameplay, with the support of generated unique scenarios thanks to its procedural environment.

Emergent gameplay is shown to be both an appealing feature and a design challenge for

developers. Still, its inclusion can be facilitated by correctly using certain factors and enabling

player freedom. Procedural content generation is a large field of study encompassing many

different algorithms, with room for more investigations on new or novel generators or

expanding the use cases for specific algorithms. Ultimately, there is room for each of these topics

to be expanded upon in current literature, and the following chapters will use the three topics to

gain a further understanding that hopes to expand the current literature.

29

Chapter 3

Development of The Framework

3.1 Introduction

The first question concerning emergence concerns how developers design for emergent

gameplay. How can developers plan for systems that result in emergent behaviour for their

players? An investigation was conducted on what was known about emergence from games and

academic literature. This investigation will result in several factors being identified and adapted

into a framework that can be employed in the following thesis chapters. The established factors

were discovered through Paananen’s paper “Designing a Game for Emergent Gameplay” (2020),

while the additional factors are an extension of the work.

3.2 Factors for Emergence - Established Factors

3.2.1 Increasing Interactions

This is considered the core of emergent gameplay. Emergent plans strongly focus on utilising the

interactions between different systems, and it is the variety and surrounding factors of these

interactions that create emergent gameplay. The more interactions a game has, the more varied

plans players can concoct. Games with a high interaction space are called systemic games. Many

systemic games are within the Roguelike, open-world or immersive sim genre, although they are

not necessarily limited to those categories.

30

Interactions are made up of a series of inputs and outputs. These may also be referred to as

awareness and rules, respectively. Subjects such as the player, non-playable artificial intelligence

(AI), weapons, items and environmental set pieces may be aware of other factors. A rule must be

followed when that other factor is brought to them. An AI might be mindful of another AI with a

fight ensuing based on their interaction rules, while the same AI could also be mindful of

elements like fire and flee from the scene based on another interaction rule. Awareness can also

listen out for external factors like weather or day-night cycles, and more interactions exist other

than fighting and fleeing, such as environment manipulation.

Maintaining and adding many interactions can be challenging, so some developers have devised

an elegant way to deal with the issue. Rather than having subjects react specifically to an enemy,

item or environmental hazard, they respond to the stimuli given off by the other subject. The

stimuli approach allows developers to implement subjects more easily with interactions rather

than hard-coding new interactions. The shared stimuli also create more consistent rules for

interactions, which has been shown to help generate more emergence.

3.2.2 Reducing Constraints

This marks the most significant difference in design between emergent and linear games. While

a linear game will restrict the player from finding an intended solution, emergent games will

have minimal restrictions on how players execute their plans, with even the chance of

unintended solutions occurring. A constraint might be a failure state for a mission when specific

steps are not adhered to or when player tools are taken away before a particular gameplay

segment. When it comes to emergent design, a good philosophy is to give the player a goal and

not worry about how it is achieved.

Removing constraints is the contrary in Stefan Leijnen and Fjodor van Veen’s paper ArkaNet:

Investigating Emergent Gameplay and Emergence (2016), where they argue that a game's

31

limitations can allow the expansion of tactics and other emergent gameplay possibilities. There

is some truth to this. Suppose the player is given a multitude of options. In that case, there is a

good chance that they will find an optimal strategy that works for them and use it in any

scenario, resulting in fewer emergent possibilities. The overuse of optimal strategies makes the

additional factor encouraging experimentation all the more important, as a mix of fewer

constraints and more experimentation will arguably lead to more emergence than more

constraints.

3.2.3 Adding More Subjects

The utilisation of interactions can only occur if there are subjects in the level that can interact

with each other. Having a good number of subjects with exciting interactions in the scene allows

for various options that the player can use. More subjects are generally better but require more

balancing; otherwise, it may risk overwhelming newer players. Consistency and meaning should

also be considered when introducing more subjects.

Developers should also consider player plans that change subjects' behaviour or introduce new

subjects. Some examples of this could be hacking a terminal to turn a security system against the

owners or opening the door to allow more subjects into the scene, causing more chaos. By

enabling the player to use strategies that do not just remove subjects, the possibility of future

emergence occurring in the area increases instead of decreasing.

3.2.4 Creating Instability

Instability allows for the most variety between player emergent storytelling, with its influence

coming in many forms. It can come from the ability of subjects to act without the player's

influence, giving them their own motives and actions to follow, which can result in chaotic and

unusual scenarios. The player might not have agency over the initial actions, but they can utilise

32

these behaviours to benefit their plans. Alternatively, instability could backfire on the player’s

plan, adding another layer of conflict for the player to deal with.

Instability can also come in the form of randomness, such as randomness in items, events, the

actions of an AI and, most commonly, procedurally generated content. This technique is

frequently used for roguelike and open-world sandbox games to create a new experience for

each player and playthrough, leading to many unique scenarios and stories.

3.2.5 Adding Meaning

Meaning in this context is to add a correlation between the mechanics of a game and something

that is commonly known. A typical example is fire, where commonly known flammable objects

in real life, such as oil and wood, can also be set alight in the game. If this rule is to be broken, it

risks breaking the consistency principle, which can reduce the player’s desire to use emergent

strategies.

Meaning does not necessarily need to be realistic as it can also be based on common game

knowledge or troupes. Red barrels being explosive or green and purple goo being poisonous are

some game elements players can infer for themselves and later use their respective interactions

for their emergent plans. This common knowledge gives players a better understanding of a

system, which goes hand in hand with the two factors being encouraging experimentation and

maintaining consistency.

3.3 Factors for Emergence - Additional Factors

The additional factors are an extension of the current factors that have been established in

Paananen’s paper. These factors have been observed in several current emergent game titles and

have been compiled in Game Maker’s toolkit video The Rise of the Systemic Game (2018).

33

3.3.1 Keeping Rules Consistent

A common misstep for systemic games is when a rule is not consistently followed or when one

interaction does not carry over to other similar subjects. For example, if a game allows the

player to set fire to some wooden objects but not others, this results in a break in consistency.

While consistency is a good principle in any game, it is essential to encouraging emergent

experimentation. If a player sees their plan fail due to an inconsistent interaction within the

game’s world, they are less likely to use that emergent strategy in the future. On the other hand,

players can make emergent strategies thanks to a game’s consistent ruleset. By discovering a

specific interaction in one area and employing that same interaction in another location, players

can feel rewarded for using their ingenuity to solve problems.

Developer and games journalist Tom Francis discusses how consistency can be introduced into a

game without the need to explicitly code every scenario (2018). Using any Deus Ex game as an

example, the player will learn about three interactions: They can move crates, crates block

vision, and turrets only attack targets they can see. With a large enough crate placed in front of a

turret, the player can use this emergent strategy to bypass turrets with ease. Nothing in the code

explicitly states 'If the player moves this crate to location x, don't let the turret fire'. Instead, the

developer writes a rule that objects can block vision, and ensure those rules are consistent

across to other objects so that players are incentivised to come up with strategies using the

game’s ruleset.

3.3.2 Offering More Player Agency

Agency is a relatively simple concept in a game, ensuring the player has plenty of actions to play

the game and react to situations the way they want to. If a player is limited to a small set of tools,

they will likely use all those tools to solve the situation, suitable for genres like puzzle games

that guide the player through its limitations. On the other hand, systemic games offer players a

34

large set of tools, not expecting them to use all of them at once but to use what they find most

suitable for their situation, allowing for more freedom in their actions.

In the GDC talk Breaking Conventions with The Legend of Zelda: Breath of the Wild (2017),

technical director Takuhiro Dohta describes howmultiple engines were developed for Breath of

the Wild. Going into detail about the mechanics of the custom chemistry engine, elements can

change the state of materials (e.g. fire burning wood), and the state of other elements (e.g. fire

disappearing on contact with water). Natural occurrences of the chemistry engine in action

commonly serve as a great “show don’t tell” tutorial to players about the elements, such as rain

putting out fires and torches. However, the knowledge of the elements is of little use unless the

player has the tools to utilise these elements, which thankfully the game has a plethora of. An

explicit tool that uses the game’s chemistry engine is the elemental wands and arrows, such as

using a fire arrow to explode a red barrel. Another tool the player gets access to is the ability to

move metallic objects with ease, which allows players to drop objects to deal damage (using the

physics engine) or attract lightning in a thunderstorm to a particular point (using the chemistry

engine). Regardless of what approach the player takes, the important part is that the player is

offered these tools so that more emergent solutions can be found, instead of being fixed to fewer

actions with fewer interactions.

3.3.3 Encouraging Experimentation

A systemic game cannot be fully realised without encouraging player experimentation. This

concept is a little more abstract and challenging to achieve, resulting in various proposed

approaches.

The more familiar a player is with their toolkit, the more likely they will use it. Suppose a player

finds that an action is too niche, difficult to use, or the interaction effects are too inconclusive. In

that case, they are discouraged from using that set of interactions. To encourage

35

experimentation, developers need to teach their players the applications of their tools so that

they can use them to exploit those system interactions as part of their plans.

Furthermore, developers must be careful of creating dominant strategies as this encourages

players to play the game in a restricted way to be optimal. To work around this, genres such as

Roguelikes will have more powerful items show up less frequently than other items on their run.

Rarity is not a perfect solution, as many players can opt to reset their runs until they receive that

powerful rare item before continuing to play.

Some games encourage players to use different strategies by providing explicit benefits when

they switch their tools, like damage buffs or extra experience points. Game designer Clint

Hocking, known for his work on the early Tom Clancy's Splinter Cell titles (2002-2005), Far Cry 2

(2008), andWatch Dogs: Legion (2020) talks about the effectiveness of this approach in his GDC

talk Designing to Promote Intentional Play (2006). Clint mentions how GTA titles offer rewards

for specific challenges such as “...large cash rewards for completing rampages that require the

player to use all the different weapons in the game, or for completing unique stunts that reward

him for elite driving maneuvers” (2006). Other games take the discouragement approach, where

overusing items makes them less effective. The Legend of Zelda: Breath of the Wild (2017)

controversially gives its weapons very low durability, encouraging players to use other tools and

newly acquired weapons.

Encouraging experimentation is not an easy attribute for developers to capture. However, many

of the stated factors can support experimentation. For example, pairing consistency and

meaning can encourage creative players to discover new strategies, increasing the possibility of

emergence.

36

3.4 PCG for Emergence

3.4.1 PCG Games Following Emergent Factors

While emergent gameplay is a highly sought-after feature by developers, its factors are not

suited to every game genre. More linear games like puzzle or narrative-focused games require

many restrictions to guide players to the solution. However, genres like open-world games and

roguelikes can make great use of all the factors to create a highly systemic game, such as

Minecraft (2011), Terraria (2011), Spelunky (2008) and Noita (2019), to name a few examples.

PCG algorithms can even be evaluated under the Emergent Framework to determine if they suit

a systemic game environment. The instability of a PCG algorithm can provide much variety for

the player through a game’s generated levels or randomly generated items. PCG could be

responsible for adding subjects to a level, resulting in more emergent possibilities if the subjects

are distributed appropriately. Finally, the consistency of a generated level can also increase the

player’s knowledge of the game, giving themmore opportunities to use emergent strategies at

the cost of less level variety through instability.

3.4.2 Tile-Based Approaches

Many Roguelikes known for their emergence use a tile-based PCG approach for generation.

Tile-based approaches are 2D PCG methods that are given a set of shapes (often squares) to

generate the world, dungeon or other location that the player is to navigate through. There are

many variations this approach encompasses, such as Spelunky’s (2011) custom generation,

Noita’s (2019) Wang Tiler and Dwarf Fortress’ (2006) tiles and fractals system. There are some

advantages when using this approach compared to other PCG methods. One is that the resulting

world or dungeon is expected (i.e. less subject to malformed content) yet still varied enough for

each playthrough. Tile-based approaches can also ensure that certain elements are always

37

present, such as chests or a pathway that always leads to an exit, and often have a ‘second pass’

to add extra details to keep the level interesting.

3.4.3 Emergence through Storytelling

Emergent games are known for allowing players to play how they want, which often results in

experiences that are unique to them. The actions they take and the reactions that follow result in

player-driven stories, which can be made unique to the player if the game uses PCG. Some

examples may include the lifecycle of a Spore (2008) creature or finding an escape route of a

generated world/dungeon when fleeing from an enemy. Some programs, like AI Dungeon (2019)

orWildermyth (2021), use PCG to produce unique stories for the player to experience.

3.4.4 Creating Instability

Also mentioned as a factor of emergence, a subset of instability is randomness, which can be

achieved through PCG. There is some uncertainty about what can be generated, often leading to

unique stories being produced. The game could also generate subjects with the ability to interact

with each other without the player’s involvement. Examples of this include AI with custom

objectives, faction fights and dynamic environments.

PCG can also be applied to the interaction space, generating unique interactions never seen

before; however, this is not without issues. Most notably, randomly generated interactions may

go against other emergent factors like consistency, resulting in less emergence overall. There is

also the possibility of creating procedural AI to create novel scenarios, which could be an

exciting challenge to investigate. Still, it has the potential to break consistency if the AI becomes

too random for the player to predict.

38

3.5 Conclusion

To develop the foundations of the framework, factors to promote emergence needed to be

identified. The first factors to be identified were the emergent gameplay attributes that have

been covered and proven to increase emergence in existing academic literature. These attributes

include increasing the number of interactions, adding meaning to those interactions and adding

more subjects to give a few examples. The list was then expanded to include additional factors

like rule consistency, more player agency and the encouragement for experimentation. Finally, to

strengthen the link between PCG and emergence, a couple of methods were listed on how PCG

can be used to create emergence.

39

Chapter 4

Applying the Framework

4.1 Introduction

The Emergent Framework was designed as an evaluation tool to better understand the

correlation between emergent factors and emergent gameplay. In Chapter 6, the framework will

be used on a game prototype to help identify the effectiveness or lack of emergent factors. To

create a comparison for the prototype against existing emergent games, five emergent games

were chosen and evaluated under the framework: Spelunky (2008), Noita (2019), Legend of

Zelda: Breath of the Wild (2017),Minecraft (2011) and Don’t Starve (2013).

The PCG for Emergence Framework was created to measure the consistency and instability of

procedural algorithms and evaluate their ability to add subjects within a game’s level or world.

The framework would be used to evaluate different algorithms against each other to support the

process of choosing the most suitable generative method or combination of generative methods.

4.2 The Emergent Framework

Each emergent factor is rated on a scale of zero to five (see Table 4.2). Zero represents an

absence of the factor, while five represents frequent usage. Full rating explanations from one to

five on the emergent scale rubric are provided in Appendix C. As an example, Legend of Zelda:

Breath of the Wild, or BOTW for short, has a five rating for interactions as they are very

commonplace within the game, but a one rating for instability as it infrequently uses

randomised elements. It is important to note that these ratings are used both as an example of

how games can be charted on the framework and to create a reference point for the developed

40

prototype of Chapter 5. These ratings, while given justifications, are empirical data and should

not be used outside this context.

A table and radar chart represent the framework for emergent factors (see Figure 4.2). The table

is used as a more traditional representation of data to clarify the correlation between the games

and the emergent factors. The radar chart is used as a comparison tool to show the similarities

and differences between each game’s abilities to create emergence.

4.2.1 Spelunky

A 2D platformer roguelike game set with a cave and temple exploration theme. It is considered

the first game to mix platformers and roguelikes. Games under the platforming genre were

thought to be easy to pick up and play, although they could get repetitive due to static levels.

Roguelike’s random levels resulted in a highly replayable experience but were challenging to

learn at the time due to their cryptic systems. Spelunky cleverly used each genre's advantages to

outweigh the other genre's disadvantages, resulting in a highly successful indie title.

There is a good variety of items and enemies within the game, but not an overwhelming amount

compared to other roguelikes like The Binding of Isaac: Rebirth (2014). Instead, the game

focuses on the interactions of its elements and the procedural generation of its levels to create

emergent moments, of which it is considered one of the best.

4.2.2 Noita

A premise similar to Spelunky, Noita is a 2D platformer Roguelike game set with the theme of

cave exploration but with emphasis on different parts of the game. In Noita, you play as a wizard

who can use wands with randomly generated properties. There is less focus on precision

41

platforming and instead more emphasis on the interactions of the game, of which there are

many, some of which the game designers may not even have seen.

The higher focus on emergent factors like interactions and the reduction of constraints make it

arguably a more emergent game than Spelunky; however, this does come at the cost of being

more challenging to pick up and play, making the rules of the game a little more difficult to

understand for the first couple playthroughs. Once the player can get a good grasp of the game’s

systems, the possibility for emergence skyrockets, making it one of the most emergent games

today.

4.2.3 The Legend of Zelda: Breath of theWild

Breath of the Wild, or BOTW for short, is an action-adventure game set in the large open world of

Hyrule. It has the appeal of many different genres, from the exploration and collectathons of the

open world to the puzzles from the shrines and divine beasts, as well as the combat scenarios of

its bosses and encounters throughout the sprawling world.

BOTW is considered a very emergent game thanks to the many different interactions that exist

within the game’s world. From its chemistry engine of different elements to the rolling weather

system and the way NPCs and mobs interact with these elements (as well as each other),

something interesting can always happen within the game’s world. Furthermore, the game’s

puzzle shrines do a fantastic job of tutorialising the unique ways players can utilise the game

mechanics while also sprinkling the world of Hyrule with plenty of enemy camps and set pieces

for them to try out emergent strategies.

42

4.2.4 Minecraft

Minecraft’s open world is created through a series of random generative methods, allowing

players to explore new worlds that are unique to them. The overwhelming success of the game

has allowed it to grow and continue updating with more and more subjects that have their own

interactions with the world, creating new emergent scenarios.

With Minecraft being as popular as it is, players commonly find ways to use systems in

unexpected ways that the developers might not have considered. For example, a player could

place doors underwater to create a pocket of air, which may not make sense compared to the

real world but has been kept as a fun, relatively harmless interaction for players to exploit.

4.2.5 Don’t Starve

Don’t Starve is a procedurally generated open-world game that focuses on surviving the

elements like its everchanging seasons or the powerful emerging threats of its Burton-esque

world. LikeMinecraft, its emergence comes from its procedural elements and system

interactions, most of which involve the game’s AI creatures. Many of the creatures within Don’t

Starve not only have interactions with the player but also interactions with the other creatures

and elements within the world. To survive and thrive in the world of Don’t Starve, optimal

players have found ways to use the enemy AI for their benefit, such as using destructive enemy

attacks to help gather resources or utilising one powerful threat to take care of another.

43

Table 4.2: Classifying games under the Emergent Framework

Emergent Factors Spelunky Noita BOTW Minecraft Don't Starve

Interactions 4 5 5 5 4

Reducing
Constraints 4 4 4 5 3

Adding Subjects 4 5 4 5 5

Instability 4 5 1 5 4

Meaning 5 4 5 4 4

Consistency 5 4 4 4 5

Experimentation 4 4 4 4 4

Agency 4 5 5 5 4

Figure 4.2: Chart representing the games under the Emergent Framework

44

4.3 PCG for Emergence Framework

PCG has previously been dissected into factors in academic literature, such as in Search-Based

Procedural Content Generation: A Taxonomy and Survey (Togelius et al., 2011). However,

classifying PCG techniques for emergence is more challenging to identify when compared to

evaluating the whole game experience for emergence.

Section 3.4.1 (PCG games following emergent factors) and 3.4.3 (emergence through generated

storytelling) are ways PCG can be used to create emergence. That said, these elements are not

suited to be put onto a framework to evaluate PCG algorithms. Additionally, the emergent factors

of increasing interactions, reducing constraints, adding meaning, encouraging experimentation

and player agency are challenging to include in this framework. They are more applicable to an

emergent game’s design as a way to promote more emergence from the player. Some attributes

may be slightly relevant (e.g. Adding meaning to the environment of PCG), but their effect plays a

significantly smaller role than the traditional principles normally would. Three possible factors

from the Emergent Framework apply to PCG techniques: instability, consistency and adding

subjects. In this framework, instability describes the variation and randomness of generated

content, while consistency refers to the familiarity of the generated content. Because of this, the

two factors are at odds with one another for this framework, creating an interesting balancing

act. Too much instability results in a reduced space for player plans due to a lack of game

knowledge, while too much consistency results in a lack of diverse strategies.

Adding subjects is another potential factor for emergence through PCG. PCG algorithms may be

responsible for adding subjects to a game level, although there are quite a few cases where it

might not be applicable. In cases where it is practical, it can result in more subject variety and a

higher possibility space, opening up the way for more emergent player plans. Typically, the more

45

control the developer has over the PCG algorithm, the easier it is to add and distribute more

subjects.

Eight PCG methods have been evaluated under this framework, with a mix of tile-based

methods, general PCG methods and the constraint solver. These eight factors were discovered

from their inclusion in roguelike discourse or frequent usage in PCG talks. Herbert Wolverson

discusses how RandomWalk, Binary Space Partitioning and Cellular Automata can be used in

roguelikes at the streamed Roguelike Celebration event (2020). Kate Compton details situations

where Grammars and constraint solvers can be used in her GDC talk Practical Procedural

Generation for Everyone (2017). The two Spelunky (2008) generative methods were selected for

analysis as the game is an early market example of how roguelikes can be emergent. Finally,

Wave function collapse was selected as it is relatively new in the academic space and is still

finding more use cases where it can be applied to games and other projects. These methods

were chosen for the scope of a 2D platforming roguelike, which is discussed in more detail in

Chapter 5. Many possible PCG methods could be chosen for analysis depending on the objective,

such as looking into more 3D-centric generative methods for developing an open-world game.

The scale for this framework is rated on a spectrum from one to seven, with the lower end of

numbers representing algorithms with more instability and the higher end representing the

opposite, more consistency. For example, constraint solvers score seven on the spectrum as their

purpose requires a highly consistent nature (see Table 4.3). A bar chart has been used to show

the score range for each PCG method to assist with the visualisation of the instability vs.

consistency score (see Figure 4.3).

It is also possible for algorithms to have multiple scores if their parameters allow them to be

more consistent or unstable. The random walk algorithm, for example, could be rated as a four,

46

five or six as the input parameters can significantly alter the consistency and instability of the

output.

Adding subjects can also be involved with some PCG algorithms, potentially creating emergent

gameplay. It is factored as one of four classifications: low, medium, high or non-applicable. The

non-applicable option is included as not all PCG methods included are responsible for adding

subjects to the game.

4.3.1 Spelunky Map Generation Method

The Spelunkymap generation method is responsible for placing rooms in a particular order, with

the result becoming the level the player has to navigate through. The algorithm is

straightforward, starting from the top of the level and snaking its way down to the bottom to

create the level goal. Increasing the interaction space by adding subjects plays a minimal role in

this method, with the only applicable space being the subjects of one room synergising with

other subjects in adjacently generated rooms. The variation or instability of this method is low

as it is often less noticed by the typical player. A more adept player could use the consistency of

the level layouts to complete specific objectives faster or more effectively (i.e. better learn where

treasure or exit locations are).

4.3.2 Spelunky Room Generation Method

The Spelunky room generative method assists the map generation method as it can add details

to rooms for more variation. Spelunky’s rooms consist of multiple parts, the overall room layout

and the designated spaces to generate set pieces inside. Set pieces typically contain

environmental blocks but may include enemies or interactable items. There are many different

room layouts and set pieces, which can result in many room varieties. That said, those who play

the game quite often may recognise some of the reused level pieces. The developer does design

47

these elements, so there is only a slight amount of instability. Regardless, emergence can still be

created through this generative method as many subjects can be introduced through set pieces

to increase the interaction space.

4.3.3 RandomWalk

Random walk is a versatile and straightforward algorithm that generates varied room shapes

and corridors to other rooms. The algorithm itself would not be responsible for adding subjects,

with the subjects needing to be added later through an alternative algorithm. Despite the room

variation, a lot of parameters will need to be tweaked from room to room for more instability,

resulting in a high level of consistency.

4.3.4 Binary Space Partitioning

Binary space partitioning is a division-based dungeon generation method that ensures that

placed rooms are an appropriate distance apart. To achieve this, the generative method splits a

designated area somewhere around the halfway point, resulting in two sub-sections being

produced. The process repeats for each section an appropriate amount of times until the

number of sections matches the desired number of rooms to be placed. The rooms are placed in

each section and connected through corridors to create the dungeon's layout. Similar to the

random walk, the consistency of the level layout will be high with slight instability. Subjects

would also be added through an alternative algorithm.

4.3.5 Cellular Automata

A heavily rule-based procedural method that creates interesting results akin to a cave-like or

islandlike structure. Each individual tile has a set of rules that determines if a new tile is to be

generated, destroyed or stay the same. These rules are based on whether the surrounding tiles

48

are alive or dead (present or not present), and the rules can be modified through the developer's

control.

Adding subjects can be performed through Cellular Automata, although using custom rules to

place subjects might be more favoured depending on the level of control the developer wants.

The level layout is quite varied but still has a bit of predictability thanks to the inputted rules.

4.3.6 Wave Function Collapse

Wave Function Collapse is a novel and relatively recent method of generating tile maps, which

can even be expanded to generate 3D spaces. There are currently two main implementations of

the Wave Function Collapse algorithm: the tiled and overlap models. The tiled model requires

each tile to have specified adjacency constraints, with tiles continually placed and their rules

propagated throughout a grid. The overlap model functions similarly but defines its adjacency

rules through an input image, which it breaks down into pattern chunks for tiles (Parker, 2018).

The output can change quite a bit depending on the set rules, ranging from forests, islands and

even cities, as seen in Gaisbauer’s paper, Procedural Generation of Video Game Cities for Specific

Video Game Genres Using WaveFunctionCollapse (2019). The algorithm is based on a set of

specified adjacency rules, the observation phase, which is then applied throughout the

remaining tile space, the propagation phase. Backtracking is also implemented in some

algorithms to assist the generative process.

The method can be challenging to design for adding subjects due to the nature of its generation.

However, with a better understanding of the generative method and rules, it is certainly

possible. Developers can encourage the algorithm to generate subjects in certain positions based

on the adjacency rules they specify for the algorithm. As for instability and consistency, these

factors can range from high to low due in part to the rules set by the developer. More rules and

49

less tile entropy will result in more consistent levels, whereas fewer rules and higher tile

entropy will result in more instability.

4.3.7 Grammars

Grammars are a more computer science-focused way of generating content, where complex

items are comprised of smaller items, which may be comprised of more minor items. Because of

this, through good design rules and constraints, a bunch of subjects can be added through this

algorithm. Grammar generation can result in a high variation of generated content if given many

different divisions of items to choose from. Consistency in level design can be challenging but

can eventually be figured out with enough experimentation and understanding of the algorithm.

4.3.8. Constraint Solvers

Constraint solvers are a valuable tool for many different PCG methods to enforce

difficult-to-capture constraints with a lot of flexibility. While not an applicable generative

method by itself, it can be beneficial for adding more subjects when paired with less stable

algorithms. Instability is not typically achieved through the solver itself, and the rules of the

solver can be figured out quite quickly by astute players.

50

Table 4.3 PCG for Emergence Framework. A low score represents high instability, while a high

score represents high consistency.

PCG Methods Instability vs. Consistency
Score

Adding Subjects

Spelunky Map Generative
Method

6 Low

Spelunky Room Generative
Method

5-6 High

RandomWalk 4-6 N/A

Binary Space Partitioning 6 N/A

Cellular Automata 3-6 Medium

Wave Function Collapse 2-6 Medium

Grammars 2-6 High

Constraint Solvers 7 High

Figure 4.3 Chart representing the PCG for Emergence Framework.

51

4.3.9 Framework Effectiveness

While some generative methods are relatively straightforward regarding measuring instability,

consistency and their ability to add subjects, it is clear that some rule-based approaches are

highly variable and can range from being highly consistent to highly unstable. There is not

necessarily a perfect PCG solution for creating emergent gameplay; however, with enough rule

modifications to the algorithms, a near-ideal balance between instability and consistency can be

discovered. Furthermore, constraint solvers can also be used to find that balance and can be

responsible for adding more subjects for a higher emergent possibility space.

4.4 Conclusion

The emergent factors established in Chapter 3 have been adapted into the Emergent

Framework, which can be used to evaluate a game's ability to facilitate an emergent

environment. The framework was then applied to five released games that successfully captured

emergent gameplay and compared them to provide an example of how the framework can be

used. The framework was also applied to the prototype in Chapter 6 section 6.4, where it

evaluated the presence of the emergent factors.

Eight generative methods were also tested in the PCG for Emergence Framework, evaluating

them for their instability, consistency and ability to add subjects. The framework's purpose is

also to assist in developing an emergent game. More specifically, it will be used to find a

generative method or methods to facilitate an emergent environment. The PCG for emergence

framework was used in Chapter 5 section 5.2, to find a suitable combination of PCG methods for

the roguelike prototype.

52

Chapter 5

Developing a Prototype for Emergence

5.1 Introduction

The Emergent Framework has previously been used to evaluate emergent market games. The

framework aims to become a valuable tool for developers by providing them with a list of factors

they can keep track of during their development process. These factors can be considered when

developing new systems, enemies, interactions, player actions, etc.

The PCG for Emergence Framework can also be used to find suitable PCG methods for an

emergent game. This chapter uses the framework to find a combination of generative techniques

that work well with each other, striking the perfect balance between instability and consistency.

5.2 Features vs. System Requirements

The prototype utilises the theory behind the Emergent Frameworks to create a game

emphasising emergence. Including emergent factors from the framework was a priority when

developing the framework, considering each factor while each game system was being

developed. The prototype strongly relies on bow-wielding combat for several reasons that can

lead to emergence. Bows are a common concept in games, with this prototype having similar

controls and functionality to other bows in 2D games, increasing the likelihood of player

familiarity (add meaning). Bows were chosen over other ranged systems like guns so that the

53

game's physics system could impact projectiles more (more interactions and meaning). Bows

and arrows will have randomly generated attributes (instability) depending on what the player

has equipped so that the player has more options to solve in-game challenges their way (player

agency).

Another essential factor to consider is the level of design. The levels will use 2D tile-based

generation with additional randomly generated elements (instability) through many different

items, enemies and interactable elements spawning throughout the level (adding subjects).

Section 3.4.2 goes into more detail about the benefits of using a tile-based approach. The

Classifying PCG for emergence under the framework (see Figure 4.2) was used to pick more

specific, suitable generative methods to fit the needs of the prototype alongside other

justifications.

The level generation will use a mix of generative approaches, one to add more variation and

instability and the other to add more consistency and reduce malformed content. Cellular

automata was one of the first generative approaches considered for instability; however, this

procedural method was already effectively used for emergence in Sweetser’s thesis, An Emergent

Approach to Game Design – Development and Play (2006). Grammars may also be a suitable

candidate for instability. Still, their generation requires several additional design considerations

on top of being a topic with much coverage in current literature. Wave function collapse, or WFC,

is relatively new in the academic space and is still finding more use cases where it can be applied

to games and other projects. For this reason, WFC will be used to generate the levels.

WFC will be responsible for generating the floors, ceilings and traps of the level to add a bit of

extra variety compared to a linear level. More specifically, the overlap model of WFC will be used

to generate the levels. The tiled model of WFC is still a viable option for level generation and is

more commonly adopted due to its developer control through specified tile rules. However, with

54

instability being more of a focus for the project and the overlap model being great for rapid

prototyping with its input sample, it will be the method of choice. More information on the

functionality of WFC functions can be found in Chapter 4, section 4.2.6.

Figure 5.2.1 provides the input examples for the game’s first three-level variations. The key to

the tiles are as follows:

● Brown square tiles represent standard cave tiles

● Flat rectangular tiles represent platforms

● Grey triangle tiles represent spikes

Figure 5.2.1 The input samples for Wave Function Collapse

With each level, subtle changes will be made to increase the difficulty of the levels. For example,

level two will introduce more spikes within the level, while level three will remove the support

given from platforms. After some internal testing, an N value of two was chosen for the overlap

model due to higher N values resulting in very similar levels with slight variation. A larger N

value could be appropriate if the input sample and levels were made on a larger scale. Figure

5.2.2 shows how the input samples are applied to the level generation.

The level will start with a big hollowed-out square surrounded by the default cave tiles. Each

level will have four layers, each consisting of a floor and ceiling section. The floor section is

55

represented with the orange boxes in Figure 5.2.2. The ceiling sections are represented with the

cyan boxes. The boxes are the output samples of WFC and use the input from Figure 5.2.1 to

generate a similar pattern in the output section. Each output box has a width of 40 tiles to suit

the width of each level and a depth of 4 to match the input size and get similar results. For the

sections that overlap, the generation of the floor layer takes priority in the overlapping area.

Figure 5.2.2 The output samples for level 1, generated by Wave Function Collapse

There will be an entry point and exit that the player will need to reach, with a critical path

always being in place to reduce malformed content and impossible levels (consistency).

However, the player should have the option to stray from the critical path to reach the exit if they

have the required game knowledge and the equipment to do so (reducing constraints).

56

To generate the critical path, the Spelunky Map Generative Method will be used. The method

generates a random path that carves holes in the level's floors and ceilings, allowing the player

to drop through sections of the level to reach the goal. Figure 5.2.3 demonstrates the level

carving process. More information on this generative method can be found in Chapter 4, section

4.2.1.

Figure 5.2.3. The Spelunky Map Generative Method, shown to generate a path from the start to

the goal.

57

The generation and items were tweaked and balanced with a smaller group of testers before the

participants could engage with the prototype. Having a smaller group of testers will ensure that

dominant strategies won't overtake the game’s meta (encourage experimentation) and provides

an opportunity to patch any game-breaking bugs discovered. The placement of the items and

enemies was reasonably straightforward, spawning both subjects in the open-air spaces

between the cave floors and ceiling on each level.

Interactions between each item, enemy and piece of level generation will require

implementation (increasing interactions), with those adhering to a consistent ruleset

(maintaining consistency) that the player can learn and adapt. Appendix A.1 and A.2 are design

maps that show the implemented items and interactions for the game. These design maps

represent the core idea behind the prototype.

In addition to completing the level, players will be able to complete various challenges within

each level, known as Totem Challenges. These challenges will be chosen randomly from a pool of

challenges, including taking no damage, escaping the level in a certain amount of time, reaching

a difficult spot and more. These challenges aim to encourage the player to try different systems

and items (encourage experimentation) to succeed in these challenges for a rare reward.

Further mapping of the game’s features to emergent factors was completed in the Project Quiver

Matricies (see Appendix A.3.0 - A.3.5). The matricies combined are an exhaustive list of features

that explains how each feature considers an emergent factor or multiple factors. These factors

are also given a simple rating as to howmuch they increase the emergent factor. A rating of one

corresponds to increasing that emergent factor, while a rating of 0.5 similarly increases the

factor, but to a lesser degree. A blank space means that the feature does not affect that particular

factor. To provide an example, Appendix A.3.2 notes that enemies are given the ability to knock

back for the following emergent reasons:

58

● As a new interaction (increasing interactions) - Rating of 1 as it increases the emergent

factor

● To maintain consistency as other elements of the game cause knockback (keeping rules

consistent) - A rating of 1 as it increases the emergent factor

● Players can use the knockback of an enemy to their advantage (player agency &

encourage experimentation) - Rating of 0.5 as it slightly increases the emergent factor

5.3 Using the Prototype - Project Quiver

Project Quiver is a 2D roguelike platformer game where the player controls an inquisitive archer

who enters the depths of cave Quiver to learn its secrets. The player can strive for two explicit

objectives of the game. One is to reach the furthest point of the caverns possible without dying.

The other is to obtain the highest score, with points awarded for various tasks such as defeating

enemies, completing challenges and reaching the goal of each level.

Project Quiver is available for download on the game-sharing site Itch through the link:

https://devsledge.itch.io/project-quiver. The prototype is currently only available for Windows

download. After downloading the project, the file must be extracted, and “ProjectQuiver.exe” will

be run to play the prototype.

Project Quiver opens with a menu screen (see Figure 5.3.1), allowing the player to jump straight

into the game, play the tutorial, adjust the audio settings or quit the application. The tutorial is

highly recommended for new players. The tutorial will teach the fundamentals of the game,

which has been broken down in the following Tables (see Table 5.3.1 - 5.3.3):

59

https://devsledge.itch.io/project-quiver

Table 5.3.1: Movement and Camera Controls

[A] Move left

[D] Move right

[space] Jump

Hold [W] Look up OR Climb up ropes

Hold [S] Look down OR Descend ropes

Hold [S] +
[space]

Drop through platforms

Table 5.3.2: Bow and Arrow Controls

Numbers
[1] - [6]
OR
Scrollwheel

Select* an item

[R] Equip* a selected item

Hold [R] Drop an item from your inventory

Aim using the mouse cursor

Hold Left
Mouse
Button

Draw an arrow (Must have a bow and arrow equipped)

Release Left
Mouse
Button

Fire an arrow

*item selection is represented with a white frame

**Equipped items are represented with a red frame. Only one bow and one arrow can be equipped

at a time.

Table 5.3.3: Application controls

[esc] Quit the application.

[R] Restart from level 1.

60

In addition to the basic controls, the tutorial teaches players some game mechanics. Players are

taught that releasing an arrow in the green zone results in a perfect shot (see Figure 5.3.2) and

how to interact with totems and the end goal. The rest of the game is left up to the player to

learn. Some game features are apparent to the player throughout the game, such as the perfect

shot bonus appearing in the UI or the way to gain points being revealed at the end of each level.

Other features are left for the player to figure out, like discovering item interactions, enemy

interactions, and learning how to navigate around the levels.

Project Quiver may have explicit objectives for the players to work towards; however, it is up to

the player to decide whether to go for these objectives or to create their own. Some of the

participants during testing opted for their own alternative goals, such as using the game’s

interactions to break mechanics, reaching the goal as fast as possible or completing as many

totem challenges as possible.

Figure 5.3.1: The Project Quiver menu screen.

61

Figure 5.3.2: The player performing a perfect shot.

5.4. Prototype Potential

The prototype will have an appropriate number of items, mechanics and interactions for a play

session of approximately thirty minutes. Within this session, the player may discover some

interactions to create emergent gameplay, although these interactions are limited to the

currently implemented items, enemies and environment available in the game. Increasing the

number of subjects, interactions, and instability of the game can increase the possibility of

emergent gameplay. Furthermore, by adding meaning to the interactions, balancing the

constraints, keeping interaction rules consistent and rewarding player experimentation, we can

encourage the discovery of more emergent scenarios, resulting in a more emergent game.

5.5. Conclusion

This chapter investigates how factors of emergence can be used to assist the development of an

emergent game prototype. The Emergent Framework can then be applied after prototype testing

62

to measure each factor's inclusion more accurately, as seen in the following chapter. The PCG for

Emergence framework was used to pick a suitable mix of algorithms with an appropriate blend

of consistency and instability to complement each other. The result of the emergent theory is the

prototype Project Quiver, a roguelike platformer game with procedurally generated level layouts

and an arsenal of items for the player to experiment with.

63

Chapter 6

Validating the Prototype through the

Framework

6.1 Introduction

Due to the nature of emergence in general, a game cannot be considered genuinely emergent

without the usage of players, even if it does abide by emergent factors. Instead, the factors are in

place to facilitate an experimental environment, which the players can then use to their

advantage in their emergent plans. The environment should also contain unpredictable

elements and instability to create emergent moments for the player. This chapter aims to test

the finished prototype with a small sample size of gamers to observe occurrences of emergence

and chart the game against the emergent framework to find its strengths and weaknesses.

6.2 Preparation for Prototype Testing

Creating a prototype with emergent factors will not be enough to be considered an emergent

product. Because of this, playtesters will be invited to try out the prototype and have their

gameplay actions monitored to find instances of emergent behaviour occurring. Emergence will

go by an early definition given by Jesper Juul, “...the appearance of new possibilities that arise

from the interplay between game mechanics” (2005).

64

The project aims to act as a preliminary study for the field, using a small sample size of people

with the potential to lead to a more extensive future study. Previous studies have been

conducted with fewer participants, such as Paananen’s paper “Designing a Game for Emergent

Gameplay” (2020), which has four players during the prototype’s second iteration but was still

successful in promoting emergence. Initially, twenty participants were planned as the quantity

allows various player strategies to emerge, which is very important in emergent games. In the

end, eleven participants were involved in the experiment due to a data saturation cap being hit.

The later tests resulted in repeated player actions, resulting in a decrease in any new emergent

behaviour; thus, the experiment data collected was deemed sufficient.

Each participant selected for this experiment was familiar with video games and fulfilled the

following inclusion criteria:

1) Fluent in English.

2) Have not contributed to the design or development of the game.

3) Does not have a relationship with the researcher.

4) Has a good understanding of game design theories.

5) Is an active gamer.

6) Is not underage.

7) Can consent.

8) Has no cognitive impairments.

9) Has no prior history of epilepsy.

Recruitment was done through various game development communities, both online and

in-person. Many of these communities emerged organically through social media and other

online channels. These communities are not companies or organisations but groups of people

with a common interest in game development. After calling out to these communities,

participants expressed their interest through a customMicrosoft form. Some examples of these

65

communities include Beer and Pixels, Games with Wings Sydney, Game Developers of Australia

and various game development clubs.

A ten-minute pitch was given to gather interest in the research project, which discussed topics

including procedural content generation, emergent gameplay and roguelikes. Flyers were also

handed out for potential participants to register their interest in the project. Since users were

informed about these concepts before the experiment, it is important to disclose that this

knowledge may have affected the experiment's results. As an example, a user may have felt more

or less inclined to use emergent strategies after being informed that the experiment looks to

investigate emergent gameplay.

The total time of the experiment session for each participant was one hour. To play through the

prototype, participants were given thirty minutes maximum. Participants were allowed to end

their session before the thirty-minute mark, which may risk their results not being included in

the experiment. This time limit was chosen based on the content within the game. Thirty

minutes is enough time for the player to grasp the game’s systems, allowing them to develop

interesting plans that may not have been intended while making the game.

Participants were given an application to sign before the experiment to ensure their consent was

given to collect their answers and observe their in-game actions. The testers could withdraw

their consent anytime, although this did not occur with the selected playtesters. Hypothetically,

if consent were withdrawn before the experiment, the tester would no longer be required to try

the prototype. The tester's withdrawal would also mean that the tester’s actions would no

longer be recorded, and any previous actions they took in the prototype would be removed from

the records.

66

Before and after the prototype testing session, participants would also participate in an

interview to get their thoughts on emergence in games. The interview segments would take a

combined total of approximately thirty minutes, with the same consent rules applying as the

prototype testing session (i.e. participants could withdraw their consent at any time). The

starting interview would evaluate the level of knowledge the participant had on emergent

gameplay. In contrast, the later interview would further test their knowledge and collect

feedback on whether they found the prototype to be emergent.

Any emergent occurrences that the participants experienced were recorded in the prototype

observations. This included interactions that occurred naturally from the game’s systems

interplaying with each other, as well as less conventional interactions that resulted from

unintended features or exploits.

6.3 Prototype Observations

Participant data was collected in two different experiment sections. Observational notes were

taken during the time that participants would be testing the prototype. The type of data

collected includes the participant’s playstyle, their perceived skill level, the occurrences of

emergence (both intended and unintended), and their preferred choice of items. Other notes

were taken based on the participant’s answers during the interview section. These notes

included what users perceived as emergent, their understanding of the level generation, their

perception of emergent throughout the prototype and what factors they believe affect emergent

gameplay.

This data would then be mapped to a user-testing spreadsheet to collate the data and make

observations based on the numbers (see Appendix B.0 to B.13). The categories marked with an

asterisk (*) mean that participants may have selected multiple subcategories, whereas

67

categories without an asterisk mean only one category can be selected. The figures provided

focus on the sum and percentages to obtain people's consensus on the game and its emergence.

Some significant individual data and comments are mentioned in the emergent occurrences

section.

There were a total of eleven participants. Percentages were taken by dividing the sum that

agrees by eleven. The only exception is in Appendix B.2 where users with a low understanding of

emergence were not considered. After the testing session, users were given a definition for

emergence to answer questions for the data in Appendix sections B.10 through B.13. The

definition given was the one defined by Jesper Juul as “...the appearance of new possibilities that

arise from the interplay between game mechanics” (2005).

6.4 Prototype Analysis

6.4.1 Emergent Occurrences

Throughout the testing session, several identified interactions were considered emergent. The

most common discovery was “Arrow Planting”. When the player shoots an arrow into the wall or

ground, it remains there for approximately half a second before disappearing; however, during

this half a second, the hitbox of the arrow is still active and can damage enemies. A couple of

participants used this to their advantage, predicting the enemy's path and planting the arrow

trap for them to take damage. Although this happens to be an unintentional byproduct of the

arrow despawning system, players enjoyed employing this strategy. Perhaps it could be worked

upon to be a more typical game mechanic.

Another somewhat unintentional interaction was the “Quick-Fire” strategy some participants

used. While there was a minimum charge requirement for an arrow to fire, some astute players

noticed that no matter the charge of the bow (except for the perfect shot), the arrow would

68

always deal the same amount of damage. Some players took advantage of this interaction and

opted for this strategy instead of aiming for perfect shots. This strategy was unintentionally

encouraged since the player starts with an infinite basic arrow, making ammo conservation less

of a worry to the player.

The original intention for ropes was to access higher points within the level generation;

however, some players had other plans. Some players would use ropes as an escape plan to

avoid enemies better, while others used them to create a vantage point over grounded enemies.

One player even found a glitch with the rope, where attaching themselves to it in a certain way

could result in the player character phasing through tiles. Unfortunately for that player, the bug

was difficult to replicate, so they could not use it for their emergent plans.

Initially, before the prototype was used in the experiment, the level-generated spikes would kill

the player in a single hit. This game version was tested with some early access testers who were

not a part of the experiment, and the feature was later adjusted for two reasons. One was that

the game was perceived to be too difficult, with the most significant challenge being avoiding the

deadly spikes. If players were to die too early in the game, they would be unable to play around

with the game’s later interactions, reducing the possibility of emergence. The other reason was

that dying to the spikes felt like too linear of an interaction. While logically making sense and

reinforcing the meaning factor of emergence, players perishing to spikes would prevent future

emergent moments from occurring in that playthrough due to the death. Later, the spikes were

made to deal damage and knockback to the player, which was seen to increase emergence from

the experiments.

The combination of the level generation and enemy knockback resulted in some entertaining

emergent gameplay scenarios, albeit against the players rather than for their benefit. The later

levels would generate more and more spikes, which also had knockback properties. The

69

knockback properties resulted in a pinball-like effect, where an enemy would knock back the

player into spikes, which would then knock them back into another enemy or more spikes. This

type of behaviour is especially prevalent in similar games like Spelunky (2008) and Noita (2019),

and despite players occasionally dying in these scenarios, they appeared to enjoy the emergent

occurrence.

When it came to discovering emergent strategies, there was no particular time where more

emergent occurrences would occur than others. When it comes to commercial games, many

emerging strategies appear later in the game when the player base is familiar with the base

mechanics and interactions. With Project Quiver's scope being relatively small compared to

more commercial games, emergent occurrences could appear anywhere from the start to the

end of the testing session. For example, some users would discover and utilise the Quick-Fire

strategy while others would find it in the final two minutes of gameplay.

There was also no perceived relation between the number of sessions and the observed

emergent behaviour. Instead, the sessions that resulted in the most emergent sessions occurring

were the ones where users had the most familiarity with games in the same genre, such as

platformers or other roguelikes. These participants were more likely to experiment with the

game system, occasionally resulting in emergent behaviour.

6.4.2 Analysis against the Emergent Framework

The testing session also served as an excellent way to observe what emergent factors were

lacking in the prototype, even after planning the features through the Project Quiver Matrix (See

Appendix A.3.0 - A.3.5). Table and Figure 6.4.1a below use the Emergent Framework from

Chapter 4.2 to evaluate the prototype’s perceived emergence level. Table and Figure 6.4.2b

compare the prototype to the market emergent games evaluated in Chapter 4.2.

70

Table 6.4.1a: Project Quiver’s perceived emergence rating.

Emergent Factors Project Quiver

Interactions 3

Reducing
Constraints

4

Adding Subjects 3

Instability 4

Meaning 5

Consistency 4

Experimentation 4

Agency 5

Figure 6.4.1a: Project Quiver’s perceived emergence rating on a radar chart

71

Table 6.4.2b: Project Quiver’s perceived emergence rating vs emergent games

Emergent
Factors

Project
Quiver Spelunky Noita BOTW Minecraft

Don't
Starve

Interactions 3 4 5 5 5 4

Reducing
Constraints

4
4 4 4 5 3

Adding Subjects 3 4 5 4 5 5

Instability 4 4 5 1 5 4

Meaning 5 5 4 5 4 4

Consistency 4 5 4 4 4 5

Experimentation 4 4 4 4 4 4

Agency 5 4 5 5 5 4

Figure 6.4.2b: Project Quiver’s perceived emergence rating on a radar chart vs emergent games

72

Table 6.4.3 shows what users believed to be the most impactful factors for emergence. Users

were given a couple of choices to score these factors. A score of one means the user agrees that

the factor will increase emergence. A score of 0.5 means the user slightly agrees that the factor

could increase emergence; however, its impact would not be as significant as other factors that

scored a one. A score of zero means that the user believes that the factor has no effect on

emergent gameplay or even has a detrimental impact on emergence. Figure 6.4.3 displays the

same data in a bar chart format:

73

Table 6.4.3: Participants perception of emergent factors

Factors #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Sum %

Increase
Interactions 1 1 1 1 1 1 1 1 1 1 1 11 100

Reduce
Constraints 1 0 1 0.5 1 0.5 0 0 1 0 0 5 45.45

Add
Subjects 1 0.5 1 0.5 1 1 1 1 0.5 1 1 9.5 86.36

Instability 1 1 1 1 1 0.5 0 1 1 1 1 9.5 86.36

Meaning 1 1 0.5 0.5 1 0.5 1 1 0.5 1 1 9 81.82

Consistency 1 0.5 1 0.5 0.5 0 0.5 1 1 0 1 7 63.64

Encourage
Experiment 1 0.5 0.5 1 0.5 0.5 1 1 1 0 1 8 72.73

Player
Agency 1 0 1 1 1 1 0.5 0.5 1 1 1 9 81.82

Figure 6.4.3 Participants' perception of emergent factors on a bar chart

74

6.4.4 Participant Data Analysis

Appendix B.1
There was a mixed level of knowledge when defining emergence among the participants. It is

also important to consider the fact that the selected participants each have a good familiarity

with a variety of different games. Participants in the low category could point out an advantage

of emergent gameplay (e.g. allowing players to play a game the way they want) but had difficulty

defining it and describing how it can be created. Those in the middle category could briefly

define emergence and state some of its benefits. Those with a high understanding of emergence

gave an accurate definition and could identify a couple of ways of increasing emergence in

games.

Emergent gameplay is more commonly known among specific gaming collectives, such as those

who enjoy roguelikes, open-world games and immersive sims. Although all participants are

familiar with games, the resulting percentages are not too surprising as the participants likely

play other types of games.

It is also important to note that, as mentioned in section 6.2, participants were provided with an

explanation of emergence in games before the experiment during the recruiting process. This

explanation is likely to have affected the level of knowledge of emergence amongst the

participants, resulting in each participant having some understanding of the concept. The time

between the recruiting process and experiment was two months, so it was not uncommon for

some participants to forget this topic and have less knowledge than others.

Appendix B.2
A notable part of the data is the participant’s perception about whether emergent behaviour

must not be specifically programmed in. This notion was taken from Rabin’s definition, “...

behaviour that occurs when simple independent rules interact to give rise to behaviour that was

not specifically programmed into a system” (2004). Most users agreed with this definition,

75

although there was some disagreement with some participants due to the wording. They

believed that emergent behaviour can result from something programmed specifically into a

system, though the interaction would still need to have the qualities of the other emergent

definitions.

As for whether emergence needs to be unintended by the developers, five participants disagreed

with this statement, while two agreed. These seven participants either had a medium to high

level of knowledge when defining emergence in games. Even still, the conflicted results further

demonstrate the confusion that comes with defining emergent gameplay, and perhaps it would

be best to split the definition into two interpretations, similar to what Paananen has proposed in

“Designing for Emergent Gameplay” (2020).

Appendix B.3
There was a good mix of playstyles adopted by the participants. Some of the more common

styles were the challenge completionist, who enjoyed the challenges and rewards the totems

offered; the experimenter, who liked messing around with the different game interactions; and

the speedrunner, which was popular for the last 15 minutes of the session due to the

participants wanting to experience as much of the game as they could before the time for testing

ran out. There was little incentive to kill all enemies, and testers generally did not pay attention

to their score, reducing those playstyles from appearing.

Appendix B.4
While participants would use other bows when they got them, they had little preference for

which one they preferred, making the default bow win out against the others. These bows had to

be discovered throughout the level, making the other bows a less popular choice.

The basic arrow being infinite made it a popular choice among the participants, perhaps

sometimes too popular as they did not get to play around with the other arrows all that much.

76

Rope arrows were commonly used for traversal but also overshadowed the platform arrow quite

frequently since the ropes were considered more beneficial to the structure of the generated

environment. Finally, participants who obtained bomb arrows either experienced an accidental

death due to the self-damage or found them too good to use, making their usage rather

unpopular.

Appendix B.5
Regarding the bow charging style, most opted for perfect shots as they understood the benefits

it provided in battle. However, a notable number of people opted to release the arrow as soon as

the minimum charge requirement was met, later dubbed the “Quick-fire” strategy. Some

participants used this strategy as they found it more optimal for damage, while others simply

enjoyed using a mechanic that was perceived as unintended.

Appendix B.6 - B.7
Participants’ initial skill level and skill level change were about as expected. Some participants

did improve as they continued playing while others were at the same skill level, either because

they were already quite good at the game, to begin with, or because there was not enough time

to make a significant enough improvement in skill.

Appendix B.11

When it came to emergent gameplay, most had experienced a couple of interactions they

considered to be emergent. The consensus was that there were emergent occurrences, but for a

game to be truly emergent, there needed to be many more emergent interactions.

6.4.5 Justification behind the ratings - Emergent Factors

One element that every participant could agree on was that increasing the number of

interactions was an integral way of creating more emergence. There is no surprise here, as

emergent gameplay must involve interactions. Adding subjects and meaning were also agreed

77

upon by all participants as ways to increase emergence, with some believing it has a more

impactful effect than others.

Although instability was mostly agreed upon, one participant noted that instability does not

need to be present when creating emergence. Their explanation also held some truth as there

are examples of released games with minimal randomness that can create emergence. Another

participant believed that player agency did not matter much in the emergent space, as emerging

occurrences can appear without the player’s intervention, while others believed player agency

to be quite significant.

Consistency and encouraging experimentation were mostly agreed upon but with some outliers.

The participants who rated the factor as 0.5 thought these factors could help emergence slightly,

but not in every case. Those who rated the factor zero did not believe the factors could create

emergence, making sure to establish a distinction between creating emergent behaviour and

encouraging it.

It became clear that reducing constraints was the most divisive factor for increasing emergence,

which also mirrors the divisive takes in literature. While most sources agree that reducing

constraints results in more player actions and, by extension, potential emergence, sources such

as ArkaNet: Investigating Emergent Gameplay and Emergence discuss how limitations can result

in an expansion of tactics, resulting in more emergence (Leijnen & Veen, 2016). Approximately

half of the participants did not agree that removing constraints would result in more emergence.

They believed that constraints should instead be viewed as a balancing act rather than

something to remove altogether.

78

6.4.6 Justification behind the ratings - Project Quiver

Although there were a good number of different items and interactions at the player's disposal,

many participants felt that there needed to be more use cases for the items and more

interactions with the enemies. Since interactions were still commonly used within the game, but

not a wide enough variety was available, a rating of three was appropriate.

Participants did not feel too constrained when playing through the game and felt that six was a

good number for the inventory slots were a good number. The one shortcoming was that the

item resource quantity felt too small, bumping constraints from a five rating to a four.

Adding subjects was rated at a three due to an appropriate number of subjects involved in the

level (spikes, enemies, etc.), but there was still much room for improvement. Participants felt

there could have been more variety amongst enemies and obstacles and more ways to take

advantage of the subjects for their emergent plans.

With the levels being entirely procedurally generated through a mix of Spelunky’s map

generative method and the overlap model of Wave Function Collapse, it becomes clear that

instability is one of the game's core values. Levels had some interesting variations, making them

a replayable and entertaining experience for the participants. Even still, having more input

samples for WFC to draw from could help increase the level variation, or procedurally generated

stats and attributes for items like in Noita (2019) could also support more instability. In the end,

an instability rating of four was appropriate.

The meaning factor was apparent to the player throughout the game, giving it a rating of five.

Players could quickly get the hang of using the bow due to their familiarity with other games

featuring bows (i.e. holding to draw and releasing to fire). The items were intuitive enough that

the players could infer some meaning without using them, such as the sprite of the bomb arrow

79

looking like a small explosive on the tip of an arrow. Enemies behaved in an easy way for the

player to understand, like the slime that would predictably bounce towards the player. Although

spikes did not kill the player in a single hit, players were still cautious around them, knowing

they would deal damage on contact.

The variety of items and their interactions with other elements in the world, as well as a

relatively high meaning and consistency rating of the game, did help facilitate an experimental

environment. In Appendix B.3, it can be seen that 45% of participants opted for an experimenter

playstyle, looking to test the bounds regarding items and enemies. The users who adopted that

playstyle also mentioned that they would have liked to see more interactions, particularly those

that affect the environment. With more interactions at the player’s disposal, the current rating of

four for encouraging experimentation has the potential to be increased.

The game events and interactions were very consistent as well. Enemies had predictable

patterns that the player could exploit, levels generated in a way where players would always

know where to go next, and items behaved in an expected way to their use case. This level of

consistency would have resulted in a five consistency score; however, one failure was that spikes

did not have a consistent interaction between enemies and the player. Some players initially

speculated how they could use spikes to defeat enemies, but after seeing that enemies were

immune, those plans were lost. This oversight, unfortunately, resulted in some emergent plans

being lost and was enough to reduce the consistency score to a four.

The player agency factor was never an issue with the player for the prototype. Players always

felt comfortable with the tools they had at their disposal, whether it was the player's general

movement and physics system or the different items they could discover throughout the levels.

The inventory slot limit never felt too limiting on the player’s items and some players made

80

informed decisions about what items they wanted to keep for the next level. The factor was

given a rating of five.

6.5 Conclusion

After testing the prototype with participants, it can be seen that there were indeed cases of

emergent gameplay occurring. Participants agreed the prototype could facilitate a low to

medium level of emergent gameplay moments upon this first iteration. If the prototype

continues development, the main areas of focus to increase emergence would be to add more

interactions and subjects. Constraints, instability, consistency, and encouraging experimentation

are other areas of consideration for improvement to create more emergence.

It is worth considering that although this prototype was made with emergence in mind, a game

that aims to capitalise on emergent elements would need to go through many more iterations

with players in order to facilitate an emergent environment. The Emergent Framework could be

used in each iteration to focus on the weakest factors and improve them in future iterations. The

games evaluated in Chapter 4.2 have been in development for quite some time and make great

use of their emergent factors, hence their high factor and emergence rating when compared

against Project Quiver.

81

Chapter 7

Outcomes and Conclusion

7.1 Introduction

When it comes to game emergence, it can be challenging for developers to understand how it is

implemented, especially with the added unpredictability of certain PCG algorithms. Despite the

strong design and testing requirements, the benefits of emergence in games outweigh this,

thanks to its player appeal, allowing for more freedom in player plans and resulting in more

surprising and unique playthroughs compared to more traditional linear games.

Procedural content generation has been shown to support the creation of emergent gameplay,

thanks to its ability to create unique scenarios and instability within game worlds and systems.

Many different algorithms can be used to generate content within games, so it is up to the

developer’s discretion to select a suitable PCG algorithm to suit their needs. A good amount of

instability can help support new experiences for the player. However, without some consistency,

it can be difficult for the player to develop emergent plans when too many variables involved are

unpredictable.

Roguelikes are one of the common genres to utilise PCG for emergent gameplay, alongside

open-world sandbox games. Their high replayability factor allows players to try out different

strategies in the various environments generated by the game. With enough systems to

experiment with in the game, players can experience a game for hundreds of hours whilst still

finding new interactions and synergies.

82

7.2 Research Outcomes

The following research questions were proposed in Chapter 1:

● RQ1. How do developers design games for emergent gameplay?

● RQ2. How can PCG be used to create emergent scenarios?

A literature review was conducted on emergent gameplay to answer the first research question.

Within the review, a number of common factors and agreements were found on how emergent

gameplay can be promoted within games, such as increasing the interaction space and adding

more interaction subjects, to name a few examples. In addition, procedural content generation

was another research topic investigated to find out its relationship with creating emergent

scenarios. One common link that was mentioned between the two topics was roguelike games,

as they were commonly known for using PCG and having emergent gameplay, which made it

another topic of interest for the literature review.

The following hypotheses were proposed after the literature review stage:

● That the current state of the literature on emergence in games can expand to include

additional factors and techniques

● That procedurally generated content can be evaluated under the lens of emergence to

help promote its inclusion in games

While the first research question can be answered using past literature, it can be expanded past

its current state with the addition of new factors. New factors were identified in Chapter 3: rule

consistency, more player agency and encouraging experimentation. While not physically

increasing the interaction possibility space, these factors can help promote player’s emergent

plans, resulting in a more emergent environment. To answer the second research question, PCG

was investigated under the lens of emergence; more specifically how it can be used to facilitate

83

an emergent environment. The procedurally generated levels were the most common way to

support an emergent game, however, there exist other applications. Story generation and the

inclusion of more unstable game elements may result in more emergent stories that are a result

of PCG. In this sense, both of the research questions have been answered.

The Emergent Framework in Chapter 4 uses the extended list of emergent factors and adapts it

into a framework. This framework can then be applied to games to visualise better the impact

emergent factors have on systemic games. The PCG for emergence framework exists to evaluate

a PCG algorithm's potential for creating emergence. PCG methods analysed through the

framework will show the balance between instability and consistency and find ways to

introduce more emergent possibilities through subjects. The Emergent Framework has been

applied to five commercial games in Chapter 4, although its usage can also be applied to the

development process of a game, as seen in Chapter 5.

In Chapter 5, a prototype was developed with the framework's principles in mind, with each

feature being mapped to an emergent factor to justify its inclusion. The PCG methods selected

for the prototype were Wave Function Collapse and the Spelunky map generative method, for a

suitable mix of instability and consistency. In Chapter 6, the prototype was tested amongst

participants to see how effectively it creates more game emergence. Instances of emergent

occurrences were recorded, and an analysis was done for the emergent factors that should be

focused on.

7.3 Limitations and Future Directions

Regarding the work completed for the thesis, some limitations must be considered. With eleven

participants for the experiment, the insightful findings may not be entirely generalizable to a

broader audience or demographic. Such a limited participant pool can introduce potential biases

84

and reduce the robustness of the results. Observing emergent behaviour in released emergent

game titles may be worthwhile to gather qualitative data, as there will be an already established

demographic to obtain data.

The time and scope are other factors that are important to consider. More emergent gameplay

moments can occur with a longer duration to develop the prototype (e.g., more systems and

interactions) and longer testing sessions. Should the prototype continue development to become

a highly emergent game, the framework can be used as a useful tracking tool to identify what

factors of emergence need improvement.

An issue that could have been further considered and investigated is the variation of generated

content. Kate Compton likens this problem to “10,000 bowls of oatmeal” in her GDC talk

Practical Procedural Generation for Everyone (2017). In her example, a generator for oatmeal is

made to produce 10,000 unique oatmeal variations, however, despite the differences between

each bowl, none of it matters if the changes are unable to be identified by the consumer. This

issue is very applicable to PCG games, where many games boast about their random generation

but end up having content that is difficult to distinguish from one another.

Isaac Karth discusses this problem and reveals that the problem can be mitigated through

variation in Preliminary Poetics of ProceduralGeneration in Games (2019). More specifically, he

goes into the principles of multiplicity, style and cohesion which each have their role when

creating varied content that is noticeable and impactful to the target demographic. While

variation was not a particularly prevalent issue in the prototype, a longer play session with the

participants may have made the variation problemmore prevalent, and something that would

need to be addressed should the prototype continue development.

85

Finally, with the ever-growing gaming industry, more PCG algorithms could be considered and

evaluated for emergent games. The generated game content could come from a mix of existing

algorithms to create something new or the introduction of a new algorithm that better suits the

needs of the game designer. Another potential direction of interest is AI-driven Procedural

Content Generation (PCG), which can be developed to dynamically craft game environments and

narratives that adapt to player behaviour for even more emergent experiences. As the gaming

industry and research on emergence continue to evolve, the mix of PCG and emergent design

shows much promise for a future of unique gameplay experiences.

86

Bibliography

1. Referenced Papers

1. Ampatzidou, C., 2019. Reinventing the rules: Emergent gameplay for civic learning. In The
Hackable City (pp. 187-203). Springer, Singapore.

2. Cheng, D., Han, H., & Fei, G. (2020). Automatic generation of game levels based on
controllable wave function collapse algorithm. In Entertainment Computing–ICEC 2020: 19th
IFIP TC 14 International Conference, ICEC 2020, Xi'an, China, November 10–13, 2020,
Proceedings 19 (pp. 37-50). Springer International Publishing.

3. Ebia, J.M.S., Manalansan, J.C.R., Guino, K.D.D. and Bunagan, J.K.V., Influencing Game Dynamics
in A Roguelike Game Through Procedural Content Generation Using Genetic Algorithm

4. Gaisbauer, Raffe, W., Garcia, J., & Hlavacs, H. (2019). Procedural Generation of Video Game
Cities for Specific Video Game Genres Using WaveFunctionCollapse (WFC). Extended
Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion
Extended Abstracts, 397–404.

5. Gellel, A. and Sweetser, P., 2020, September. A Hybrid Approach to Procedural Generation of
Roguelike Video Game Levels. In International Conference on the Foundations of Digital
Games (pp. 1-10).

6. Ho, X., Tomitsch, M., & Bednarz, T. (2016). Finding design influence within roguelike games.
InMeaningful Play 2016 Conference Proceedings.

7. Hokkanen, Holmes, T., Koivuranta, H., Sandberg, A., Sorva, H., Toikka, J., Hämäläinen, P., &
Kaos, M. (2018). Plusminus: Augmenting Physics to Promote Emergent Gameplay.
Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play
Companion Extended Abstracts, 321–327.

8. Izgi, E. 2018, Framework for Roguelike Video Games Development, Master Thesis, In Charles
University Digital Repository.

9. Karth, I., & Smith, A. M. (2017, August). WaveFunctionCollapse is constraint solving in the
wild. In Proceedings of the 12th International Conference on the Foundations of Digital Games
(pp. 1-10).

87

10. Karth, I. (2019). Preliminary poetics of procedural generation in games. Transactions of the
Digital Games Research Association, 4(3).

11. Leijnen, S. and Van Veen, F., 2016. ArkaNet: Investigating Emergent Gameplay and
Emergence. In 1st DiGRA/FDG conference, 1 augustus 2016, Dundee, Schotland.

12. Melotti, & de Moraes, C. H. V. (2019). Evolving Roguelike Dungeons With Deluged Novelty
Search Local Competition. IEEE Transactions on Games, 11(2), 173–182.

13. Paananen, K.E., 2020. Designing a Game for Emergent Gameplay: Developing Gatedelvers.

14. Parker. (2017). The culture of permadeath: Roguelikes and Terror Management Theory.
Journal of Gaming & Virtual Worlds, 9(2), 123–141.

15. Rabin, S. (2004). Common game AI techniques. AI game programming wisdom, 2, 3-14.

16. Raffe, W. (2014). Personalized procedural map generation in games via evolutionary
algorithms.

17. Sweetser, P., 2006. An emergent approach to game design: Development and play. PhD diss.:
University of Queensland.

18. Togelius, J ; Yannakakis, G. N ; Stanley, K. O ; Browne, C. 2011. Search-Based Procedural
Content Generation: A Taxonomy and Survey In IEEE transactions on computational
intelligence and AI in games. Vol.3 (3), p.172-186

19. Wilson, M.J.B., 2020, September. Playing with Permadeath. In 2020 IEEE Games, Multimedia,
Animation and Multiple Realities Conference (GMAX) (pp. 1-5). IEEE.

2. Other Sources

1. Brown, M. from GMTK. (2018, Feb 15). The Rise of the Systemic Game. YouTube.

2. Compton, K. at GDC talk. (2017, June 1). Practical Procedural Generation for Everyone.
YouTube.

3. Donald, M., (2020, Aug 1). Superpositions, Sudoku, the Wave Function Collapse algorithm.
Youtube.

4. Dohta, T., Fujibayashi, H., & Takizawa, S. at GDC talk. (2017, March 11). Breaking Conventions
with The Legend of Zelda: Breath of the Wild. YouTube.

5. Francis, T. (2018).What Works And Why: Emergence. Rock Paper Shotgun. Online Article

6. Hocking, C. at GDC talk. (2006). Designing to Promote Intentional Play. GDC Vault.

88

7. Juul, J. 2005. Half Real. Videogames between Real Rules and Fictional Worlds. MIT Press.

8. Johnson, S. (2011). GD Column 17: Water Finds a Crack. Designer Notes.

9. Marian, (2019). Infinite procedurally generated city with the Wave Function Collapse
algorithm. Article.

10. Parker, J. (2018). Generating Procedural Game Worlds with Wave Function Collapse. GitHub.

11. Shaker, Togelius, J., & Nelson, M. J. (2016). Procedural Content Generation in Games (1st ed.
2016.). Springer International Publishing.

12. Smith, H. (2002, March). Systemic level design. In the Game Developers Conference (pp.
21-23).

13. Smith, H. interview with NoClip. (2018, January 6). Deus Ex to Dishonored with Harvey
Smith. YouTube.

14. Sweetser, P. (2008). Emergence in Games. Charles River Media.

15. Witney, O., 2019. Usage of Random Number Generators and Artificial Intelligence to improve
replayability of a Roguelike Game.

16. Wolverson, H. at Roguelike Celebration talk. (2020, October 16). Herbert Wolverson -
Procedural Map Generation Techniques. YouTube.

17. Yu, D. (2016). Spelunky by Derek Yu (1st ed). Boss Fight Books.

89

Appendices

Appendix A - Designing Project Quiver

A.1 Project Quiver’s Design Map Part 1

90

A.2 Project Quiver’s Design Map Part 2

91

A.3.0 Project Quiver Feature to Emergent Factors - Key and Ratings

Key:

A. Increasing Interactions

B. Reducing Constraints

C. Adding Subjects

D. Creating Instability

E. Adding Meaning

F. Keeping Rules Consistent

G. Player Agency

H. Encourage Experimentation

Ratings:

● 1 = Feature increases the emergent factor

● 0.5 = Feature slightly increases the emergent factor

● Blank = Does not apply

92

A.3.1 Project Quiver Feature to Emergent Factors - Procedural Elements

Refer to A.3.0 for Key and rating system.

Procedural
Elements A B C D E F G H Explanation

WFC Level
Generation 1 1

Instability through
random generation.
Spikes are added to the
level for more
possibilities

Spelunky
Generation 1

Ensures a path is always
generated to the exit

Randomised
Pickup Item
Locations 0.5 0.5

Location of items is not
always the same,
encouraging exploration

Randomised
Pickup Item
Variety 0.5 1

Later the level, the rarer
the items. Randomized
items can lead to
different player
approaches

Randomised
Enemy
Locations 1 1

More enemies, more
subjects. Enemy variety
is random (unstable)

Randomised
Enemy Variety 1 0.5

Later the level, the more
difficult the enemies.
More enemy types lead
to a more unstable
environment

93

A.3.2 Project Quiver Feature to Emergent Factors - Game Systems

Refer to A.3.0 for Key and rating system.

94

Game
Systems A B C D E F G H Explanation

6 Inventory
Slots 1 1 1

Choice through
constraints. The player
must carefully decide
which items they want
to proceed with

2D Platformer
Physics 1 1 1 1

More interaction
possibilities when
applying forces and
using gravity. Forces
should emulate real-life
physics. Physics should
apply all things affected
by gravity.

Bow
Knockback 1 0.5

Due to 2D physics
constraints, the player
can use the knockback
of the bow to find new
movement tech or
accidentally land
themselves in worse
situations

Enemies
Dealing
Knockback 1 1 0.5 0.5

Knockback adds an
interaction. All enemies
must deal knockback.
Players may use enemy
knockback for
additional possibilities

Enemies
Dealing
Contact
Damage 1

Traditional game system
where enemy contact
deals damage. All
enemies must deal
contact damage

Players
Dealing
Knockback 1 1 1 0.5

Knockback adds an
interaction. All physics
driven enemies should
take knockback. Players
may knockback enemies
for additional
possibilities

Spikes 1 1 1 1 0.5

Spikes add damage and
knockback interactions.
They used to kill the

95

player in one hit, but
this behaviour was too
constrained. Spikes
symbolise danger for
those who touch it.
Players can use spike
knockback to their
advantage.

Bow Draw and
Firing 1

Simulates drawing and
firing a real bow with
physics (longer draw =
longer distance
travelled)

Perfect Shot 1 1

Perfect shots provide
additional effects for
new possibilities

Point System 1 1

Points will always follow
the same system.
Players are incentivised
to change their
strategies to achieve
more points

Health System 1 1

Traditional health
system where reaching
0 kills the player. Players
with lower health will
likely change their
strategy. Players health
is kept low so that
obstacles are more
impactful

A.3.3 Project Quiver Feature to Emergent Factors - Items

Refer to A.3.0 for Key and rating system.

96

Items A B C D E F G H Explanation

Quick Bow 0.5 0.5 Faster draw

Heavy Bow 0.5 0.5
Slower draw for much
higher damage

Infinite Arrow 0.5 0.5

Ensures that the player
always has a starting
option, with reduced
damage

Auto Arrows 0.5 0.5
Faster draw for lower
damage

Heavy/Great
Arrows 1 1 0.5 0.5

Propels the player with
higher knockback,
allowing them to reach
previously unreachable
areas. Has a slower
draw for higher damage

Rope Arrow 1 1 1 0.5

If the level has some
difficult to navigate
areas, these can provide
more adency over those
areas

Platform
Arrow 1 1 1 0.5

If the level has some
difficult to navigate
areas, these can provide
more adency over those
areas

Explosive
Arrow 1 1 1 1 0.5

If the level has some
difficult to navigate
areas, these can provide
more adency over those
areas + arrow deals high
damage and knockback
which can also affect the
player

A.3.4 Project Quiver Feature to Emergent Factors - AI

Refer to A.3.0 for Key and rating system.

97

AI A B C D E F G H Explanation

Magic Arrow 1 1 1

Dash movement adds to
the interaction
possibility space.
Arrows will always dash
to the player after
spotting them for a
designated time

Jumping Slime 1 1 1 1

Jump movement adds to
the interaction
possibility space. Slimes
will always jump on
intervals and towards
the player when spotted

A.3.5 Project Quiver Feature to Emergent Factors - Challenges

Refer to A.3.0 for Key and rating system.

98

Challenges A B C D E F G H Explanation

Reach the
Totem 1

Encourage the player to
use new strategies to
reach the totem for a
reward

Take No
Damage 1

Alters the player's play
style by offering
rewards for playing
more cautiously

Escape in
Time 1

Alters the player's play
style by offering
rewards for playing
more quickly

Kill All
Enemies 1

Encourages the player
to interact more with
the enemies for a
reward

Shoot All
Targets 1

Encourages the player
to explore the level for a
reward

Reach the
Totem 1

Encourage the player to
use new strategies to
reach the totem for a
reward

Appendix B - Project Quiver Observation Data

B.0 Appendix B data

Each number in the following tables represents a participant (i.e. 1 was the first participant to take

part in the experiment)

B.1 Participant understanding of emergence

1 represents the participant’s understanding of emergence prior to the experiment

Level of
Understanding 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

Low 1 1 1 1 4 36.36%

Mid 1 1 1 1 4 36.36%

High 1 1 1 3 27.27%

B.2 Elements of the Emergent Definition*

1 represents the participant’s agreement with the element described in the definition.

Participants with an * were not asked about this question due to not understanding emergence at

the start of the experiment. This means that the sum of participants was out of 7

Element of
Emergence 1 2 3 4 5* 6 7 8* 9 10* 11* Sum Percentages

New possibilities
from interplaying
mechanics 1 1 1 1 1 1 1 7 100.00%

Not intentionally
designed 1 1 1 1 1 1 1 7 100.00%

Lets players
explore more
ways 1 1 1 1 1 1 1 7 100.00%

Not an explicit
rule 1 1 1 1 1 1 1 7 100.00%

Not specifically
programmed into
the system 1 1 1 1 1 5 71.43%

Must be 1 1 2 28.57%

99

unintended

B.3 Participant Playstyle/Prioritisation

1 represents the participant’s style of play at any point throughout the game’s duration. Multiple

playstyles could be adopted within the session.

Playstyle/
Prioritisation 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

Explorer 1 1 1 1 4 36.36%

Exterminator 1 1 9.09%

Experimenter 1 1 1 1 1 5 45.45%

High Score
Achiever
(furthest
level/score) 1 1 2 18.18%

Speedrunner 1 1 1 1 1 1 6 54.55%

Challenge
Completionist 1 1 1 1 1 5 45.45%

B.4 Frequently used resources

1 represents a frequent use of the resource

Frequently used
resources 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

Basic Bow 1 1 1 1 1 1 1 1 8 72.73%

Great Bow 1 1 2 18.18%

Quick Bow 1 1 2 18.18%

Infinite Arrow 1 1 1 1 1 1 1 1 1 1 1 11 100.00%

Auto Arrow 1 1 1 3 27.27%

Great Arrow 1 1 9.09%

Bomb Arrow 1 1 9.09%

Platform Arrow 1 1 9.09%

Rope Arrow 1 1 1 1 1 1 1 1 1 9 81.82%

100

B.5 Bow Charge Style

1 represents the participant’s preference of bow charging at any point throughout the game’s

duration. Multiple styles could be adopted within the session.

Bow Charge
Style 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

Aimed for perfect
shots 1 1 1 1 1 1 1 1 8 72.73%

Rapid fire 1 1 1 1 4 36.36%

Held charge 1 1 9.09%

B.6 Participant Initial Skill Level

1 represents the participant’s skill level.

Skill Level 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

Low 1 1 2 18.18%

Mid 1 1 1 1 4 36.36%

High 1 1 1 1 1 5 45.45%

B.7 Participant Skill Level Change Over Time

1 represents if the participant's skill level change.

Skill Level
Change 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

Got worse 0 0.00%

Stayed the same 1 1 1 1 1 1 1 7 63.64%

Improved 1 1 1 1 4 36.36%

101

B.8 Participant Furthest Level

Each data set represents the highest level the user reached which are as follows:

● 1-0

● 1-1

● 2-0

● 2-1

● 3-0

● …

● 3-Infinite

Furthest Level 1 2 3 4 5 6 7 8 9 10 11

Level Number 2-1 3-2 3-7 3-4 3-0 2-1 3-2 3-0 3-0 3-4 3-2

B.9 Participant Highest Score

Each data set represents the highest score the user reached.

Highest Score 1 2 3 4 5 6 7 8 9 10 11

Score 2850 11600 23200 14700 8500 2550 10650 4600 4650 9050 7350

B.10 Participant Understanding of Level Generation

1 represents the level of understanding the participants had for the level generation.

PCG
Understanding 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

None 0 0.00%

Low 1 1 1 1 1 5 45.45%

Mid 1 1 1 3 27.27%

High 1 1 1 3 27.27%

102

B.11 Participants Perception of Emergence

1 represents the level of emergence the participants believed the prototype to be.

Perceived
Emergence 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

None 0 0.00%

Low 1 1 1 1 1 5 45.45%

Mid 1 1 1 1 1 1 6 54.55%

High 0 0.00%

B.12 Presence of unintended scenarios

1 represents the appearance of unintended scenarios for potential emergence.

Unintended
scenario
quantity 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

0 1 1 2 18.18%

1 1 1 1 1 1 1 1 7 63.64%

2 1 1 9.09%

3+ 0 0.00%

103

B.13 Participants on Factors that Increase Emergence

Each participant was asked about each of the factors for emergence and what factors actually

contribute to more emergent gameplay.

● 1 represents an agreement that it does increase emergent gameplay.

● 0.5 is a slight agreement that the factor does increase emergent gameplay.

● 0 is a disagreement that the factor increases emergent gameplay.

Emergent
Factor 1 2 3 4 5 6 7 8 9 10 11 Sum Percentages

Increase
interactions 1 1 1 1 1 1 1 1 1 1 1 11 100.00%

Reduce
Constraints 1 0 1 0.5 1 0.5 0 0 1 0 0 5 45.45%

Add Subjects 1 0.5 1 0.5 1 1 1 1 0.5 1 1 9.5 86.36%

Instability 1 1 1 1 1 0.5 0 1 1 1 1 9.5 86.36%

Meaning 1 1 0.5 0.5 1 0.5 1 1 0.5 1 1 9 81.82%

Consistency 1 0.5 1 0.5 0.5 0 0.5 1 1 0 1 7 63.64%

Encourage
Experiment 1 0.5 0.5 1 0.5 0.5 1 1 1 0 1 8 72.73%

Player Agency 1 0 1 1 1 1 0.5 0.5 1 1 1 9 81.82%

104

Appendix C - Emergent Scale Rubric

Emergent Scale Rubric (1/2)

0 1 2 3 4 5

Increasing
Interactions

Interactions are
kept to a
minimum, only
existing to
progress the
game.

Interactions are
within the game
but are very
infrequent to
have a more
constrained
design

Interactions are
few within the
game

Interactions may
be involved in the
solution/scenario
or are used
commonly
throughout the
game

Many different
interactions
within the game
are made
available to the
player

Interactions are
abundant
throughout each
gameplay
scenario

Reducing
Constraints

The game is
constrained to
the point where
each player has
an almost
identical
gameplay
experience.

Many constraints
and limitations
are put on the
player as per the
game’s design

Constraints exist,
but multiple
paths might still
exist for the
player to choose
from (i.e. choose
your path, correct
and incorrect
options)

Constraints are
reduced from
time to time to
allow more
player freedom
over their actions

Constraints are
used sparingly to
allow for many
emergent
possibilities

Constraints are
minimal to the
point where the
player may have
freedom over
everything (i.e.
Creative or
sandbox modes)

Adding Subjects Subjects are kept
to a minimum,
only existing to
progress the
game.

Very few subjects
are available in
the game to add
more emphasis
on the few
interactions
involved

The number of
subjects involved
is limited and
does not have
much variation of
interactions
between them

There are a good
number of
subjects involved
in the
game/scenario

There are plenty
of subjects
present that the
player can take
advantage of for
their emergent
plans

A huge variety of
subjects are
present, with
various
interactions with
the game world
and other
subjects that are
commonly
utilised

Instability No sorts of
randomness are
involved

No sorts of
randomness are
involved (except
for certain maths
calculations and
simple random
range functions)

Randomness is
only used far and
few between (i.e.
Changing the
patterned
solution of a
puzzle each
playthrough)

Some procedural
elements may be
involved such as
random enemy
or weapon
spawn locations

More procedural
elements are
involved and
made use of
such as level
generation and
weapon stats

The game has
many different
combined
randomised
elements that
lead to less
predictable
scenarios

105

Emergent Scale Rubric (2/2)

0 1 2 3 4 5

Meaning The meaning of
interactions was
not considered
(i.e. a byproduct
of a bug,
nonsensical
mechanics)

Little meaning is
put into the
interactions.

Some meaning or
common
knowledge may
be applied but it
isn’t a relying
factor for the
player to know

There are a few
parallels between
in-game
mechanics and
real life (or
common
knowledge
areas). It is not
unrealistic to
expect a player to
stumble upon a
new interaction
this way
(experimentation
)

There is enough
meaning to the
interactions
in-game that the
player can
commonly apply
real-life actions
in-game and be
rewarded with an
expected
outcome

There are a great
number of
parallels between
in-game
interactions and
real life, almost
providing a
tutorial through
experimentation.
Meaning is also
kept consistent
for new
interactions with
common factors

Consistency Rules are kept
inconsistent as an
element of
instability (i.e.
randomly
generated
rules/interactions)

Very few rules
exist to maintain
consistency.

Rules may be
consistent but are
commonly broken
for the sake of
certain missions
or objectives (i.e.
forcing the player
to perform actions
a certain way, like
taking away their
tools)

The rules are kept
consistent for the
most part, but still
missing in certain
areas (e.g. being
able to set some
but not all wooden
things on fire)

The consistency
of the game rules
enables the
player to
experiment with
new interactions
and achieve an
expected result,
even if it happens
to be their first
time experiencing
the interaction

The game world’s
rules are kept
consistent enough
that the player
can create
emergent plans
and rely on the
outcomes being
consistent enough
to follow through

Encourage
Experimentation

No experimental
tools are provided
to the player

The game is
highly linear,
discouraging
different forms of
play

The game has
options to play
different ways
(agency) but
does little to
incentivise
different
playstyles

Certain
interactions are
tutorialized and
incentivised to
show players how
to use the
mechanic. The
hope is to have
players take
advantage of this
knowledge to
apply it in their
scenarios

There is enough
consistency and
meaning present
that the player
can come up with
a variety of
different ways to
approach a
situation

Through great
use of
consistency,
meaning, and
having a high
level of agency,
the player can
come up with
plans that may be
unique to what
may have been
expected by the
developers (bugs
or unintended
emergence)

Agency The design of the
game is meant to
be played in one
way and only that
way

The player may
occasionally be
given binary
options for certain
situations,
however, most of
the game is
played with one
solution in mind

The player is
often given binary
options to solve
their situations

The player has
access to a
couple of different
tools to approach
their situation

The player has
access to a great
number of tools
with different
interactions to
approach their
situation

The player has
access to a
massive number
of tools with
different
interactions to
approach their
situation. These
are often
scattered
throughout a huge
open world or
located in different
‘runs’ in a
roguelike

106

