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ABSTRACT

As a core branch of financial forecasting, stock forecasting plays a crucial role for financial analysts, investors,
and policymakers in managing risks and optimizing investment strategies, significantly enhancing the efficiency
and effectiveness of economic decision-making. With the rapid development of information technology and
computer science, data-driven neural network technologies have increasingly become the mainstream method
for stock forecasting. Although recent review studies have provided a basic introduction to deep learning
methods, they still lack detailed discussion on network architecture design and innovative details. Additionally,
the latest research on emerging large language models and neural network structures has yet to be included
in existing review literature. In light of this, this paper comprehensively reviews the literature on data-
driven neural networks in the field of stock forecasting from 2015 to 2023, discussing various classic and
innovative neural network structures, including Recurrent Neural Networks (RNNs), Convolutional Neural
Networks (CNNs), Transformers, Graph Neural Networks (GNNs), Generative Adversarial Networks (GANs),
and Large Language Models (LLMs). It analyzes the application and achievements of these models in stock
market forecasting. Moreover, the article also outlines the commonly used datasets and various evaluation
metrics in the field of stock forecasting, further exploring unresolved issues and potential future research

directions, aiming to provide clear guidance and reference for researchers in stock forecasting.

1. Introduction

With the advancement of society and economic growth, financial
markets have increasingly played a pivotal role as catalysts for financial
development and wealth creation [1]. Advances in financial research
have not only deepened economic theories but also fostered innovation
in financial instruments and markets. The stock market, as a crucial
component of the financial market, has always been a critical indicator
of economic health and developmental trends, serving as an essential
platform for companies to raise capital and for investors to participate
in corporate growth and prosperity.

The predictability of the stock market has always been a hot topic
of interest in both the financial and academic communities. As early as
the beginning of the last century, scholars studied the behaviour of the
stock market, with Louis Bachelier first proposing in 1900 that stock
price fluctuations follow a random walk process [2]. Subsequently,
scholars like Cootner and Fama [3,4] thoroughly explored and tested
this theory, supporting the view that short-term changes exhibit ran-
dom walk characteristics, suggesting that stock market prices form
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a random drift and thus are unpredictable. Building on the random
walk theory, Professor Fama from the University of Chicago introduced
the renowned Efficient Market Hypothesis (EMH) in the 1960s [5].
EMH considers the market “information efficient”, which implies that
market prices fully and instantaneously reflect all available informa-
tion, encompassing both public and insider information. This notion
suggests that market prices are inherently unpredictable, as any new
information or changes are immediately incorporated into the market
prices, rendering it challenging for investors to profit from the mar-
ket by analysing publicly available information alone. The Efficient
Market Hypothesis typically comes in three forms: Weak form: stock
prices reflect all information contained in historical price sequences,
meaning technical analysis cannot be used to predict future stock price
movements. Semi-strong form: stock prices reflect all publicly avail-
able information, including historical prices and other published data.
Under this form, even fundamental analysis cannot yield abnormal
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Fig. 1. The framework of stock forecasting research. Different colours represent different meanings. Red indicates the research direction of this paper, blue signifies other important

branches, and yellow denotes specific methods.

returns. Strong form: stock prices reflect all public and private infor-
mation, meaning even insider trading cannot consistently outperform
the market.

Despite the EMH and RWT laying an important theoretical foun-
dation for stock market prediction research, the limitations of these
traditional theories have been increasingly questioned over time as
financial markets become more complex and data technology advances
rapidly [6]. The desire of market participants to surpass average market
returns has spurred new forecasting methods and trading strategies.
Consequently, developing strategies that can accurately predict stock
prices and exceed average market returns has become a focal point for
financial analysts, investors, and policymakers.

In the field of stock market prediction, research can be categorized
into three approaches based on trading strategies: data-driven [7],
event-driven [8], and strategy optimization [9]. Data-driven methods
emphasize using information contained in historical data to predict fu-
ture stock price movements, typically relying on complex mathematical
models and algorithms such as time series analysis, machine learning,
and deep learning to capture and learn the underlying patterns of
stock price fluctuations. Event-driven methods focus on the impact
of specific events on stock prices, such as mergers and acquisitions,
earnings releases, and policy changes, arguing that market fluctua-
tions are influenced not only by historical data but also significantly
by sudden events. Strategy optimization builds upon data-driven and
event-driven foundations, further considering how to construct and
optimize investment strategies to achieve the best risk-adjusted returns.
Given the continuous changes in the stock market and the real-time
updating nature of data, data-driven forecasting methods are critical
due to their advantage of directly utilizing real-time updated data.
Unlike event-driven and strategy optimization methods, data-driven
approaches are more capable of intuitively acquiring and processing
vast amounts of market data, effectively mining and analysing future
trends in the stock market.

As early representatives of data-driven prediction strategies, statis-
tical methods have provided a theoretical and practical foundation.

Limited by computational power, initial stock market prediction meth-
ods are linear regression [10] and time series decomposition [11].
However, these simple statistical models often struggle to capture the
complexity and nonlinear characteristics of stock price movements,
resulting in lower prediction accuracy. Researchers introduced com-
plex time series models to overcome these flaws, including the classic
autoregressive moving average (ARMA) and autoregressive conditional
heteroskedasticity (ARCH) models. The ARMA model combines au-
toregression (AR) [12] and moving average (MA) [13] mechanisms,
capturing the linear dependencies in stock price sequences, while the
ARCH model introduces the concept of conditional heteroskedasticity,
which describes the clustering effect of stock price volatility, where the
magnitude of stock price fluctuations depends on previous fluctuations.
Although these improved methods have made some progress, they
still have shortcomings. To further enhance the modelling capacity
for complex stock price sequences, researchers proposed the ARIMA
(autoregressive integrated moving average) model [14]. The ARIMA
model adds an integration mechanism to the ARMA model to better
eliminate non-stationarity and stabilize the series. The (AR) component
describes the linear relationship between stock prices and their past
values, the (I) component eliminates non-stationarity through differ-
encing, making the series stable, and the (MA) component models the
autocorrelation of series residuals. By appropriately setting these three
components’ parameters appropriately, the ARIMA model can more
flexibly fit complex stock price sequences. Kumar et al. [15] proposed a
hybrid model combining ARIMA with support vector machines (SVM),
artificial neural networks (ANN), and random forests (RF), respectively,
which leverages ARIMA’s advantages in capturing linear patterns and
the machine learning models’ capabilities in fitting nonlinear pat-
terns. Research has found that the ARIMA-SVM hybrid model achieves
the best prediction accuracy and investment returns. Similarly, Wang
et al. [16] combined XGBoost with ARIMA to propose a DWT-ARIMA-
GSXGB hybrid model, which uses discrete wavelet transform (DWT) to
decompose the original stock price data into approximate and residual
parts. Then, it predicts these parts using the ARIMA model and an
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enhanced XGBoost (GSXGB) model before combining the prediction
results through wavelet reconstruction. This hybrid modelling approach
leverages the strengths of ARIMA in capturing linear patterns and XG-
Boost in fitting nonlinear patterns, significantly improving prediction
performance and surpassing traditional ARIMA and other statistical
methods. Overall, the ARIMA model, as a classic statistical method, re-
mains a crucial benchmark in financial time series forecasting research.
It provides a solid theoretical and practical foundation for complex
prediction models based on machine learning due to its excellent ability
to capture linear patterns.

Despite significant advances in stock market forecasting based on
statistical models, the increasing complexity of financial markets has
led to new data-driven prediction technologies. Substantial improve-
ments in computational capabilities have established modern forecast-
ing methods represented by machine learning and deep learning as
mainstream in stock market prediction. Among these, artificial neural
networks (ANN) [17,18] and support vector machines (SVM) [19] have
shown great potential in the field of stock market forecasting. ANNs,
machine learning models that mimic biological neural networks, consist
of input, hidden, and output layers capable of end-to-end learning
of complex feature representations from input data, mapping them
to price predictions. As an excellent supervised learning algorithm,
SVM achieves precise classification or regression by finding the op-
timal hyperplane to separate different categories of samples. Unlike
ANNs, SVMs are insensitive to the amount and dimension of samples,
showing superior performance in handling high-dimensional financial
data. Wang et al. [20] proposed a hybrid model that combines ANNs
with ARIMA to leverage the advantages of modelling both linear and
nonlinear behaviours. This model achieved good prediction results on
multiple datasets, including Wolf sunspot data, Canadian lynx data,
and IBM stock prices. Combining stock box theory and SVM, Wen
et al. [21] introduced a new type of intelligent trading system based
on oscillation box predictions. This system uses two SVM estimators to
predict the upper and lower limits of price oscillations, then constructs
a trading strategy based on these constrained predictions, achieving
leading results on the S&P 500 dataset. At the same time, other machine
learning methods such as k-nearest neighbours (KNN) [22], random
forests (RF) [23], and decision trees (DT) [24] are also frequently
applied in stock market forecasting. Compared to traditional statistical
models, machine learning demonstrates a stronger nonlinear modelling
capability, enabling it to capture complex dynamic patterns in stock
price time series effectively. However, machine learning methods still
have limitations in handling large-scale data, automatic feature extrac-
tion, and model generalization. They often rely on carefully designed
features or manually selected model parameters, which increases the
complexity of model development and limits the models’ adaptability
and flexibility under unknown or changing market conditions.

Although traditional statistical and machine learning methods have
made significant progress in stock market forecasting, the tremendous
leaps in computational power and the substantial growth in data vol-
umes have propelled neural network-based deep learning methods to
the forefront of the field. These methods are well-suited for handling
large and high-dimensional financial datasets, ushering in a new era
of data-driven prediction methodologies. A diverse array of model
structures, including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), gated recurrent units (GRUs), graph neural
networks (GNNs), generative adversarial networks (GANs), and large
language models (LLMs), offer various perspectives for Stock Forecast-
ing, demonstrating the extensive application and significant potential
of deep learning in financial market analysis. Considering that earlier
review studies did not fully cover these advanced technologies, this
research introduces a series of new perspectives, concentrating on the
application and recent advancements of data-driven neural network
models in stock forecasting. Specifically, this paper contributes in the
following three areas:
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+ Comprehensive Technology Review: This paper thoroughly ex-
amines the application of data-driven neural networks in stock
forecasting from 2015 to 2023, with a particular focus on the
latest technological advancements, including Transformers, gen-
erative adversarial networks (GANSs), and large language models
(LLMs), addressing gaps in recent technology and article coverage
in the existing literature.

In-depth Methodological Analysis: The paper focuses on data-
driven neural network models, deeply assessing the performance
of various neural network structures in stock price prediction,
including their structural composition, innovations, and advan-
tages, and provides detailed insights into their performance in
practical forecasting.

Current Challenges and Future Directions: The paper not only
highlights the critical issues faced by neural network models in
the field of stock market forecasting but also explores potential
solutions and future research directions, offering insights and
inspiration for the development of this field.

The rest of the paper is structured as follows: Section 2 reviews
previous studies on this topic, discusses their achievements and limita-
tions, and elucidates the contributions of this paper. Section 3 provides
a detailed introduction to various types of data-driven neural net-
work models for stock forecasting, classifying them based on their
core network structures while discussing their innovative features and
achievements. Section 4 introduces the stock forecasting field’s com-
monly used datasets and evaluation metrics. Section 5 summarizes the
significant issues and deficiencies currently present in this research area
and proposes future research directions. Finally, Section 6 concludes
the paper. Fig. 1 displays the overall research framework of existing
stock market forecasting models.

2. Related work

As financial markets become increasingly complex and changeable,
traditional statistical and econometric models have gradually revealed
their limitations in capturing the nonlinear and dynamic characteristics
of stock prices. With the rapid development of information technology
and the surge in network data volume, research focus has shifted
towards machine learning and deep learning methods, particularly
through in-depth studies in the field of neural networks. These methods
have driven the development of various innovative network structures,
which are widely used to predict dynamic stock price changes ac-
curately. In their research, Atsalakis et al. [25] reviewed over 100
papers utilizing neural networks and neuro-fuzzy techniques for stock
price prediction, meticulously categorizing them based on input data
types, prediction techniques, performance assessments, and application
performance metrics. Li and Ma [26] discussed methods for predicting
stock and option prices using nonlinear artificial neural network models
and reviewed the applications of artificial neural networks in banking
operations and financial crisis prediction. Soni et al. [27] examined
the effectiveness of artificial neural networks (ANN) in stock market
forecasting and found that ANNs demonstrated more substantial com-
petitiveness and a key role compared to genetic algorithms and multiple
linear regression methods. Tka¢ and his team [28] analysed 412 pa-
pers from 1994 to 2015, focusing on financial distress, bankruptcy
identification, stock price forecasting, and decision support systems,
particularly in classification tasks. Dattatray P. Gandhmal and K. Ku-
mar [29] systematically reviewed 50 papers on stock forecasting from
2010 to 2018, discussing them based on the forecasting techniques
used, publication years, evaluation metrics, datasets, and tools. These
studies encompass a range from traditional Bayesian models and fuzzy
classifiers to modern machine learning methods such as artificial neural
networks (ANN) and support vector machines (SVM).

Moreover, these reviews highlighted existing research gaps and
challenges, providing suggestions for future research directions in the
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field of stock market forecasting. Some studies also focus on event-
driven stock investment strategies. For example, Nassirtoussi et al. [30]
combined data-driven and event-driven concepts, proposing that public
sentiment analysis in social media and online news has a direct impact
on financial market predictions, potentially leading to significant prof-
its or losses. Based on this concept, they reviewed the application of
online text mining in market forecasting, compared different systems,
and identified their fundamental differences. Li et al. [31] systemati-
cally reviewed 229 research articles from 2007 to 2016 from the fields
of finance, management information systems, and computer science,
discussing the interaction between online media and the stock market,
classifying state-of-the-art research, and summarizing the main tech-
niques for transforming textual information into machine-processable
formats. Xing et al. [32] conducted an in-depth investigation of the
natural language processing-based financial forecasting (NLFF) field,
systematically categorizing and analysing the technological applica-
tions in this area, clarifying the boundaries of NLFF research. This work
aims to enhance understanding of the progress and hot issues in NLFF,
promoting interdisciplinary, in-depth communication. Similarly, Shahi
et al. [33] conducted a normalized comparison of the stock market
prediction performance of LSTM and GRU under the same conditions,
objectively assessing the value of financial news sentiment analysis in
stock price prediction.

In recent years, deep learning technology has become the main-
stream method for stock market forecasting. Sezer et al. [34] conducted
a thorough discussion of the application of deep learning in financial
forecasting from 2005 to 2019, categorizing the studies by application
areas (such as indices, foreign exchange, commodities forecasting) and
deep learning models (such as CNN, DBN, LSTM). After reviewing 124
papers over the past three years, Weiwei Jiang [35] systematically
categorized data sources, neural network architectures, and evaluation
metrics, focusing on the implementability and reproducibility of the
studies. In Eckerli’s research [36], the author tested three known GAN
structures on financial time series data to assess their performance
in financial modelling. Although no specific expected outcomes were
set before the experiments, the results demonstrated the significant
effectiveness of GANs in generating financial time series. By applying
different GAN architectures to real financial data and successfully eval-
uating the statistical properties of the generated data, the practicality
and potential value of GANs in the financial sector were validated.
Kumbure et al. [37] reviewed 138 journal articles from 2000 to 2019.
They focused on dataset features, machine learning techniques, and
their derivative methods, categorizing the research methods into su-
pervised and unsupervised machine learning. Zou et al. [38] provided
a structured review of deep learning methods for stock market fore-
casting, analysed 94 papers, and subdivided the forecasting tasks into
subdomains such as stock trend, stock price forecasting, portfolio man-
agement, and trading strategies while also discussing unresolved issues
and looking forward to future research directions. Masini et al. [39]
studied the latest advancements in supervised machine learning and
time series forecasting for high-dimensional models, differentiating
methods into linear and nonlinear models and highlighting the impor-
tance of nonlinear models combined with large datasets for economic
forecasting.

Although previous reviews covered everything from traditional sta-
tistical econometric methods to older machine learning techniques,
they have gradually moved away from current research hotspots in the
field. Although some recent review studies provide a basic overview
of currently popular deep learning methods, they still need to detail
specific network structure designs and parameter details. At the same
time, with the rise of large language models and ongoing research in
neural network structures, some of the latest methods have not been
covered in these reviews. Given the shortcomings of existing review
studies, this research brings a new perspective and focus, comprehen-
sively tracking and summarizing data-driven neural network methods
for stock forecasting. As previously stated, the aim and contribution of
this research are to address the gaps in existing literature, providing a
more comprehensive and in-depth review of this field.
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3. Neural network for stock forecasting

Neural networks are powerful computational models that mimic
the human brain’s information processing capabilities, accomplish-
ing complex pattern recognition and learning through extensive net-
works of neurons. Without explicit programming, these models can
autonomously extract useful representations and features from massive
datasets. This capability has made neural networks indispensable tools
in various fields, including image processing, voice recognition, natural
language processing, and complex predictive tasks. In the financial
sector, neural networks such as stock prices, currency exchange rates,
and market trends are extensively used for forecasting the stock market.
Our survey encompasses various classical and novel neural network
architectures, including RNNs, CNNs, Transformers, GNNs, GANs, and
LLMs, exploring their applications in stock market forecasting. The
neural network stock forecasting methodology reviewed in this paper
is shown in Fig. 2.

3.1. Stock forecasting models based on Recurrent Neural Network

Recurrent Neural Networks (RNNs) [56] are specifically designed
for processing sequential data and play a crucial role in stock market
forecasting. Unlike traditional feedforward neural networks, RNNs can
effectively capture temporal dependencies within sequence data by
utilizing information from past hidden states to process current inputs.
Specifically, RNNs iteratively process stock price inputs at each time
step, updating hidden states influenced by both the current input and
previous states. Additionally, the unique features of RNNs, such as
variable-length input handling and parameter sharing, significantly en-
hance their applicability and computational efficiency in stock market
forecasting. Table 1 provides the specific details of the reviewed RNN
methods.

Rather et al. [40] combined RNNs with Exponential Smoothing
(ES) and Autoregressive Moving Average (ARMA) models to develop
a novel and robust Hybrid Prediction Model (HPM). This model ex-
cels at predicting abrupt changes and spikes (nonlinear patterns) in
data, effectively enhancing predictive performance and significantly
reducing forecast errors. An experiment on India’s National Stock Ex-
change (NSE) demonstrated that the HPM outperforms the vanilla RNN,
achieving higher prediction accuracy. Berradi Zahra and Lazaar Mo-
hamed [41] integrated Principal Component Analysis (PCA) with RNNs,
achieving satisfactory forecasting results on the Casablanca Stock Ex-
change data. This approach reduces the dimensionality of the fea-
tures input to the RNN using PCA, allowing the RNN to focus more
on the most relevant features, thus enhancing the model’s predictive
performance.

However, vanilla RNNs face a severe “vanishing gradient” problem,
where gradients diminish to nearly zero as they propagate through
longer sequences. That leads to decreased performance when learning
from longer temporal data and difficulty capturing long-term depen-
dencies. To overcome this flaw, Hochreiter et al. introduced the Long
Short-Term Memory (LSTM) [57]. LSTM is an enhanced RNN model
that incorporates cell states and three gating mechanisms — forget,
input, and output gates — to regulate the flow of information. These
gating mechanisms allow LSTMs to retain or forget information effec-
tively, making them more stable and efficient when processing long
sequence data. A standard LSTM cell state equation is as follows:

fi=0W;-[h_1,x]+by) @
iy = o(W; - hy_y.x,] + b)) @
g = tanh(W, - [h,_;, x,] + b,) 3)
o,=c(W, -[h_y,x,]+b,) 4)
¢ =[xyt g 5)
h, = o, * tanh(c,) (6)
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Fig. 2. The neural network structure and its well-known variants reviewed in this paper.
Table 1
Stock forecasting models details based on recurrent neural network.

Author Model Method Year Research object Evaluate metrics Dataset
Rather [40] Hybrid-RNN RNN 2015 Price prediction MSE, MAE BSE
Berradi [41] RNN RNN, PCA 2019 Price prediction MSE CSE
Liu [42] LSTM LSTM 2017 Price prediction MSE, MSPE -
Liu [43] LSTM LSTM 2018 Trend prediction Accuracy CSI300
Abdul [44] MLS LSTM LSTM 2023 Price prediction R2, Adjusted R2, RMSE, MAPE Samsung
Baek [45] ModAugNet LSTM 2018 Price prediction MSE, MAE, MAPE S&P500, KOSPI200
Kim [46] Hybrid-LSTM LSTM, CARCH, DFN 2018 Price prediction MSE, MAE, HMSE, HMAE KOSPI200
Kumar [47] RNN-LSTM LSTM, RNN 2021 Price prediction Error rate, Precision, Recall, F1 LON, NSE, NYSE, BOM, NASDAQ
Yang [48] LSTM-EEMD LSTM, EMD 2020 Price prediction R2, MAE, RMSE ASX, DAX, HSI, S&P500
Zhang [49] CEEMD-PCA-LSTM LSTM, CEEMD, PCA 2020 Price prediction MAE, RMSE, NMSE, DS DJI, S&P500
Lin [50] CEEMDAN-LSTM LSTM, CEEMDAN 2022 Price prediction MSE, MAE, HMSE, HMAE, MCS CSI300, S&P500, STOXX50
Yang [51] BiLSTM BiLSTM 2022 Price prediction R2, RMSE MAPE, CSI300
Vaziri [52] PSO-BiLSTM BiLSTM, PSO, MOMP 2023 Price prediction R2, MSE, RMSE, MAPE TSE, OTC
Minh [53] TGRU GRU, Stock2Vec 2018 Trend prediction Accuracy, Precision, Recall S&P500
Li [54] ST-GRU GRU, CMSCE 2020 Price prediction MAE, RMSE, SMAPE, TIC, DS, CP, CD WTI, BRE, NG, HO
Gupta [55] StockNet GRU 2022 Price prediction MAE, RMSE, MAPE NIFTY50

In this table, Price prediction seeks to precisely forecast the future trading price of a stock at a specified time. Trend prediction aims to identify and predict the general direction
of stock price movements, offering a broad perspective on market trends to aid in investment decision-making.
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Fig. 3. ModAugNet architecture.

where o represents the sigmoid function, which outputs a value be-
tween 0 and 1. W denotes the weight matrix, and b represents the
bias term. [A,_;, x,] indicates the concatenation of the previous hidden
state and the current input. f, represents the output of the forget
gate, determining which parts of the existing cell state should be
discarded. i, is the output of the input gate, identifying which new
information is important and needs to be retained. g, is the candidate
cell state derived at the current timestep, providing new information for
potential updates to the cell state. The current cell state ¢, is updated
by filtering the previous cell state c,_,, through f, and incorporating it
with g, adjusted by i,. o, represents the output of the output gate, which

determines which parts of the cell state information will influence the
calculation of the next hidden state. The new hidden state , is obtained
by multiplying the result of the output gate o, with the tanh value of
the current cell state ¢,, ensuring that the network can transmit relevant
information based on the cell state. This ingeniously designed process
allows the LSTM unit to effectively maintain and convey information
over long sequences, thus capturing long-term dependencies.

Liu et al. [42] categorized time series data into three distinct pat-
terns: strong periodicity, periodic rising/falling trends, and extremely
long cyclical data, and compared their proposed LSTM RNN model
against ARIMA and GRNN for each data type. The experimental results
demonstrated that the LSTM RNN model outperformed the other meth-
ods. Stacking multiple LSTM layers allows for learning the temporal
dependencies of data at different levels, enabling the upper layers
to capture more complex dynamics while the lower layers process
features closer to the original input. Liu et al. [43] found that within
a certain range of layers, the more layers, the higher the accuracy
of stock data prediction on the JoinQuant platform. Similarly, Abdul
Quadir Md et al. [44] also adopted a stacking strategy and introduced
an innovative stock market prediction model—Multi-Layer Sequential
Long Short Term Memory (MLS LSTM). This model utilizes the Adam
optimizer and stacks multiple LSTM layers, analysing the relationship
between past and future values using normalized time series data
divided into time steps, thereby making accurate predictions. The study
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results showed that the MLS LSTM achieved a prediction accuracy of
95.9% on the training set and 98.1% on the test set. This remarkable
performance demonstrates the advantages of using a multi-layer LSTM
structure. Although increasing the number of layers may reduce the
model’s generality, the leading results of the MLS LSTM across multiple
datasets undoubtedly prove it to be a superior architecture.

The LSTM structure has demonstrated exceptional time series mod-
elling capabilities across various architectures. Although the straight-
forward application of LSTM has already surpassed traditional machine
learning and artificial neural network methods, integrating LSTM with
other strategies or architectures often results in better prediction out-
comes. To address the overfitting problem caused by limited training
data in stock price prediction, Yujin Baek and Ha Young Kim designed
a framework named ModAugNet [45]. As shown in Fig. 3, based on
LSTM, the framework is divided into two main modules: a Prevention
LSTM module to prevent overfitting and a Prediction LSTM module for
forecasting. Each module produces an output, and the final prediction
is obtained by merging these outputs. To address the issue of insuffi-
cient raw data, the authors designed a data augmentation strategy by
selecting five companies from a specific combination of ten companies’
stock price data, generating 252 different input data combinations
(C(10, 5)). These augmented data are fed into the Prevention LSTM
module for learning to prevent the model from overfitting. This dual-
module design and data augmentation strategy effectively enhance the
model’s ability to learn potential information in time series data and
resolve the overfitting problem with limited data. Experimental results
confirm the effectiveness of this method on the augmented dataset.
Kim et al. [46] explored integrating the LSTM model with various
Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
models, aiming to leverage LSTM’s capabilities in nonlinear time series
modelling alongside GARCH’s advantages in modelling time series
volatility. Experiments on the KOSPI 200 demonstrated that their pro-
posed GEW-LSTM model, which combines three different GARCH mod-
els (GARCH(1,1), EGARCH, and EWMA), achieved optimal forecasting
results. This achievement confirms that combining neural network
models with multiple econometric models can significantly enhance
predictive performance. Although the design of the model’s structure
is a crucial factor in its effectiveness, optimizing model parameters
also needs attention. Kumar et al. [47] argue that data volatility, time
lags, and the extensive architectural parameters of neural networks are
issues preventing optimal network performance. Thus, they proposed
an RNN-LSTM combined with flower pollination and particle swarm
optimization algorithms. This systematic approach helps to automati-
cally generate optimized networks and, by adjusting hyperparameters,
achieves more accurate learning processes, reduces errors, and im-
proves accuracy. Comparative results on six stock datasets show that
the metaheuristic-optimized RNN-LSTM network significantly enhances
prediction accuracy.

The Empirical Mode Decomposition (EMD) [58] is an analysis
method used to handle nonlinear and non-stationary time series data,
which can decompose complex time series into multiple Intrinsic Mode
Functions (IMFs). Combining EMD with LSTM networks enables the
utilization of multiscale features extracted by EMD to enhance LSTM’s
modelling capability for complex financial time series. Yang et al. [48]
utilized integrated EMD to decompose complex original stock price
time series into smoother, more regular, and stable subsequences
than the original time series, followed by using the LSTM method
to train and predict each subsequence. Zhang et al. [49] proposed a
novel deep learning model CEEMD-PCA-LSTM. This model employs
Complementary Ensemble Empirical Mode Decomposition (CEEMD) for
sequence smoothing and decomposition, followed by Principal Compo-
nent Analysis (PCA) to reduce the dimensionality of IMF components
obtained from CEEMD decomposition. This step effectively eliminates
redundant information and enhances the model’s prediction response
speed. The refined high-level features are sequentially fed into the
LSTM network to predict the next trading day’s closing price for each
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component, and finally, these prediction results are combined to gener-
ate accurate overall stock price predictions. Lin Yu et al. [50] adopted a
more complex hybrid model combining Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) and LSTM to
predict the volatility of the CSI300, S&P500, and STOXX50 indices.
Unlike CEEMD, which requires manual specification of noise intensity,
CEEMDAN dynamically adjusts the noise magnitude according to the
characteristics of the data itself, thereby obtaining better decomposition
results.

Bidirectional Long Short-Term Memory (BiLSTM) [59] is an ex-
tension of LSTM that utilizes the bidirectional nature of time series
data, considering both the historical information of previous time steps
and the future information of subsequent time steps. That enables
BiLSTM to better capture the contextual semantic relationships in the
input sequence and extract richer feature representations. Building
upon these advantages, Yang Mo and Wang Jing [51] compared BiL-
STM with unidirectional LSTM, Support Vector Regression (SVR), and
Autoregressive Integrated Moving Average (ARIMA) models, showing
that the BiLSTM model can adequately capture both past and future
data information, considering the reverse relationship of the data, and
possesses the highest prediction accuracy. Vaziri et al. [52] utilized the
particle swarm optimization algorithm to optimize BiLSTM, and the
adjusted PSO-BiLSTM method outperformed traditional methods and
exhibited more vital generalization ability.

The LSTM structure contains multiple gates, which will bring about
a large number of parameters, making its training and tuning process
quite complex and time-consuming, which proves inadequate when
dealing with large-scale data. Therefore, based on LSTM, Kyunghyun
Cho et al. proposed a variant that combines accuracy and efficiency:
Gated Recurrent Unit (GRU) [60]. GRU adopts a simpler gating mech-
anism, integrating the forget gate and the input gate into one update
gate while eliminating the output gate, thereby reducing the model
complexity. The formula for GRU is as follows:

2z, = oW, - [h_, %] +b.) @)
r,=oc(W,-[h_,x,]+b,) €))
g = tanh(W, - [r, * h,_j, %, +b) ©)
hy=(1=-z)*h_ +z g (10)

Similar to LSTM, o represents the sigmoid function used to output a
value between 0 and 1, W denotes the weight matrix, and b is the bias.
The symbol [#,_;, x,] indicates the concatenation of the previous hidden
state and the current input. z, represents the output of the update gate,
determining the retention of past information and the inclusion of new
information. r, is the reset gate, determining which past information
should be forgotten. Similarly, g, denotes the candidate cell state,
while A, is the final hidden state at time step ¢, regulated by z, and
combined with the previous hidden state 4,_; and the new candidate
state g,. Compared to LSTM, the GRU structure is more straightforward
with fewer parameters, thus resulting in lower computational costs.
However, the emergence of GRU has not entirely replaced LSTM; both
models have their advantages and disadvantages in different tasks, thus
requiring the selection of an appropriate model based on the actual
application scenario [61].

Inspired by [59], Minh et al. [53] proposed a dual-stream Gated Re-
current Unit network (TGRU) along with an emotion Stock2Vec embed-
ding model trained on stock news and sentiment lexicons. Stock2Vec
is first used to generate word embeddings, which are inputted into
TGRU for training. The experimental results of this research show that
the method proposed in this paper exceeds the previous limitation of
relying solely on shallow feature analysis, effectively capturing the
deep structural relationships within financial news vocabulary, thereby
providing a more refined tool for financial news analysis. Li Jingmiao
et al. [54] embed the stochastic event intensity function into GRU,
proposing a new ST-GRU model. The stochastic event intensity func-
tion weights historical data based on occurrence time, where newer
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Table 2
Stock forecasting models details based on convolutional neural network.

Author Model Method Year Research object Evaluate metrics Dataset

Selvin [62] CNN CNN 2017 Price prediction Error percentage NSE

Hoseinzade [63] CNNpred CNN 2019 Price prediction Macro-Averaged-F-Measure S&P500, NASDAQ, DJI,
NYSE, RUSSELL

Durairaj [64] CNN CNN, Chaos, PR 2022 Price prediction MSE, MAPE, Dstat, Theil’s U. S&P500, Nifty50, SSE

Borjesson [65] CNN CNN, Residual 2020 Trend prediction MAPE S&P500

Zhao [66] LightGBM-Denoised-ResNet CNN, ResNet, LightGBM 2020 Price prediction MSE, MAE, RMSE USDJPY

Liu [67] ResNet 50 ResNet, Bagging method 2018 Price prediction AUC -

Zhang [68] Hybrid CNN-LSTM-ResNet CNN, ResNet, LSTM 2023 Trend prediction Accuracy, Precision, Recall, F1 DJI

Liu [69] M-GTCN TCN, GLU 2019 Price prediction MSE, MAE, RMSE, MAPE Microsoft Stock

Deng [70] KDTCN TCN, KGs 2019 Trend prediction Accuracy, F1 DJIA

Yao [71] MEMD-TCN TCN, MEMD 2023 Price prediction RMSE, MAPE, DA, MASE SSEC, DJI, FTSE100, FCHI,
NIKKEI225, IRTS, STI

Kanwal [72] BiCuDNNLSTM-1dCNN CNN, BiLSTM, Cuda 2022 Price prediction MAE, RMSE DAX, HSI

Wu [73] SACLSTM CNN, LSTM 2023 Trend prediction Accuracy Ten stocks

Livieris [74] CNN-LSTM CNN, LSTM 2020 Price prediction MAE, RMSE, Accuracy, AUC, USD Daily gold prices

SEN, SPE
Livieris [75] CNN-LSTM CNN, LSTM 2021 Price prediction MAE, RMSE, R2, Accuracy, BTC, ETH, XRP
GM, SEN, SPE

historical data holds more value for present and future information.
Regression analysis on four energy futures indices, WTL, BRE, NG,
and HO, shows a strong correlation between predicted and actual
data. Inspired by data augmentation techniques in ModAugNet [45],
Gupta [55] developed the StockNet model to address overfitting issues.
This model combines two GRU units and a novel data augmentation
technique, including an injection module for preventing overfitting
and an enquiry module for stock index prediction. Experiments on the
Indian stock market (CNX-Nifty) demonstrate that this unique network
architecture significantly enhances model performance, resulting in a
65.59% reduction in test losses for RMSE, 27.30% for MAE, and 14.89%
for MAPE metrics.

Recurrent Neural Networks (RNNs) are renowned for their ability
to process sequential data and capture temporal dynamics. However,
RNNs face challenges in effectively learning long-term dependencies
in stock market data. These networks are prone to issues such as
gradient vanishing or exploding, especially when dealing with long
sequences of stock market data involving complex volatility and irreg-
ular trends. Additionally, stock market data’s non-linearity and high
noise characteristics require models to capture and predict its time-
varying behaviour, which RNNs try to address but are often limited
by their architecture. Therefore, for stock prediction tasks, it is crucial
to optimize the architecture of RNNs further or explore new methods
to enhance their learning and predictive ability for these complex data
patterns.

3.2. Stock forecasting models based on Convolutional Neural Network

Convolutional Neural Networks (CNNs) [76] are a type of deep
learning model primarily used in image processing [77,78]. CNNs
employ various filters within their convolutional layers to extract local
features, with each filter focusing on capturing specific information.
Non-linear activation functions and pooling layers help to enhance the
model’s generalization capabilities and reduce computational complex-
ity. This approach allows CNNs to extend beyond visual domains to
handle complex structured time series data. In applying time series
forecasting, these characteristics enable CNNs to identify complex cycli-
cal patterns and trends effectively. For instance, in stock market data
analysis, varying sizes of convolutional kernels can engage in multi-
scale learning, capturing features across multiple time scales. Table 2
provides the specific details of the reviewed CNN methods.

Selvin et al. [62] compared linear algorithms (such as AR, MA,
ARUMA) with non-linear algorithms (including ARCH, GARCH, as well
as neural network models like CNN, RNN, and LSTM) on a dataset
from the National Stock Exchange of India (NSE). The study found that,
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Fig. 4. Wavelet Denoised-ResNet method architecture.

although RNNs and LSTMs are designed to capture the dynamic char-
acteristics of time series, CNNs exhibited superior predictive accuracy.
That may be due to the lack of apparent regularity in stock market
price fluctuations and CNNs’ stronger capabilities in extracting features
of the current period. Based on the potential of CNNs, Hoseinzade
et al. [63] introduced the CNNpred framework, designed to handle
datasets from various markets. The CNNpred framework includes two
variants: 2D-CNNpred and 3D-CNNpred. The 2D-CNNpred aims to build
a universal model that maps historical data from any market to future
price fluctuations, which can integrate market historical data and other
relevant variables into a two-dimensional tensor for a custom CNN
model to learn and predict from. The 3D-CNNpred, on the other hand,
assumed that each market requires its specific model while allowing the
model to utilize across markets data and merging multi-market data in a
three-dimensional tensor form to train specific convolutional networks
for each market. Experiments on multiple datasets, including S&P 500,
NASDAQ, DJI, NYSE, and RUSSELL, have validated the effectiveness of
the CNNpred framework. Dr. M. Durairaj and B. H. Krishna Mohan [64]
approached financial time series’ chaotic nature using chaos theory to
model time series data, then input the modelling results into a CNN
for initial predictions. To further enhance prediction accuracy, they
employed polynomial regression to fit the prediction errors from the
CNN, thus generating error prediction values. Combined with the initial
forecast results, this error prediction forms a refined hybrid prediction
model.
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In the field of deep learning, as the network depth increases, tra-
ditional Convolutional Neural Networks (CNNs) often encounter the
problem of gradient vanishing or exploding, which makes the networks
difficult to train. To address this issue, the deep residual network
(ResNet) emerged as a solution. ResNet introduces a unique resid-
ual learning framework that incorporates direct connections between
layers, known as “skip connections”, allowing signals to propagate
directly from one layer to several others. This design not only pre-
vents performance degradation in deep networks but also allows for
a significant increase in network depth, achieving higher accuracy and
better performance in various deep learning tasks. In ResNet, the input
at layer / is denoted by x;, which is processed by the residual function
F(x;, W) involving weights W}; this function can consist of multiple
convolutional layers, resulting in the output x,, ;. The specific formula
is as follows:

X141 =x;+ F(x;, W) an

Inspired by the WaveNet architecture, Lukas Borjesson and others in
their research [65] integrated residual connections into their proposed
neural network structure, ensuring that input information is preserved
across multiple levels of the network and enhancing network sparsity.
Experimental results show that, with the number of timesteps and
filters held constant, the addition of residual connections is directly
correlated with improved model performance. Another study by Zhao
et al. [66] combined the LightGBM model with a wavelet denoised
ResNet to predict foreign exchange rate changes over the following
five intervals. As shown in Fig. 4, this model processes data every 30
timesteps through a sliding window mechanism, uses wavelet trans-
forms to generate a 1 x 30 x 30 image matrix, and inputs it into a
50-layer ResNet with 16 residual blocks to extract high-level features.
The results demonstrate that, compared to traditional CNNs, ResNet
shows superior predictive performance, and the integration of wavelet
denoising with LightGBM significantly enhances accuracy. Other stud-
ies, such as those by Liu [67] and Khodaee [68], have also incorporated
residual structures in their network models, enhancing the transfer
of data features and effectively mitigating performance degradation
during network training.

Although vanilla CNNs can be used for time series prediction, they
are limited by fixed convolutional kernel sizes and a limited receptive
field, making it difficult to capture long-term dependencies in one-
dimensional sequence data. To address this, Bai et al. [79] proposed
the Temporal Convolutional Network (TCN) in 2018, which greatly
expands the model’s receptive field through extended convolutional
kernels and dilated convolution techniques without the need for ad-
ditional parameters. The dilated convolution formula is as follows:

k=1
F(s) = (x %4 [)(s) = 2 F@) - X_g; 12)
i=0
where F(s) represents the output at time step s, x is the input signal,
and f is the convolutional kernel. x, denotes dilated convolution
operation, and k is the size of the kernel. (x %, f)(s) is the weighted sum
of the input x and the convolutional kernel f at time step s. Specifically,
each element f(i) of the kernel is multiplied by the corresponding
element of the input sequence at the dilated position x,_,.;, where the
dilation factor d determines the spacing between these positions. This
structural design of the Temporal Convolutional Network (TCN) en-
ables it to capture long-range dependencies in sequence data efficiently,
exhibiting superior capabilities compared to vanilla CNNs. Liu and
colleagues proposed a Multi-channel Gated Temporal Convolutional
Network (M-GTCN) [69], which utilizes multi-layer residual structures
and TCN to construct channels, applies random Dropout to enhance
generalization, and uses information fusion to enhance data represen-
tation, culminating in predictions through a fully connected layer. Ex-
periments demonstrate that TCNs significantly outperform models like
LSTM and GRU in univariate time series prediction tasks, and M-GTCN
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also achieves favourable results in multivariate time series prediction
without additional time costs due to its multi-channel parallel structure.
Deng and others [70] introduced the Knowledge-Driven Temporal Con-
volutional Network (KDTCN), a model that integrates structured events
extracted from financial news and external knowledge from knowl-
edge graphs with features extracted by TCN to predict and interpret
stock trends. This model cleverly merges event embeddings with time
series features, outperforming models that rely solely on numerical
or textual data in experiments. Furthermore, Yao and colleagues [71]
developed the MEMD-TCN model, which combines Multivariate Em-
pirical Mode Decomposition (MEMD) with TCN. The MEMD algorithm
decomposes multivariate time series into sub-sequences of different
frequencies, which are then predicted by TCN. Experimental results
show that MEMD-TCN excels in stock index prediction, surpassing other
decomposition algorithms and Al models.

In addition, many scholars have attempted to combine Convolu-
tional Neural Networks (CNN) with Recurrent Neural Networks (RNN),
Long Short-Term Memory networks (LSTM), or Gated Recurrent Units
(GRU) to develop hybrid models that leverage the advantages of two
or even multiple types of networks. Kanwal et al. [72] proposed a
hybrid predictive model that integrates Bi-directional CUDA Deep Neu-
ral Network LSTM (BiCuDNNLSTM) with 1D-CNN. The BiCuDNNLSTM
utilizes its capability of bidirectional traversal of time series to extract
more features from the same input dataset, thereby improving the
accuracy of predictions. These features are then fed into a 1D-CNN for
further mining and learning of rapid change features in stock data. Wu
et al. [73] combined the advantages of CNN and LSTM to propose a
Stock Sequential Array Convolution LSTM (SACLSTM) network. They
transformed stock market parameters such as settlement prices, closing
prices, and trading volumes, along with 30-time steps as coordinates,
into a two-dimensional matrix suitable for 2D CNN processing that al-
lows the CNN to learn spatial information in time series data like image
analysis. Features extracted by the CNN layer are then fed into an LSTM
layer to capture dynamic dependencies over time. Experimental results
demonstrate the effectiveness of this method in stock market prediction
tasks, showing superior performance compared to individual CNN or
LSTM models, as well as traditional statistical methods. Similarly,
Livieris et al. [74,75] have also applied the CNN-LSTM combination
model to predict gold prices and cryptocurrencies.

Convolutional Neural Networks (CNNs) are good at capturing local
data features, making them highly effective for tasks involving spatially
localized information, such as image processing and some types of
temporal data. However, due to their fixed local receptive fields and
structural constraints, one-dimensional CNNs (1D-CNNs) have limita-
tions in capturing global dependencies within time series data, which
can affect their performance in complex time series prediction tasks. In
tasks like stock market prediction, stock price data often exhibit high
global correlation and dynamic changes, requiring models to under-
stand and predict overall market trends and long-term dependencies.
For applications in stock prediction, developing or improving 1D-CNNs
to better capture and process these global characteristics becomes
particularly important.

3.3. Stock forecasting models based on transformer

The attention mechanism [89] is designed to enhance the efficiency
of neural networks in handling long-range sequence dependencies. This
mechanism overcomes the constraint of RNNs, which must process data
sequentially, and allows the model to compute dependencies between
different positions in a sequence in parallel, thus effectively capturing
long-term information. Self-attention architecture [90], an extension
of the attention mechanism, models the relationships between differ-
ent position feature vectors in an input sequence by computing their
similarities, allowing for the capture of long-range dependencies. The
mathematical computation of self-attention is generally represented as
follows: given an input sequence X = x,,x,, ..., X,,, where each x; is a
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Table 3
Stock forecasting models details based on transformer.
Author Model Method Year Research object Evaluate metrics Dataset
Yang [80] HTML Transformer, pre-trained WWM-BERT 2020 Price prediction MSE S&P500
Ramos [81] Multi-Transformer Transformer, Bagging 2021 Trend prediction MAE, RMSE S&P500
Wang [82] Transformer Transformer 2022 Price prediction MAE, MSE, MAOE CSI300, S&P500, HSI,
NIKKEI225
Ma [83] Stockformer Transformer, GAT, CNN 2023 Trend prediction MAE, RMSE, MAPE S&P500
Mercier [84] Hierarchical Refromer Reformer, HiBERT 2022 Trend prediction ROC-AUC, MCC, F1 TSX S&P60
Lu [85] Informer Informer 2023 Price prediction MAE, RMSE, MAPE HSI, NASDAQ,
Tencent, AAPL
Ren [86] Hybrid model Informer, Encoder Forest 2023 Price prediction MAE, MSE, RMSE, MAPE, China A-shares market
MSLE, MAD, R2
Liu [87] PSO-Informer Informer, PSO 2023 Price prediction Accuracy, Precision, Recall, F1 SSE50, CSI300
Liu [88] DMEformer Informer, Reformer, Autoformer 2023 Price prediction MAE, RMSE, MAPE, Accuracy WTI crudeoil futures

| =
,. y —— 4.8
< < < AR g
= = = =
=3 = =3 o
; : T a
= = = : &
~2 H 2 = N N = .
a B a o a S &
73 « o @
g W 8 2 o
- / 7 7 3 \ &
/ : S 5 B 5
" @ @ @ =
: : 5 = 2]
; i = = 3
/ o o o
m ) = S 5
D | B s | B 1 B
; : 1+ B R = 2
N H ]

San

Fig. 5. HTML architecture.

feature vector at that position, the input is first transformed into queries
(0), keys (K), and values (V') using three sets of weight matrices. Then,
by calculating the similarity between Q and all K (typically using dot
product) and applying the softmax function, the weight distribution is
obtained.

o=xw? K=xwk, v=xw" 13)
T

Attention(Q, K, V) = softmax ( %/K_ ) 14 a4
dk

The matrices WQ, WK, and WV are learned parameters, and d,
is the dimensionality of the K vectors. The dot product is scaled by
\/;T to avoid an excessively large dot product that would cause the

k
softmax function to saturate in regions with smaller gradients. The
softmax function ensures that the weights for all positions sum to 1.
Thus, the output for each position is the weighted sum of all values,
where the weights reflect the similarity between the corresponding K
and Q.

The Transformer model [91] introduces multi-head attention [92]
based on self-attention. Its unique encoder-decoder architecture, with
multi-head self-attention and feed-forward network components, en-
ables the model to establish global dependency modelling without
recursion while enhancing parallel processing capabilities and learning
relationships between inputs across different representation subspaces.
In time series forecasting, this capability allows the Transformer to cap-
ture various temporal patterns in parallel, from short-term fluctuations
to long-term trends. In recent years, the Transformer and its variants
have demonstrated superiority in analysing financial time series data,
not only improving prediction accuracy but also significantly advanc-
ing processing speed and model interpretability. Table 3 provides the
specific details of the reviewed Transformer methods.

Yang et al. [80] designed a Hierarchical Transformer-based Multi-
task Learning method (HTML) to predict the S&P 500 stock market’s

future short- and long-term price fluctuations using textual and audio
data from quarterly earnings calls. This method processes textual and
audio data separately and converts them into corresponding token rep-
resentations through Transformer encoding. Next, token-level feature
fusion of these two modalities is conducted, followed by sentence-level
Transformer encoding to capture cross-modal semantic and contex-
tual information. The basic architecture of HTML is shown in Fig. 5.
Ramos-Pérez et al. [81] introduced a Multi-Transformer network archi-
tecture that differs from traditional Transformer models by randomly
selecting different subsets of training data and using bagging meth-
ods in conjunction with multiple multi-head attention mechanisms to
generate the final output. This design improves the network’s accu-
racy and effectively reduces the risk of overfitting. Unlike in natural
language processing, Wang et al. [82] directly modelled daily clos-
ing price data using the Transformer rather than unstructured tex-
tual data, allowing the model to predict the exact stock index values
rather than the market trend direction. Experiments in major global
stock markets such as CSI 300, S&P 500, Hang Seng, and Nikkei 225
showed that the Transformer model significantly outperformed other
traditional deep learning models and the “buy and hold” strategy
in prediction accuracy and investment return analysis. Additionally,
Ma et al. [83] introduced Stockformer, a cutting-edge deep learning
framework optimized for swing trading, which enhances stock selec-
tion capability using the TopKDropout method while integrating STL
decomposition and self-attention networks. Experimental results on the
S&P 500 dataset revealed that Stockformer outperformed other industry
models, exhibiting excellent performance in key prediction accuracy
metrics (MAE, RMSE, MAPE) and achieving a 62.39% accuracy in
market trend prediction.

To address the high memory and computational demands of Trans-
former models when processing large-scale datasets, researchers have
developed variants like Reformer [93] and Informer [94]. Reformer re-
duces memory requirements significantly and optimizes long-sequence
processing efficiency by incorporating reversible layers and locally sen-
sitive hashing techniques. Informer, designed explicitly for time series
forecasting, adopts the probability sparse transformation to reduce
computational complexity, improving efficiency and performance in
long-sequence data processing. These variants extend the applicability
of Transformers and excel in large data environments. Inspired by HiB-
ERT [95], Mercier et al. [84] developed a hierarchical Reformer model
to analyse financial market documents or news to achieve high-quality
long-sequence representations, successfully using them for predicting
trading volume changes. Lu et al. [85] compared the performance of the
Informer model with commonly used networks like LSTM, Transformer,
and BERT in handling stock market data. They designed three compara-
tive experiments across four market indices over 1-minute and 5-minute
intervals. The results showed that Informer consistently achieved the
best performance across all datasets. Transfer learning experiments also
demonstrated that Informer has strong robustness and adaptability,
effectively improving market forecasting performance. Ren et al. [86]
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Table 4
Stock forecasting models details based on graph neural network.
Author Model Method Year Research object Evaluate metrics Dataset
Yang [97] GGNN GNN, GRU 2019 Event prediction Accuracy, Precision, Recall, F1 Chinese listed companies News
Matsunaga [98] GNN GNN 2019 Trend prediction RR, SR NIKKEI225, Knowledge graph
Sawhney [99] STHAN-SR GNN, LSTM, 2021 Rank prediction IRR, SR, NDCG NYSE, NASDAQ, TSE
Hypergraph
Cheng [100] MAGNN GNN, Transformer, 2022 Price prediction Micro-F1, Macro-F1 China A-shares market, Knowledge graph
pre-trained BERT Weighted-F1
Zhao [101] DANSMP GNN, NTN, GRU 2022 Trend prediction Accuracy, Precision, Recall, F1 CSI100, CSI300, Knowledge graph
Chen [102] GCN GCN, LSTM 2018 Trend prediction Accuracy CSI300
Feng [103] GCN GCN, LSTM, RSR 2019 Rank prediction MSE, MRR, IRR, RR NASDAQ, NYSE
Gao [104] TRAN GCN, LSTM 2021 Rank prediction MSE, MRR, IRR NASDAQ, NYSE
Chen [105] GC-CNN GCN, CNN 2021 Trend prediction Accuracy, Precision, Recall, China A-shares market
F1, TMoney, AAR, SR
Li [106] Chart GCN GCN, CNN 2022 Trend prediction Accuracy, Precision, F1 SZ50, CSI300
Ma [107] AFHGN GCN, GRU, Fuzzy 2022 Rank prediction NDCG, SR, IRR China A-shares market
clustering, Hypergraph
Song [108] MGAR GCN, LSTM 2023 Rank prediction MSE, MRR, IRR, SR, MDD NASDAQ, NYSE
Peng [109] RTGCN GCN, External Attention 2023 Trend prediction Accuracy, Precision, F1, MCC CSI100, CSI300, Knowledge graph
Sawhney [110] MAN-SF GAT 2020 Trend prediction Accuracy, F1, MCC -
Hsu [111] FinGAT GAT, GRU 2021 Trend prediction MRR, Precision, Accuracy Taiwan Stock, S&P500, NASDAQ
Feng [112] RA-AGAT GAT, Attn-LSTM 2022 Trend prediction Accuracy, MSE, MRR CSI300
Ma [113] GAT GAT, LSTM 2023 Rank prediction ACC, MCC, AR, SR China A-shares market
Lei [114] DR-GAT GAT, GRU 2024 Rank prediction MSE, MRR, IRR NASDAQ, NYSE

In this table, Event prediction assesses particular occurrences that could influence stock prices and forecasts their potential market impact. Rank prediction estimates and orders
stocks based on their expected future performance, typically aiming to identify potential high-performing assets for investment purposes.

proposed a model integrating Encoder Forest (EF) with Informer. To
mitigate the impact of long-sequence noise on stock predictions, they
decomposed the original data into high-frequency signal components
(CD) and low-frequency signal components (CA). Liu et al. [87] opti-
mized the parameters of the Informer network using a particle swarm
optimization algorithm and developed a long-term stock price sequence
forecasting method called PSO-Informer. Liu et al. [88] introduced the
Dynamic Model Ensemble Transformer (DMEformer), which integrates
three different Transformer variants — Autoformer, Reformer, and
Informer — using a dynamic ensemble strategy to predict US oil futures
data. Investigating the effectiveness of Transformers for time series
forecasting, Zeng et al. [96] raised a crucial question: “Are transformers
effective for time series forecasting?” They pointed out that most Trans-
former models fail to capture temporal relationships in long sequences
effectively, and when the look-back window is expanded, prediction
errors do not decrease but rather increase. To verify this viewpoint,
Zeng et al. designed a simple linear model, LTSF-Linear, and com-
pared it with several complex Transformer-based models. The results
indicated that LTSF-Linear outperformed existing complex Transformer
models across nine widely used benchmark datasets in all test scenarios.
Therefore, whether and how to use Transformers more effectively
remains a significant proposition for future researchers to explore.

Transformers utilize self-attention mechanisms to solve long-term
dependency issues, thereby increasing efficiency and accuracy in pro-
cessing sequential data, particularly achieving significant break-
throughs in natural language processing and related fields. However,
for highly long sequences, Transformers may encounter challenges with
high computational and memory demands, limiting their practicality
in large-scale applications. In stock market prediction, the length
and complexity of time series data that need to be processed often
exceed conventional ranges, which may put significant pressure on the
resources and processing speed of Transformer models. Therefore, de-
veloping or optimizing Transformer architectures to efficiently handle
long sequences and reduce resource consumption is critical to adapting
to the needs of stock prediction.

3.4. Stock forecasting models based on Graph Neural Network
Graph Neural Networks (GNNs) [115] are designed explicitly for

processing graph-structured data, allowing for aggregating and updat-
ing information across nodes to capture complex relationships and
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dependencies. GNNs update node states by integrating their features
with those of their neighbours, effectively learning representations
within the graph. In stock forecasting, GNNs demonstrate unique ad-
vantages. The stock market can be viewed as a complex graph where
nodes represent different stocks and edges signify their relationships.
By learning the features of these nodes and edges, GNNs can effec-
tively capture the dynamic associations and influences between stocks,
thereby forecasting future stock price movements. This approach is
particularly suitable for multi-asset prediction tasks, offering deeper
insights into market dynamics and higher predictive accuracy than
traditional time series-based models, providing a more comprehensive
understanding of the market. Table 4 provides the specific details of
the reviewed GNN methods.

Yang et al. [97] proposed a method based on Gated Graph Neural
Networks (GGNN) to capture complex relationships between event
graphs. The model uses historical event chains as input and is trained
through a cloze task to predict upcoming events. Additionally, they
incorporated financial news as a supplementary information source to
address multiple interpretations of the same financial event. Matsunaga
et al. [98] explored how to integrate knowledge graphs with graph
neural networks to enhance the accuracy and generalization of stock
market predictions. They used graph neural networks to simulate the
way investors analyse market connections and directly incorporated
enterprise-related knowledge graphs into the stock market prediction
model. A long-term rolling window analysis of about 20 years in the
Nikkei 225 market showed that their model’s return and Sharpe ratio
were 29.5% and 2.2 times higher than the market benchmark, respec-
tively, an increase of 6.32% and 1.3 times compared to traditional
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LSTM models. Sawhney et al. [99] redefined the stock prediction prob-
lem as a ranking learning problem and proposed STHAN-SR. This model
utilizes a hypergraph and a temporal Hawkes attention mechanism
to model stock dependencies and prices over time, achieving good
performance across multiple datasets. Given that stock price trends
reflect complex market conditions at different diffusion speeds, includ-
ing historical price sequences, media news, and related events, Cheng
et al. [100] proposed a multimodal graph neural network (MAGNN)
to learn from these multimodal inputs. This network is built on a
financial knowledge graph, with nodes composed of source data and
edges representing relationships. To enhance the model’s interpretabil-
ity, the researchers used a two-stage attention mechanism for joint
optimization, allowing end-users to learn inter-modal and intra-modal
information. Specifically, the authors first extracted relationships of
linked entities from original news and then stored this information in a
financial knowledge graph (FinKG) containing 5.26 million entities and
6.93 million relationships. Zhao et al. [101] first attempted to use a het-
erogeneous graph neural network (GNN) to explore the spillover effects
of a dual-type hybrid relationship knowledge graph in the stock market.
They proposed an innovative dual-attention network, DANSMP, to
learn the features of stock momentum spillover in the dual-type hybrid
relationship knowledge graph (MKG) for stock prediction.

Graph Convolutional Networks (GCN) [116] is a variant of Graph
Neural Networks (GNN) that extend the concept of Convolutional
Neural Networks (CNN) to graph-structured data, effectively achieving
feature learning on graph nodes. GCN operates by applying convolution
operations to each node in the graph, using the features of adjacent
nodes to update the current node’s feature representation. This method
allows each node to capture information about its neighbourhood
structure, thus creating a global graph representation. Chen et al. [102]
developed a joint prediction model based on GCN, combining informa-
tion about target companies and their associated companies to predict
stock prices. By constructing a graph neural network that includes
all relevant companies and applying node embedding techniques, the
model learns the distributed representation of each company, thereby
more comprehensively capturing market dynamics. Feng et al. [103]
proposed a new deep learning solution named Relational Stock Rank-
ing (RSR), which includes a network structure called temporal graph
convolution to address stock ranking issues in a time-sensitive manner.
Testing on NYSE and NASDAQ data showed a 115% improvement
in return rates compared to baselines. Gao et al. [104] introduced
a graph-based stock recommendation method called Time-aware Re-
lational Attention Network (TRAN), which recommends stocks based
on return ratio ranking. The time-aware relational attention mecha-
nism aims to capture the evolving correlation strengths between stocks
over time through interactions between historical sequences and stock
description documents. Chen Wei et al. [105] proposed using an im-
proved Graph Convolutional Network (IGCN) and a Dual Convolutional
Neural Network (Dual-CNN) to create a Graph Convolutional Feature
Convolutional Neural Network (GC-CNN) that integrates stock market
information and individual stock features. By selecting a few stocks
that represent the entire market, they built a stock network to capture
the market’s topological structure and designed feature matrices to
represent the characteristics of each stock in the market. The archi-
tecture of IGCN is shown in Fig. 6. The IGCN framework is divided
into two main components: integrating stock market information and
capturing stock market features. Its primary objective is to extract
stock market features by leveraging positive and negative relational
images and their corresponding feature images. Stock market and
individual stock information are processed through IGCN and Dual-
CNN, respectively. Experimental results show that this GC-CNN-based
method can achieve higher profits than other methods. Li et al. [106]
proposed a strategy to transform technical charts into graphs to address
the limitations of traditional technical analysis, which only considers
specific chart similarities, and used a Graph Convolutional Network
(GCN) to compare the similarity of these graphs. Ma et al. [107]
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proposed the Attribute-Driven Fuzzy Hypergraph Network (AFHGN) to
address issues of improper aggregation operations and unreasonable
hyperedge constructions in hypergraph stock analysis. The network
utilizes fuzzy clustering to construct node community matrices, in-
troduces attribute-driven gate units, and establishes trend weights to
simulate the influence of stocks in real markets. Extensive experiments
have shown that this method outperforms the state-of-the-art (SOTA)
methods at that time. Song et al. [108] proposed the Multi-Relational
Graph Attention Ranking (MGAR) network, which employs adaptive
learning mechanisms to aggregate multiple graphs, forming effective
relation embeddings. Based on captured price trend embeddings, the
MGAR model provides a ranked list of future returns and selects the
top-performing K stocks for trading to maximize investment returns.
Considering that GCN-based stock prediction methods typically only
extract signal representations of individual stocks at the feature extrac-
tion stage and ignore real-time interactions between companies, Peng
et al. [109] proposed a Relationship Type-Guided Graph Convolutional
Network (RTGCN) with an External Attention (EA) module for stock
price movement prediction (SPMP). This external attention mechanism
shares the memory of price and sentiment signals among companies,
thereby enhancing the model’s predictive power.

In addition to GCNs, Graph Attention Networks (GATs) [117] rep-
resent another significant variant of GNNs. GATs incorporate attention
mechanisms to dynamically determine the importance of neighbouring
nodes during the node updating process, which allows GATs to finely
consider the contributions of surrounding nodes when constructing
new feature representations for nodes, thereby capturing the structural
information of graphs more effectively. In stock forecasting, GATSs
can analyse complex relationships between various economic enti-
ties, such as competition and cooperation between companies, supply
chain connections, or the impact of macroeconomic factors. Sawh-
ney et al. [110] developed a multipronged attention network called
MAN-SF, which uses a layered temporal model to effectively integrate
complex temporal signals from financial data, social media, and inter-
stock relationships. The FinGAT model developed by Hsu et al. [111]
includes three main components: feature learning at the stock level,
industry level, and multitask learning. A distinctive feature of FinGAT
is that it does not rely on predefined stock relationships but uses Graph
Attention Networks to explore potential interactions between stocks
and industries automatically. Feng et al. [112] proposed a relation-
aware dynamic attribute graph attention network (RA-AGAT), which
combines temporal features encoded by a time series module and global
information provided by a stacked graph attention network (GAT).
Extending the attention mechanism from node features to topological
information, this model incorporates the stock correlations into the
message-passing process. To address the lag and overfitting issues of
static stock graphs, Ma et al. [113] introduced a dynamic graph con-
struction module on top of GNN, utilizing MoDis and DGLSTM to build
dynamic graphs. Additionally, they proposed a novel stock distance
algorithm based on topic detection. Experiments on data from 4503
stocks in the Chinese A-share market demonstrated that their method
of constructing dynamic graphs can promptly respond to changes in
stock relationships, significantly enhancing stock trend prediction per-
formance. In order to learn latent relationships between stocks, Lei
et al. [114] proposed a Dynamic Routing Graph Attention Network
(DR-GAT) for stock recommendation. Their proposed Relation Graph
Router (RGR) routes each stock to an optimal relation graph based on
its volatility characteristics.

Overall, Graph Neural Networks (GNNs) perform excellently in
handling and analysing complex node relationships in the stock market,
effectively capturing information flow and interactions within stock
market networks. However, GNNs are highly sensitive to the topol-
ogy of graphs, necessitating high-quality and complete graph data to
ensure prediction accuracy and stability. In stock market prediction,
the quality of the graph directly impacts model performance, as the
dynamic changes and complexity of the stock market network require
GNNs to adapt to these changes and accurately reflect the actual rela-
tionships between nodes. Therefore, for GNN stock prediction, ensuring
high-quality graph data input is crucial.
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Table 5
Stock forecasting models details based on generative adversarial network.
Author Model Method Year Research Object Evaluate Metrics Dataset
Zhou [118] GAN-FD GAN, CNN, LSTM 2018 Price prediction DPA, RMSRE CSI300
Mariani [119] PAGAN GAN, CNN 2019 Trend prediction RR, SR Yahoo Finance
Zhang [120] GAN GAN, LSTM, MLP 2019 Price prediction MAE, RMSE, MAPE, AR S&P500, CSI, NASDAQ
Wu [121] GAN GAN, LSTM, PLR 2023 Trend prediction Investment (CR), SR, and TAIEX
winning percentage (WPTC)
Jadhav [122] GAN GAN, LSTM, MLP, (Naive 2021 Price prediction MAE, RMSE, MAPE, S&P500, CSI300, DJI, BSE,
Bayesian Model) NBM Accuracy NASDAQ, Twitter Data
Muthukumar [123] ST-GAN GAN, NBM 2021 Price prediction RMSE, NRMSE Yahoo Fiance
Koshiyama [124] cGAN cGAN 2021 Trend prediction RMSE, SR, CR S&P500, FTSE100, DIJA
F Experiments on Yahoo Finance data showed that the proposed method
. ERER ... GniE achieved significant improvements over the baseline.
L e . .
Conditional Generative Adversarial Networks (cGANs) [127] are
D IsD . . os s
\ e B correct? an extension of GANs that incorporate additional conditions or la-
\ I bels when generating data, enhancing the precision and relevance of
Xo | X X " X | X Xe | KXo

Generator

+ Fine Tune

Fig. 7. GAN architecture.

3.5. Stock forecasting models based on Generative Adversarial Network

Generative Adversarial Networks (GANs) [125] were proposed by
Ian J. Goodfellow in 2014 as an innovative deep learning framework
composed of a generator and a discriminator. Through an adversarial
training mechanism, the generator produces realistic data samples,
while the discriminator strives to distinguish between generated sam-
ples and real samples [126]. In the field of stock forecasting, GANs are
used to augment datasets, allowing predictive models to more compre-
hensively learn and simulate market dynamics, particularly excelling in
simulating rare or extreme market events. Table 5 provides the specific
details of the reviewed GAN methods.

Zhou et al. [118] was the first to apply Generative Adversarial
Networks (GANs) to stock market forecasting, developing a univer-
sal adversarial training framework based on LSTM and CNN, named
GAN-FD. They used public indices provided by trading software as
input and employed a rolling partition method to analyse the im-
pact of model periodic updates on forecasting performance. Mariani
et al. [119] introduced PAGAN, a GAN-based portfolio analysis method
that models market uncertainties driving future trends directly, em-
bedding nonlinear interactions between different assets to provide
new insights for investment management. As shown in Fig. 7, Zhang
et al. [120] used LSTM as the generator and MLP as the discriminator
to predict daily stock closing prices. Wu et al. [121] proposed a GAN
method that integrates Piecewise Linear Representation (PLR) to learn
three types of trading behaviours in the stock market: buying, selling,
and holding. The PLR technique constructs sequences that include
specific trading actions, thus guiding the discriminator with actual
trading strategies. Experimental results showed that this framework
outperformed LSTM, effectively improving the accuracy of trading
predictions. Jadhav et al. [122] analysed various financial forecasting
algorithms and observed their performance on their respective datasets
based on various evaluation metrics. Inspired by [120], they proposed
an innovative financial analysis system that combines a Naive Bayes
classifier for sentiment analysis of financial news with a Long Short-
Term Memory network (LSTM) as the generator and a Multi-Layer
Perceptron (MLP) as the discriminator to predict stock prices. Muthuku-
mar et al. [123] introduced ST-GAN, using GAN to adversarially learn
the temporal correlation between financial news and financial data,
also employing Naive Bayes for sentiment analysis of financial texts.
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the outputs. In cGANSs, both the generator and discriminator receive
conditional information, with the generator aiming to produce data
that meets specific conditions while the discriminator evaluates the
authenticity and accuracy of the conditioned data. This makes cGANs
particularly suitable for applications requiring fine control over gener-
ated content, significantly enhancing the utility of GANs. Koshiyama
et al. [124] utilized cGAN to calibrate and aggregate trading strate-
gies, testing on 579 datasets comprising stocks, futures, and currency
data. The study found that when traditional techniques like Bootstrap
and Bagging performed moderately, cGAN could provide excellent
performance, serving as an effective alternative.

Generative Adversarial Networks (GANs) generate high-quality and
diverse data samples through adversarial training, holding the potential
for simulating market data such as stock price fluctuations. However,
the training process of GANs can be unstable, particularly in complex
stock prediction tasks, requiring meticulous tuning and handling to
achieve reliable results. In stock market prediction, this instability
poses a challenge, as the uncertainty of stock price data and rapid
changes in market conditions can make model training more difficult.
Therefore, the key to improving the effectiveness and stability of GANs
in stock prediction lies in optimizing training strategies and parameter
settings to ensure that the model can effectively learn and simulate
complex market dynamics.

3.6. Stock forecasting models based on Large Language Model

In recent years, Large Language Models (LLMs) such as BERT and
GPT have demonstrated remarkable performance in natural language
processing tasks, especially in text generation, semantic understanding,
and sentiment analysis [136,137]. These models’ capabilities have
made them particularly valuable in the financial sector, notably in stock
forecasting. By analysing text data from news, financial reports, and
social media, these models can capture subtle changes in market sen-
timent and public perception that influence stock market fluctuations.
Combined with historical price data, these models can perform complex
time series analysis and accurate stock price predictions, revealing
trends in market changes. Among the most renowned LLMs are BERT
and GPT; their basic architectures are shown in Fig. 8. Table 6 provides
the specific details of the reviewed LLM methods.

BERT (Bidirectional Encoder Representations from Transformers)
[138] is an advanced variant based on the Transformer architecture, de-
signed to capture bidirectional contextual information in language. As
a representative of current LLMs, BERT employs the encoder part of the
Transformer along with innovative pre-training techniques such as the
Masked Language Model (MLM) and Next Sentence Prediction (NSP),
which effectively train the model to understand and predict complex
relationships in language. Yang et al. [80] utilized a pre-trained WWM-
BERT to process text information and generate token embeddings. To
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Table 6
Stock forecasting models details based on large language model.
Author Model Method Year Research object Evaluate metrics Dataset
Zhao [128] Multi-layer BERT BERT 2022 Trend prediction Accuracy, F1 -
Sousa [129] BERT BERT 2019 Trend prediction Accuracy, Precision, Recall, F1 DJI
Sidogi [130] FinBERT BERT, LSTM 2021 Price prediction MAE, RMSE NASDAQ Index, News and Text
Hiew [131] BERT BERT, LSTM 2022 Trend prediction Precision, Recall, F1 Tencent CCB, Ping An
Huang [132] FinBERT BERT 2023 - Accuracy, Precision, Recall, F1 NASDAQ
Garza [133] TimeGPT TimeGPT 2023 Price prediction rMAE, rRMSE -
Jin [134] Time-LLM LLaMa 2023 Price prediction MAE, MSE, SMAPE, MAPE, MASE, OWA -
Yu [135] Fine-tuned LLaMa LLaMa 2023 Trend prediction MSE NASDAQ
ST e T context. Moreover, by weighting financial vocabulary and optimizing
/ \ the sentiment classification process, FinBERT significantly improves the
T T T accuracy of sentiment analysis and professional terminology handling.
: ! 2 o Another noteworthy large language model is GPT (Generative Pre-
T T T trained Transformer) [140], which unlike BERT’s bidirectional encoder
. ki) By structure, is based entirely on a decoder architecture, focusing on
t_—1 _——1 generating coherent text. It primarily learns language patterns through
i (tm Trm ™) unsupervised pre-training from a vast corpus of text, then adapts to
L = ///://z/”T various downstream tasks through a supervised fine-tuning process.
. = m 5 = . This combination of pre-training and fine-tuning strategies significantly
\ il 2] n /

Fig. 8. Based architectures of BERT and GPT.

address the limitation of BERT in processing long texts and feature
extraction, Zhao et al. [128] proposed an improved BERT model that
uses a sliding window technique to segment long texts into multiple
paragraphs to increase the sample size, then aggregates the central
themes of these short text paragraphs. Additionally, this model extracts
features from each layer of BERT and employs a multi-layer feature
ablation strategy to select the most effective information. Experimental
results have shown that this method significantly improves the accuracy
of identifying themes in stock commentary.

The sentiment in the financial markets also reflects some of the
reasons for market changes. Sousa et al. [129] used a BERT model
to perform sentiment analysis on stock market news articles to pre-
dict future trends in the Dow Jones Industrial Average (DJI). The
research team manually categorized these articles as positive, neutral,
or negative, then fed the labelled data into a self-supervised pre-
trained BERT model optimized for a wide range of general domain
documents. This approach improved the accuracy of stock index trend
predictions through sentiment analysis. Sidogi et al. [130] pointed out
that more than relying on historical price data is needed for future
stock price predictions. Therefore, they employed a fine-tuned FinBERT
model [139] to encode news information and classify emotions in
the news, then input these emotional data along with historical price
data into the prediction model. The experimental results showed that
this approach, which combines news sentiment analysis, significantly
outperforms traditional baseline models. Hiew et al. [131] also used
a BERT model to analyse emotions in financial news and developed
a text-based financial sentiment index for three popular stocks on the
Hong Kong Stock Exchange. By integrating information from various
channels, including text data, options, and market data, they designed
a comprehensive financial sentiment analysis framework that effec-
tively distinguishes between the emotions of individual investors and
institutional investors. Huang et al. [132] developed a model specif-
ically for textual analysis in the financial domain named FinBERT.
Although it shares the name, the structure of this model differs in
that it is based on the original BERT model but includes an ESG
issue identification module and has been specially optimized for small
sample data to enhance performance in specific application scenarios.
FinBERT, through domain-specific pre-training with extensive financial
sector texts, gains a deep understanding of financial terminology and
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enhances GPT’s flexibility and applicability, making it excel in text gen-
eration tasks and particularly suitable for financial forecasting. Garza
et al. [133] introduced TimeGPT-1, the first pre-trained foundational
large model explicitly designed for time series data, capable of gener-
ating accurate predictions on a variety of unseen datasets. TimeGPT,
based on the Transformer design, captures the temporal dependen-
cies of data through self-attention mechanisms and uses historical
data windows and local position encodings to predict future values.
Each layer of the encoder and decoder includes residual connections
and layer normalization, enhancing training stability and prediction
accuracy. Trained on over 100 billion data points, TimeGPT covers mul-
tiple domains, including finance, economics, demographics, healthcare,
weather, [oT sensors, energy, network traffic, sales, transportation,
and banking. When compared against various statistical models and
advanced deep learning methods, TimeGPT consistently ranks among
the top performers, whether the predictions are monthly, weekly, daily,
or hourly.

In addition, several emerging large models with different archi-
tectures have also started to gain prominence in stock prediction.
Jin et al. [134] proposed a time-series reprogramming large model
framework named Time-LLM. This framework retains the backbone
language model while reprogramming the input time-series data using
text prototypes before feeding the reprogrammed features into the
frozen large model to align the two modalities. Additionally, they
introduced Prompt-as-Perfix (PaP) to enrich contextual information.
This strategy of reprogramming time-series data makes the input fea-
tures more compatible with the large language model’s input format.
Experimental results indicate that Time-LLM outperforms specialized
prediction models and excels in few-shot and zero-shot learning tasks.
Yu et al. [135] fine-tuned the open-source large model LLaMa [141]
using instructions and conducted stock price time-series prediction on
the NASDAQ-100 index. The experimental results show that, in most
cases, the chain-of-thoughts technique helps improve prediction perfor-
mance, and the fine-tuned model surpasses the classic ARMA-GARCH
and gradient-boosting tree models.

Large Language Models (LLMs) like BERT and GPT understand and
generate natural language, offering powerful tools for analysing and
predicting financial news and reports based on text. In addition to text
data, these models can also process different types of input data, such
as time series data, images, and tables, enabling them to provide a more
comprehensive market analysis. However, these models may overly rely
on training data distribution and struggle with novel or anomalous
financial events. Additionally, they typically require extensive train-
ing resources, and their black-box nature limits transparency in the
decision-making process, posing challenges for investment decisions.
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4. Datasets and evaluation metrics

In the field of stock forecasting, the richness of datasets and the
accuracy of evaluation metrics form the foundation for research and are
key to assessing model efficacy. A deep understanding of the sources,
structures, and unique characteristics of different datasets is crucial for
building effective prediction models. Choosing appropriate evaluation
metrics reflects model performance and guides optimization directions.
This section will explore the commonly used datasets and evaluation
metrics in stock forecasting research, aiming to provide researchers
with a comprehensive reference framework that deepens theoretical
understanding and offers practical guidance for decision support and
model adjustment in practical operations.

4.1. Datasets

The data types involved in the field of stock forecasting are complex
and varied, encompassing multi-dimensional information from time
series data to text data, social media information, audio materials, and
even knowledge graphs [142]. Each data type provides unique insights
for prediction models, and the characteristics and purposes of these
data types are detailed below:

Time Series Data: This type of data typically includes stock
historical prices, trading volumes, and opening and closing prices
and is the most basic and crucial data source for stock forecasting.
Text Data: Text content from news reports, financial statements,
company announcements, and research reports can be analysed
using natural language processing techniques, providing valu-
able qualitative insights into market sentiment and corporate
performance.

Social Media Data: The plethora of information on social media
platforms like Weibo, Twitter, and stock forums reflects public
sentiment and market reactions to specific events, making it an
indispensable data source for modern financial predictions.
Audio Data: Audio materials such as earnings call conferences
and market analyst speeches can be mined for deeper insights
affecting market trends through voice recognition and sentiment
analysis technologies.

Knowledge Graphs: By integrating various entities (such as
companies, industries, and products) and their interrelationships,
knowledge graphs provide structured depth information on com-
petition and collaboration between companies and industry struc-
tures.

Table 7 organizes common data sources for stock forecasting, in-
cluding abbreviations of different stock markets and exchanges, corre-
sponding regions, and detailed explanations, providing readers with a
clear index of data sources.

4.2. Evaluation metrics

In the field of stock forecasting, the choice of evaluation metrics
closely depends on the specific goals of the research. For methods
aimed at precisely estimating market prices that fluctuate over time,
regression evaluation metrics are crucial in measuring model perfor-
mance. These include Mean Squared Error (M S E), Root Mean Squared
Error (RM SE), Mean Absolute Error (M AE), Mean Absolute Per-
centage Error (M APE), and the Coefficient of Determination (R?).
These metrics quantify the degree of deviation between the model’s
predictions and the actual market prices. Another category of methods
focuses more on capturing directional trends in market changes, such as
stock price movements, rather than precise values. For such methods,
classification evaluation metrics such as Accuracy, Precision, Recall,
and the F1Score provide a robust measure of model performance, espe-
cially in identifying market trends. Evaluation metrics for ranking tasks
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are standard in recommendation systems and information retrieval and
apply to stock ranking predictions. These include Mean Reciprocal
Rank (M RR), Discounted Cumulative Gain (DCG) and Normalized
Discounted Cumulative Gain (N DCG). Lastly, the core goal of stock
forecasting is to guide investors in identifying profitable patterns in
a volatile market. Therefore, performance metrics oriented towards
returns, such as the Sharpe Ratio (SR) and Return Ratio (RR), are
crucial because they directly reflect the model’s profitability in real
market scenarios. The following section will detail the above evaluation
metrics:

4.2.1. Mean squared error

n
1 N

MSE == % (=9, 15)

i=1
M SE calculates the average of the squares of the differences between
the actual values y; and the predicted values y;. It measures the average
size of the prediction errors, with a smaller MSE indicating higher
model accuracy.

4.2.2. Root mean squared error

RMSE = (16)

RM SE is the square root of M SE, representing the error in the same
units as the actual observations, making it easier to interpret.

4.2.3. Mean absolute error

n
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i=1
M AE measures the average of the absolute differences between actual
and predicted values. Compared to M.SE, MAE is less sensitive to

outliers.

4.2.4. Mean absolute percentage error
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M APE expresses the prediction error as a percentage of the actual
values, commonly used to measure the relative error of predictions.

4.2.5. Coefficient of determination

R =1- —Z?;‘(y’ - ﬁ_")z 19)
Y i —p?

R? indicates the proportion of the variance in the dependent variable

that is predictable from the independent variables. It is often used to

gauge the goodness of fit of a model. The closer the R* value is to 1,

the more effectively the model can predict the data.

4.2.6. Accuracy

TP+TN
TP+TN+FP+FN
Accuracy is the ratio of correctly predicted observations to the to-
tal number of observations, where TP (True Positives), TN (True
Negatives), FP (False Positives), and FN (False Negatives) are the
counts of true positive, true negative, false positive, and false negative
predictions, respectively.

(20)

Accuracy =
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Table 7
Stock market and exchange information.

Abbreviation Country Type Detail
CSI 100 China Index China Securities 100 Index
CSI 100 China Index China Securities 100 Index
SSE 50 China Index Shanghai Stock Exchange 50 Index
HSI China Index Hang Seng Index
STI Singapore Index Straits Times Index
NIKKEI 225 Japan Index Nikkei 225 Index
NIFTY 50 India Index National Stock Exchange of India 50 Index
KOSPI 200 Korea Index Korea Composite Stock Price 200 Index
STOXX50 Europe Index Eurozone countries STOXX 50 Index
RTSI Russia Index Russian Trading System Index
FCHI France Index France CAC 40 Index
DAX Germany Index Deutscher Aktienindex (German Stock Index)
FTSE 100 UK Index Financial Times Stock Exchange 100 Index
DJI/DJIA USA Index Dow Jones Industrial Average Index
NASDAQ USA Index NASDAQ Composite Index
RUSSELL USA Index Russell Indexes
S&P 500 USA Index Standard & Poor’s 500 Index
SSE China Exchange Shanghai Stock Exchange
SZSE China Exchange Shenzhen Stock Exchange
HKEX China Exchange Hong Kong Stock Exchange
NSE India Exchange National Stock Exchange of India
LON UK Exchange London Stock Exchange
NYSE USA Exchange New York Stock Exchange

4.2.7. Precision 4.2.12. Normalized discounted cumulative gain

TP
Precision = ——— 21) _ DCG,,
TP+FP nDCGy = TDCG, (26)

Precision is the ratio of correctly predicted positive observations to the
total predicted positives. It reflects how many of the identified positive
instances are actually positive.

4.2.8. Recall

TP
TP+ FN
Recall, or sensitivity, is the ratio of correctly predicted positive obser-
vations to all actual positives. It measures how well the model identifies
all relevant instances.

Recall = (22)

4.2.9. F1 score

Precision X Recall

F1 —score =2x (23)

Precision + Recall
The F1 Score is the harmonic mean of Precision and Recall. It is a
balance between the precision and recall of the model, providing a
measure of accuracy and comprehensiveness.

4.2.10. Mean reciprocal rank

0
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The MRR measures the effectiveness of a ranking task for individual
queries, where Q donates the total number of queries, rank, is the real
rank of the predicted top-1 stock in the ground-truth on the gth testing
day.

4.2.11. Discounted cumulative gain

2rel, -1
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k
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i=1
DCG quantifies the cumulative relevance of results in a ranked list.
Here, k is the length of the truncated list of ranks, and rel; is the

relevance score of the result at position i.
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NDCG normalizes DCG to facilitate comparisons across different queries
and datasets.

4.2.13. Sharpe ratio

27

The SR measures the adjusted return for risk, where R represents the
expected return of the portfolio, R is the risk-free return ratio, and o,
is the standard deviation of the portfolio. This ratio helps understand
how much excess return is received for the extra volatility of holding
a riskier asset compared to a risk-free asset.

4.2.14. Return ratio

_ FinalV alue — InitialV alue
InitialV alue

RR (28)

The RR calculates the growth ratio between the initial and final values
of an investment. It measures the total return of an investment relative
to its initial cost, providing a straightforward metric of investment
performance over a period.

5. Open problems and promising directions

In reviewing stock forecasting models, we have thoroughly analysed
the design, characteristics, and performance of various models. Al-
though current stock forecasting technologies have achieved significant
accomplishments, existing research still faces numerous challenges, and
the prospects in this field remain broad. This chapter will highlight
these unresolved issues and explore promising directions, aiming to
provide researchers with a clear problem framework and stimulate
innovative thinking to promote continuous progress and innovation in
the field of stock forecasting.
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5.1. Insufficient data representation capacity

One-dimensional time series data refers to sequences arranged in
chronological order, where each data point represents an observation
at a specific time [143]. This form of data is common in many practical
applications, such as meteorological records, stock market prices, and
electrocardiograms. In these applications, time series data helps us
understand how events change over time and predict future trends.

In the stock market, one-dimensional time series data primarily
includes indicators such as stock prices and trading volumes. These
data are continuously recorded but are often noisy and influenced by
external events, making them easy to anomalies and errors. Addition-
ally, stock forecasting models often perform poorly when faced with
unseen data due to their lack of generalizability. Recent studies, such
as [144-146], have utilized self-supervised learning as a pre-training
task for stock market prediction, compensating for the lack of labelled
data and allowing models to learn from a vast amount of unlabelled
financial data. This approach enhances the adaptability and robustness
of the model and effectively explores hidden patterns and structures in
the data. Zhang et al. [147] believe that self-supervised learning has
tremendous potential in data augmentation, robustness analysis, and
benchmark assessment. Therefore, time series analysis based on self-
supervised learning shows broad research prospects, whether in mining
existing strategies or exploring new methods.

The features of one-dimensional time series data are relatively
simple, primarily focusing on price fluctuations, leading to insuffi-
cient overall feature representation capability. Inspired by the field
of computer vision, Wang et al. [148] first proposed using the GAF
transformation to encode time series into images, allowing machines
to “visually” recognize, classify, and learn structures and patterns. This
method of transforming time series into images not only retains the
temporal and spatial information of the data but also significantly
enhances the data’s representational power. Specifically, the GAF trans-
formation converts one-dimensional data into a two-dimensional image
form by calculating the inner product relationships between points in
the time series, effectively using the time and spatial dependencies
of known data points to predict missing values. Subsequent studies,
such as [149-151], have adopted similar strategies to enhance data
representation.

Multimodal learning [152] integrates information from different
data sources, such as text, images, audio, and traditional numerical
time series data, providing a more comprehensive market perspective.
This learning approach is particularly suitable for stock prediction, as
various factors, including economic indicators, corporate news, and
social media sentiment, influence market fluctuations. By merging and
learning from multiple different data modalities, not only can the
model’s understanding of market dynamics be enhanced, but also its
robustness when faced with incomplete or low-quality data. Multi-
modal learning technologies have been widely applied in fields such
as healthcare, autonomous driving, and robotics and are gradually
showing potential in the stock prediction domain [100,153].

In summary, the representational capability of raw one-dimensional
time series data is limited, making it difficult to capture complex
market dynamics fully. To enhance data representation, we can start
from the following aspects: (1) Self-supervised learning: deeply explore
the inherent patterns and structures of data through self-supervised
learning; (2) Time series to image encoding: convert one-dimensional
time series data into two-dimensional image form to preserve temporal
and spatial dependencies; (3) Multimodal learning: integrate various
data sources, such as text and images, to provide a more comprehensive
market perspective for the model. Through these methods, we can
effectively expand the representational ability of the original data,
laying a more solid foundation for subsequent modelling and prediction
work.
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5.2. Challenges in long-term dependencies modelling

Long-term dependencies modelling has always been a core issue
in time series analysis, particularly crucial in stock forecasting. To
handle longer sequence data, new strategies and network architectures
are continuously proposed to enable models to learn more time-step
information and deeply mine market rules. Since the introduction of
the RNN method, research in time series analysis has rapidly increased,
followed by the improved LSTM and GRU models that further address
the problem of vanishing gradients encountered by RNNs in processing
long sequences. Additionally, the introduction of the Transformer en-
hanced the model’s parallel processing capabilities and long-distance
dependency-capturing abilities, but traditional attention mechanisms
are inefficient and costly for ultra-long sequences. To this end, scholars
have proposed the Informer model using sparse attention to reduce
computational costs. Meanwhile, TCNs designed based on convolu-
tional neural networks ensure the unidirectionality of information flow
through causal convolutions, further enhancing the model’s parallel
processing capabilities.

Recently, structured state space models (SSMs) [154,155] have been
proposed in the field of time series analysis. Inspired by classic state
space models [156], SSMs can be computed efficiently through recur-
sive or convolutional methods, and they handle sequence lengths with
linear or near-linear scalability. It means that SSMs can process longer
sequence data without significantly increasing computational costs,
making them very suitable for time series prediction tasks. However,
their application in stock prediction is limited because SSMs capture
long-range dependencies based solely on distance, lacking effective
mechanisms to identify and differentiate the importance of information.
Albert Gu and Tri Dao addressed this issue in their research [157],
developing a selective state space model called Mamba. Based on
a selective mechanism, this model can differentiate between critical
and non-critical information like a Transformer while maintaining the
linear scalability of SSMs, enabling it to outperform Transformers in
handling ultra-long sequence data. Experimental results show that the
Mamba model demonstrates strong potential in processing sequence
and image data. Shi et al. [158] applied the Mamba model to stock
price prediction, introducing MambaStock. The results indicate that
Mamba can effectively use historical stock market data to predict future
stock prices without complex feature engineering or preprocessing.

Continual Learning [159], also known as incremental learning or
lifelong learning, is a method designed to allow machine learning mod-
els to continuously absorb new information and adapt to new situations
while retaining knowledge of old data, with the core challenge being
to solve “catastrophic forgetting”. This learning mode is particularly
suited to dynamic environments where new data continuously emerges,
and tasks may change over time. In stock prediction, data from the
stock market is constantly generated over time, and existing prediction
models are primarily based on fixed-length datasets. Although this
method can learn historical market trends, it cannot learn market
changes in real time. Continual learning methods can learn and adapt
to new information while retaining previously learned knowledge.

In summary, effectively modelling long-term dependencies is a core
challenge in time series analysis, requiring models to capture long-
sequence information and identify key dependencies. In recent years,
structured state-space models like Mamba, through introducing se-
lective mechanisms, have achieved efficient processing of ultra-long
sequences, showing great potential. Meanwhile, the continual learning
paradigm provides a new solution for long-term dependency issues in
dynamically changing environments, focusing on preventing “catas-
trophic forgetting” and continuously learning new knowledge. In the
future, fully utilizing these advanced models and learning paradigms
will help capture and utilize long-term historical dependencies more
accurately, thereby enhancing the overall performance of time series
modelling.
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5.3. Lack of universality and interpretability

Universality and interpretability are critical issues in the current
field of deep learning. Most existing neural network-based stock fore-
casting models can only predict limited datasets in specific environ-
ments. However, as economic globalization deepens, financial markets
have become highly intertwined entities with complex interconnections
among countries, markets, and stocks. Therefore, developing models
with broad applicability and high interpretability to adapt to various
market conditions and articulate prediction logic has become an urgent
need, and future research is focused on the field of stock forecasting.

Neural network models are often viewed as black-box systems; thus,
their outputs generally lack interpretability [160]. In stock prediction,
which involves significant financial decisions, the transparency and
interpretability of models directly impact their effectiveness and cred-
ibility. Interpretability learning, which reveals the intrinsic logic of
the model’s decision-making process, is essential for complying with
regulatory requirements, boosting investor confidence, timely strategy
adjustments, and optimizing portfolio management. To enhance the
local interpretability of prediction models, methods such as LIME,
SHAP, or EBM Boosting can be used [161], while global interpretability
can be improved using SHAP algorithms or XGBoost techniques [162].
Integrating these methods effectively with prediction models is vital to
future research to enhance the interpretability of stock predictions.

The year 2023 has been dubbed the inaugural year of large language
models (LLMs) [163], with explosive growth in general significant
model technologies prompting various industries and research fields to
explore integration with large language models actively. These mod-
els’ applications have expanded beyond essential dialogues to include
education, healthcare, law, and more [164-166]. Specifically, using
large language models for stock prediction can be categorized into three
methods: direct querying of LLMs, LLM fine-tuning through custom
design, and integrating LLMs as a feature enhancement tool into time
series models [167]. The first two methods involve using financial mar-
ket data to specifically train or fine-tune the model to produce accurate
predictions [133]. The third method is based on extracting features
from a frozen large language model, which downstream models then
use to learn and output predictions, such as using LLMs to analyse
financial textual data to extract sentiment indicators for market trend
prediction [131,132]. Based on the above discussion, we believe that
stock prediction methods based on LLMs will have significant future
research potential and development space.

5.4. Inconsistency in evaluation metrics and datasets

The majority of studies reviewed in this article use different datasets
and evaluation metrics, which hinders the comparison and learning
among various methods in the field of stock forecasting to some extent.
The primary goal of stock forecasting is to forecast future stock price
movements based on market prices and trends, providing decision
support for investors and analysts, thereby profiting in natural market
conditions. However, most current stock forecasting methods focus
only on intermediate metrics in experimental data, such as regression
and classification indicators, while neglecting key financial evaluation
metrics that reflect the model’s ability to help achieve profitability,
such as Return Ratio (RR) and Sharpe Ratio (SR). Additionally, the
lack of a unified benchmark dataset means that methods often perform
well only on specific datasets and may experience a sharp decline in
performance when faced with data from different markets. Therefore,
future stock forecasting research should focus on the performance of
financial evaluation metrics and concentrate on its fundamental goal—
to better help investors manage risk, optimize investment strategies,
and improve the efficiency and effectiveness of economic decisions.
We should promote the establishment of a unified stock forecasting
benchmark dataset and a clear evaluation system to facilitate research
interaction and progress within the field.
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6. Conclusion

This review comprehensively examines data-driven stock forecast-
ing models based on neural networks, analysing 63 journal and con-
ference articles from 2015 to 2023. Specifically, we categorized the
methods according to their network architecture, covering stock fore-
casting approaches based on RNNs, CNNs, Transformers, GNNs, GANs,
and LLMs, and discussed the functionalities, advantages, and classic
variants of these network structures. These models demonstrate that,
compared to traditional stock forecasting models, deep learning meth-
ods represented by neural networks show outstanding performance,
enabling even non-professionals to train prediction models that surpass
those developed with years of professional experience using historical
financial data. Additionally, we organized commonly used datasets
and evaluation metrics in the field of stock forecasting, detailed their
calculation methods, and summarized them in table format.

We also discussed key issues such as data representation, challenges
in modelling long-term dependencies, the need for models to achieve
generality and interpretability, and the lack of uniformity in evaluation
standards and datasets. These are not only persistent challenges in the
field of stock forecasting but also fertile grounds for future research,
pointing the way towards building more robust, more interpretable,
and more effective prediction models. Overall, as the financial indus-
try continues to develop rapidly, driven by technological advances
and increasing data availability, the role of neural networks in stock
forecasting is expected to expand further. Continuous innovation and
research are essential to address these challenges and fully exploit the
potential of neural network models in this dynamic field. We hope this
review provides a solid foundation for researchers and practitioners,
aiding them in achieving further success as they use neural networks
to advance the field of financial prediction.
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