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Abstract

The increasing demand for power, aging distribution systems, and concerns over greenhouse

gas emissions have significantly increased distributed generation (DG) integration within dis-

tribution networks. This integration challenges conventional protection methods due to the

bidirectional power flow and the constraints of anti-islanding protection. The microgrid con-

cept offers a promising solution but also presents challenges, including the significant variation

in fault currents between grid-connected and autonomous modes and the arbitrary output

impedance of inverter-interfaced DG units during faults and current limiting modes. These

issues complicate the development of a robust protection scheme. Therefore, an intelligent

and adaptive protection scheme is required to protect microgrids against various faults and

operational conditions.

Artificial intelligence, especially supervised machine learning (ML), holds significant potential

for solving microgrid protection challenges. However, the limited availability of datasets and

the need for innovative feature extraction techniques have impeded progress. To address these

issues, this research develops different radial and meshed AC microgrid models for collecting

fault and no-fault data. Three comprehensive datasets are prepared to train various supervised

ML and deep learning (DL) algorithms. The largest dataset consists of 16,000 fault cases and

432 no-fault cases.

Additionally, innovative feature extraction techniques, such as Peaks Metric and Max Factor,

are formulated and applied alongside investigating eight other methods to extract features,

not commonly used for microgrid fault detection and classification. Various feature ranking

techniques are employed to reduce the number of predictors. A novel hybrid DL-based fault

detection and classification protection method is developed and validated using unseen data to

ensure robust predictive performance.
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Moreover, a multi-agent system (MAS) framework is established to integrate data-driven ML

models within a process-driven MAS structure, enhancing coordination and adaptive protec-

tion. Simulation results show that the proposed scheme, combining ML and MAS, outperforms

previous methods, achieving high fault detection and classification accuracy and exceptional

protection sensitivity for both microgrid operational modes across various fault scenarios.

This research develops comprehensive models of radial and meshed microgrids, formulates

new feature extraction techniques, and evaluates the performance of the intelligent protec-

tion scheme under varying conditions. The result is a robust protection scheme that improves

system resilience and economic benefits by providing precise fault detection, classification, and

phase identification, which are essential for future intelligent grids.

iii



Dedication

This thesis is dedicated to my beloved father, Muhammad Arif, who passed away on 3 April

2023. He was the one who encouraged me to pursue this Doctoral Degree, and I am sure he

would have been so proud to see me graduate. I will forever miss you, Dad.

iv



Acknowledgements

“So all the praises and thanks are to Allah, the Lord of the heavens and Lord of

the earth, Lord of the worlds.” (Qur’an, chapter 45, verse 36)

After praising Allah, I would like to extend my utmost gratitude to my family, my wife, my

children, my parents, my parents-in-law, colleagues and friends, without their understanding,

support and prayers, it would have not been possible for me to complete this thesis.

I would also like to express my deep appreciation to the principal supervisor A/Prof. Li Li for

his endless support, and the co-supervisor, Prof. Jian Guo Zhu for his help and advice. Lastly,

I would like to thank the University of Technology Sydney and the Australian government for

the scholarship.

Muhammad Uzair

September 22, 2023

Sydney, Australia

v



List of Publications

Journal Papers

PJ1. M. Uzair, L. Li, M. Eskandari, J. Hossain, J. G. Zhu, “Challenges, advances and future

trends in AC microgrid protection”, Renewable and Sustainable Energy Reviews, vol. 178,

p. 113228, 2023.

PJ2. M. Uzair, M. Eskandari, L. Li, and J. Zhu, “Machine Learning Based Protection Scheme

for Low Voltage AC Microgrids,” Energies, vol. 15, no. 24, p. 9397, 2022.

SJ3. M. Uzair, L. Li, J. G. Zhu, “Hybrid deep learning based microgrid protection”, preparing

to submit in IEEE Transactions on Power Delivery.

Conference Papers

PC1. M. Uzair, L. Li, J. G. Zhu, “Identifying line-to-ground faulted phase in low and medium

voltage ac microgrid using principal component analysis and supervised machine-learning”,

Proc. IEEE 2018 Australasian Universities Power Engineering Conference (AUPEC), pp.

1–6, Nov 2018.

PC2. M. Uzair, L. Li, J. G. Zhu, M. Eskandari, “A protection scheme for ac microgrids based

on multi-agent system combined with machine learning”, Proc. IEEE 2019 Australasian

Universities Power Engineering Conference (AUPEC), pp. 1–6, Nov 2019.

Book Chapter

PB1. M. Uzair, L. Li, S. B. A. Bukhari, “Deep learning-based microgrid protection”, in Mi-

crogrids and Virtual Power Plants. Singapore: Springer Nature Singapore. Approved

and awaiting publication.

vi



Contents

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Effects of Increased DG Penetration on Existing Protection Schemes . . . 4

1.1.3 The Microgrid Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Multi-Agent System and Supervised Machine Learning . . . . . . . . . . 8

1.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Research Methods Chosen . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.5 Method and Software Used for Data Collection and Analysis . . . . . . . 11

1.2.6 Difficulties Encountered . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.7 Evaluation of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Summary of Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review 15

2.1 Challenges Associated with Microgrid Implementation . . . . . . . . . . . . . . . 15

2.1.1 Protection Challenges Associated with Microgrid . . . . . . . . . . . . . 15

2.1.2 Control Methodology and Load Management . . . . . . . . . . . . . . . . 18

2.1.3 Communication and Cybersecurity . . . . . . . . . . . . . . . . . . . . . 19

2.2 Key Protection Schemes for The Microgrid Concept . . . . . . . . . . . . . . . . 19

2.2.1 Directional OC Protection . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



2.2.2 Adaptive OC Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Differential Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Hybrid protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.5 Fault Current Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.6 Voltage Based Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.7 Travelling Waves Based Protection . . . . . . . . . . . . . . . . . . . . . 25

2.2.8 PMU Based Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.9 Harmonic Content Based Protection . . . . . . . . . . . . . . . . . . . . 30

2.2.10 Sequence Components Based Protection . . . . . . . . . . . . . . . . . . 30

2.2.11 Wavelet Transform Protection . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.12 Multi-agent Based Protection . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Application of Artificial Intelligence in Microgrid Protection . . . . . . . . . . . 35

2.3.1 DT Based Protection Methods . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 BT and RF Based Protection Methods . . . . . . . . . . . . . . . . . . . 36

2.3.3 Semi-supervised Metric Learning . . . . . . . . . . . . . . . . . . . . . . 39

2.3.4 Protection Based on Neural Networks . . . . . . . . . . . . . . . . . . . . 39

2.3.5 Multi-classifier Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.6 DNN Based Protection Methods . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Comparison of Protection Techniques for AC Microgrids and Related Charac-

teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Open Microgrid Protection Research Problems . . . . . . . . . . . . . . . . . . . 53

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Classifying LG faults in an AC Microgrid using Supervised Machine Learning 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Supervised Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Shortcomings of Wavelet Transform Based Feature Extraction . . . . . . . . . . 59

3.4 Application of PCA to Obtain Predictors for Supervised ML . . . . . . . . . . . 62

3.4.1 EMT Simulations for Data Collection . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Principal Component Analysis for FE . . . . . . . . . . . . . . . . . . . . 67

viii



3.4.3 Additional Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Evaluating the Accuracy of LG Faults Classification . . . . . . . . . . . . . . . . 69

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Detecting and Classifying All Faults in a Radial AC Microgrid using Super-

vised Machine Learning 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Test Microgrid and EMT Simulations for Data collection . . . . . . . . . . . . . 73

4.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Features Extracted and Techniques Used Including Proposed Novel Techniques . 79

4.4.1 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Peaks Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Benefits of Peaks Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.4 Max Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.5 Benefits of Max Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.6 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.7 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.8 Crest Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.9 Shape Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.10 Total Harmonics Distortion . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.11 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Parallel Coordinates Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Kruskal-Wallis H-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Application of Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.1 Training and Testing ML Models for FD . . . . . . . . . . . . . . . . . . 96

4.6.2 Training and Testing ML Models for FTC with FP identification . . . . . 97

4.6.3 Detail Levels of Classification . . . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



5 Fault Detection and Classification in Radial and Meshed Microgrid using

Hybrid Deep Learning 106

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Fault Detection Using Artificial Intelligence . . . . . . . . . . . . . . . . . . . . 107

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Microgrid Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.3 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.4 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.5 Long Short-Term Memory Network . . . . . . . . . . . . . . . . . . . . . 116

5.4 Proposed Hybrid Deep Learning Model . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.1 Layers of the Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.2 Mathematical Expressions for Layer of the Proposed Model . . . . . . . . 122

5.5 Hybrid Deep Learning Network Analysis . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7.1 Improved Robustness and Adaptability . . . . . . . . . . . . . . . . . . . 132

5.7.2 Enhanced Efficiency and Reduced Computational Cost . . . . . . . . . . 133

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Novel Protection Scheme for AC Microgrids Based On Multi-agent System

Combined With Machine Learning 134

6.1 Fault Detection and Fault Type Classification . . . . . . . . . . . . . . . . . . . 134

6.2 Agent and MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 MAML Protection Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 Layers and Role of Each Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Analysis and Benefits of the Proposed Agent . . . . . . . . . . . . . . . . . . . . 140

6.5.1 Measurement Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.2 Protection Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.3 Verification Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

x



6.5.4 Backup Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5.5 Local Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5.6 Central Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5.7 Grid Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Agent Simulation Software Selection . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7 MAML Based PS Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Conclusion, Research contribution and Future work 148

7.1 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Novelty and Significant Contribution . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3 Future Research Directions in AC Microgrid Protection: Addressing Industry

Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.1 Deepen Exploration of ML and DL Techniques . . . . . . . . . . . . . . . 151

7.3.2 Integration with Emerging Technologies . . . . . . . . . . . . . . . . . . 152

7.3.3 Seamless Islanding with Advanced Fault Detection and Reconnection . . 152

7.3.4 Co-simulation and Protection System Optimization . . . . . . . . . . . . 152

7.3.5 Standardization and Interoperability . . . . . . . . . . . . . . . . . . . . 153

7.3.6 Cybersecurity and Secure Communication Protocols . . . . . . . . . . . . 153

7.3.7 Real-Time Digital Simulator (RTDS), Hardware-in-the-Loop (HIL), and

Real-World Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

References 153

xi



List of Figures

1.1 Protection zones in passive DN . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Active DN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Typical microgrid schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Simple AC microgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Microgrid protection methods proposed in the literature . . . . . . . . . . . . . 20

2.3 Implementation of AP scheme with three setting groups . . . . . . . . . . . . . . 21

2.4 AP and DP hybrid protection zones . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Bidirectional non-superconducting FCL location . . . . . . . . . . . . . . . . . . 25

2.6 Lattice diagram of travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Simple network with multiple PMUs . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Characteristics of an agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Initial three layered MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.10 Physical and logical layers of a decentralised MAS . . . . . . . . . . . . . . . . . 35

2.11 DT for FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.12 WT-based FE process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.13 Schematic of DNN-based PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.14 General AlexNet CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Sym2 approximate and detail coefficients for a low resistance LG fault on phase A 60

3.2 RMSE for the reconstructed signals using all the coefficients of different wavelets 61

3.3 IphA and Sym5 reconstructed signal using Level 9 detail coefficient for a low

resistance LG fault on phase A . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 RMSE for the reconstructed signals using Level 9 detail coefficient of different

wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



3.5 Test Microgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 High impedance ground fault on phase A at 0.03 - 0.07 sec on Bus 4 . . . . . . . 64

3.7 Bolted ground fault on phase B at 0.025 - 0.075 sec on Bus 4 . . . . . . . . . . . 65

3.8 Low impedance ground fault on phase C at 0.01 - 0.03 sec on Bus 4 . . . . . . . 66

3.9 Pareto PV (phase A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 Pareto SC (phase A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Test Microgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 LL-AB fault for C3 in GC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 NF, Load switching in AUTO mode . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 NF, Load switching in GC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 AUTO to GC mode switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 STD of V phB for NF and fault cases . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Freq deviation for C3, LL-AB fault in GC mode . . . . . . . . . . . . . . . . . . 81

4.8 PM of Freq for fault and NF conditions . . . . . . . . . . . . . . . . . . . . . . 82

4.9 IphABC for a bolted LG fault on phase B in AUTO mode . . . . . . . . . . . . . 83

4.10 IphB for a bolted LG fault on phase B in AUTO mode . . . . . . . . . . . . . . 83

4.11 MF of IphB for NF and fault conditions . . . . . . . . . . . . . . . . . . . . . . 84

4.12 pc1 of V phA for NF and fault scenarios . . . . . . . . . . . . . . . . . . . . . . . 86

4.13 Kurt of IphB for NF and fault cases . . . . . . . . . . . . . . . . . . . . . . . . 86

4.14 CRES of IphA for NF and fault conditions . . . . . . . . . . . . . . . . . . . . . 87

4.15 SF of V phC for NF and fault cases . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.16 THD of V phC for NF and fault cases . . . . . . . . . . . . . . . . . . . . . . . . 89

4.17 Skew of V phC for NF and fault scenarios . . . . . . . . . . . . . . . . . . . . . . 89

4.18 Parallel Coordinates Plot for Fine Tree . . . . . . . . . . . . . . . . . . . . . . . 91

4.19 Feature ranking for FD using KW . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.20 Predictor importance for FD using BT/RF . . . . . . . . . . . . . . . . . . . . . 93

4.21 Training and testing process of ML Models . . . . . . . . . . . . . . . . . . . . . 94

4.22 Bi-layered FNN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.23 Bi-layered FNN plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



4.24 View of 4th Tree with 7 branches and 15 nodes . . . . . . . . . . . . . . . . . . 96

4.25 GB Test CM for FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.26 BT Test CM for FTC with FP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.27 View of 20th Tree with 9 braches and 19 nodes . . . . . . . . . . . . . . . . . . 99

4.28 Minimum classification error plot for Optimizable SVM with 18 predictors . . . 100

4.29 Misclassification of symmetrical faults . . . . . . . . . . . . . . . . . . . . . . . . 101

4.30 Classification of LG faults cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.31 Classification of LLG faults cases . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.32 Classification based on mode of operation . . . . . . . . . . . . . . . . . . . . . . 104

5.1 IEC Microgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 IABC before and during AG fault in AUTO mode on DL1 . . . . . . . . . . . . . 110

5.3 IABC before and during BC fault in GC mode on DL3 . . . . . . . . . . . . . . . 111

5.4 IABC before and during CAG fault in AUTO mode on DL5 . . . . . . . . . . . . 111

5.5 IABC before and during ABC fault in GC mode on DL1 . . . . . . . . . . . . . . 112

5.6 64 samples Fault Data from Fig. 5.5 . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 IABC during load switching - NF case . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 IABC during normal operation - NF case . . . . . . . . . . . . . . . . . . . . . . 114

5.9 IABC during grid switching - NF case . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 IABC during capacitor switching - NF case . . . . . . . . . . . . . . . . . . . . . 115

5.11 LSTM flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.12 Architecture of the proposed model . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.13 Training Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.14 Training CM for DL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.15 Test CM for DL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.16 Training CM for DL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.17 Test CM for DL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.18 Training CM for DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.19 Test CM for DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.20 Training CM for DL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xiv



5.21 Test CM for DL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.22 Training CM for DL5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.23 Test CM for DL5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Fault as an NF detection and respective trip signal . . . . . . . . . . . . . . . . 135

6.3 Layers of the proposed MAS structure . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Proposed MAML protection algorithm . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 AnyLogic simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Fault event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7 State transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xv



List of Tables

2.1 Comparison between PMU and µPMU [1, 2, 3] . . . . . . . . . . . . . . . . . . . 28

2.2 Comparison of AC microgrid protection techniques without Artificial Intelligence 44

2.3 Comparison of Artificial intelligence based microgrid protection techniques . . . 47

2.4 Comparison based on functional characteristics of protection systems . . . . . . 49

2.5 Comparison of FE techniques and features extracted for recently proposed AI-

based PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Accuracy of ML models for bolted LG faults . . . . . . . . . . . . . . . . . . . . 70

3.2 Accuracy of ML models for Low Impedance LG faults . . . . . . . . . . . . . . . 70

3.3 Accuracy of ML models for High Impedance LG faults . . . . . . . . . . . . . . 70

4.1 Accuracy of ML models with 25 features for FD . . . . . . . . . . . . . . . . . . 96

4.2 Accuracy of ML models with 18 features for FD . . . . . . . . . . . . . . . . . . 97

4.3 Accuracy of ML models with 25 features for FTC with FP . . . . . . . . . . . . 97

4.4 Test accuracy of ML models with 18 features for FTC with FP . . . . . . . . . . 98

5.1 DER and Transformer Data for IEC Test Microgrid . . . . . . . . . . . . . . . . 108

5.2 Fault Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 NF Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Proposed Hybrid Deep Learning Network Analysis Results . . . . . . . . . . . . 125

5.5 Training and Test Accuracy for Any Mode of Microgrid Operation . . . . . . . . 132

xvi



List of Symbols and Abbreviations

x̄ Mean of signal x

x̄peaks Mean of the peak values in signal x

e⃗v1 First eigenvector

CM Covariance matrix

cov Covariance

Freq Frequency

IphABC Three phase current

IshABC Three phase short-circuit current

pc1 First principal component

pc2 Second principal component

Sym5 Symlets 5

V phABC Three phase voltage

xmax Maximum value of the signal x

xrms RMS value of x

AI Artificial intelligence

ANN Artificial neural network

AP Adaptive OC protection

BA Backup agent

xvii



BT Bagged Trees

CA Central agent

CB Circuit breaker

CNN Convolutional neural network

DER Distributed energy resource

DG Distributed generation

DN Distribution network

DNN Deep neural network

DP Differential protection

DT Decision Tree

DWT Discrete wavelet transform

ELM Extreme learning machine

FC Fault current

FCL Fault current limiter

FD Fault detection

FE Feature extraction

FFT Fast Fourier transform

FL Fault location

FNN Feedforward neural network

FP Faulted phase

FTC Fault type classification

GA Grid agent

xviii



HDLBPS Hybrid deep learning-based protection system

IDMT Inverse definite minimum time

IED Intelligent electronic device

IIDG Inverter interfaced distributed generator

LA Local agent

LG Line-to-ground

LL Line-to-line

LLG Line-to-line-to-ground

LLL Line-to-line-to-line

LLLG Line-to-line-to-line-to-ground

LSTM Long short-term memory

LVRT Low voltage ride-through

MA Measurement agent

MAS Multi-agent systems

MG Macro grid / Main grid

ML Machine learning

MW Mother wavelet
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Chapter 1

Introduction

1.1 Background

Major Australian cities have faced numerous blackouts recently as the present conventional

power grid reaches its maximum capacity. Additionally, with more concerns about greenhouse

gas emissions by conventional power plants in many countries, including Australia, more and

more distributed generation (DG) sources are being connected to the distribution networks

(DNs). Compared to large-scale traditional power plants away from the cities, generating

power locally reduces infrastructure costs and greenhouse gas emissions due to renewable energy

sources and the elimination of line losses associated with long transmission lines. At present,

the share of renewable energy is around 36% of the total electricity generation in Australia,

increasing from 32.5% in 2021 and doubling since 2017 [4]. Australia is committed to achieving

net-zero greenhouse gas emissions and is changing its electrical system to rely primarily on

renewable energy sources by 2050 [5].

In Australia, renewable energy generation predominantly revolves around wind and hydropower,

which represent the most significant contributors. Nevertheless, over the past decade, there has

been a notable surge in the adoption of rooftop grid-connected photovoltaic (PV) systems

among households. This increased uptake can be attributed to the proactive support from the

government in the form of subsidies and attractive financial incentives, including Renewable

Some contents of this chapter have been published in M. Uzair, L. Li, M. Eskandari, J. Hossain, J. G.
Zhu, “Challenges, advances and future trends in AC microgrid protection”, Renewable and Sustainable Energy
Reviews, vol. 178, p. 113228, 2023.
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Energy Certificates. Still, due to smaller size and export limitations from network operators,

the PV systems have negligible impact on the distribution system. Most PV systems are sized

according to load requirements to consume power produced on-site and export limited power

to the grid.

1.1.1 Protection

Electrical power protection is an important aspect of the electricity network as it provides

safety from shocks for humans and protects equipment from faults. An essential feature of any

protection scheme is to sensitively identify faults and quickly segregate them to prevent other

zones and equipment from getting affected and provide a reliable power supply to the customers

instead of a grid-wide blackout.

Most distribution networks at the primary and secondary levels are radial, offering simpler fault

protection and relay coordination. Protection devices in existing DNs consist of non-directional

overcurrent (OC) protective relays, reclosers, fuses, and sectionalisers [6]. Typically, a recloser

or an OC relay is installed at the distribution substation, and both use a circuit breaker (CB)

to interrupt the fault current (FC). Primary protection for the lateral loads is provided by

fuses, while OC relays and reclosers provide backup protection. Additional protection, usually

DP, is required for the transformers. Sectionalisers are combined with breakers or reclosers and

are designed to operate after a fixed number of breaker operations to isolate a section during

faults. Different protection zones in existing DN are shown in Fig. 1.1.

The existing protection system is designed based on three assumptions. Firstly, the FC magni-

tude is many times larger than the nominal load current. Next, the FC magnitude is inversely

proportional to the impedance between the fault and the source and thus varies with the fault

location in the network. Lastly, the FC flows in one direction from the generator towards the

fault due to the radial layout [7].

3



L1
Commercial

L2
Domestic

M
ai

n 
Fe

ed
er

External Grid

11
 k

V/
41

5 
V

Bus 1

Bus 2

S/S

Figure 1.1: Protection zones in passive DN

1.1.2 Effects of Increased DG Penetration on Existing Protection

Schemes

As mentioned above, currently, OC protection is frequently used in DNs. OC relay settings are

preset to detect the fault and coordinate with other relays. With the significant penetration of

DGs in DN, protection discrimination will fail, causing nuisance tripping or failure to trip. This

is because OC protection for phase and earth faults employing inverse definite minimum time

(IDMT) curves is commonly implemented for coordination between devices. This technique

is suitable for the passive radial system, but such protection will not function correctly in a

dynamic system with varying power and loads unless regularly reconfigured. Coordinating

reclosers in the DN with embedded DGs brings further difficulty. Although DG penetration
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is small at present, to ensure that the anti-islanding protection can function, a recloser must

remain open for an extended period, but enough to ensure minimum interruption faced by

users [8]. This coordination process becomes even more complex with installing fuses and

sectionalisers in the DN. To avoid replacing the fuse, reclosers should be coordinated with

fuses to isolate before the fuse is blown as the fault is detected. This is known as fuse-saving

protection scheme (PS) [9]. Temporary faults will most likely be cleared before the first reclose.

On the other hand, the fuse will blow faster before the recloser trips if the fault is perma-

nent. Therefore, a couple of different IDMT curves are used for recloser-fuse coordination. For

temporary faults with DG presence, there is a greater chance that a fuse will blow before the

recloser with the fast IDMT curve trips [10] due to FC provided by DGs. Moreover, due to the

continued FC provided by local DGs, the operation of sectionalisers will also be affected, as

they may fail to detect an upstream CB operation. Coordination failure of any of these devices

due to the presence of DG will compromise the whole DN reliability.

In addition to the limitations mentioned, anti-islanding protection currently prevents unin-

tentional islanding in DNs by disconnecting embedded DG supplies in the absence of utility

dispatched generation. The reason is to provide safety to humans, restore the faulty net-

work and avoid non-synchronised reconnection to the grid [11]. Under Australian Standard

4777.1:2016, an active DN should provide anti-islanding protection incorporating active anti-

islanding protection such as varying output power, frequency shifting, current injection, and

frequency instability. It should also offer passive anti-islanding protection, including under/over

frequency and voltage protection. Additional protection function such as phase balancing is

also required if not included in the inverters [12]. A simple active DN is shown in Fig. 1.2.

Hence, with the growth of various DG sources, bidirectional power flow will increase, and the

existing conventional protection methods intended for passive radial distribution networks will

eventually become redundant. Therefore, there is a need to develop new protection schemes,

enabling maximum benefit from renewable energy sources. Moreover, the microgrid concept

can solve many of the problems associated with the protection of existing DN and active DNs.
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1.1.3 The Microgrid Concept

According to the Australian Energy Market Commission, DG refers to small generation systems

located on the energy user’s side of the meter [13]. Many DGs, including both renewable and

non-renewable sources such as photovoltaic, microturbines, synchronous generators, and others,

are being connected to the DNs and will continue to grow in numbers to eventually form a local

micro power system, also known as the microgrid.

A microgrid is a low-voltage controllable distribution system within a defined boundary that

consists of DGs, dominated by renewable energy sources, load, and storage devices, all con-

nected [14] as demonstrated in Fig. 1.3. It is capable of meeting customer power demands

independently in an autonomous mode when disconnected from the macro grid or main grid
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(MG) due to disturbances like faults, frequency drops, or voltage sags [15, 16, 17], while also

providing necessary protection and control when connected to the MG [18]. This enables max-

imum benefit from DGs. Besides improving the resilience of power systems and reliability by

reducing the load on the MG during peak demand [19], the operational and maintenance cost

of large generator units will be reduced, bringing down a high generation and distribution cost.

Large-scale power outages can also be prevented when the MG gets disconnected, which is

currently not possible due to anti-islanding protection.

Generation Transmission Distribution

Load

Solar PV Energy Storage 

Electric VehiclesMicrogrid Controller

PCC

M
ain G

rid
M

icrogrid

Electric Vehicles

Microturbine Wind Turbine

Figure 1.3: Typical microgrid schematic

Most microgrids comprise a three-phase AC common bus architecture for supplying or absorbing

power at the point of common coupling (PCC) [20]. This is because transmission, distribution,

and transformation of AC voltage are easier and stable voltage can be attained by reactive power

control. Also, most loads in the present distribution system are AC [19]. Nevertheless, DC and

AC/DC hybrid microgrids have been proposed to decrease power conversion losses. Although
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DC microgrids have shown the potential to improve system efficiency by feeding the growing

DC loads locally, without conversion, the absence of effective PS is a significant problem in

implementing large-scale DC systems. AC system protection cannot be applied to DC systems

because DC currents and voltages do not have inherent zero-crossing. Additionally, DC FC can

rapidly reach dangerous levels [21]. On the other hand, in a hybrid microgrid, both DC and

AC power distribution is used to avoid losses caused by the conversion of power from DC to

AC for AC appliances and again from AC to DC for DC appliances [22, 23], which will bring

new complications to microgrid protection, and control [24, 25]. Considering the limitations of

DC and hybrid microgrids and the benefits offered by AC systems, this research is focused on

AC microgrid protection.

An AC system can have asymmetrical and symmetrical faults. The most common type of

unsymmetrical faults is a line-to-ground (LG) fault, accounting for 65 to 70 % of all faults,

followed by line-to-line-to-ground (LLG) faults that occur around 15 to 20 % of the time, while

line-toline (LL) faults make up 5 to 10 % [26]. Symmetrical faults, line-to-line-to-line (LLL) and

line-to-line-to-line-to-ground (LLLG) are rare but the most severe of all electrical faults [27].

An effective and robust microgrid protection technique should protect the microgrid against all

fault types in both modes under different network topologies and be financially viable.

1.1.4 Multi-Agent System and Supervised Machine Learning

In artificial intelligence, an agent or intelligent agent is a self-governing entity that includes

hardware and software. It can decide its actions based on experience and information it per-

ceives. A multi-agent system (MAS) is a computerised system comprising multiple intelligent

agents that interact with each other to complete an action within an environment. Apply-

ing supervised machine learning (SML) techniques to MAS will improve the decision-making

process and aid in adapting to the dynamic changes with the microgrid.
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1.2 Research Methodology

1.2.1 Aims

The aims of the project are to:

1. Develop detailed models of grid-connected AC microgrid with multiple DG sources and

topologies.

2. Develop a protection method to detect and classify all major faults under varying opera-

tional conditions.

3. Validate the efficiency of the proposed method.

1.2.2 Objectives

The objectives of the project are to:

1. Develop comprehensive models of radial and meshed microgrids comprising inverter inter-

faced distributed generation (IIDG), synchronous-based DGs, and different load profiles.

2. Develop an intelligent protection scheme that can detect symmetrical and unsymmetrical

faults, classify fault types with faulted phase identification for meshed and radial topolo-

gies, for both modes of microgrid operation, different fault resistances, inception angles,

and at various lines and locations along the lines.

3. Formulate and apply new feature extraction techniques and investigate the suitability of

feature extraction methods not commonly used for microgrid fault detection and classifi-

cation.

4. Evaluate the performance of the proposed intelligent protection scheme for AC microgrids

under varying operational conditions, using unseen data for making predictions.
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1.2.3 Significance

A detailed model of the microgrid is required (aim 1) for fault analysis in a commercially viable

simulation tool (objective 1).

The core requirement for implementing microgrids is to develop a protection scheme that can

detect and classify (aim 2) unsymmetrical and symmetrical faults. New approaches such as

SML, HDL and MAS can aid in fast detection and isolation of different faults by learning to

adapt to changes within the microgrid (objective 2). New feature extraction (FE) techniques

will assist in training the SML algorithms (objective 3).

To check the robustness of the proposed protection scheme for sensitively detecting the faults

and quickly segregating them, verification of the results will demonstrate the practicality of

the proposed method (aim 3). Comprehensive simulations will be carried out to validate the

protection scheme (objective 4).

1.2.4 Research Methods Chosen

This research employs a mixed-methods approach, integrating quantitative and qualitative

methods to address the protection challenges in microgrids comprehensively. Quantitative

methods were chosen for their ability to handle large datasets and perform statistical analysis,

which is crucial for training and validating machine learning (ML) and deep learning (DL)

models. Qualitative methods complemented this by providing a deeper understanding of the

microgrid systems and the operational conditions that influence fault behaviour. Combining

both methods ensures a robust and holistic analysis, addressing the complexity of microgrid

protection more effectively than using a single method alone.
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1.2.5 Method and Software Used for Data Collection and Analysis

Different radial and meshed AC microgrid models were developed to collect fault and no-

fault data using Electromagnetic Transient (EMT) simulations. Three extensive datasets were

prepared.

DigSilent PowerFactory is ideal for EMT simulation of microgrids, due to:

• Pre-built library of power system components: PowerFactory offers a comprehensive li-

brary of pre-built models for generators, transformers, lines, and other power system

elements. This saves significant time and effort in model development compared to build-

ing everything from scratch in MATLAB.

• Focus on power system analysis: PowerFactory is specifically designed for power system

analysis, with features like fault analysis, protection system coordination, and power

flow studies. This makes it user-friendly and efficient for tasks related to power system

simulations.

• Robust data collection: PowerFactory allows easy data collection for machine learning

training, including voltages, currents, and many different signals.

MATLAB provides more flexibility in modelling custom components and control systems. It’s

valuable for:

• Advanced control system design: MATLAB’s Simulink e allows the design and implemen-

tation of complex control systems for the microgrid.

• Fault and no-fault data collection: While PowerFactory excels in EMT simulations, MAT-

LAB offers detailed control over fault scenarios for data collection specific to fault condi-

tions.

• Machine Learning and Deep Learning: MATLAB is a well-established platform for train-

ing and testing various machine learning and deep learning algorithms.

AnyLogic specializes in Multi-Agent System (MAS) simulations. It’s helpful for:

• Modelling agent behaviour: AnyLogic allows the modelling of the behaviour of individual
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agents (e.g., distributed generators, energy storage systems) within the microgrid and

analyze their interactions.

• Agent-based decision-making: Agents’ decision-making can be simulated based on local

information and interactions with other agents, providing valuable insights into the overall

behaviour of the microgrid.

By combining these tools, I was able to leverage the strengths of each:

• PowerFactory for robust and efficient power system simulations with rich data collection.

• MATLAB is used for flexible modelling, fault scenario control, and training and testing

ML and DL algorithms.

• AnyLogic for in-depth analysis of agent interactions within the microgrid.

1.2.6 Difficulties Encountered

Several challenges were encountered during data collection and analysis, including the limited

availability of real-world fault data and the complexity of feature extraction. These issues

were addressed by developing comprehensive simulation models to generate sufficient fault and

no-fault data and formulating new feature extraction techniques. Additionally, integrating

various ML algorithms and the MAS framework required extensive validation and testing to

ensure reliability and accuracy, which was achieved through iterative improvements and rigorous

evaluation with unseen data.

1.2.7 Evaluation of Research

The results were conclusive, demonstrating that the proposed intelligent protection scheme

significantly outperformed previous methods. The choice of a mixed-methods approach proved

effective in practice, providing a comprehensive understanding of microgrid fault behaviour and

enabling the development of a robust protection scheme. The integration of ML, DL, and MAS

frameworks enhanced the coordination and adaptive protection, contributing to the overall

success and reliability of the scheme in various fault scenarios.
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1.3 Summary of Research Contribution

This research develops comprehensive models for radial and meshed AC microgrids to collect

fault and no-fault data, creating three extensive datasets for training 35 supervised ML and

various DL algorithms. The largest dataset comprises 16,000 fault cases and 432 no-fault

cases for a standard IEC meshed microgrid model. Innovative feature extraction techniques,

such as Peaks Metric and Max Factor, are formulated and applied alongside investigating

eight other FE methods not commonly used for microgrid fault detection and classification.

Various feature ranking techniques are employed to reduce the number of predictors. A novel

hybrid deep Convolutional neural network (CNN) and deep long short-term memory (LSTM)

based protection method is developed, and its efficacy is validated using unseen data. A MAS

framework has also been established to integrate ML and DL models, enhancing coordination,

fast segregation, and adaptive protection. This intelligent protection scheme effectively detects

symmetrical and unsymmetrical faults, classifies fault types, and identifies faulted phases in

radial and meshed microgrids, providing robust primary and backup protection, improving

system resilience, and offering economic benefits through accurate fault handling and prevention

of unnecessary tripping of healthy phases.

1.4 Thesis Organisation

The report is organised into different chapters as follows:

• Chapter 2: This chapter presents a comprehensive literature review to identify the re-

search gap. The focus is on recently proposed methods using modern techniques, besides

critically reviewing other proposed methods.

• Chapter 3: This chapter starts with the shortcomings of Wavelet transform-based feature

extraction, and then the application of Principal component analysis is proposed. The

main focus of the chapter is the classification of bolted, low, and high-impedance LG

faults using SML.
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• Chapter 4: In this chapter, SML is used to detect and classify faults in a radial AC

microgrid. New feature extraction techniques are formulated and applied, and various

feature selection methods are used to find the model with the highest prediction accuracy.

• Chapter 5: This chapter presents a novel hybrid deep learning approach using deep CNN

and deep LSTM for fault detection and fault type classification in radial and meshed AC

microgrids for various operating conditions.

• Chapter 6: A protection scheme for AC microgrids based on MAS with SML, including

HDL for detecting and classifying symmetrical and unsymmetrical faults, developed in

earlier chapters, is presented in this chapter.

• Chapter 7: Conclusion, research contribution, and future work are given in the final

chapter.
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Chapter 2

Literature Review

2.1 Challenges Associated with Microgrid Implementa-

tion

Although microgrid offers many benefits, several challenges must be overcome before practical

implementation.

2.1.1 Protection Challenges Associated with Microgrid

Microgrid protection is an unavoidable problem. The core aspects of any protection system

include sensitivity, which means that the protection system can detect even the most minor

abnormal conditions above a threshold level. The second is selectivity, i.e., only the faulted

part of the network is isolated. The fault does not affect other zones and equipment or result in

a complete system shutdown. Another is reliability, which is the assurance of correct operation

of the protection system whenever required [28]. Other important aspects include the speed of

operation, simplicity, and cost-effectiveness [29]. All these features are necessary for a microgrid.

Additionally, the protection must be adaptive to distinguish between system energisation and

fault conditions for a fast trip in the latter situation and riding through the former [30]. A

This chapter is based on the work published in M. Uzair, L. Li, M. Eskandari, J. Hossain, J. G. Zhu, “Chal-
lenges, advances and future trends in AC microgrid protection”, Renewable and Sustainable Energy Reviews,
vol. 178, p. 113228, 2023.
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major obstacle to effectively implementing microgrids is achieving the correct sensitivity and

selectivity [31]. Moreover, in future grids, precise tripping of only the faulted phase will be

required to improve supply reliability and increase financial benefits. Accurate fault type clas-

sification (FTC) and faulted phase (FP) identification will be required to achieve this [32]. The

main protection challenges in a microgrid can be further subdivided as follows.

FC Direction and Dynamic Topology

Most DNs at the primary and secondary level are radial as they offer more straightforward fault

protection and relay coordination [33]. In a dynamic environment where load and DGs regularly

change status, coordination between fault protection devices during autonomous mode can be

affected [34]. Moreover, ring main and mesh distribution systems will supersede radial systems

in the future [35], and the topology of microgrids may constantly change, resulting in variable

power flow and change in the direction of FC. Hence, new protection techniques that can adapt

accordingly will be required.

Varying Fault Current

The intermittent nature of renewable energy sources causes FC levels in a microgrid to fluctuate

[36]. The variation in FC also depends on the network topology, location, type and number of

DGs, grid impedance and mode of operation. FC is comparably lower in an islanded microgrid

with IIDGs because power electronic interfaces between the microgrid and IIDG inherently limit

the output current for protecting semiconductor components [37]. In contrast, FC provided by

the MG is usually in kilo amps [30]. Additionally, when the microgrid is connected to the

MG, the combined fault contribution of numerous DGs can change short circuit (SC) levels

[38], resulting in relay miscoordination. Fault levels may also vary within the microgrid as

IIDGs are reported to contribute FC around 1.5 to 2 times their rated currents [39, 40]. In

comparison, induction and synchronous machine-based DGs can provide FC of 5 to 10 times

their rated currents [41]. This difference between the FCs in both modes and different DG

types poses the biggest challenge to microgrid protection as it can lead to protection blinding

or nuisance tripping.
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Figure 2.1: Simple AC microgrid

A simple microgrid is shown in Fig. 2.1, operating at 50 Hz and 415 V. A 600 kVA synchronous

generator-based microturbine (SGM) and 400 kW commercial load are connected to Bus 1, and

three 300 kVA PV IIDGs and 200 kW residential load are connected to Bus 2. When DGs

are disconnected, an LG fault on phase A at 50% of a 2km line 1-2 results in a 3.305 kA SC

current. If all the microgrid is linked to the MG while all the DGs are connected, the SC

current increases to 4.052 kA, while it drops to 2.840 kA when all the DGs are connected in

islanded mode. For the microgrid shown in Fig. 2.1, SGM has a higher merit order in islanded

operation. The FC will further reduce if only IIDGs provide the power in islanded mode. This

shows the FC in a microgrid can vary with varying operating conditions.
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Low Voltage Ride-through

Low voltage ride-through (LVRT), also referred to as fault ride-through [42], is the ability of

DGs, specifically wind and PV systems, to stay connected during short intervals of fault con-

ditions and low voltage to avoid cascading failures resulting in widespread power outages. The

existing protection system for DG sources requires modification to ensure that the microgrid

meets LVRT abilities [43]. There is also a need to reconsider the time curve that defines fault

ride-through requirement for the microgrid to cater to protective relay response time at the

distribution level [36].

2.1.2 Control Methodology and Load Management

In grid-connected mode, the MG acts as a buffer, regulating the frequency, voltage and supply-

ing unbalanced power requirements. In autonomous mode, managing these requirements for

steady operation becomes challenging [44]. Besides voltage and frequency control, load fore-

casting, load management and active and reactive power control become difficult [35] due to the

unpredictable nature of renewable energy sources and can result in an imbalance between power

generated and load requirements [24]. Additionally, the hierarchical control scheme in micro-

grids consisting of primary, secondary, and tertiary levels may affect the protection system.

Furthermore, with the rapid decline in the usage of rotating machines in future microgrids,

the power system will have falling inertia and related dynamic frequency stability problems

with sudden load variations. If the equipment fails suddenly, the system will have less time

to recover. This will also limit the significant penetration of renewable energy sources to the

microgrid [45, 30]. IIDG fault response heavily depends on its control method, current limiting

approach and the reference frame in which they have been implemented. Lastly, connecting

different types of DGs and across other vendors, control optimisation may become problematic

[44].
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2.1.3 Communication and Cybersecurity

For fast fault detection (FD) and coordination between protection devices and DG source dis-

patch and optimisation, coordination between DGs, local and central controllers, high-speed

communication will be required for the future grid. This will increase the system cost. More-

over, with the advent of MAS and intelligent electronic devices (IED), standardisation of com-

munication channel will be critical. To attain protection settings interoperability for IEDs

from different vendors, a method to convert the original protection setting files to universally

readable setting files will be required [46]. In [47], the authors have concluded that to achieve

a standardised communication channel, there is a need to use the IEC 61850 protocol and its

extensions when modelling communication infrastructure for the microgrid [48]. With increased

dependency on communication for sophisticated protection and control of microgrids, a signif-

icant cybersecurity threat may arise due to natural catastrophes, human mistakes or attacks

by hackers and can cause wide-scale power outages. Susceptibilities include denial of service,

unauthorised access, and modification of IEDs and SCADA systems [49]. There are also con-

cerns about communication latency, customer privacy and data protection. [50] highlighted the

importance of a robust real-time monitoring setup that attains desired performance and offers

security from cyber-attacks on the system.

2.2 Key Protection Schemes for The Microgrid Concept

Major PS proposed for AC microgrids are critically reviewed in this section, focusing on

analysing the recently proposed protection approaches using modern techniques. A graphi-

cal illustration of the significant protection approaches reviewed in this chapter is shown in Fig.

2.2.

2.2.1 Directional OC Protection

To overcome the bidirectional power flow challenge, a communication-based PS using direc-

tional OC relays in place of reclosers, supported by blocking and inter-tripping protection, is

proposed in [51]. This method assures protection selectivity, irrespective of whether the DGs
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Figure 2.2: Microgrid protection methods proposed in the literature

are connected or disconnected. However, this technique will be ineffective with a fixed plug

setting multiplier and time dial setting due to dynamic changes in fault levels within the mi-

crogrid [52]. Moreover, the output impedance of synchronous machines is inductive, whereas

IIDG units have variable output impedance based on design and controller. Additionally, IIDGs

show unpredictable output impedance in the current limiting mode, which restricts the use of

conventional directional elements to protect microgrids [53, 54].

2.2.2 Adaptive OC Protection

Adaptive OC protection (AP) strategy attempts to overcome conventional and directional OC

PS limitations. In this approach, relay settings are modified using an online system; when

the network topology is modified, generation capacity changes or when the microgrid changes

operational mode.

Two pre-defined setting groups, one for each mode of microgrid operation, obtained through

several transient simulations of three-phase and single-phase faults are proposed in [55]. In

contrast, three different settings for numerical OC relays, calculated offline to deal with the

low value of SC currents in the autonomous mode, are suggested in [56]. In this approach, the

status of the main switch at PCC and a CB dividing the microgrid determines the suitable
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setting group. Initially, the relays are set to setting group A when the microgrid is connected

to the MG. When it goes to the autonomous operation, and there is an upstream fault from the

mid-point CB, relay settings are changed to group B. On the other hand, in the autonomous

mode, when there is a downstream fault from the mid-point CB, relay settings are changed

to group C. Schematic of a modified network diagram with the location of CBs is shown in

Fig. 2.3. Likewise, an AP approach where the IEDs select one of eight setting groups by

monitoring the status of CBs that informs about changes in topology and operational mode of

the microgrid is presented in [57].

Midpoint CB

Microgrid

Main CB

upstream downstream

Ex
te

rn
al

G
rid

Figure 2.3: Implementation of AP scheme with three setting groups

Using pre-calculated settings is not a reliable solution for practical implementation because it re-

quires finding all the possible configurations for correct operation [58]. Moreover, pre-calculated

protection setting groups depend on simulation models with known generation capacity and

topology, unlike the dynamic environment of microgrids. An active network will require contin-

uous and tedious simulations and calculations to update settings. Also, to optimise the adaptive

operation, the offline calculations need to include scenarios like symmetrical and asymmetrical

faults, different DG types, and distribution systems other than radial [58].

To solve this problem, an AP scheme with online calculations based on zero sequence and

quadrature components of fault current for detecting faults in microgrids with a low X/R ratio

is proposed in [59]. The approach considers the mode of operation and status of DGs connected

to adapt to the new settings. Contrary to other methods that consider DG fault contribution
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and microgrid mode, recloser misoperation is used to calculate new pickup settings for the OC

relay in an AP method, proffered in [60].

High-speed communication infrastructure is required to switch between pre-calculated protec-

tion setting groups and online setting calculations, leading to increased costs. Other downsides

of AP schemes include vulnerability to DG frequency and voltage ride-through. Additionally,

most AP schemes only consider the mode of operation and status of DGs, whereas FC is de-

pendent on source impedance, fault impedance, line impedance and load impedance. Hence,

further consideration needs to be given for calculating new settings.

2.2.3 Differential Protection

In the differential protection (DP) scheme, currents on both sides of the protected zone, either

leaving or entering, are commonly compared. If the difference exceeds a predetermined value,

the relay is operated to segregate the zone from other connected lines [34]. A current DP for

islanded MV microgrids is put forward in [61]. This scheme has high sensitivity and efficient

protection discrimination. A downside of using only current signals is that the PS shows incom-

petency for the unbalanced load [62]. To resolve this problem, DP based on impedance phase

angle [63], positive sequence power angle [64], zero-sequence current [65] and zero-sequence

voltages [66] have been employed.

A significant limitation of this PS is the very high implementation cost due to the requirement

of a separate communication network and installation of relays at each node of a protection

zone in the DN when applied to the microgrid concept [67].

2.2.4 Hybrid protection

A unique AP and DP hybrid PS is proposed in [68] to take advantage of both methods. For

financial viability, AP is the default PS, and the DP scheme is implemented for susceptible

areas with critical load and the areas where a high FC is expected. AP also acts as a backup

for DP in case of a communication breakdown. AP and DP Hybrid protection zones are shown

in Fig. 2.4.

22



External Grid

SG~

High 
sensitivity 

Zone

Adaptive 
Protection

Microgrid

Protection 
Zone X

Figure 2.4: AP and DP hybrid protection zones

The techniques consider the number of DGs connected and fault direction to calculate tripping

settings but do not include load contribution to the fault current. Besides, this technique heavily

depends on centralised processing units and communication lines. Network latency may cause

unexpected behaviour; therefore, real-time experimental investigation with a communication

network is needed to verify the feasibility of this method.

Another hybrid PS is proposed in [69]. The approach combines phasor-based and transient-

based protection to improve protection speed and sensitivity. It is also dependent on the

communication network. Unlike many protection methods dependent on communication lines

to measure and transform signals, a communication-less PS is proposed in [70]. The strategy

uses a hybrid tripping characteristic, combining IEEE standard inverse-time characteristic for

OC relay [71] and IEC standard under-voltage relay characteristic [72] to differentiate between
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overloading and low FC. Fixed grading for relays is used to avoid communication, and since

the setting remains the same in both modes, the PS also becomes independent of the mode

of operation. Though a fixed grading margin makes selecting relay settings easier and more

suitable at high FCs, it may not be ideal for lower FCs where relay operating times are longer.

Additionally, coordination cannot be achieved without relay-to-relay grading, a requirement in

the modern power system [73, 74].

2.2.5 Fault Current Limiters

FC is fairly low in autonomous mode, but in grid-connected mode, the DG sources contribute

to the FC that alters the SC levels, affecting the coordination of protective relays [75]. Fault

current limiters (FCL) can overcome this problem and is considered one of the promising

solutions for microgrid protection [76]. They are usually placed in series with DGs to vary

impedance depending on the normal or faulty condition. They are also installed near PCC to

limit FC contribution from the grid towards the microgrid, and vice versa [77]. FCLs can be

inductive [78], solid-state [79], super- or non superconducting [80]. Also, unidirectional [79], and

bidirectional [81] FCLs have been employed. Locations of placing FCL can impact the relay

operation. Optimal settings for directional FCLs are projected in [82]. In contrast, various

possible locations for FCL are analysed in [83]. The results show that the bus with DG is the

optimal location to place FCL for efficient relay operation. On the other hand, [81] suggested

placing it near PCC, as shown in Fig. 2.5.

FCL is a capable solution, but there are a few associated challenges. The relay settings must

be optimised for optimal FCL location, different DGs, normal operation and fault conditions.

For normal conditions, impedance settings should be such that losses are minimised, while for

faults, it should be high enough to limit the FC [84]. Additionally, most FCLs limit current

in both directions, which may affect adaptive OC relay operation and relay coordination [85].

Installing numerous FCLs is not financially viable, and most importantly, the optimal relay

settings and FCL location need to be re-calculated for changes in a microgrid.
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2.2.6 Voltage Based Protection

A novel PS that converts the three-phase AC voltages into DC signals through the dq0 trans-

formation to provide a disturbance signal for identifying the existence of SC fault is presented

in [86]. Some major drawbacks of this method include insensitivity to grid-connected mode

and the inability to detect high impedance and symmetrical faults. Likewise, a PS using a new

voltage-based relay is presented in [87]. The pre- and post-fault active power difference and

sensitivity calculations of voltage measurements are used for relay operation. Only resistive

loads that do not consume any reactive power are considered in this work. Further investiga-

tion with inductive, capacitive and combination different load types is required to examine the

performance of the PS.

2.2.7 Travelling Waves Based Protection

Transients are produced at a fault instance on a power line at the fault location (FL). They

circulate along the line as travelling waves in both directions [88]. These travelling waves

propagate at ultrafast speeds and can quickly offer information on FL. This is the basis for
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travelling waves (TW) based methods, which are primarily used to locate the fault in power

lines, commonly in transmission lines and recently in DN. There aren’t many methods proposed

to detect faults in an AC microgrid using TW-based methods.

TW-based FL can be mainly divided into single-terminal and two-terminal techniques. The

single-terminal TW-based method identifies the location of the fault by comparing the time

between the first TW and the reflected wave arriving at the selected terminal [89]. A technique

using single-end data to locate the fault in a transmission line is proposed in [90]. The polarity

of the voltage and current TW identifies the fault direction. Conversely, a PS for a microgrid

with IIDGs based on the time features and polarity of the first current TW is developed in

[91]. When a fault occurs on line AB, as shown in Fig. 2.6, the first two wavefronts have the

same polarities, or else they are opposite. A limitation of this method is the uncertainty of

the fault inception angle. Protection performance may be affected if the fault occurs when the

voltage is not close to the peak. The major drawback of the single-terminal TW-based method

is that it is difficult to differentiate the two wavefronts having similar energy levels, resulting

in erroneous FL. Additionally, it becomes difficult to detect the reflected wave in the DN with

multiple branches [92]. On the other hand, the main advantage is its lower cost as it doesn’t

require a communication line [93, 94].

Bus A Bus B
Z

Figure 2.6: Lattice diagram of travelling waves

To address the above limitations, [95] proposed a modified mathematical morphology filter
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technique using polarities of TW from both feeders’ ends. A two-terminal TW-based method

uses only the first arrival wavefront on either end. However, it costs significantly more compared

to the single-terminal method due to the requirement of a communication channel [96, 97].

At present, most FL approaches using TW are significantly affected by errors in the arrival time.

To remove this limitation, a multi-terminal TW-based FL technique using residual clustering

is proposed in [98] for active DNs. In the same way, [99] has proposed a fault detection method

using the frequency of TW reflections, contrary to most TW-based methods using the arrival

time of TW reflections. Also, a TW-based fault detection and location method for DN using

vertex cover and metric dimension is proposed in [100]. Likewise, an approach to locating

the fault in a DN, based on calculating the reclosing superimposed TWs, is proposed in [101].

Differing from commonly used TW-based methods for FL, recently, a technique to identify

unintentional islanding using TW reflection and refraction coefficient has been proposed in

[102].

A primary consideration using the TW-based method is the signal processing method for high-

frequency non-stationary TW signals. Various forms of Fourier transforms are not suitable

[103]. WT is considered an appropriate technique [104] but is dependent on the selection

of the mother wavelet [105]. Although TW-based protection functions well for long-distance

transmission lines, it encompasses problems for short distribution lines [95] and requires further

assessment in future research.

2.2.8 PMU Based Protection

A phasor measurement unit (PMU) provides real-time measurements of amplitude and phase

angle of current and voltage, frequency and rate-of-change of frequency. These units are in-

stalled on both ends of a section to indicate changes in values above the threshold. A significant

shift in phase angle and differences in current and voltage waveforms from the normal condition

can exhibit a fault and its location. PMUs have been extensively used in power transmission

networks for a long time and have also been deployed for power system protection control and

monitoring [106]. A significant drawback of using the transmission system PMUs in microgrid
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protection with many DG sources, lines and buses is the very high implementation cost due to

the branched network. Even a small section of the network with one DG requires numerous

PMUs, as shown in Fig. 2.7.
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Figure 2.7: Simple network with multiple PMUs

A PS based on PMU for wide-area (WA) phase angle measurement is presented in [107]. The

rate-of-change of phase angle difference between voltage phasors at PCC and the bus closest

to the fault indicates the presence of a fault. Likewise, a PMU-based integrated impedance

angle PS is proposed in [108]. WA positive sequence components of fault current and voltages

are obtained by placing PMUs at both ends of the distribution line. The difference in values is

used for FD.

Higher accuracy requirements and advancement in signal processing [109] have given way to

the development of micro-PMU (µPMU) [110]. Besides lower costs, these are more accurate

and have higher measurement resolution than PMUs used before [111]. Table 2.1 compares

PMUs and µPMUs.

Table 2.1: Comparison between PMU and µPMU [1, 2, 3]

PMUs µPMUs

Application
Transmission
network

Distribution
network

Angle Accuracy ±1° ±0.01°
Angle Resolution 0.1° 0.001°
Total Vector Error ±0.1% ±0.01%
Readings/second 10–60 100–240
Cost High Low
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An adaptive PS based on µPMUs for the microgrid is presented in [112]. It proposes installing

multiple µPMUs within a microgrid to detect topology changes. Once any change is identified,

primary and backup OC relay settings are reconfigured automatically by an online program.

This centralised PS assumes a fast and reliable communication network. Similarly, a µPMU

based modified WA protection is proposed in [113]. The revised approach uses the ratio of the

sum of voltage phasors measured at each end of the line to the sum of the current phasors flowing

in the line for FD. Furthermore, a method based on PMU measurements and modified revised

state estimation for detecting FL in an active DN is proposed in [114]. After identifying the

faulted zone, residual indices are computed to determine the actual FL. The accuracy decreases

for the fault furthest away from the substation in a radial network. Another technique for FL

in a microgrid based on µPMU measurements is proposed in [1]. Contrary to commonly used

current and voltage signals, voltage phasor and magnitude measurements detect the FL.

A centralised protection scheme for fault detection and abnormal operation identification in

a microgrid using µPMUs is proposed in [115]. Synchronised phasor measurements are sent

to the central microgrid controller. Clarke transformation is then used to compute the fault

coefficient index for fault detection, while abnormality coefficients are calculated to identify

abnormal operations. This centralised protection scheme is dependent on the communication

network. Network latency may add to processing time.

Similarly, a data-driven method to differentiate measurement anomalies from events in micro-

grids using µPMUs is proposed in [116]. The changes are detected by comparing the changes

in voltage phasor measurements of a µPMU with other µPMUs. This method depends on the

defined threshold values to differentiate measurement anomalies from events. On the other

hand, to find the suitability of µPMUs for FL in a distribution system, authors of [117] anal-

ysed its behaviour by introducing noise to measurements. They found that the accuracy of

the traditional impedance method for locating the fault is significantly impacted by µPMU

noise. Additionally, the single-ended impedance method is less accurate than the double-ended

impedance method under the influence of noise. They also suggested that angle error is critical

when high accuracy is required.
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PMU and µPMU based techniques are dependent on communication. For comparison, mea-

surements across WA should also be collected in a time-synchronised manner using a common

GPS time source [118]. Synchronised phasor measurements can also assist in the loss of mains

or islanded mode detection.

2.2.9 Harmonic Content Based Protection

For identifying the FP and location, a methodology based on harmonic content is put forward

in [119]. According to the authors, a noticeable variation in 50 Hz fundamental frequency

amplitude will occur in the FP compared to unfaulty phases. To locate the fault, it is proposed

to calculate total harmonics distortion (THD) of the faulted and un-faulted phase. Likewise,

a PS for islanded microgrids with IIDGs based on injecting a percentage of the 5th harmonic

to the FC is proposed in [120]. A microprocessor-based digital relay at each section extracts

the real-time low-order harmonics employing Fast Fourier transform (FFT) algorithm to detect

the fault. The proposed method doesn’t require communication between devices, nor is it

dependent on high FC magnitude, as long as the current is nearly sinusoidal under normal

conditions and the system has only linear loads; otherwise, PS may misoperate.

On the contrary, [121] proposed to use a 3rd harmonic current component to detect high

impedance faults regardless of location. The magnitude of the 3rd harmonic is not an adequate

fault criterion since the ambient magnitude differs too much over a period of time. While [52]

highlighted that the harmonic component-based PS is unable to detect some faults effectively

besides introducing latencies due to filtering and algorithm computations. Furthermore, some

harmonic component-based PS do not consider transformer connections, especially delta-wye,

which can considerably affect the fault voltage and current waveforms.

2.2.10 Sequence Components Based Protection

Many researchers have proposed protection strategies using one or a combination of sequence

components. A positive-sequence component-based FD method for radial and meshed DNs is

proposed in [122]. It is claimed that this is a unique component, present during all kinds of
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faults. When a fault occurs, there is a significant rise in the magnitude of positive-sequence

current in the respective section of the microgrid, which can be detected by using PMUs on both

ends of every line. The information is passed to a central processing unit that compares before

and after fault magnitude for FD. To locate the fault, downstream and upstream Thevenin’s

equivalent positive-sequence impedances are compared before and after the fault occurrence.

PMUs drastically increase the cost, while the centralised system increases processing time.

Conversely, [123] proposed a method to detect earth faults that are among the most frequent

faults in any power system. Zero-sequence components are used as their structure in the

network remains the same for both modes of microgrid operation. When a fault occurs, there

is an apparent voltage dip. The instantaneous voltage is transformed to a DC signal using

dq0 transformation and then compared to a set value for FD. Likewise, [124] suggested using

zero-sequence components to detect LG faults and negative-sequence components to detect LL

faults.

One of the main risks of using negative- and zero-sequence components-based protection meth-

ods is that due to the presence of single-phase or unbalanced three-phase loads, these com-

ponents are also non-zero under normal microgrid operation, making it difficult to distinguish

between unbalanced and faulty conditions, which can result in nuisance tripping. In addition,

zero-sequence current can not pass distribution transformers with the delta-wye connection.

Hence, alternate techniques for protecting balanced and unbalanced systems are required.

2.2.11 Wavelet Transform Protection

Wavelet transform (WT) can overcome the issues related to symmetrical components. It is

a technique for analysing intermittent, noisy, aperiodic, transient, and non-stationary signals.

In comparison to Fourier and short-time Fourier transform, WT has the benefit of being able

to analyse signals in time-frequency domains [125]. For detailed analysis, WT extracts fea-

tures from the signals. In the high-frequency region, discrete wavelet transform (DWT) has a

comparatively low resolution that can be overcome by wavelet packet transform, which offers

further decomposition of the signal, allowing it to separate the high-frequency transient com-
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ponents [126]. For fault and islanding detection, WT-based techniques are proposed in [127]

and [128]. Both approaches have used Daubechies (dB) as mother wavelet (MW). While the

latter considered both the positive and zero-sequence components, dB10 and LLG faults, the

former only detected LL faults using dB5 and negative-sequence components. DWT is used to

decompose the signal once it has been extracted. It is claimed that power quality issues and

islanded mode can be detected by identifying the difference in parameters before and after the

fault and by comparing them with the threshold values.

FL can also be predicted by subtracting the pre-fault coefficients from post-fault coefficients

[127]. Likewise, a method to detect symmetrical and asymmetrical faults in microgrids based

on dq0 components is given in [129]. Using WT, one of the dq0 components is filtered, and

the desired frequency band is separated. Differences between filtered signal samples are used

for FTC. To synthesise and analyse the wavelet filter, a Haar wavelet is used as MW. The

algorithm is limited to detecting low-impedance faults, as the variations in DC components of

three-phase current make it difficult to detect high-impedance faults. Also, the results are only

valid for low sample frequency.

The fundamental drawback of WT-based protection strategies is the selection of optimum MW

function. Application of different MWs leads to different results [105, 130, 131] that may lead to

misoperation of the protection system. Furthermore, DWT response is significantly influenced

by the sampling rate and the fault inception angle. New FE approaches are thus necessary.

DWT response is significantly influenced by the fault inception angle and sampling rate. Hence,

new FE techniques are required.

2.2.12 Multi-agent Based Protection

An agent in artificial intelligence (AI) is any software or hardware that is capable of making a

decision and taking action autonomously [132]. A MAS is formed when multiple agents with

unique goals interact with the environment and each other [133]. The distinctive characteristics

of agents are very appropriate for protection operations in a microgrid. The distributed mon-

itoring function is ideal for monitoring local parameters. The autonomous operation can aid
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in reducing FD and segregation time. Interaction with other agents is suitable for protection

coordination and fast service restoration, while adaptability to changes in the environment can

enable the application of the AP scheme [134]. Characteristics of a typical agent are presented

in Fig. 2.8.

Agent

Defined boundary
Autonomous 
Unique goal
Adaptability

Other Agents

Environment

Figure 2.8: Characteristics of an agent

An initial MAS architecture for a large-scale transmission network was proposed in [135], com-

prising three layers, as shown in Fig. 2.9. Each layer includes various software agents interacting

to detect faults. FD is achieved by comparing preset values with current and voltage signals.

A trip command is issued to section CB for segregating the fault. Such a MAS for transmis-

sion systems is not feasible for microgrid operation due to its dynamic nature, which requires

frequently changing preset values. To make the MAS proposed in [135] suitable for microgrids,

the authors of [136] modified it and incorporated ML to detect and classify faults.

A modified, decentralised MAS-based PS with a communication network for FL, segregation

and service restoration in a microgrid is presented in [137]. For FD, the phase angle of the

current waveform is measured by PMU on each protected section. The section agent sends a

trip signal to CBs on each side to isolate the fault if the threshold is exceeded after phase angle

comparison. Service restoration is achieved by message exchange between the generator agent,

restoration agent, load agent and DGs. Similarly, a decentralised MAS-based AP is presented

in [138] for FD and protection coordination. Different agents continuously measure three-phase
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signals. A fault is detected when agents identify a difference in measurements before and after

a fault event. Fig. 2.10 shows a bi-layered representation of a decentralised MAS, suggested

in [139]. Moreover, decentralised MAS-based protection coordination schemes are given in

[140, 141].

On the other hand, a centralised MAS-based AP is proposed in [142]. MAS is used for protection

coordination. Digital relays transition to one of the three pre-calculated configurations for FD

depending on changes in the microgrid. Another centralised MAS-based PS is proposed in [143].

The disparity of the current magnitude identified by agents is used for FD. AP, based on offline

calculation for directional OC relays, is used as backup protection. Similarly, an AP method

presented in [144] employs a tiered MAS for updating relay setting groups through coordination

according to PCC status. Three pre-calculated settings are used, which are appropriate for a

small-scale microgrid or static grid.

Alternatively, a MAS-based PS employing N-version programming is presented in [145]. Three

N-version software units act as three protection agents. Each agent has a different FD tech-

nique. One agent uses Clark’s transformation of three-phase current for FD, another uses OC

protection, and the third agent uses the positive sequence phase differential method. A polling

method aids in finalising the FD process. Also, a variable tripping time DP scheme based on

MAS is projected in [146]. Various agents gather measurements, and then the tripping rule is

applied if the threshold value is exceeded. It is claimed that the proposed scheme is not depen-
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Figure 2.10: Physical and logical layers of a decentralised MAS

dent on the status of the microgrid, network topology or generation sources. Nevertheless, this

may not be a financially feasible solution due to differential relays. Conversely, a MAS-based

WA AP for backup relays is projected in [147].

2.3 Application of Artificial Intelligence in Microgrid

Protection

With the development in AI techniques, the focus has shifted to using ML algorithms and DL

for solving microgrid protection issues.

2.3.1 DT Based Protection Methods

A DT-based DP scheme is proposed in [148]. Discrete Fourier transform is used for FE. Seven

differential features are computed by measuring the rate-of-change of voltage, frequency, power

angle, negative sequence current and voltage, active and reactive power for both sides of the
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feeder. Similarly, a microgrid FD and FTC method is presented in [149]. Current signals are

processed using WT to compute features, including change in energy of the wavelet coefficients,

standard deviation and entropy. Out of the six detail coefficients (d1-d6), it was observed that

coefficient d3 was the most relevant as it contained important information during fault events.

After obtaining the features for the fault and normal operation, a data set is constructed to

train the Decision Tree (DT) for fault detection in the microgrid, as shown in Fig. 2.11.

Besides FD, faults are also classified using wavelet-based features derived from the current sig-

nal’s negative- and zero-sequence components. Results showed that fault classification achieved

high accuracy, while FD was reasonably accurate.

Correspondingly, a protection method based on DT is proposed in [150]. Only voltage signals

are used for FE by short-time Fourier transform, which may result in nuisance tripping as

three-phase voltage waveforms can fluctuate in case of transformer energising, heavy load and

capacitor switching and motor starting. Nine features are used to classify symmetrical faults,

and six features are used for asymmetrical fault classification. The main limitation of the

transform used for FE is the fixed temporal resolution.

DT algorithms are fast learners but inherently have high variance and suffer from overfitting

the training data samples [151, 152], which means that these models memorise the variations

of the training data. A slight change in the data may result in a significant change in DT

structure.

2.3.2 BT and RF Based Protection Methods

Bagged Trees (BT) and Random Forest (RF) are ensembles of DT. In BT, all features are

available to choose from at each decision split. In RF, at each decision split, a subset of fea-

tures is available to minimise correlation between individual trees [153, 154]. These algorithms

can overcome the overfitting problem of DT by growing many DTs instead of just one. The

predictions of each DT are aggregated to make the final prediction [155].

An RF-based fault event detection method for the autonomous microgrid is put forward in

[156]. Training data preparation is initiated using a Monte Carlo-based simulation, and then
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a dynamic response database of each of the four generators is prepared. Pre-defined features

are extracted, and a dataset is built for training the RF classifier. The trained classifier is

tested on new data to evaluate the proposed algorithm. The study has numerous limitations,

Figure 2.11: DT for FD

37



including disregard for missing data and incorrect classification due to time lag, short and

biased data window selection during faults, constant load, and dispatchable generation from

non-dispatchable sources. More importantly, only a single type of three-phase fault causing

rotor angle instability was considered for detecting dynamic changes. On the other hand, a

protection method for AC microgrids based on machine learning is developed in [157]. Besides

detecting faults, they are also classified. Ten feature extraction techniques are applied to three-

phase voltage, current, short-circuit current and frequency signals. These techniques include

peaks metric, max factor, first and second principal components standard deviation, kurtosis,

total harmonic distortion, skewness, shape factor and crest factor. Thirty-five classification

learners are trained and tested. All other ML classifiers were outperformed by RF. The pro-

tection technique is superior to other approaches because of its higher accuracy in detecting

and classifying faults besides identifying the faulted phase and high protection sensitivity for

various operating situations. Similarly, RF-based methods for fault detection are put forward

in [158, 159]. Multiresolution decomposition of WT and Wavelet Packet Transform are used to

extract features from the voltage and current signals. Features include total harmonic distortion

and negative sequence components. FE process presented in [158] is shown in Fig. 2.12.
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Figure 2.12: WT-based FE process

Conversely, an FD scheme based on BT is presented in [160]. Windowed FFT and WT are used

for FE from voltage and current waveforms. Haar wavelet is used as MW. FE by FFT consists of

a variation in the first harmonics’ phase angles and harmonic components’ magnitude of voltage

38



and current signals. In comparison, FE extracted by WT includes the change in wavelet energy

and change in peak values of wavelet coefficients.

2.3.3 Semi-supervised Metric Learning

A technique to detect high impedance faults is presented in [161]. PMU placed at each bus

collects high-resolution time-synchronised current and voltage samples. Discrete Fourier trans-

form and Kalman filtering harmonics decomposition are used for FE. Features include angle

between and magnitude of current and voltage sequence components and THD. Features are fed

to information-theoretic semi-supervised metric learning [162], which is a self-training approach

for FD. Probability ranking is applied to locate the fault.

2.3.4 Protection Based on Neural Networks

An FTC method based on Feedforward neural network (FNN) is presented in [163]. Discrete

Fourier transform is used to compute RMS values of three-phase voltage and current signals

which are input to FNN. There are 6 neurons in the input layer, 7 in the first and 5 neurons

in the second hidden layer. FNN is the simplest of all neural networks and has been reported

to be incapable of extrapolating [164]. Additionally, the performance of multi-layered FNN is

affected by limited, sparse and noisy data [165].

In the same way, a PS for microgrids with double-fed induction generators-based wind turbines

is put forward in [166]. DWT is used for FE from current and voltage signals to train Extreme

learning machine (ELM) for FD and FTC. ELM algorithm is a single-hidden layer FNN. In

ELM, the number of neurons are randomly chosen, and output weights are logically determined

[167]. Even though ELM is a fast-learning method, it has two main limitations. The random

allocation of neurons adds further uncertainty problems in learning and approximation. More-

over, it has been found that it has reduced generalisation ability [168]. Generalisation is the

capacity of a model to do well on unseen data taken from the same distribution as the one used

for training the model [169].
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2.3.5 Multi-classifier Approach

A data mining approach to classifying fault and no faults in an isolated microgrid is given

in [170]. Symmetrical components are used as features to train Näıve Bayes (NB) and DT

models. Results show that DT outperformed NB for the given dataset. Only typical cases

of load switching and a few faults are used for generating training data instead of a large

dataset with numerous events over long periods. Also, both classifiers have limitations. NB

does not require a large dataset for training, but this also limits learning. On the other hand,

there is an overfitting problem with DT classifiers. Additionally, a protection method for

low and medium-voltage AC microgrids based on supervised machine learning and principal

component analysis is proposed in [171]. Bolted, low and high-impedance LG faults and faulted

phases are identified. Three feature extraction techniques are applied to short-circuit current,

phase voltage and line-to-line voltage for the three phases. The feature extraction techniques

include the first and second principal components and standard deviation. SVM, KNN and BT

performed better than other ML classifiers.

On the other hand, a novel method for detecting AC microgrid faults using wavelet functions

and ML classifiers is proposed in [172]. In contrast to many researchers who have used a single

wavelet function, they have used the optimal combination of wavelet functions identified by the

particle swarm optimisation technique. After identification of wavelet combination, wavelet

coefficients, calculated using DWT, are fed to various classification algorithms, including DT,

k-nearest neighbours, Support vector machine (SVM) and NB. Statistical performance compar-

ison shows that the k-nearest neighbours classifier shows the highest accuracy among all other

classifiers. Numerous fault types, different FLs, resistance values and both modes of microgrid

are used to simulate different conditions.

Another ML-based microgrid PS is proposed in [173]. Hilbert-Huang transform is used to

extract useful differential features. Of the three ML techniques used, the ELM-based approach

outperformed NB, which was better than SVM. A core shortcoming of the transform used is

that in the low-frequency band, it generates unwanted components and is also inefficient in

isolating some of the low-energy components of the signal [174].
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In a different way, an adaptive OC and distance PS using ANN for fault classification and

SVM for FL is presented in [175]. Relay settings are updated based on operating states. The

limitations of the work include using a single-neuron ANN model and distance protection.

Impedance-based protection is significantly affected by DG fault behaviour and is not suitable

for short distribution lines.

2.3.6 DNN Based Protection Methods

Deep learning is a growing AI technique that overcomes the shortcomings of a typical artificial

neural network (ANN). Not all neural networks are DNN. A DNN consists of three or more

layers, including input and output layers, whereas other neural networks can comprise just one

layer.

A PS based on deep neural network (DNN) is proposed in [176]. A gated recurrent unit,

a recent variation of neural networks, is used to build the DNN. It overcomes some of the

limitations of ANN by adding extra recurrent connections in the hidden [177]. Branch current

is measured, and then DWT is used for FE. Features include standard deviation, skewness,

energy, minimum, maximum, and mean value of the coefficients, input into DNN for FTC and

FP identification. The proposed scheme can also predict FL. Fig. 2.13 illustrates the proposed

methodology.

3-phase current DWT FE

DNN for FTC DNN for faulted phase 
identification DNN for fault location

No fault | LG | LLG | LL | LLLG A | B | C Fault location

Figure 2.13: Schematic of DNN-based PS

Another DNN-based protection technique is presented in [178]. Three-phase current signals

are input to DNN for FD. With only 3 input neurons, the first hidden layer uses 50 neurons,
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while the second hidden layer uses 25 neurons. Using such a large number of neurons in the

hidden layers has no advantage as it may result in overfitting [179]. Additionally, raw data is

fed to the hidden layers without pre-processing, resulting in overfitting. On the other hand, an

FD method for single-phase grid-connected photovoltaic Inverters using deep AlexNet CNN is

projected in [180]. Voltage and current signals are normalised and equally segmented before

converting them to 2D images as input to the CNN. Although this technique is suitable for

offline pattern recognition and CNN performs better than other neural networks on image

data, it has many practical limitations. Converting the signals to an image requires additional

memory and processing time. Many other AI techniques can process the signals directly without

needing image conversion. Layers of the general AlexNet CNN are shown in Fig. 2.14.

Feature Learning Classification

Input  Convolution  Pooling  Convolution Pooling Flatten Fully connected Softmax

Input 1

Input 2

Input 3

Input 4

Output

Figure 2.14: General AlexNet CNN architecture

2.4 Comparison of Protection Techniques for AC Micro-

grids and Related Characteristics

To summarise the methodology proposed by different authors and to highlight important char-

acteristics, various comparisons are shown in tabular form. A comparison of AC microgrid

protection techniques without Artificial Intelligence is shown in Table 2.2. The method used

for fault detection, the benefits of the proposed scheme and the limitations of the work are

presented. On the other hand, Table 2.3 shows a comparison of Artificial Intelligence-based

microgrid protection techniques. Many different Supervised, Semi-supervised, Multi-classifier
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and Deep learning-based methods with their advantages and limitations are presented. Addi-

tionally, the functional characteristics of protection systems are comprehensively compared in

Table 2.4. This gives a complete picture of the most suitable protection method for various

protection needs. Lastly, a novel comparison of FE techniques and features extracted for re-

cently proposed AI-based PS is given in Table 2.5. This unique comparison table highlights

the feature extraction techniques and the features extracted to train the machine learning algo-

rithms applied recently. It shows that WT is the most common FE technique. On the contrary,

the commonly used features are negative sequence components, THD, Standard deviation, the

angle between and magnitude of current and voltage sequence components, entropy and change

in energy of the wavelet coefficients of the current signals.
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Table 2.2: Comparison of AC microgrid protection techniques without Artificial Intelligence

No. Scheme Method Advantage Limitations

1.
Directional OC

[51, 54]
Current threshold Simple and less expensive Fixed settings not suitable for a dy-

namic network.

2.
Adaptive

[58, 59, 60]
Current-based Suitable for Dynamic network Recalculations required when fixed

setting groups are used.

3.
Differential

[63, 64]
Difference between param-

eters on each side of pro-

tected zone

Very effective for DN with DG

and both modes of microgrid

operation

Financially not viable.

4.
Hybrid

[68, 69, 70]
Current-based Combines benefits of different

PS

Real-time experimental investiga-

tion is needed to verify the feasibil-

ity.
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5.
FCL-based

[75, 84]
External device used with

OC protection

Deals with FC variations in

two modes of microgrid oper-

ation

Optimal relay settings and FCL lo-

cation to be re-calculated for any

changes. A trade-off has to be made

between impedance settings during

normal and fault conditions.

6.
Voltage-based

[86, 87]
Transformation of voltage

signal to provide a distur-

bance signal

Suitable for islanded mode. Inability to detect high impedance

and symmetrical faults

7.
Travelling waves

[90, 94, 102]
Polarity and time features

of initial current

Potential to be become an im-

portant PS

Complicated calculations. Not suit-

able for short distribution lines.

8.
PMU-based

[107, 1, 116]
Measurement difference

above the threshold

µPMUs have lower costs, are

more accurate and have higher

measurement resolution

Synchronisation problems.

9.
Harmonic content

[120, 52]
Variation in fundamental

frequency

Suitable for specific fault

types.

Unable to detect some faults effec-

tively. Some harmonic component-

based PS do not consider trans-

former connections, especially delta-

wye.
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10.

Sequence

components

[122, 123]

Best suited to detect faults

where delta-wye distribu-

tion transformers are not

connected.

Variation in zero-, negative- or

positive-sequence components

Single-phase or unbalanced three-

phase loads may cause nuisance trip-

ping.

11.
Wavelet transform

[127, 128]
Signal transformation and

differences between filtered

signal samples

Best suited to identify pat-

terns in signals

The main shortcoming of PS using

WT is the selection of an optimal

MW.

12.

Multi agent

systems

[137, 143]

Advanced signal process-

ing and communication be-

tween agents

Offers a potential solution to

incorporate internet of things

(IoT) devices

Complicated, still evolving and re-

quires real-time experimental inves-

tigation to verify the feasibility.
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Table 2.3: Comparison of Artificial intelligence based microgrid protection techniques

No. Scheme Method Advantage Limitations

13.
MAS combined

with ML [136]
Combines the benefit of

communication by MAS

and intelligence offered by

ML.

Evolving and requires real-

time experimental verifica-

tion.

14.
SML DT-based

[150, 152]
Advanced signal processing.

DT-based

Simple and fast learners Suffers from high variance and over-

fitting issues.

15.

SML BT &

RF-based

[155, 158]

Advanced signal processing.

Ensemble of DTs

Overcomes the overfitting

problem of DT.

Results vary for Split criterion, the

number of trees grown and predic-

tors used.

16.

Semi-supervised

metric learning

[161, 162]

Advanced signal processing. Self-training approach Black-box model, still evolving.
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17.
Neural networks

[166, 163]
Advanced signal processing.

Neuron connection in differ-

ent layers

Tends to be more accurate

when a large data set is used

for training.

Limited, sparse and noisy data af-

fects the outcome. A large number

of neurons in the hidden layers result

in overfitting.

18.
Multi-classifier

[172, 175]
Advanced signal processing.

Comparing the output of

multiple classifiers

Makes it easy to compare

models with the highest accu-

racy.

Same features may produce different

accuracy for different ML models.

19.
Deep learning

[176, 178]
Advanced signal process-

ing. Computational models

comprising multiple layers

Best suited for Big data appli-

cations

Black-box model. Requires large

amounts of processing power.
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Table 2.4: Comparison based on functional characteristics of protection systems

No. Scheme Speed Sensitivity Selectivity Reliability Cost

1. Directional OC Moderate Moderate Moderate Low Inexpensive

2. Adaptive Fast High High High Reasonable

3. Differential Fast Very High High High Very Expensive

4. Hybrid Fast High High High Expensive

5. Fault current limiters Fast Moderate Low Moderate Expensive

6. Voltage based Moderate Low Low Low Reasonable

7. Travelling waves Very Fast High High Moderate Reasonable

8. PMU-based Moderate High High Moderate Expensive

9. Harmonic contents Moderate Moderate Moderate Moderate Reasonable

10. Sequence components Moderate Moderate Moderate Moderate Reasonable

11. Wavelet transform Fast High High Moderate Expensive

12. Multi-agent systems Moderate High High High Expensive
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13. MAS with ML High High High High Expensive

14. SML DT-based Fast High High Moderate Expensive

15. SML BT & RF-based Fast High High High Expensive

16.
Semi-supervised metric

learning
Fast High High Moderate Expensive

17. Neural networks Fast High High High Expensive

18. Multi-classifier approach Fast High High High Expensive

19. Deep learning Fast High High High Expensive
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Table 2.5: Comparison of FE techniques and features extracted for recently proposed AI-based PS

No. Scheme FE Technique Features Extracted

1. [148]
Discrete Fourier trans-

form

Rate-of-change of voltage, frequency, power angle, neg-

ative sequence current and voltage, active and reactive

power accuracy.

2. [149] Wavelet Transform
Standard deviation, entropy and change in energy of the

wavelet coefficients of the current signals.

3. [150]
Short-time Fourier trans-

form

Linear combination of energy and entropy of three-phase

voltages.

4. [157]

Peaks metric, max factor,

first and second princi-

pal components standard

deviation, kurtosis, to-

tal harmonic distortion,

skewness, shape factor

and crest factor.

All ten feature extraction techniques are applied to three-

phase voltage, current, short-circuit current and Fre-

quency signals.

5. [158]
Multiresolution decompo-

sition of WT

Negative sequence components and THD of current and

voltage signals.51



6. [159]
Wavelet Packet Trans-

form

Negative sequence components and THD of current and

voltage signals.

7. [160]

Windowed Fast Fourier

transform and Wavelet

Transform

Variation in first harmonics’ phase angles and harmonic

components’ magnitude of voltage and current signals.

Also, change in wavelet energy and a change in peak val-

ues of wavelet coefficients.

8. [161]

Discrete Fourier trans-

form and Kalman filtering

harmonics decomposition

The angle between and magnitude of current and voltage

sequence components and THD.

9. [163]
Discrete Fourier trans-

form
RMS values of three-phase voltage and current signals

10. [171]
Principal component

Analysis

Standard deviation, first and second principal compo-

nents of short-circuit current, phase voltage and line-to-

line voltage for each phase.

11. [176]
Discrete Wavelet Trans-

form

Standard deviation, skewness, energy, minimum, maxi-

mum, and mean value of the coefficients obtained from

current signals.

12. [178] Not Used Three-phase current signals are directly fed to DNN.
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2.5 Open Microgrid Protection Research Problems

Based on this review, future research can be directed towards hybrid protection to combine

their benefits to solve microgrid protection issues. With the advancement in communication

technologies, autonomous systems like multi-agents using computational intelligence with real-

time data analysis and application of SML for adaptability seem to be the future trend in

microgrid protection research. AP scheme using MAS incorporating SML and HDL will increase

the sensitivity of detecting the faults, speed of segregation and reliability of coordination. Ideas

for future research involving microgrid protection are presented below:

a. Protection of IIDG dominant microgrids, where inverters reveal non-linear behaviour with

their impedance characteristics and fault ride-through transients when a fault occurs,

requires further research.

b. Studies of DG sizing and allocation considering fault ride-through behaviour of different

DG types and their impact on grid performance still have much research potential.

c. Development of a less expensive and more accurate FL method for all faults in an AC

microgrid.

d. Development of less expensive IoT technologies and devices for microgrid protection and

measurement. µPMUs have brought the cost down, but there is still room for new high-

frequency IoT-based smart sensing and measuring devices for wide-area monitoring and

to communicate with IEDs and other devices as agents.

e. Investigation of hybrid PS combining the advantages of multiple PS is also an overlooked

research domain.

f. Primary relay settings are dynamically and automatically updated in adaptive, MAS and

ML-based protection schemes to account for fault current variations. There is a need

to investigate the possible miscoordination between the primary and backup relays as a

result of different relay settings within the active distribution network.

g. With the gradual modification of the network, various relays, IEDs, and IoT devices
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from multiple vendors will also be employed. New methods to transform protection

settings into globally readable settings files will be necessary to achieve protection settings

interoperability.

h. Development of intelligent relays, reclosers and new microprocessor-based current inter-

rupter devices that can protect the system in centralised and decentralised schemes and

are compatible with MAS, ML and DL.

i. The MAS-based protection scheme is a promising method. However, it has not been

extensively investigated in the literature, and there is a significant research gap in this

area.

j. Development of detailed simulation models of meshed microgrids, incorporating many

different DG sources and types for different loads and fault conditions. Such detailed

models will enable the collection of close-to-real-world synthetic data for ML and DL.

k. New feature extraction techniques are required to improve the speed, accuracy and ro-

bustness of ML and DL models for microgrid protection.

l. Applications of ML and DL offer promising solutions to most microgrid protection prob-

lems. However, not much research has been put into this area, providing many researchers

with a massive opportunity.

m. Future grids will depend heavily on communication as most modern protection techniques,

including adaptive, PMU, WT, MAS, and AI-based, require a communication network.

Studying the effects of communication network latencies and noise on protection systems

is an important research area.

n. With increased dependency on communication for sophisticated protection and control

of microgrids and use of IoT devices, a significant cybersecurity threat may arise due

to natural catastrophes, human mistakes or attacks by hackers and can cause wide-scale

power outages. Additionally, these attacks may result in denial of service, unauthorised

access and modification of IEDs and SCADA systems, invasion of customer privacy and

data. Hence, designing resilient protection schemes to deal with cyberattacks is a critical
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research domain.

o. There is also a need to develop decentralised backup protection to detect faults in both

modes of microgrid operation in the event of communication or primary protection failure.

p. Real-time experimental investigation of numerous proposed techniques is also required to

verify the feasibility.

2.6 Summary

This chapter encompasses the current status of DN protection, its limitation in active DN,

significant protection challenges associated with AC microgrids, a wide-ranging critical review

and classification of various methods that have been proposed to solve the protection challenges

in microgrids and their shortcomings.

Directional OC and AP methods have been proposed to overcome the limitations of tradi-

tional overcurrent PS. However, with a fixed plug setting multiplier, time dial settings and

pre-calculated setting groups, these techniques will be ineffective due to dynamic changes in

fault levels within the microgrids. Therefore, high-speed communication infrastructure is re-

quired for online setting calculations, differential and hybrid protection methods, but financial

viability, network latency and cyber security are crucial issues with such methods. FCL offers a

possible solution but requires optimisation for FCL location with variations in operating condi-

tions. Also, impedance settings require a trade-off to minimise losses during normal operation

and limit current when a fault occurs.

On the other hand, WA PMU-based methods are expensive. Harmonic contents and sequence

component-based techniques are affected by delta-wye transformer connections. Similarly, WT-

based methods are limited by the selection of mother wavelets. ML and DL methods require a

large dataset for various conditions to avoid overfitting.

Based on the literature review, it seems primary and backup protection based on hybrid pro-

tection, autonomous systems like multi-agents using computational intelligence with real-time

data analysis and application of ML and DL for adaptability can offer promising microgrid
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protection solutions. AP schemes using MAS incorporating ML and DL will increase the sensi-

tivity of detecting the faults, segregating speed, and coordination reliability. Moreover, there is

a need for FP identification, besides fault detection and classification, for accurate single- and

double-pole tripping, which will increase system resilience and economic benefits. Extensive

research regarding microgrid protection, particularly for autonomous mode, is still required.
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Chapter 3

Classifying LG faults in an AC

Microgrid using Supervised Machine

Learning

3.1 Introduction

In recent years, the growing global demand for renewable energy sources has led to the rapid

expansion of microgrids, which are small-scale, localised power distribution systems that can

operate independently or in conjunction with the main grid. These microgrids offer numerous

benefits, including enhanced energy efficiency, increased grid resilience, and a reduced carbon

footprint. However, as microgrids become more prevalent, understanding and mitigating po-

tential faults within these systems becomes of paramount importance to ensure their safe and

reliable operation.

This chapter is based on the work reported in M. Uzair, L. Li, J. G. Zhu, “Identifying line-to-ground
faulted phase in low and medium voltage ac microgrid using principal component analysis and supervised
machine-learning”, Proc. IEEE 2018 AUPEC, pp. 1–6, Nov 2018 and M. Uzair, M. Eskandari, L. Li, and J.
Zhu, “Machine Learning Based Protection Scheme for Low Voltage AC Microgrids,” Energies, vol. 15, no. 24,
p. 9397, 2022.
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Among the various faults that can occur in electrical systems, line-to-ground faults are the most

common and particularly significant due to their potential to disrupt power flow, compromise

system stability, and pose safety hazards [27]. Line-to-ground faults are categorised based on

their resistance: bolted, low-resistance, and high-resistance faults. Each type of fault has its

unique characteristics and implications.

Bolted line-to-ground faults represent one of the most severe fault conditions in electrical sys-

tems. These faults occur when a conductor comes into direct contact with the ground or another

conducting surface, resulting in extremely low fault resistance and extremely high short-circuit

currents, which can lead to catastrophic failure if not addressed promptly. On the other hand,

low-resistance line-to-ground faults exhibit slightly higher fault resistances compared to bolted

faults. While the fault currents in such scenarios may be lower, they can persist for longer

durations, making them a critical concern for microgrid stability.

Similarly, High-resistance line-to-ground faults represent a unique challenge in electrical sys-

tems, especially in microgrids with distributed energy resources. These faults exhibit signifi-

cantly higher resistances and may go unnoticed in traditional fault detection schemes, leading

to prolonged fault durations and potential safety hazards. Moreover, high resistance faults can

result in voltage fluctuations and power quality issues.

Detecting line-to-ground faults in microgrids using traditional protection methods can be chal-

lenging for several reasons, including fault resistance, distributed energy resources (DERs), and

bidirectional power flow. Traditional fault detection schemes, which are primarily designed for

large centralised power systems, may not be directly applicable to microgrids. The development

of innovative fault detection techniques for microgrid systems, such as using Supervised ML,

considering the dynamic nature and operational modes, is required.

3.2 Supervised Machine Learning

Supervised machine learning (SML) is a powerful subfield of artificial intelligence that involves

the training of algorithms to make predictions based on labelled data. The primary goal of
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supervised machine learning is to develop a model that can accurately map input data (features)

to the corresponding output labels. Features, also known as input variables or attributes or

predictors, play a critical role in this process. They represent the measurable characteristics of

the data, which the algorithm utilises to identify patterns and relationships between the inputs

and outputs.

Selecting appropriate features is a fundamental step in supervised learning as they significantly

impact the model’s performance and generalisation ability. Well-chosen features provide mean-

ingful information and help the model distinguish relevant patterns, leading to better predictive

capabilities.

3.3 Shortcomings of Wavelet Transform Based Feature

Extraction

A common tool for analyzing non-stationary, noisy, aperiodic, transient, and intermittent sig-

nals is wavelet transform (WT). While it has been a popular choice for feature extraction in

ML-based microgrid protection schemes, it has certain limitations. As mentioned in Chapter 2,

the main shortcoming of protection schemes using WT for feature extraction for ML is select-

ing an optimal mother wavelet basis function. The choice of mother wavelet can significantly

impact the results of feature extraction, potentially causing protection system misoperation.

Additionally, the effectiveness of discrete wavelet transform (DWT) based feature extraction

can be affected by the fault inception angle and the sampling rate of the data acquisition system,

leading to inconsistencies in the extracted features and impacting the ML model’s generalizabil-

ity. Consequently, most DWT-based protection techniques or derived features are efficient for

specific fault types and operating conditions. However, applying such models to unseen data

with different characteristics can result in misclassifications and inaccurate protection opera-

tions [157]. Furthermore, depending on the chosen wavelet function and decomposition level,

WT can be computationally complex and expensive, especially for real-time applications with

high data volumes.
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Approximate and detail coefficients of a current signal for a low resistance LG fault on phase

A using Symlets 2 (Sym2) as MW are shown in Fig. 3.1.

Figure 3.1: Sym2 approximate and detail coefficients for a low resistance LG fault on phase A
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WT shortcoming is demonstrated by comparing the root-mean-square error (RMSE) for the

reconstructed current signals using all the approximate and detail coefficients of a few wavelets

for a low-resistance LG fault on phase A in Fig. 3.2. The RMSE seems to be negligible when all

the approximate and detail coefficients are used to reconstruct the signal, but it is not feasible

to use all the coefficients.
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Figure 3.2: RMSE for the reconstructed signals using all the coefficients of different wavelets

In contrast, when the detail level coefficient corresponding to maximum relative energy is used

to reconstruct the signal, there is a significant change in RMSE for different wavelets. A

comparison of Level 9 detail coefficient of a current signal IphA and reconstructed signal for a

low resistance LG fault on phase A using Symlets 5 (Sym5) as MW is shown in Fig. 3.3.
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Figure 3.3: IphA and Sym5 reconstructed signal using Level 9 detail coefficient for a low
resistance LG fault on phase A
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RMSE comparison for the reconstructed current signals using only the Level 9 detail coefficient

corresponding to the maximum relative energy of different wavelets is depicted in Fig. 3.4.
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Figure 3.4: RMSE for the reconstructed signals using Level 9 detail coefficient of different
wavelets

Due to the above-mentioned limitations of WT, this research proposes exploring alternative fea-

ture extraction techniques. Specifically, we investigate the application of Principal Component

Analysis (PCA) to obtain predictors for machine learning-based microgrid protection.

3.4 Application of PCA to Obtain Predictors for Super-

vised ML

PCA has the potential to overcome the shortcomings of WT in the selection of an optimal

mother wavelet basis function. It is a multivariate analytical method, and its primary objective

is to reduce dimensionality. The goal is to find latent features that drive the patterns instead

of using raw signals that will increase processing time and overfitting. This extraction involves

transforming the original variables into a new set of orthogonal variables known as principal

components [181]. In this study, PCA identifies the composite features or principal components

of the three fault signals, line-to-line voltage (u1), phase voltage (u) and short-circuit current

(Ish), for each phase. The fault is applied at different instances and for different spans to have

a variety of data for training the ML classifier.
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3.4.1 EMT Simulations for Data Collection

The test microgrid shown in Fig. 3.5 is used for simulations to collect fault and NF data. Three

different types of loads are used. These include a 68% dynamic industrial load connected to 11

kV Bus, the unbalanced commercial load connected to Bus 3, and the unbalanced residential

load connected to Bus 4. The DG sources include PV units, wind, and synchronous generators.

Figure 3.5: Test Microgrid
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Data for the 0.1-sec window is recorded through EMT simulations for each case. A step size of

0.0001 sec is used to obtain more than 1000 samples for each scenario. This data is then pre-

processed and labelled for supervised ML. Using raw signal with 1000 samples for training ML

will increase processing time and introduce overfitting. In contrast, manual inspection to obtain

combinations that give the largest variations when the fault occurs compared to the normal

operation is impossible. Moreover, using multi-dimensional data on a complex classification

algorithm can result in very high variance and prolonged processing time. To overcome these

issues, the application of PCA is proposed to reduce the dimensionality of input features that

will optimise the performance of the classification algorithm. Three different cases are used,

including high impedance ground fault with 400Ω fault resistance, bolted ground fault, which

has 0Ω fault resistance, and low impedance with ground fault 5Ω fault resistance were simulated

for five different fault inception instances and duration at 400 V Bus 4. Symbols u1, u and Ish

are defined in section 3.4.
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Figure 3.6: High impedance ground fault on phase A at 0.03 - 0.07 sec on Bus 4
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As illustrated in Fig. 3.6, a high-impedance ground fault event presents minimal line-to-line

(u1) and phase voltage (u) deviations. Furthermore, the measured fault current magnitude

falls below the detection threshold of conventional OC protection relays. This observation

underscores the limitations of traditional OC relays in identifying high-impedance ground faults

due to their inherent reliance on significant current surges for fault detection. In contrast, it is

visible in Fig. 3.7 that the voltage for FP collapses to zero, signifying a direct short circuit to

the ground. This characteristic behaviour aligns with the low fault impedance of bolted faults,

essentially creating a near-perfect connection between the phase conductor and the grounding

system.
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Figure 3.7: Bolted ground fault on phase B at 0.025 - 0.075 sec on Bus 4

In contrast to the zero phase voltage, the line-to-line voltages demonstrate noticeable deviations.

This observed imbalance can be attributed to the effective shorting of one phase to the ground

by the bolted fault. Consequently, the voltage readings between the remaining non-faulted

phases become unbalanced, reflected in the significant departures from the nominal line-to-line

65



voltage levels typically observed during normal operating conditions. Furthermore, the current

spikes directly result from the low impedance path established by the bolted fault, enabling a

substantial current flow from the source to the grounded phase. The magnitude of this fault

current can significantly exceed the normal current levels within the microgrid.

Fig. 3.8. shows variations in voltage and current waveforms for a low impedance ground fault.

These faults have an impedance higher than bolted faults but much lower than high-impedance

faults. The fault current magnitude is significant, lower than a bolted fault, but still exceeding

normal operating currents. The voltage on the faulted phase decreases compared to normal

conditions but does not drop to zero like in a bolted fault. Line-to-line voltages also show

variations.
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Figure 3.8: Low impedance ground fault on phase C at 0.01 - 0.03 sec on Bus 4
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3.4.2 Principal Component Analysis for FE

The first step in PCA is to calculate the covariance matrix. The covariance matrix (CM) of

any two variables x and y, is the matrix of pairwise covariance (cov) calculations between each

variable.

CM =

 cov(x, x) cov(x, y)

cov(y, x) cov(y, y)

 (3.1)

where,

cov(x, y) =

∑N
i=1 (xi − x̄)∗ (yi − ȳ)

N − 1
(3.2)

x̄ and ȳ are the mean values of x and y, respectively and ∗ denote the complex conjugate.

Eigenvalues are used to calculate the eigenvectors for the covariance matrix, which are then

used to extract patterns. The first eigenvector represents the eigenvalue that has the highest

variance e⃗v1. For the eigenvalue, which has the next highest variance, the second eigenvector

corresponds to it, and so on. The matrix that results is as follows:

E =
[
e⃗v1 e⃗v2 . . e⃗vp

]
(3.3)

Only the first and second eigenvectors are selected to obtain the first (pc1) and second principal

components (pc2) that capture most of the variations in the data are used. Smaller principal

components are ignored, which represent the noisy variations of those patterns. Variation for

each principal component is demonstrated in Pareto charts of phase voltage (PV) and short

circuit current (SC) of phase A, shown in Fig. 3.9 and Fig. 3.10.

E ′ =
[
e⃗v1 e⃗v2

]
(3.4)
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Figure 3.9: Pareto PV (phase A)
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Figure 3.10: Pareto SC (phase A)
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The new features are represented as the projection of the vectors on the new base consistent

with the pc1 and pc2.

pc1,2 = E ′ · [xi − x̄]T (3.5)

where xi and x̄ respectively represent the variable and the mean vector of the original data,

whereas pc1,2 represents new features.

3.4.3 Additional Predictor

Besides obtaining features by applying PCA, the standard deviation is also used to increase

the set of predictors for the ML classifier to identify FP. For a variable vector x made up of N

scalar observations, the standard deviation (STD) is defined as

STD(x) =

√∑N
i=1 (xi − x̄)2

(N − 1)
(3.6)

where x̄ is the mean of x :

x̄ =
1

N

N∑
i=1

xi (3.7)

3.5 Evaluating the Accuracy of LG Faults Classification

The obtained various predictors are fed to three different classifiers to compare the prediction

precision. These include SVM, KNN, and BT. An iterative process is then applied to obtain the

most accurate models. After trying different kernel functions for SVM, varying the number of

neighbours, distance metric, and weight for KNN, and changing the number of learners and the

maximum number of splits for BT, models with high accuracy are obtained. Once the models

are trained, test data is applied to check the accuracy of predictions. 15-fold cross-validation

has been applied to the training dataset to test the accuracy of the classifiers. With the increase

in the number of folds, the variance of the resulting estimation decreases.
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A total of 27 predictors are obtained, including 9 for standard deviation, 9 for the first principal

component, and 9 for the second principal component of 3 signals for 3 phases during fault.

Using the 27 predictors, all three ML classifiers identified the FP with high accuracy. Different

combinations of predictors are then used in the classification model to identify and remove

features with low predictive power to reduce the vital processing time in fault identification.

Results for the three fault types with different numbers of predictors for 3 Ml classifiers are

shown in Tables 3.1, 3.2, and 3.3.

Table 3.1: Accuracy of ML models for bolted LG faults

Bolted LG faults at Bus 4 ML Classifiers
Predictors Used SVM KNN BT

All 27 predictors 100% 100% 100%
Different combination of 18 predictors 100% 100% 100%
Different combination of 12 predictors 100% 100% 100%
Different combination of 12 predictors 93.3% 100% 93.3%
Different combination of 9 predictors 100% 100% 100%
Different combination of 9 predictors 60% 86.7% 86.7%
Different combination of 9 predictors 100% 100% 93.3%

For less than 9 predictors, large inaccuracy was observed. Therefore, for further scenarios a

combination of 9 to 18 predictors with highest accuracy are presented.

Table 3.2: Accuracy of ML models for Low Impedance LG faults

Low Impedance LG faults at Bus 4 ML Classifiers
Predictors Used SVM KNN BT

18 predictors 100% 100% 100%
Different combination of 12 predictors 100% 100% 100%
Different combination of 9 predictors 100% 100% 100%

Table 3.3: Accuracy of ML models for High Impedance LG faults

High Impedance LG faults at Bus 4 ML Classifiers
Predictors Used SVM KNN BT

18 predictors 100% 100% 93.3%
Different combination of 12 predictors 100% 100% 100%
Different combination of 9 predictors 93.3% 100% 100%
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These results show that using standard deviation and PCA for extracting predictors yields

accurate identification of the FP for bolted, low- and high-impedance LG faults. It is also

visible that KNN shows the highest overall accuracy for various scenarios and a combination

of predictors for this study.

3.6 Summary

This chapter starts with the shortcomings of Wavelet transform-based feature extraction, and

then the application of PCAs for FE from voltage and short circuit current signals is proposed.

The main focus of the chapter is the classification of bolted, low- and high-impedance LG faults

in AC microgrids using Supervised Machine Learning. DIgSILENT PowerFactory is used to

simulate the underlying microgrid to obtain fault-related data, while MATLAB is used to apply

machine learning. 15-fold cross-validation is applied to the training dataset to evaluate different

machine learning models. Among the three classifiers used, KNN has demonstrated the highest

overall accuracy.
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Chapter 4

Detecting and Classifying All Faults in

a Radial AC Microgrid using

Supervised Machine Learning

4.1 Introduction

Supervised machine learning algorithms heavily rely on labeled training data to learn patterns

and make accurate predictions. The significance and representation of features, which serve as

input variables, play a crucial role in determining the performance of these algorithms. The

process of feature extraction is a fundamental step in preprocessing, aiming to transform raw

data into a concise, informative, and discriminative feature set, optimising the learning process

and enhancing the model’s generalisation capabilities.

In Chapter 3, different types of LG faults were classified for faulted phase identification. Signals

included line-to-line voltage, phase voltage and short-circuit currents for phases A,B and C.

Although these signals were enough to classify LG faults but would be not enough for FD.

This chapter is based on the work reported in M. Uzair, M. Eskandari, L. Li, and J. Zhu, “Machine Learning
Based Protection Scheme for Low Voltage AC Microgrids,” Energies, vol. 15, no. 24, p. 9397, 2022.
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Moreover, a small dataset was used with manual parameter tuning, which can not match

the automated optimisation, using every possible variation in order to improve performance.

Additionally, features were selected using an iterative process instead of using FS techniques.

New feature extraction methods are proposed in this chapter. Additionally, dimensionality

reduction techniques, statistical tools, impulsive and signal processing metrics to extract unique

features for ML classifiers are examined. Various FS techniques are used and then supervised

machine learning is used to detect and classify faults in a radial AC microgrid.

4.2 Test Microgrid and EMT Simulations for Data col-

lection

The low voltage AC test microgrid simulated in DIgSILENT PowerFactory shown in Fig. 4.1,

is part of a radial distribution system operating at 415 V, 50 Hz. It is connected to the main

grid through an 11 kV/415 V transformer. There are three DG sources, two photovoltaic

(PV) systems, which are inverter-interfaced distributed generators (IIDGs) and a synchronous

generator-based microturbine to maintain microgrid stability in AUTO mode by providing

sufficient damping component and rotational inertia. All have a rating of 1MVA and are

connected to 415V buses. A commercial load is connected to Bus 1, and domestic loads are

connected to Bus 2 and 3. Bus 2 is the point of common coupling (PCC). The circuit breaker

after the transformer is used for switching between the two microgrid operational modes.

Data is recorded through EMT simulations for 400 cases. For every case, simulations are carried

out for 0.05 seconds with a step size of 0.0001 sec to obtain 500 observations for each of the 10

signals. The signals include three phase voltage (V phABC) in kV, three phase current (IphABC)

and short-circuit current (IshABC) in kA and frequency (Freq) in Hz.

Simulations are carried out for ten faults to collect data for fault detection (FD) and FTC

with FP. Besides variations in fault resistance, reactance, inception angles, number of cycles

and locations, all faults are simulated for grid-connected (GC) and AUTO mode to identify the

variations in fault current level and other signals. Three cases are used for the LG faults: bolted
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Figure 4.1: Test Microgrid

fault with 0Ω resistance, low resistance ground fault with 5Ω resistance, and high resistance

fault with a value of 400Ω. For all other faults, the first case (C1) has no fault resistance or

reactance. The second case (C2) has a resistance of 0.1Ω and a 0.001Ω reactance. The third

and last case (C3) has a resistance of 0.1Ω and a comparatively greater reactance of 1Ω.

Waveforms of 10 signals: V phABC , IphABC , IshABC and Freq for LL-AB fault for case C3 in

GC mode is shown in Fig. 4.2. NF case of loads switching on and off in AUTO mode is shown

in Fig. 4.3. Similarly, NF case of load switching off in GC mode is shown in Fig. Fig. 4.4.

Lastly, NF case of MG switching from AUTO to GC mode is shown in Fig. 4.5.
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Figure 4.2: LL-AB fault for C3 in GC mode
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Figure 4.3: NF, Load switching in AUTO mode
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Figure 4.4: NF, Load switching in GC mode
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Figure 4.5: AUTO to GC mode switching

For FD, equal sets for different faults are categorised as Fault, while various cases of normal

operation, load switching and grig switching are classified as No Fault (NF). On the other hand,

FTC data has been organised to classify the fault type and FP. Data for the NF conditions

include simulations of connecting and disconnecting 5 kW , 50 kW and 200 kW load in both

modes, switching from GC to AUTO and vice-versa with and without load switching. Addi-

tionally, simulations without any fault, load or grid switching are also included to differentiate

between a fault and NF conditions.
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Data collected for symmetrical faults include LLL, LLLN and LLLNG faults. Due to close

similarity in collected signals, all cases of symmetrical faults were categorised as LLL. Model

misclassification due to high similarity in different symmetrical fault signals is shown in Fig.

4.29.

4.3 Feature Extraction

Feature extraction is a data transformation process that involves selecting or generating a subset

of relevant and significant features from the original data. It aims to reduce dimensionality,

eliminate noise, enhance the model’s robustness against overfitting and retain the most relevant

information for model training, leading to more efficient and accurate predictions [182].

4.4 Features Extracted and Techniques Used Including

Proposed Novel Techniques

Two novel FE techniques, Peaks Metric and Max Factor are proposed and applied in this

research. Additionally, the suitability of using Standard Deviation, First and Second Principal

Components [171], Total Harmonic Distortion [158], Kurtosis, Crest Factor, Shape Factor and

Skewness [183, 184] to extract useful features is investigated. A total of 100 unique features

are obtained.

Kurtosis, Crest Factor, Shape Factor and Skewness are commonly used FE techniques for

bearing fault diagnosis but have not been applied before to detect and classify faults in an

AC microgrid to the best of the author’s knowledge. Moreover, using Principal Component

Analysis to detect and classify AC microgrid faults is also not common and was also proposed

by the author of this thesis [171].
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4.4.1 Standard Deviation

The standard deviation (STD), for a variable vector x composed of N scalar observations is

defined as

STD(x) =

√∑N
i=1 (xi − x̄)2

(N − 1)
(4.1)

where x̄ is the mean of x :

x̄ =
1

N

N∑
i=1

xi (4.2)

Variation in STD of V phB for random cases of NF and LL-AB fault is shown in Fig. 4.6.

There is a notable difference between fault and NF features, which is desired for training ML

classifiers. If the features also called predictors are very closely distributed, the probability of

misclassification increases.
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Figure 4.6: STD of V phB for NF and fault cases
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4.4.2 Peaks Metric

Peaks Metric (PM) is a novel metric proposed in this research and is defined as the ratio of

the mean of the peak values x̄peaks in the signal to the mean x̄ of the signal. It is a simple yet

potentially useful feature extraction technique for analysing signals.

PM(x) =
x̄peaks

x̄
(4.3)

where

x̄peaks =
1

N

N∑
i=1

xpeaksi (4.4)

For C3, LL-AB fault in GC mode, the deviation in freq is shown in Fig. 4.7.
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Figure 4.7: Freq deviation for C3, LL-AB fault in GC mode

For the above observation, there are four peaks with values 50.8540, 50.5164, 50.7120 and

50.4684. The x̄peaks is 50.6377, while x̄ is 50.0130. For the above case, the value of PM is

1.0125. The difference in PM of Freq for LL-AB fault and NF conditions is shown in Fig. 4.8.

The proposed PM considers all the peaks and takes their mean to represent the signal better,

instead of just using the max value.
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Figure 4.8: PM of Freq for fault and NF conditions

4.4.3 Benefits of Peaks Metric

a. Simplicity and Computationally Efficient: The Peaks Metric is straightforward to com-

pute since it involves only calculating the mean of peak values and the mean of the entire

signal. The simplicity of the method makes it easy to implement and computationally ef-

ficient, which is especially important when dealing with large datasets or real-time signal

processing to detect faults.

b. Detection of Faults and Anomalies: In electrical systems, when a fault occurs, the peaks

of the waveform change before there is any significant change in the signal’s energy. By

extracting the Peaks Metric from the post-fault signal, faults can be detected. A signif-

icant deviation in the Peaks Metric from its expected value can indicate the occurrence

of a fault.

c. Amplitude-independent Metric: The ratio nature of the Peaks Metric makes it amplitude-

independent. This means that the technique normalises the signal’s peak characteristics

with respect to the signal’s overall magnitude. Consequently, it can be more robust when

dealing with signals with varying amplitudes, making it suitable for analysing signals

from different sources and different fault scenarios.

d. Insensitivity to Noise: While no signal processing technique is entirely immune to noise,
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the Peaks Metric exhibits some level of robustness to noise. By calculating the mean of

the peak values, the technique is indirectly prioritising the significant components of the

signal, which might reduce the impact of noise on the final result.

e. Complementing Existing Techniques: The Peaks Metric can be used in conjunction with

other feature extraction methods to enhance the overall performance and accuracy of the

predictions.

4.4.4 Max Factor

Max Factor (MF ) is the second novel metric proposed in this research and is the ratio of

maximum value xmax to the absolute value of mean |x̄| of the signal.

MF (x) =
xmax

|x̄|
(4.5)

For a bolted LG fault on phase B in AUTO mode, three-phase current signals IphABC are

shown in Fig. 4.9, and the signal for IphB is shown separately in Fig. 4.10 to demonstrate the

application of proposed metric MF .
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Figure 4.9: IphABC for a bolted LG fault on phase B in AUTO mode
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Figure 4.10: IphB for a bolted LG fault on phase B in AUTO mode
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In Fig. 4.10, the max value of the IphB is 1.2775, while |x̄| is 0.0108. For the above case, the

value of MF is 117.7036. For the NF case, the max value of the IphB is 0.343, while |x̄| is

0.026, resulting in MF of 13.273. The difference in MF of IphB for NF and LG-B fault cases

is shown in Fig. 4.11.
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Figure 4.11: MF of IphB for NF and fault conditions

4.4.5 Benefits of Max Factor

a. Sensitivity to Fault Magnitude: By calculating the MF of the signal such as for the

current signal of a phase, a numerical value that represents how large the maximum

current peak is compared to the mean value can be obtained. During a fault, the current

waveform can exhibit significant deviations from its normal behaviour. The MF will be

high if the fault causes a substantial increase in the maximum current value, indicating

the fault magnitude is significant. This sensitivity can help in detecting and assessing the

severity of the fault.

b. Identification of Fault Duration: When an LG fault occurs, the fault duration can vary

depending on the system characteristics and the fault location. Since the MF considers

both the maximum value and the mean of the current signal, it can also provide insights

into the duration of the fault. If the fault persists for an extended period, it will result

in a higher MF value, while a shorter fault duration might lead to a lower MF value.
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c. Differentiation from Normal Operation: During normal system operation, the MF value

of the current signal is expected to be relatively stable. When a fault occurs, the MF can

act as an indicator of abnormal behaviour, allowing for a clear differentiation between

fault conditions and normal operation.

d. Reduced Data Dimensionality: MF can be useful for reducing the dimensionality of data.

In electrical systems, signals are often continuous and sampled at high frequencies. By

calculating the MF for each fault instance, the behaviour of the signal can be summarised

with a single numerical value, making it easier to process and analyse.

e. Simplicity and Computational Efficiency: The MF technique involves basic arithmetic

operations (division and mean calculation) and doesn’t require complex mathematical

modelling or extensive computational resources. This simplicity makes it easy to imple-

ment and computationally efficient, making it suitable for real-time fault detection and

analysis.

f. Complementing Other Techniques: The MF technique can be used in conjunction with

other fault detection and classification methods.

4.4.6 Principal Component Analysis

Principal component analysis (PCA) is a linear dimensionality reduction technique that projects

the original features onto a new orthogonal basis, maximising the variance of the projected data.

It identifies the principal components, which are linear combinations of the original features

that capture most of the data’s variability. By selecting a subset of principal components, PCA

reduces the dimensionality while retaining the essential information [185], which improves pro-

cessing time for ML and avoids overfitting the model.

Related equations have been presented in Chapter 3. The difference in pc1 for V phA for NF

and LLG-AB fault scenarios is shown in Fig. 4.12.
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Figure 4.12: pc1 of V phA for NF and fault scenarios

4.4.7 Kurtosis

The Kurtosis (Kurt) of a signal x is defined in (12) [184].

Kurt(x) =
1
N

∑N
i=1 (xi − x̄)4[

1
N

∑N
i=1 (xi − x̄)2

]2 (4.6)

The Kurt of the normal distribution is 3. A fault in the system will change the value, greater

than or less than 3. The difference in Kurt for IphB for NF and LLL fault cases is shown in

Fig. 4.13.

1.2

2.2

3.2

4.2

1 5 9 13 17 21 25 29 33 37 41 45 49

Ku
rt

os
is

Number of Cases

NF (IphB Features) LLL (IphB Features)

Figure 4.13: Kurt of IphB for NF and fault cases
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4.4.8 Crest Factor

Crest Factor (CRES) is the ratio of the maximum absolute value to the RMS [184].

CRES(x) =
xm

xrms

(4.7)

where xm is the maximum absolute value of the signal:

xm = max
i

|xi| (4.8)

and xrms is:

xrms =

√√√√ 1

N

N∑
i=1

|xi|2 (4.9)

The CRES of a sinusoidal current waveform for purely resistive load is 1.414. Fig. 4.14 show

the difference in CRES of IphA for NF and LLL fault condition.
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Figure 4.14: CRES of IphA for NF and fault conditions
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4.4.9 Shape Factor

Shape Factor (SF ) is the ratio of RMS to the mean of the absolute value [183]. The SF is

independent of the signal dimensions, but it relies on the signal shape.

SF (x) =
xrms

1
N

∑N
i=1 |xi|

(4.10)

Fig. 4.15 shows the difference in SF of V phC for NF and LL-CA fault cases.
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Figure 4.15: SF of V phC for NF and fault cases

4.4.10 Total Harmonics Distortion

The THD is the amount of distortion in the signal compared to the undistorted signal. It is

defined as the ratio of the square root of the summation of all harmonics squared (from second

harmonic) over the fundamental component [158]. THD is an essential measure in power

systems. A lower value gives lower peak currents, higher power factor and system efficiency.

THD(x) =

√∑∞
n=2 x

2
n

x1

(4.11)

where xn is the n-th harmonic of x and x1 is the fundamental component. THD difference of

V phC for NF and LG(C) fault cases is shown in Fig. 4.16.
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Figure 4.16: THD of V phC for NF and fault cases

4.4.11 Skewness

The skewness (Skew) shows the irregularity of signal distribution [184]. Distribution symmetry

can be impacted by faults resulting in an increased level of skewness.

Skew(x) =
1
N

∑N
i=1 (xi − x̄)3

[
1
N

∑N
i=1 (xi − x̄)2

]3/2 (4.12)

The difference in Skew of phase C for NF and LLG(CA) fault conditions is shown in Fig. 4.17.
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Figure 4.17: Skew of V phC for NF and fault scenarios
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4.5 Feature Selection

Feature selection (FS) is the process of reducing features or predictors to provide the best

predictive power in modelling a set of data, as not all features are useful. The goal is to

find the fewest possible features with the highest possible accuracy. Finding the best features

essentially remains an iterative process and requires deep domain knowledge. Feature selection

aids in improving the speed and accuracy of prediction [182] as it:

a. Prevents overfitting: modelling with many features can make the model more susceptible

to specific observations in training data.

b. Reduces model size: fewer features increase computational performance and

c. Improves accuracy: reduced possibility of overfitting and fast processing improves predic-

tive accuracy of ML model.

4.5.1 Parallel Coordinates Plot

Firstly Parallel Coordinates plot (PCP) [186, 187] is used to explore the features to be included.

PCP is a powerful visualisation technique commonly used in feature selection and data analysis.

It allows comparing the behaviour of multiple variables simultaneously, making it easier to

identify patterns, relationships, and potential feature importance.

For a dataset with N samples and M features. Each sample is represented by a vector of M

feature values:

Xi = (xi1, xi2, . . . , xiM)

Each xij is a real-valued feature for the i-th sample and the j-th feature, where i = 1, 2, . . . , N

denotes the sample index and j = 1, 2, . . . ,M denotes the feature index.

To normalise the values of each feature to fit within the same range, min-max scaling is used.

The min-max scaling equation for a specific feature j is given by:

x′
ij =

xij − min (xj)

max (xj) − min (xj)
(4.13)
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where x′
ij is the scaled and xij is the original value of the j-th feature for the i-th sample, min (xj)

and max (xj) are the minimum and maximum values of the j-th feature across all samples. After

getting the scaled values, the Parallel Coordinates plot is obtained. The misclassified points

and respective predictors are also visible on the PCP as shown in Fig. 4.18.
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Figure 4.18: Parallel Coordinates Plot for Fine Tree

4.5.2 Kruskal-Wallis H-Test

After shortlisting features using PCP, features are ranked using the Kruskal-Wallis H-Test (KW)

[188]. The Kruskal-Wallis H-Test is a non-parametric statistical test used for feature selection

when dealing with multiple groups or categories. It allows the comparison of the distributions

of multiple independent groups to determine if there are significant differences among them.

The test statistic for the Kruskal-Wallis H-Test is given by:

H =
12

n(n + 1)

k∑
i=1

R2
i

Ni

− 3(n + 1) (4.14)

where Ni is the number of observations, while Ri is sum of ranks of observations in group i and

is given by:
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Ri = 1 +

Ni−1∑
j=1

tj (4.15)

Ti is the Tie correction factor for group i and is given by:

Ti =
(N3

i −Ni)

12
(4.16)

tj = number of tied observations in the j-th tied group

The Kruskal-Wallis H-Test is based on the ranks of the values of the predictor variable X within

each group. It computes the sum of squared ranks for each group, adjusts for tied ranks, and

then combines them to obtain the test statistic H, which follows a chi-squared distribution

with degrees of freedom equal to k − 1 (df = k − 1).

The top 18 features for FD ranked using the Kruskal-Wallis H-Test are shown in Fig. 4.19.

0 20 40 60

PCA_PC_C_1

STD_PC_C

STD_PV_B

PCA_PC_A_1

PCA_PV_B_1

STD_PV_A

STD_PC_A

PCA_PV_A_1

STD_PC_B

PCA_PC_B_1

PCA_PV_C_1

PM_Freq

STD_PV_C

MF_Freq

CRES_Freq

PCA_SC_A_1

PCA_SC_B_1

PCA_SC_C_1

Importance Score

Fe
at

ur
es

Features sorted by Importance                     
(Kruskal-Wallis)

Figure 4.19: Feature ranking for FD using KW

Additionally, estimates of predictor importance for the classification ensemble methods are
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also computed by summing the estimates over weak learners in the ensemble for each input

predictor. A high value indicates that this predictor is important. Predictor importance for

FD using Bagged Trees (BT) ensemble, where bagging is short for bootstrap aggregation [189]

is shown in Fig. 4.20.
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Figure 4.20: Predictor importance for FD using BT/RF

4.6 Application of Machine learning

The signals are pre-processed and labelled, before extracting latent features by applying stan-

dard deviation, principal component analysis, peaks metric and max factor. Only the first and

second principal components are used to capture the patterns in the data. A separate set of

features are obtained for FD and FTC with FP identification.

The top 25 features were initially selected to train 35 classification learners for FD and FTC

with FP. These include Classification Ensembles, Naive Bayes, Neural Networks, Discriminant
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Analysis, Support Vector Machine (SVM), Classification Trees and k-nearest neighbours (KNN)

[190]. 10-fold cross-validation (CV) is applied to the training dataset to protect against over-

fitting. Hyperparameter tuning of all models was performed to improve accuracy. Predictions

were made using unseen data.

The obtained predictors are fed to different SML classifiers, followed by hyperparameter tuning

to obtain the best performing models. The trained models are then tested on new data. The

complete process of training and testing is illustrated in Fig. 4.21.
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Figure 4.21: Training and testing process of ML Models

Amongst other learners, neural networks with a varying number of layers and neurons are also

applied. Model and plot of a bi-layered feed-forward network (FNN), with 10 sigmoid hidden

and 2 softmax output neurons are shown in Fig. 4.22 and Fig. 4.23.
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Figure 4.22: Bi-layered FNN model
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Figure 4.23: Bi-layered FNN plot
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4.6.1 Training and Testing ML Models for FD

The top 5 models with CV and test accuracy for FD are shown in Table 4.1.

Table 4.1: Accuracy of ML models with 25 features for FD

Model CV accuracy Test accuracy
BT 100% 99%
Gaussian Naive Bayes 100% 98%
KNN (Euclidean) 96% 94%
Neural Network (Bilayered) 95% 91%
Decision tree (Fine) 94% 90%

BT outperformed all other ML classifiers. For FD, the BT model with optimal hyperparameters

grows 488 individual trees. The view of one of the trees with randomly selected features is shown

in Fig. 4.24.
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Figure 4.24: View of 4th Tree with 7 branches and 15 nodes

The accuracy of ML models with further reduction in the number of features for FD and FTC

with FP was also investigated. Model accuracy dropped sharply for less than 18 predictors. The

best combination of 18 predictors for FD include 3 predictors obtained by STD of V phABC , 9

using pc1 of IshABC , IphABC and V phABC . The remaining 6 include CRES of IshABC , MF of
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the AngleV I and MF and PM of Freq. The accuracy for the top 5 models with 18 predictors

is presented in Table 4.2.

Table 4.2: Accuracy of ML models with 18 features for FD

Optimized BT 100% 100%
Optimized GB 100% 99%
Gaussian Naive Bayes 100% 98%
Optimized KNN (Cosine) 98% 96%
Neural Network (Bilayered) 96% 93%

With 18 features, BT displayed the highest test accuracy, while the second-best was optimised

GentleBoost (GB) [191], which only misclassified 1 out of 90 observations, where a NF was

classified as a fault, resulting in a false alarm. GB Test confusion matrix (CM) for FD is shown

in Fig. 4.25.

4.6.2 Training and Testing ML Models for FTC with FP identifica-

tion

Likewise, for FTC with FP identification, to begin with, 25 predictors were used. The top 5

models with 10-fold cross-validation and test accuracy are shown in Table 4.3.

Table 4.3: Accuracy of ML models with 25 features for FTC with FP

Bagged Trees 100% 100%
Decision Tree (Fine) 99% 98%
Optimized SVM (Linear) 97% 95%
Neural Network (Wide) 97% 92%
Linear Discriminant 95% 90%

The BT Test CM for FTC with FP is shown in Fig. 4.26.

More reduction of features to 18 for FTC was also explored. These included 6 obtained by

STD of V phABC and IphABC , 9 using pc1 of IshABC , IphABC and V phABC . The remaining 3

include CRES of IshABC . Test accuracy for top 5 models is shown in Table 4.4.

For FTC, the optimised BT model has 271 trees. The view of one of the trees for this model

is shown in Fig. 4.27.
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Figure 4.25: GB Test CM for FD

Table 4.4: Test accuracy of ML models with 18 features for FTC with FP

Optimized BT 100% 99%
Decision Tree (Fine) 99% 98%
Optimized SVM (Gaussian) 97% 95%
Neural Network (Wide) 95% 91%
Linear Discriminant 94% 89%
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Hyperparameter tuning of SVM model with 18 predictors is shown in Fig. 4.28.
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Figure 4.28: Minimum classification error plot for Optimizable SVM with 18 predictors

As mentioned in Sec. 4.2, data collected for symmetrical faults include LLL, LLLN and LLLNG

faults and is very similar. The models missclassified them due to high similarity as shown in Fig.

4.29. Therefore all cases of symmetrical faults are categorised as LLL in further classification.

4.6.3 Detail Levels of Classification

The ML models were tested for level 4 and level 5 classification. The testing process began by

first detecting faults, then identifying the fault type, and then determining the faulted phase.

The models were also used to categorise test cases involving faults with varying resistance and

reactance values. Test results of accurate detail classification of LG and LLG fault cases are

shown in Fig. 4.30 and Fig. 4.31.
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Figure 4.29: Misclassification of symmetrical faults
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Figure 4.30: Classification of LG faults cases
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Figure 4.31: Classification of LLG faults cases
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Detail classification also included identifying the mode of microgrid operation when a fault

occurs, with reasonable accuracy, as shown in Fig. 4.32. Such detail and accurate classification

will be helpful in future grids as well as in rectifying and repairing permanent faults quickly.
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Figure 4.32: Classification based on mode of operation

104



4.7 Summary

In this chapter, datasets of various fault signals and features for FD and FTC are built and

presented. Different signals for fault and no-fault data in grid-connected and autonomous

modes of a microgrid for wide variations in operating conditions are obtained through EMT

simulations for radial topology. After retrieving and pre-processing the signals, different feature

extraction techniques, including new factors, Peaks Metric, and Max Factor, are applied. They

are reduced using PCP, then ranked using the Kruskal-Wallis H-Test to identify the best-

performing features, besides estimating predictor importance for ensemble ML classification. A

new dataset is built using the best-performing features for FD and FTC with FP identification.

These reduced features are input to training and testing 35 classification learners for FD and

FTC with FP identification. These include Classification Ensembles, Naive Bayes, Neural

Networks, Discriminant Analysis, Support Vector Machine (SVM), Classification Trees and k-

nearest neighbours (KNN). 10-fold cross-validation is applied to the training dataset to protect

against overfitting. Hyperparameter tuning of all models was performed to improve accuracy.

Trained ML models are tested on an unseen dataset to check the accuracy of predictions. The

Bagged Trees ensemble classifier outperformed all other ML classifiers for FD and FTC.
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Chapter 5

Fault Detection and Classification in

Radial and Meshed Microgrid using

Hybrid Deep Learning

5.1 Introduction

A promising approach to solving protection challenges in microgrids is to use deep learning

(DL) techniques. DL uses artificial neural networks to learn from the data. Techniques based

on DL can be used to develop more accurate and robust protection systems for AC microgrids.

DL models can learn to identify the spatial and temporal features from fault signals, which can

be used to detect and distinguish between different types of faults.

DL has several advantages over other SML methods. DL algorithms can automatically extract

features from data without human supervision, which most SML methods require. Additionally,

it has the ability to handle large and complex datasets and often performs better compared to

other SML.

Preparing to submit the contents of this chapter in M. Uzair, L. Li, J. G. Zhu, “Hybrid deep learning based
microgrid protection”, IEEE Transactions on Power Delivery.

Syed Basit Ali Bukhari, Assistant Professor at Department of Electrical Engineering, The University of
Azad Jammu & Kashmir, Muzaffarabad Pakistan has helped in collecting fault and no-fault data.
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5.2 Fault Detection Using Artificial Intelligence

Numerous studies have explored the application of AI for FD in power systems. In [192] a DNN

is used to identify faults in the power system. Active, reactive power, three-phase voltage and

current signals are collected, processed and sent to auto-encoders, which prepare and train a

DNN. Similarly, a deep learning-based FD method for DN is proposed in [193]. The fault signal

is decomposed using Daubechies 3 wavelet, and then normalized sub-band energy is fed to the

self-encoding neural network to classify faults.

Moreover, LSTM and SVM are used for FD in [194]. Signals used as input include current, volt-

age and active power. Likewise, an LSTM-based method to protect a meshed DN is proposed

in [195]. Various time-series signals are used as input, including three-phase RMS current and

voltage and sequence components for current and voltage.

A CNN-based fault protection strategy is proposed in [196]. It integrates the feature extraction

and classification processes by directly applying three-phase current signals as inputs to three

CNNs. Different CNN architectures are proposed for fault detection, fault-type classification,

and estimating location. On the other hand, in [197] a time-time transform is employed to

extract features from post-fault current samples, which are used to train a deep belief network.

On the contrary, a protection strategy to distinguish between symmetrical line and PV array

faults based on DNN and sparse autoencoder is presented in [198]. Current and voltage signals

are transformed into images and used as input to the sparse autoencoder. While fault location

in a radial distribution system was determined using µPMU measurements and stack auto-

encoder in [199]. Notably, only single line-to-ground faults were considered in this research

work. In a different study, an adaptive CNN was employed to locate and classify the fault

using data from PMUs in [200]. Likewise, the fault classification in the modified IEEE 13-bus

radial distribution feeder was carried out using CNN and LSTM in [201].

Conversely, a method for islanding detection in microgrids is proposed in [202]. The method

uses a multi-layer LSTM network to learn the patterns of harmonic distortion in the voltage

and current signals at the PCC. The LSTM network is able to detect islanding events with
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high accuracy, even in the presence of distorted grid voltage. The proposed multi-layer LSTM

network should be investigated for fault detection.

5.3 Methodology

A hybrid deep learning-based protection system (HDLBPS) is proposed in this chapter. Deep

CNN (DCNN) is used to extract the spatial features from the fault signals, while deep LSTM

(DLSTM) is used to extract the temporal features. Rectified linear unit activation function

and dropout layers are used to prevent overfitting.

5.3.1 Microgrid Test System

In order to validate the efficacy of the developed protection method, a standard IEC microgrid,

as depicted in Fig. 5.1, is modelled. The parameters for the network and load are taken from

[196]. The microgrid operates at 25 kV. There are two synchronous DERs and two inverter-

interfaced DERs connected through step-up transformers. The control scheme implemented for

I inverter-interfaced DERs is taken from [203]. The microgrid can transition between meshed

and radial configurations through circuit breakers CB-Loop-1 and CB-Loop-2. Moreover, the

microgrid can switch to islanded or grid-connected modes through the CB before PCC Bus-1.

Table 5.1: DER and Transformer Data for IEC Test Microgrid

Equipment Rating Voltage
TR1 20MVA 120/25 kV
TR2, TR3 5MVA 25/2.4 kV
TR4, TR5 4MVA 25/0.575 kV
DER-1, DER-2 4MVA 99.62%
DER-3, DER-4 3MVA 0.575 kV

5.3.2 Data Collection

A large number of fault and NF cases have been simulated to evaluate the efficacy of the

proposed HDLBPS. The evaluation encompasses fault detection and classification of fault types

with faulted phases. Three-phase current signals are obtained for fault and NF cases.
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Fault Data

To generate the necessary fault data, simulations are carried out using a standard IEC microgrid

model, depicted in Fig. 5.1. The simulations incorporated ten different types of faults with

variations in fault location, resistances, loads, distribution lines, operating modes, and topology.

Figure 5.1: IEC Microgrid
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A total of 16,000 fault cases are simulated. DER and transformer data is presented in Table

5.1, while the description of the simulated fault is presented in Table 5.2.

Table 5.2: Fault Cases

Parameters Count
Fault on different lines (DL1-DL5) 5
Fault location (10, 25, 50, 75 and 95%) 5
Fault resistance (0.01, 10, 50 and 80 Ω) 4
Fault inception angle (0, 45, 90 and 180°) 4
Operational mode (GC/AUTO) 2
Topology (Radial/Meshed) 2
Fault types (LG, LL, LLG, LLL) 10
Total simulated Fault cases 16000

Fig. 5.2 - Fig. 5.5 shows three-phase current signals for some of the fault cases, while Fig. 5.6

demonstrates the 64 samples used for training the HDL model.
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Figure 5.2: IABC before and during AG fault in AUTO mode on DL1
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Figure 5.3: IABC before and during BC fault in GC mode on DL3
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Figure 5.4: IABC before and during CAG fault in AUTO mode on DL5
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Figure 5.5: IABC before and during ABC fault in GC mode on DL1
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Figure 5.6: 64 samples Fault Data from Fig. 5.5
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NF Data

Furthermore, the study considered multiple cases of NF under constant and varying load con-

ditions. For the AUTO mode, load adjustments were made to maintain the generation-load

balance. A total of 432 NF cases are simulated. A description of the simulated NF conditions

can be found in Table 5.3.

Table 5.3: NF Cases

Parameters Count
Load variations 6
Operational mode 2
Topology 2
Capacitor switching at PCC and load buses 6
Levels of DER penetration 3
Total simulated NF cases 432

Fig. 5.7 - Fig. 5.10 shows three-phase current signals for random NF conditions.
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Figure 5.7: IABC during load switching - NF case
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Figure 5.8: IABC during normal operation - NF case
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Figure 5.9: IABC during grid switching - NF case
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Figure 5.10: IABC during capacitor switching - NF case

Training Dataset

Fault and NF datasets are partitioned into 70% Training and 30% Testing data sets. The 16000

fault cases data set is divided into 320 cases for ten faults for each of the five distribution lines.

To match the number of individual fault cases for NF, a data set of randomly selected 320 cases

is prepared.

5.3.3 Model Architecture

The proposed HDLBPS combines DCNN and DLSTM to capitalize on their complementary

strengths in spatial and temporal feature extraction, respectively. The DCNN excels in cap-

turing spatial patterns within the three-phase current signals, while the DLSTM effectively

captures temporal dependencies among consecutive signal samples.

5.3.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a prevalent deep learning architecture comprising

two fundamental components: convolution and pooling. For the convolution operation, linear

filters are employed by the convolution layer, yielding spatial features. The weights and biases
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are core training parameters of the convolution layer [204]. After convolution, a non-linear

activation function commonly ReLU is applied to generate a feature map, which is input to

the subsequent layer [205]. The mathematical expression for the convolution layer with the

activation function is given by:

Z = ReLU
(∑p×q

i
WiXi + b

)
(5.1)

W represents the weights, X is the input data, b is the bias, and p and q represent the dimensions

of the input data matrix. Lastly, ReLU is:

ReLU (zi) = max (0, zi) (5.2)

The feature map is sensitive to feature position changes. To address this, a pooling layer is

introduced, which further reduces feature map dimensionality, leading to reduced computational

complexity and achieving translation invariance. Maximum pooling is a commonly used pooling

scheme due to its remarkable performance [206]. It selects the maximum value from specific

regions of the feature map. MaxPooling can be represented by:

P (i, j) = max(I(i, j), I(i, j + 1), I(i + 1, j), I(i + 1, j + 1), . . .) (5.3)

where P (i, j) represents the pooled value at position (i, j) after applying the maximum pooling

operation to the input feature map I.

5.3.5 Long Short-Term Memory Network

LSTM is a type of recurrent neural network (RNN) architecture used in deep learning [207]. It

has the ability to overcome the vanishing and exploding gradient problem in traditional RNNs.

The output at each time step in conventional RNNs relies on the preceding time step. However,

as time steps increase, the gradients can become very large or very small, making it difficult

to train the network effectively. LSTM solves this problem by introducing a memory cell and
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a set of gates: input, forget, update, or cell candidate and output gates. These gates control

how the information enters and leaves a memory cell.

The memory cell maintains the long-term memory, while the input gate controls the extent

to which incoming information should be incorporated into the memory cell. The forget gate

determines the magnitude of the preceding memory that should be forgotten from the cell.

Furthermore, the cell candidate supplements the cell state with additional information, and

the output gate determines the proportion of the memory cell’s contents to be emitted at the

current time step.

The LSTM model consists of four main components, each with its own set of mathematical

equations:

Input Gate

The input gate plays a pivotal role in determining what information will be memorized in the

current hidden state. Input gate output vector it is calculated as:

it = σ (Wi [Ht−1, Xt] + bi) , (5.4)

where σ represents the state activation function computed by using the hyperbolic tangent

function tanh, the input vector is represented by Xt, the weight matrix as Wi and the bias

vector as bi.

Forget Gate

The forget gate determines which elements of the previous hidden state Ht−1, will be forgotten.

Using Ht−1 in conjunction with the current Xt, it produces a vector ft with values between 0

and 1:

ft = σ (Wf [Ht−1, Xt] + bf ) , (5.5)
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where σ is the sigmoid function, weight matrix, and bias vector are represented by Wf and bf ,

respectively.

Cell candidate

The cell candidate computes the new memory state Ct of the LSTM cell. Initially, it computes

the potential values for the candidate hidden state denoted as gt, a vector containing the new

candidate values for the current memory cell:

gt = σ (Wc [Ht−1, Xt] + bc) , (5.6)

where Wc is the weight matrix, and bc is the bias vector. Subsequently, the new state vector Ct

is calculated through the summation of the preceding state vector Ct−1 elementwise multiplied

⊙ with the output vector of the forget gate ft, and the elementwise multiplication of the output

vector of the input gate it, and the corresponding vector gt.

Ct = ft ⊙ Ct−1 + it ⊙ gt, (5.7)

Output gate

The output vector ot is computed by the output gate by taking Ht−1 and Xt:

ot = σ (Wo [Ht−1, Xt] + bo) (5.8)

where Wo is the weight matrix, bo is the bias vector. The hidden state output Ht is then

calculated by elementwise multiplication of ot with Ct in conjunction with σ:

Ht = ot ⊙ σ (Ct) . (5.9)

The flow diagram of the cell and hidden states output is shown in Fig. 5.11
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Figure 5.11: LSTM flow diagram

5.4 Proposed Hybrid Deep Learning Model

5.4.1 Layers of the Proposed Model

In the proposed approach, the CNN layer extracts local patterns and spatial features from

the input sequence. Rectified Linear Unit (ReLU) activation function after the convolutional

operation introduces non-linearity to the network and helps with better representation learn-

ing. Then, MaxPooling is used to downsample the feature maps, reducing the dimensionality

while retaining important information. Finally, LSTM layers are employed to model the tem-

poral dependencies and sequential patterns in the data, followed by Dropout layers to prevent

overfitting.

Network Parameters

The input layer has a sequence length of 3. The convolutional layers have a kernel size of 3

and a number of filters used: 32, 64, and 128, respectively. The padding mode is set to same,

which means that the output sequence has the same length as the input sequence. The ReLU

activation function is used after each convolutional layer, while the max pooling layers have a

stride of 1 and a pool size of 2. A filter (kernel) slides over the input data to extract features

in a convolutional layer. The stride determines how much the filter moves horizontally and
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vertically for each step. When the stride is set to 1, the filter shifts by a single unit at a time.

This means that the filter covers adjacent regions of the input data, resulting in a relatively

fine-grained analysis of the data. The pool size dictates the size of the pooling window. When

the pool size is set to 2, the feature map is divided into non-overlapping regions of size 2 × 2.

The LSTM layers have a hidden state size of 64, while the dropout layers are used to regularize

the network and prevent overfitting. The dropout rate is set to 0.2, which indicates that ap-

proximately 20% of the neurons in the LSTM layer will be randomly deactivated during each

forward and backward pass in training. The remaining 80% of neurons will be used for compu-

tation. Introducing the dropout layers makes the model less likely to rely on specific neurons

for making predictions, enhancing its ability to generalize and reducing the risk of overfitting.

The dropout mechanism also encourages the network to develop a more robust representation

of the input data by preventing the co-adaptation of neurons, ultimately improving the model’s

performance on unseen data.

The fully connected layer has 11 output neurons for ten faults and NF conditions. Lastly,

the softmax activation function is used to normalize the output of the fully connected layer to

represent a probability distribution over the 11 classes.

Hyper-Parameters

In addition to the parameters listed above, the network has numerous hyper-parameters. The

learning rate is a hyperparameter that controls how much the network weights are updated

during training. The initial learning rate is set to a relatively small value of 0.001, which helps

to prevent the network from overfitting. The maximum number of epochs is set to 30, so

the network is trained thirty times on the entire training dataset. A mini-batch size of 32 is

employed to evenly partition the 320 training samples in each scenario. This mini-batch serves

as a subset of the training dataset for assessing the gradient of the loss function and adjusting

the weights.
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The complete network is shown in Fig. 5.12.
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Figure 5.12: Architecture of the proposed model
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5.4.2 Mathematical Expressions for Layer of the Proposed Model

For the parameters defined in Sections 5.3.4 and 5.3.5, the mathematical expressions of different

layers of the proposed model are given as:

First Convolutional Layer

Zconv1 = Convolution (X,Wconv1) + bconv1 (5.10)

Aconv1 = ReLU (Zconv1) (5.11)

where X is the input data, Wconv1 represents the weights and bconv1 is the bias for the 1st layer.

Whereas, Zconv1 is the output of the convolution operation, Aconv1 is the output after applying

the ReLU activation.

Xmaxpool1 = MaxPooling (Aconv1 , pool-size) (5.12)

Second Convolutional Layer

Zconv2 = Convolution (Xmaxpool1 ,Wconv2) + bconv2 (5.13)

Aconv2 = ReLU (Zconv2) (5.14)

Xmaxpool2 = MaxPooling (Aconv2 , pool-size) (5.15)

Third Convolutional Layer

Zconv3 = Convolution (Xmaxpool2 ,Wconv3) + bconv3 (5.16)
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Aconv3 = ReLU (Zconv3) (5.17)

Xmaxpool3 = MaxPooling (Aconv3 , pool-size) (5.18)

First LSTM Layer

Let Hlstm1 represent the hidden states, Clstm1 represent the cell states, and Xlstm1 represent

the input to first LSTM layer.

Xlstm1 = Dropout (Xmaxpool3 ,Dropout Rate1) (5.19)

Hlstm1 ,Clstm1 = LSTM (Xlstm1 ,Wlstm1 ,Ulstm1 ,blstm1) (5.20)

where Wlstm1 is the weight matrix, connecting the input data to the LSTM layer, Ulstm1 is the

weight matrix that connects the previous hidden state H(t−1) to the LSTM layer, while the bias

vector for the respective LSTM layer is represented by blstm1 . Wlstm1 ,Ulstm1 ,blstm1 are the

learnable parameters used in the LSTM layer to capture sequential patterns and dependencies

in the input data.

Second LSTM Layer

Xlstm2 = Dropout (Xlstm1 ,Dropout Rate2) (5.21)

Hlstm2 ,Clstm2 = LSTM (Xlstm2 ,Wlstm2 ,Ulstm2 ,blstm2) (5.22)

Third LSTM Layer

Xlstm3 = Dropout (Xlstm2 ,Dropout Rate3) (5.23)
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Hlstm3 ,Clstm3 = LSTM (Xlstm3 ,Wlstm3 ,Ulstm3 ,blstm3) (5.24)

Fully Connected Layer

Let Zfc represent the output of the fully connected layer before applying the softmax activation.

Zfc = FullyConnected (Hlstm3 ,Wfc) + bfc (5.25)

The output of the network is given by Afc.

Afc = Softmax (Zfc) (5.26)

The above represents the entire mathematical expression for the HDLBPS, proposed in this

chapter.

124



5.5 Hybrid Deep Learning Network Analysis

A detailed analysis of all the layers in the deep learning network is presented in Table 5.4.

It provides essential insights such as layer activation sizes, learnable parameter details, total

learnable parameters, and recurrent layer state parameter sizes. This will help visualise and

comprehend network architecture and validate correct architecture definition.

Table 5.4: Proposed Hybrid Deep Learning Network Analysis Results

Name Type Activations Learnable Properties States

1 input
Sequence input with length 3 Sequence Input 3(C) x 1(B) x 1(T) - -

2
conv
32 3 convolutions with stride 1 
and padding 'same'

1-D Convolution 32(C) x 1(B) x 1(T) Weights (3 x 3 x 32)
Bias (1 x 32) -

3 relu
ReLU ReLU 32(C) x 1(B) x 1(T) - -

4
maxpool
Max pooling with pool size 2, 
stride 1, and padding 'same'

1-D Max Pooling 32(C) x 1(B) x 1(T) - -

5
conv_1
64 3 convolutions with stride 1 
and padding 'same'

1-D Convolution 64(C) x 1(B) x 1(T) Weights (3 x 32 x 64)
Bias (1 x 64) -

6 relu_1
ReLU ReLU 64(C) x 1(B) x 1(T) - -

7

maxpool_1
Max pooling with pool size 2, 
stride 1, and padding 'same'

1-D Max Pooling 64(C) x 1(B) x 1(T) - -

8
conv_2
128 3 convolutions with stride 1 
and padding 'same'

1-D Convolution 128(C) x 1(B) x 1(T) Weights (3 x 64 x 128)
Bias (1 x 128) -

9 relu_2
ReLU ReLU 128(C) x 1(B) x 1(T) - -

10
maxpool_2
Max pooling with pool size 2, 
stride 1, and padding 'same'

1-D Max Pooling 128(C) x 1(B) x 1(T) - -

11 lstm
LSTM with 64 hidden units LSTM 64(C) x 1(B) x 1(T)

InputWeights (256 x 64) 
RecurrentWeights (256 x 64)

Bias (256 x 1)

HiddenState 64 x 1
CellState 64 x 1

12 dropout
20% dropout Dropout 64(C) x 1(B) x 1(T) - -

13 lstm_1
LSTM with 64 hidden units LSTM 64(C) x 1(B) x 1(T)

InputWeights (256 x 64) 
RecurrentWeights (256 x 64)

Bias (256 x 1)

HiddenState 64 x 1
CellState 64 x 1

14 dropout_1
20% dropout Dropout 64(C) x 1(B) x 1(T) - -

15 lstm_2
LSTM with 64 hidden units LSTM 64(C) x 1(B)

InputWeights (256 x 64) 
RecurrentWeights (256 x 64)

Bias (256 x 1)

HiddenState 64 x 1
CellState 64 x 1

16 dropout_2
20% dropout Dropout 64(C) x 1(B) - -

17 fc
11 fully connected layer Fully Connected 11(C) x 1(B) Weights 11 x 64                            

Bias 11 x 1 -

18 softmax
softmax Softmax 11(C) x 1(B) - -

19 classification
crossentropyex

Classification 
Output 11(C) x 1(B) - -
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5.6 Results and Analysis

The proposed HDLBPS is thoroughly evaluated using the curated data set of AC microgrid

faults. For the network architecture and training options mentioned earlier in this chapter,

data for each of the five distribution lines (DL) are used for training. The DL1 fault and NF

data training progress is shown in Fig. 5.13.

Training Progress (31-Jul-2023 22:53:00) Results

Validation accuracy: N/A

Training finished: Max epochs completed

Training Time

Start time: 31-Jul-2023 22:53:00

Elapsed time: 11 min 57 sec

Training Cycle

Epoch: 30 of 30

Iteration: 2310 of 2310

Iterations per epoch: 77

Maximum iterations: 2310

Validation

Frequency: N/A

Other Information

Hardware resource: Single CPU

Learning rate schedule: Constant

Learning rate: 0.001

Accuracy

Loss

Figure 5.13: Training Progress

Fig. 5.14 and Fig. 5.15 show the Training and Test confusion matrix (CM) for DL1. Fig. 5.16

and Fig. 5.17 show the Training and Test CM for DL2. Similarly, Fig. 5.18 and Fig. 5.19 show

the Training and Test CM for DL3, while Fig. 5.20 and Fig. 5.21 show the Training and Test

CM for DL4 and lastly, Fig. 5.22 and Fig. 5.23 show the Training and Test CM for DL5.
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Figure 5.14: Training CM for DL1
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Figure 5.15: Test CM for DL1
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Figure 5.16: Training CM for DL2
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Figure 5.17: Test CM for DL2
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Figure 5.18: Training CM for DL3
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Figure 5.19: Test CM for DL3
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Figure 5.20: Training CM for DL4
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Figure 5.21: Test CM for DL4
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Figure 5.22: Training CM for DL5
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Figure 5.23: Test CM for DL5
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The obtained results demonstrate a remarkable accuracy of 100% for training and close to 100%

for testing using unseen data, indicating the model’s proficiency in accurately identifying and

classifying major faults within an AC microgrid for any mode of operation. The training and

test accuracy for the five DLs is presented in Table 5.5.

Table 5.5: Training and Test Accuracy for Any Mode of Microgrid Operation

Line Training Test
DL-1 100% 99.62%
DL-2 100% 99.81%
DL-3 100% 99.53%
DL-4 100% 99.62%
DL-5 100% 99.72 %

We have used simulated fault and NF data; the accuracy might be slightly reduced for real-time

data and implementation.

5.7 Discussion

Commonly, a multi-step process involving separate training for fault detection, fault type clas-

sification, and faulted phase identification is used. The proposed novel HDLBPS combines all

these steps into a single unified process. The model demonstrates superior fault detection and

classification capabilities by incorporating data from both grid-tied and autonomous modes for

training and testing, regardless of the operating mode. Following are the advantages of the

proposed unified approach and its potential implications for improving microgrid stability and

reliability while reducing the cost:

5.7.1 Improved Robustness and Adaptability

The unified approach has the potential to be more flexible and adaptable than the commonly

used multi-step process. This is because the single model is trained on a wider variety of

data for a broader range of operating conditions. As a result, the model learns to detect and

classify faults more effectively, demonstrating increased robustness and adaptability in real-

world situations. Furthermore, the proposed model effortlessly adapts to different operating
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modes, providing uninterrupted fault detection capabilities during mode transitions.

5.7.2 Enhanced Efficiency and Reduced Computational Cost

Combining the fault detection and classification processes into a single-step approach signif-

icantly reduces computation time and resource requirements and will bring the cost down,

making it more feasible for real-time implementation. By leveraging the interconnected na-

ture of these tasks, the model benefits from shared feature representations, leading to fast and

accurate fault detection with faulted phase identification, increasing microgrid resilience.

5.8 Summary

This chapter presents a novel HDLBPS for fault detection and fault type classification in

AC microgrids. The proposed method is a hybrid of DCNN and DLSTM. A standard IEC

meshed microgrid model is developed, and a large dataset of 16000 cases for fault and 432 cases

for no-fault conditions is obtained to train and test HDLBPS algorithms for fault detection

and fault-type classification with faulted phase identification. Three-phase current signals are

obtained for each fault and NF case. The combined dataset is partitioned into a Training

dataset, comprising 70% of the data, and a Testing dataset, encompassing the remaining 30%

of the data. The ability of HDLBPS to capture spatial and temporal features, coupled with its

superior fault detection and fault type classification accuracy, holds significant promise for the

development of robust protection systems for AC microgrids.
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Chapter 6

Novel Protection Scheme for AC

Microgrids Based On Multi-agent

System Combined With Machine

Learning

6.1 Fault Detection and Fault Type Classification

Applying domain knowledge and FS methods, the top 18 features are selected for FD, and 18

features are chosen for FTC with faulted phase identification. Numerous ML algorithms are

trained and tested, as discussed in Chapter 4.

For FD and FTC, BT outperformed all other SML classifiers. The trained BT model is de-

ployed to detect and classify faults. Fig. 6.1 presents a schematic diagram of the proposed

methodology.

The process starts with measuring local signals, followed by FE. Simulink Classification En-

semble Predict block with trained BT model is used to validate the model predictions with trip

signal issued by converting the data type of the label to the real-world numerical value when a

fault is detected. For a set of 20 new observations, with alternating 5 NFs followed by 5 fault

This chapter is based on the work reported in M. Uzair, L. Li, J. G. Zhu, M. Eskandari, “A protection
scheme for ac microgrids based on multi-agent system combined with machine learning”, Proc. IEEE 2019
Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6, Nov 2019.

134



M
ic
ro

gr
id

 (
EM

T
 S

im
u
la

ti
o
n
)

Signals

Feature 
Extraction 

Feature 
Extraction 

com

A

B

C

a 

b 

c 

ML Model

ML Model

Trip

Fault / No Fault

LLG (AB)

Display

Display

Fault Detection

Fault Classification

Figure 6.1: Proposed methodology

cases, the model only misclassified once, where it predicted a fault as an NF. Alternating trip

signals for the 20 observations are shown in Fig. 6.2.

No Fault

Fault

1

0

Class

Trip Signal

Figure 6.2: Fault as an NF detection and respective trip signal

Furthermore, FTC and FP are displayed, which can be used for accurate single- and double-

pole tripping for future intelligent grids [32] to avoid tripping healthy phases in fault events.

This will aid in increasing system resilience and economic benefits.
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6.2 Agent and MAS

An agent in AI is a hardware or software with decision-making capabilities. It offers an interop-

erable interface to a diverse system. Multiple agents with similar or different goals, interacting

with each other and the environment, form a MAS.

The inherent nature of agents is suitable for the development of a smart protection system for

a smart power grid due to the following characteristics [134]:

• Independence: Agents can operate autonomously without human intervention, which can

reduce fault detection and isolation time. This feature, in particular, will also enable

intelligent protection schemes to be implemented.

• Social ability: Agents can interact with other agents. This feature is ideally suited for

optimised protection coordination.

• Reactivity: Agents can detect and respond to environmental changes. This characteristic

supports the plug-and-play function for DGs, loads and other devices within the microgrid

and can enable the implementation of the adaptive protection scheme.

• Proactivity: Besides reacting to changes in the environment, an agent can take the initia-

tive to attain assigned goals. This feature also supports the adaptive protection scheme.

Other features, such as distributed monitoring functions, enable MAS to monitor local pa-

rameters and can aid in implementing advanced protection functions. Similarly, distributed

coordination capability can be used for fast service restoration, while the independent run-time

capability of MAS can increase the speed of operation. Besides this, by recording the microgrid

status continuously for a long duration, MAS can collect big data on fault types, locations,

fault current levels and other vital features that can be used in self-learning algorithms.

The individual agent may have a limited view of the microgrid to achieve their own goal, but by

interacting with each other, they can accomplish the overall goal of protecting the microgrid.

Such a MAS will offer fast and accurate protection operation with the ability to adapt to

varying conditions.
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6.3 MAML Protection Architecture

Commonly, the MAS model and ML models are not mixed because the former is process-driven,

while the latter is data-driven. A novel MAS-based solution combined with ML is developed

to allow learning and decision-making abilities in microgrids.

FD and FTC technique based on novel features and SML is incorporated in a modified MAS

structure, originally proposed in [135]. The proposed MAML-based method provides a complete

PS with backup protection. A hybrid MAS-based protection architecture is proposed. It

consists of three layers, as shown in Fig. 6.3. Some agents operate hierarchically, and some

in parallel. Measurement agents (MA) are the only independent agents among various agents.

The protection agent (PA) and local agent (LA) can be classified as learning or adaptive agents,

while the verification agent (VA) uses logical reasoning. All other agents are dependent on other

agents for data and messages to function hierarchically.

6.4 Layers and Role of Each Agent

The lowest layer of the proposed MAS structure is the equipment layer that comprises MA,

PA, VA and backup agent (BA). MA monitors voltage, current, and other signals and acts as

an input to PA. PA incorporates SML to detect faults within the microgrid based on the data

received from MA and sends a trip signal to CB to segregate the faulty section. VA monitors the

message exchange between agents to make sure that primary protection has responded to clear

the fault, and in case a failure is detected, it communicates with LA to activate backup protec-

tion. Directional OC relay is used as BA, and its protection settings are dynamically updated

for a particular microgrid’s load and generation changes, based on the DL algorithm residing in

LA. This will reduce the backup protection operating time compared to the traditionally used

pre-defined waiting time.

The microgrid layer includes LA and can communicate with the system and equipment layer

in the middle. Besides retaining information and messages shared between the agents in the

equipment layer, it also contains a DL-based AP algorithm to calculate and update protection
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Figure 6.3: Layers of the proposed MAS structure

settings for BA. LA of each microgrid can communicate with other LAs and central agent (CA)

to update the central database.

The highest is the system layer containing CA and grid agent (GA). Based on the information

from all the LAs, CA has the complete information of the system. It also stores the islanded or

grid-connected status of the microgrid. On the other hand, if there is an upstream fault, GA

will command the CB at PCC for disconnection, operate in autonomous mode, and update the

status to CA, which can also communicate with GA for intentional islanding. Both LA and CA

can communicate directly with PA to shut off a section for maintenance, testing or intentional

islanding. The entire process is shown in Fig. 6.4.
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Figure 6.4: Proposed MAML protection algorithm
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6.5 Analysis and Benefits of the Proposed Agent

6.5.1 Measurement Agent

The MA plays a crucial role in the equipment layer as it continuously monitors important pa-

rameters such as voltage, current, and other signals within the microgrid. Its primary function

is to provide real-time data to other agents, particularly the PA. By ensuring accurate and

up-to-date information, the MA enhances the overall effectiveness and responsiveness of the

protection system. Additionally, its constant monitoring allows for early fault detection, which

is essential for minimizing the impact of potential disturbances and ensuring grid stability.

Benefits of MA

a. Real-time Monitoring: The MA’s ability to provide real-time data enables quick and

precise fault detection, reducing the time required to identify and address potential issues.

b. Improved Protection: By supplying accurate measurements, the MA enhances the accu-

racy and reliability of the entire protection system, leading to better fault discrimination

and improved system stability.

c. Enhanced Grid Resilience: Early fault detection and precise measurements contribute to

the overall resilience of the microgrid, ensuring that faults are addressed promptly and

minimizing the risk of cascading failures.

6.5.2 Protection Agent

The PA serves as a critical component of the equipment layer, responsible for detecting faults

within the microgrid. Utilizing the Supervised ML algorithm, the PA can analyze the data

received from the MA and determine if there are any abnormalities or faults in the system.

Once a fault is identified, the PA sends a trip signal to the CB to isolate the faulty section,

preventing further damage and protecting the rest of the microgrid.
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Benefits of PA

a. Fault Detection Accuracy: The adoption of the ML algorithm enables the PA to achieve

high levels of accuracy in fault detection. This minimizes false alarms and ensures that

genuine faults are rapidly identified and handled appropriately.

b. Rapid Response: The PA’s ability to promptly issue trip signals to disconnect faulty

sections minimizes the duration of interruptions, leading to improved system reliability

and continuity of service.

c. Adaptability: Using ML enables PA to adapt to changes in the microgrid’s operational

conditions over time.

6.5.3 Verification Agent

The VA is responsible for monitoring the message exchange between agents in the equipment

layer, specifically focusing on the primary protection process. Its primary function is to confirm

that the PA has adequately responded to clear the fault. In cases where a failure is detected,

the VA communicates with the LA to activate the backup protection system, ensuring a reliable

and redundant protection mechanism.

Benefits of VA

a. Redundancy and Reliability: The VA introduces an additional layer of protection verifica-

tion, enhancing the overall reliability of the microgrid’s protection system. If the primary

protection process encounters issues, the VA can trigger the backup protection system,

ensuring uninterrupted operation.

b. Enhanced Fault Management: By continuously monitoring the message exchange, the VA

can detect and address any anomalies in the protection process swiftly, minimizing the

risk of false tripping or delayed responses.

c. Improved Grid Resilience: The VA’s ability to activate backup protection adds an extra

layer of resilience to the microgrid, ensuring that faults are managed efficiently even in
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adverse conditions.

6.5.4 Backup Agent

The BA is implemented using a Directional OC relay and resides in the equipment layer. Its

primary function is to provide an alternative layer of protection in case the primary protection

process fails to clear a fault. The protection settings of the BA are dynamically updated

based on the DL algorithm residing in the LA, which takes into account the specific load and

generation characteristics of the microgrid.

Benefits of BA

a. Redundant Protection: The BA serves as a reliable backup mechanism, ensuring that

faults are addressed even if the primary protection process encounters issues. This redun-

dancy minimizes the risk of prolonged interruptions and system failures.

b. Adaptive Protection: By utilizing the DL algorithm, the BA can adapt its protection

settings in real time, optimizing its response based on the current operating conditions of

the microgrid. This adaptability enhances protection efficiency and reduces unnecessary

tripping.

c. Reduced Backup Operating Time: The dynamically updated protection settings in the

BA lead to a faster response during fault situations compared to traditional pre-defined

waiting times. This helps in minimizing the duration of interruptions and improving

overall system performance.

6.5.5 Local Agent

The LA is a critical component of the microgrid and system layers. It serves as an intermedi-

ary between the equipment and microgrid layers, facilitating communication and information

exchange. Additionally, the LA contains a DL-based AP algorithm that calculates and updates

the protection settings for the BA, ensuring optimal and adaptive protection.
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Benefits of LA

a. Communication Hub: The LA’s ability to communicate with agents across different layers

allows for efficient coordination and exchange of critical information, leading to improved

system-wide responsiveness and fault management.

b. Adaptive Protection: The presence of the DL-based AP algorithm enables the LA to

continuously adjust the protection settings of the BA based on the microgrid’s changing

conditions. This adaptability ensures that the protection system remains optimized and

effective over time.

c. Enhanced Grid Intelligence: The LA’s role in retaining information and messages shared

between agents fosters a comprehensive understanding of the microgrid’s behaviour, al-

lowing for intelligent decision-making and improved system performance.

6.5.6 Central Agent

The CA is a pivotal component of the system layer, serving as the central repository of in-

formation for the entire microgrid system. It collects and consolidates data from all the LAs,

providing a comprehensive and real-time overview of the system’s status and performance.

Benefits of CA

a. System-Wide Visibility: The CA’s ability to access data from all LAs ensures that it

possesses a complete and up-to-date understanding of the entire microgrid system. This

comprehensive visibility enables effective decision-making and system optimization.

b. Islanding Detection: The CA’s awareness of the microgrid’s status, including whether

it is grid-connected or operating in islanded mode, allows for the timely detection of

islanding events. This knowledge is crucial for ensuring a seamless transition between

grid-connected and islanded operations.

c. Centralized Control: The CA serves as a central control point, facilitating communication

and coordination between different agents within the microgrid. This centralized approach

143



streamlines the management of the system, leading to more efficient operations and better

fault management.

6.5.7 Grid Agent

The GA operates within the system layer and is specifically responsible for handling upstream

faults. In the event of an upstream fault, the GA commands the CB at PCC for disconnection,

allowing the microgrid to operate autonomously if needed.

Benefits of GA

a. Upstream Fault Handling: The GA’s ability to manage upstream faults ensures that the

microgrid remains isolated from external disturbances, thereby enhancing its resilience

and self-sufficiency.

b. Grid Connectivity Management: The GA’s ability to communicate with the CA facilitates

intentional islanding when required. This capability is essential for improving system

stability during grid disturbances and optimizing microgrid performance.

c. Facilitating Autonomous Operation: In cases of grid disconnection due to upstream faults,

the GA’s ability to allow the microgrid to continue functioning independently minimizes

the impact of external disruptions and ensures the continuity of critical services.

Each agent in the proposed system serves specific functions and contributes to the overall

efficiency, reliability, and resilience of the microgrid’s protection and management.

6.6 Agent Simulation Software Selection

Most researchers [141, 37] have demonstrated communication between agents using the Java

Agent Development (JADE) platform. They have assumed that the digital relay acting as an

RA after detecting fault will communicate with other RAs to update settings for protection

coordination through message exchange (inform and request) or IEC 61850 GOOSE (Generic

Object Oriented Substation Event) messaging between intelligent electronic devices to tackle
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overcurrent protection issues in modern grids. Instead, we have used AnyLogic to validate the

agent’s behaviour and interactions because compared to JADE, AnyLogic requires basic Java

coding, and its graphical interface, library objects and tools allow rapid modelling. It also

allows agent-based simulation models to be combined with discrete events or system dynamics

elements for comprehensive modelling. A detailed survey of all other agent simulation platforms

is presented in [208].

6.7 MAML Based PS Simulation

The behaviour of individual agents and their interaction is validated in AnyLogic simulation

software. MA, PA, BA, and LA are created as single agents, while the remaining agents are

agent type only, not visible in the model but interacting in the background. A 3D View of the

developed MAML model is shown in Fig. 6.5.

Figure 6.5: AnyLogic simulation model

A cyclic fault event is used to simulate the behaviour of PA and BA, as shown in Fig. 6.6, due

to software limitation to add Simulink Classification Ensemble Predict block with trained BT

model in MAS simulations.
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Figure 6.6: Fault event

State transition of these agents is triggered upon receiving the message “fault”, shown in Fig.

6.7.

Figure 6.7: State transition

The simulation results confirmed that the proposed novel MAS algorithm provides both primary

and backup protection and shows excellent performance compared to previous methods. Besides

achieving very high accuracy for FD and FTC with FP, very high protection sensitivity is also

attained for both modes of microgrid operation for various fault types and cases. Successful

coordination is achieved by MAS.
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6.8 Summary

In this chapter, an intelligent protection scheme for LV AC microgrids based on novel FE tech-

niques, MAS with ML is presented. A comprehensive MAS framework with various layers and

roles of each agent is developed. Moreover, the idea of incorporating data-driven ML models

with a process-driven MAS structure is put forward to achieve reliable coordination, fast seg-

regation, and adaptive backup protection. The simulation results confirm that the proposed

protection scheme shows excellent performance compared to previous methods. Besides achiev-

ing very high accuracy for FD and FTC with FP identification, very high protection sensitivity

is also attained for both modes of microgrid operation for various fault types and cases.
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Chapter 7

Conclusion, Research contribution and

Future work

After the introduction, a comprehensive literature review is presented to identify the research

gap. The focus is on recently proposed methods using modern techniques, besides critically

reviewing other proposed methods. Based on the literature review, it is found that primary

and backup protection based on hybrid protection, autonomous systems like multi-agents us-

ing computational intelligence with real-time data analysis, and application of ML and DL for

adaptability can offer promising microgrid protection solutions. Adaptive protection schemes

using MAS incorporating ML and DL will increase the sensitivity of detecting the faults, segre-

gating speed, and coordination reliability. Moreover, there is a need for faulted phase identifi-

cation, besides fault detection and classification, for accurate single- and double-pole tripping,

which will increase system resilience and economic benefits. This research work has tried to

address all the above-mentioned findings.

The main focus of Chapter 3 is the classification of bolted, low- and high-impedance LG faults

in AC microgrids using Supervised Machine Learning. Three classifiers, SVM, KNN, and BT,

were trained and tested. KNN demonstrated the highest overall accuracy to identify the correct

faulted phase for different LG faults. In Chapter 4, data sets of various fault signals are built

and presented. Supervised machine learning is used to detect and classify faults in a radial AC

microgrid. New feature extraction techniques, Peaks Metric, and Max Factor are formulated

and applied. Additionally, various feature selection methods are used to reduce the number of
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predictors. These reduced features are input to training and testing 35 classification learners

for FD and FTC with FP identification. 10-fold cross-validation is applied to the training

dataset to protect against overfitting. Hyperparameter tuning of all models was performed to

improve accuracy. Trained ML models are tested on an unseen dataset to check the accuracy

of predictions. The Bagged Trees ensemble classifier outperformed all other ML classifiers for

FD and FTC.

The next chapter presents a novel hybrid deep learning approach using deep CNN and deep

LSTM for FD and FTC in radial and meshed AC microgrids for various operating conditions.

A standard IEC meshed microgrid model is developed. A large dataset of 16000 cases for

fault and 432 cases for no-fault conditions is obtained to train and test hybrid DL algorithms

for fault detection and fault-type classification with faulted phase identification. Results show

superior performance of the proposed method compared to other methods. Lastly, in Chapter

6, an intelligent protection scheme for AC microgrids based on MAS and ML for detecting and

classifying symmetrical and unsymmetrical faults, developed in earlier chapters, is presented.

A comprehensive MAS framework with various layers and roles of each agent is developed. The

communication between agents is verified by simulation.

In conclusion, this research contributes valuable insights into microgrid protection, particularly

in the FD, FTC, and FP identification context. The research delves into the application of var-

ious intelligent systems, including hybrid protection schemes, MAS incorporating ML and DL

techniques, and integrating computational intelligence for real-time data analysis. These find-

ings highlight the potential of such innovative approaches to enhance the sensitivity, reliability,

and adaptability of microgrid protection solutions.

7.1 Research Contribution

a. Different radial and meshed AC microgrid models are developed to collect fault and no-

fault data and evaluate the performance.

b. Three data sets for fault and no-fault data are prepared for ML and DL algorithms. The
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first one classifies bolted, low, and high resistance line-to-ground faults for 9 signals, each

with 1000 samples for 60 different cases. Second, for varying fault conditions and no-fault

cases in a radial microgrid. There are 400 scenarios, each with 500 samples for 10 signals.

Lastly, a standard IEC meshed microgrid model is developed, and a large data set of

16000 cases for fault and 432 cases for no-fault conditions is obtained to train and test

the hybrid DL algorithm.

c. Two new FE techniques, Peaks Metric and Max Factor, are formulated and applied. Eight

other FE methods, most of which have not been used for microgrid fault detection and

classification, are investigated for suitability.

d. Various feature ranking techniques have been used to reduce the number of predictors,

and 35 ML algorithms have been used to find the most accurate model.

e. A novel hybrid Deep CNN and Deep LSTM-based protection method for fault detection

and classification is developed and presented.

f. Validation of the trained models is carried out using unseen data.

g. A comprehensive MAS framework with various layers and roles of each agent is developed

and presented.

h. The idea of incorporating data-driven ML and DL models with a process-driven MAS

structure is put forward to achieve reliable coordination, fast segregation, and adaptive

backup protection.

i. An intelligent protection scheme based on unique features, MAS with ML and DL, is de-

veloped to detect symmetrical and unsymmetrical faults, classify fault types, and identify

the faulted phase in radial and meshed AC microgrids. The comprehensive protection

scheme provides primary and backup protection and coordination, besides displaying fault

type and faulted phase. This can be used for accurate single- and double-pole tripping,

which is needed for future intelligent grids to avoid tripping healthy phases in fault events.

This will also aid in increasing system resilience and economic benefits.
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7.2 Novelty and Significant Contribution

The primary novelty of this research lies in integrating a MAS with ML to develop an intelli-

gent PS for microgrids. Typically, MAS models and ML models are not combined due to their

differing foundations: MAS is process-driven, focusing on interactions and processes, while ML

is data-driven, relying on data analysis for learning and decision-making. This research bridges

this gap by proposing a novel MAS-based solution incorporating ML, allowing for enhanced

learning and decision-making capabilities in microgrids. Unlike traditional protection schemes

that separately address fault detection and protection coordination, the proposed method inte-

grates these functions into a unified framework. In summary, integrating MAS and ML in this

research offers a novel and comprehensive solution to microgrid protection challenges. The hy-

brid architecture, innovative feature extraction techniques, and robust validation differentiate

this work from existing studies, significantly advancing microgrid protection.

7.3 Future Research Directions in AC Microgrid Protec-

tion: Addressing Industry Needs

By addressing the following future research directions and incorporating industry insights, the

development of robust, secure, and intelligent protection schemes for future smart microgrids

will be significantly advanced.

7.3.1 Deepen Exploration of ML and DL Techniques

• Customizing and developing novel architectures tailored to AC microgrid protection chal-

lenges could significantly advance the field. Future work can investigate techniques like

Generative Adversarial Networks for synthetic fault data generation and Graph Neural

Networks to model complex network topologies of microgrids.

• Integrating Explainable AI methods can clarify the decision-making processes of ML/DL

models, which is crucial for building trust within the industry and regulatory bodies.
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• Applying emerging deep learning architectures and unsupervised learning methods for

anomaly detection and improving fault classification and localization, effectively handling

complex, non-linear microgrid dynamics.

7.3.2 Integration with Emerging Technologies

• Investigating protection strategies for integrating electric vehicles (EVs) with bi-directional

charging capabilities into microgrids is essential. This includes developing fault detection

methods that account for the unique transient behaviour of EVs during charging and

discharging cycles.

• Researching protection schemes for incorporating battery energy storage systems (BESS)

with diverse functionalities, such as frequency regulation and peak shaving, is vital. The

protection strategy needs to consider the dynamic response characteristics of BESS during

fault events.

7.3.3 Seamless Islanding with Advanced Fault Detection and Re-

connection

• Exploring machine learning algorithms like anomaly detection for faster and more accurate

islanding detection during abnormal system behaviour.

• Collaborating with industry stakeholders to develop standards for seamless reconnection,

considering factors like power quality and synchronization, is essential.

7.3.4 Co-simulation and Protection System Optimization

• Leveraging the advantages of co-simulation. Collect diverse fault data using PowerFac-

tory. Train ML and DL models in MATLAB to accurately predict fault type, FP, and

location. Validate the coordination between IEDs and agents in Anylogic.

• Explore co-simulation with other relevant tools to optimize protection relay settings and

communication delays for improved system-wide response.
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7.3.5 Standardization and Interoperability

• Ensuring the proposed protection scheme adheres to existing and upcoming standards

like IEEE Std 1547 series and IEC 61850 is essential for promoting interoperability with

different protection relays and microgrid controllers.

• Analyzing industry reports, and relevant standards to identify industry needs and ensure

the proposed research aligns with practical implementation considerations is crucial.

7.3.6 Cybersecurity and Secure Communication Protocols

• Integrating recent industry reports from IEEE and CIGRE on microgrid cybersecurity

threats and mitigation strategies into the protection scheme design is necessary.

• Exploring communication protocols like the IEC 62351 series, which provides compre-

hensive security measures for both physical locations and communication networks, is

recommended.

7.3.7 Real-Time Digital Simulator (RTDS), Hardware-in-the-Loop

(HIL), and Real-World Validation

• Investigating using RTDS for high-fidelity microgrid emulation is crucial. RTDS can

simulate complex system behaviour with faster-than-real-time execution, enabling com-

prehensive testing of protection strategies.

• Moving beyond real-time simulation to incorporate HIL testing for proposed protection

schemes allows evaluation with actual protection relays and power electronic converters,

providing a more realistic performance assessment.

• Partnering with utilities and research institutions to conduct field tests and validate the

protection scheme’s performance in real-world microgrid deployments is essential.

153



References

[1] A. Kavousi-Fard, S. Nikkhah, M. Pourbehzadi, M. Dabbaghjamanesh, and A. Farughian,

“Iot-based data-driven fault allocation in microgrids using advanced µPMUs,” Ad Hoc

Networks, vol. 119, p. 102520, 2021.

[2] Powerside, “micropmu & lv,” 2021. [Online]. Available: https://powerside.com/wp-

content/uploads/2021/05/MicroPMU-LV-Data-Sheet.V2 En.pdf

[3] B. Ram Vara Prasad, B. Sesha Sai, J. Vijaychandra, and R. Babu, “A review on the

micro-phasor measurement unit in distribution networks,” in Recent Advances in Power

Systems. Springer, 2022, pp. 93–104.

[4] “Clean energy council report 2023,” accessed: 10 Aug 2023. [Online]. Available: https:

//assets.cleanenergycouncil.org.au/documents/Clean-Energy-Australia-Report-2023.pdf

[5] “Net zero: Australia’s path to a clean energy future,” accessed: 10 Aug 2023. [Online].

Available: https://www.globalaustralia.gov.au/industries/net-zero

[6] A. C. Adewole, R. Tzoneva, and A. Apostolov, “Protection of distribution systems inte-

grated with distributed generation,” in Handbook of Distributed Generation. Springer,

2017, pp. 583–627.

[7] T. Gallery, L. Martinez, and D. Klopotan, “Impact of distributed generation on distribu-

tion network protection,” ESBI Engineering & Facility Management, Ireland, 2005.

[8] J. Kennedy, P. Ciufo, and A. Agalgaonkar, “A review of protection systems for distribu-

tion networks embedded with renewable generation,” Renewable and Sustainable Energy

Reviews, vol. 58, pp. 1308–1317, 2016.

154



[9] J. M. Gers and E. J. Holmes, Protection of electricity distribution networks, ser. Energy

Engineering. Institution of Engineering and Technology, 2011.

[10] A. Girgis and S. Brahma, “Effect of distributed generation on protective device coor-

dination in distribution system,” in Large Engineering Systems Conference on Power

Engineering. Conference Proceedings. IEEE, 2001, pp. 115–119.

[11] D. M. Laverty, R. J. Best, and D. J. Morrow, “Loss-of-mains protection system by ap-

plication of phasor measurement unit technology with experimentally assessed threshold

settings,” IET Generation, Transmission & Distribution, vol. 9, no. 2, pp. 146–153, 2015.

[12] A. Standards, “AS/NZS 4777.1:2016 grid connection of energy systems via inverters:

Installation requirements,” Standards Australia, Tech. Rep., 2016.

[13] Nov 2012. [Online]. Available: https://www.aemc.gov.au/sites/default/files/content/

/Distributed-generation.pdf

[14] D. Zheng, W. Zhang, S. Netsanet, P. Wang, G. T. Bitew, D. Wei, and J. Yue, Microgrid

Protection and Control. Academic Press, 2021.

[15] F. Katiraei, M. R. Iravani, and P. W. Lehn, “Micro-grid autonomous operation during

and subsequent to islanding process,” IEEE Transactions on power delivery, vol. 20, no. 1,

pp. 248–257, 2005.

[16] P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” in 2006 IEEE Power

Engineering Society General Meeting. IEEE, 2006, pp. 8–pp.

[17] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of au-

tonomous operation of an inverter-based microgrid,” IEEE Transactions on power elec-

tronics, vol. 22, no. 2, pp. 613–625, 2007.

[18] D. T. Ton and M. A. Smith, “The us department of energy’s microgrid initiative,” The

Electricity Journal, vol. 25, no. 8, pp. 84–94, 2012.

[19] A. Dagar, P. Gupta, and V. Niranjan, “Microgrid protection: A comprehensive review,”

Renewable and Sustainable Energy Reviews, vol. 149, p. 111401, 2021.

155
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[95] X. Li, A. Dyśko, and G. M. Burt, “Traveling wave-based protection scheme for inverter-

dominated microgrid using mathematical morphology,” IEEE Transactions on Smart

Grid, vol. 5, no. 5, pp. 2211–2218, 2014.

[96] F. B. Costa, B. A. Souza, and N. S. D. Brito, “Real-time detection of fault-induced

transients in transmission lines,” Electronics letters, vol. 46, no. 11, pp. 753–755, 2010.

[97] A. Chandra, G. Singh, and V. Pant, “Protection of ac microgrid integrated with renewable

energy sources–a research review and future trends,” Electric Power Systems Research,

vol. 193, p. 107036, 2021.

[98] J. Qiao, X. Yin, Y. Wang, W. Xu, and L. Tan, “A multi-terminal traveling wave fault lo-

cation method for active distribution network based on residual clustering,” International

Journal of Electrical Power & Energy Systems, vol. 131, p. 107070, 2021.

[99] K. Saleh, A. Hooshyar, and E. F. El-Saadany, “Fault detection and location in medium-

voltage dc microgrids using travelling-wave reflections,” IET Renewable Power Genera-

tion, vol. 14, no. 4, pp. 571–579, 2020.

[100] E. C. Maritz, J. M. Maritz, and M. Salehi, “A travelling wave-based fault location strategy

using the concepts of metric dimension and vertex covers in a graph,” IEEE Access, vol. 9,

pp. 155 815–155 825, 2021.

[101] S. Shi, A. Lei, X. He, S. Mirsaeidi, and X. Dong, “Travelling waves-based fault location

scheme for feeders in power distribution network,” The Journal of Engineering, vol. 2018,

no. 15, pp. 1326–1329, 2018.

[102] S. Gupta and S. Gangolu, “Microgrid islanding detection using travelling wave based

hybrid protection scheme,” in International Conference on Electrical and Electronics En-

gineering. Springer, 2022, pp. 92–105.

[103] C. H. Kim and R. Aggarwal, “Wavelet transforms in power systems. part 1: General

introduction to the wavelet transforms,” Power Engineering Journal, vol. 14, no. 2, pp.

81–87, 2000.

164



[104] J. Liang, S. Elangovan, and J. Devotta, “Application of wavelet transform in travelling

wave protection,” International journal of electrical power & energy systems, vol. 22,

no. 8, pp. 537–542, 2000.

[105] W. K. Ngui, M. S. Leong, L. M. Hee, and A. M. Abdelrhman, “Wavelet analysis: mother

wavelet selection methods,” in Applied mechanics and materials, vol. 393. Trans Tech

Publ, 2013, pp. 953–958.

[106] J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor mea-

surement applications in power systems,” IEEE Transactions on smart grid, vol. 1, no. 1,

pp. 20–27, 2010.

[107] N. K. Sharma and S. R. Samantaray, “Assessment of pmu-based wide-area angle criterion

for fault detection in microgrid,” IET Generation, Transmission & Distribution, vol. 13,

no. 19, pp. 4301–4310, 2019.

[108] ——, “Pmu assisted integrated impedance angle-based microgrid protection scheme,”

IEEE Transactions on Power Delivery, vol. 35, no. 1, pp. 183–193, 2019.

[109] Y. Liu, L. Wu, and J. Li, “D-pmu based applications for emerging active distribution

systems: A review,” Electric Power Systems Research, vol. 179, p. 106063, 2020.

[110] A. Von Meier, D. Culler, A. McEachern, and R. Arghandeh, “Micro-synchrophasors for

distribution systems,” in ISGT 2014. IEEE, 2014, pp. 1–5.

[111] L.-A. Lee and V. Centeno, “Comparison of µpmu and pmu,” in 2018 Clemson University

Power Systems Conference (PSC). IEEE, 2018, pp. 1–6.

[112] M. G. M. Zanjani, K. Mazlumi, and I. Kamwa, “Application of µpmus for adaptive protec-

tion of overcurrent relays in microgrids,” IET Generation, Transmission & Distribution,

vol. 12, no. 18, pp. 4061–4068, 2018.

[113] K. Al-Maitah and A. Al-Odienat, “Wide area protection scheme for active distribution

network aided µPMU,” in 2020 IEEE PES/IAS PowerAfrica. IEEE, 2020, pp. 1–5.

165



[114] M. Gholami, A. Abbaspour, M. Moeini-Aghtaie, M. Fotuhi-Firuzabad, and M. Lehtonen,

“Detecting the location of short-circuit faults in active distribution network using pmu-

based state estimation,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1396–1406,

2019.

[115] M. S. Elbana, N. Abbasy, A. Meghed, and N. Shaker, “µpmu-based smart adaptive

protection scheme for microgrids,” Journal of Modern Power Systems and Clean Energy,

vol. 7, no. 4, pp. 887–898, 2019.

[116] S. Som, R. Dutta, A. Gholami, A. K. Srivastava, S. Chakrabarti, and S. R. Sahoo,

“Dpmu-based multiple event detection in a microgrid considering measurement anoma-

lies,” Applied Energy, vol. 308, p. 118269, 2022.

[117] R. Xinyu, H. Jinhan, W. Xiaojun, and W. Zhenji, “Analysis of µpmu noise characteristics

and its influence on distribution network fault location,” in 2018 IEEE 2nd International

Electrical and Energy Conference (CIEEC). IEEE, 2018, pp. 190–195.

[118] M. H. Cintuglu, A. T. Elsayed, and O. A. Mohammed, “Microgrid automation assisted

by synchrophasors,” in 2015 IEEE Power & Energy Society Innovative Smart Grid Tech-

nologies Conference (ISGT). IEEE, 2015, pp. 1–5.

[119] H. Al-Nasseri and M. Redfern, “Harmonics content based protection scheme for micro-

grids dominated by solid state converters,” in 2008 12th International Middle-East Power

System Conference. IEEE, 2008, pp. 50–56.

[120] Z. Chen, X. Pei, M. Yang, L. Peng, and P. Shi, “A novel protection scheme for inverter-

interfaced microgrid (iim) operated in islanded mode,” IEEE Transactions on Power

Electronics, vol. 33, no. 9, pp. 7684–7697, 2017.

[121] D. Jeerings and J. Linders, “Unique aspects of distribution system harmonics due to

high impedance ground faults,” IEEE Transactions on Power delivery, vol. 5, no. 2, pp.

1086–1094, 1990.

[122] S. Mirsaeidi, D. M. Said, M. W. Mustafa, and M. H. Habibuddin, “A protection strategy

for micro-grids based on positive-sequence component,” IET Renewable Power Genera-

166



tion, vol. 9, no. 6, pp. 600–609, 2015.

[123] K. Dang, X. He, D. Bi, and C. Feng, “An adaptive protection method for the inverter

dominated microgrid,” in 2011 International Conference on Electrical Machines and Sys-

tems. IEEE, 2011, pp. 1–5.

[124] H. Nikkhajoei and R. H. Lasseter, “Microgrid protection,” in 2007 IEEE Power Engi-

neering Society General Meeting. IEEE, 2007, pp. 1–6.

[125] P. S. Addison, The illustrated wavelet transform handbook: introductory theory and ap-

plications in science, engineering, medicine and finance. London: CRC press, 2017.

[126] R. X. Gao and R. Yan, Wavelets: Theory and applications for manufacturing. New

York: Springer Science & Business Media, 2010.

[127] B. K. Panigrahi, P. K. Ray, P. K. Rout, and S. K. Sahu, “Detection and location of fault

in a micro grid using wavelet transform,” in 2017 International Conference on Circuit,

Power and Computing Technologies (ICCPCT). IEEE, 2017, pp. 1–5.

[128] G. Swain, P. Sinha, and M. Maharana, “Detection of islanding and power quality distur-

bance in micro grid connected distributed generation,” in 2017 International Conference

on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2017, pp. 388–

393.

[129] R. Escudero, J. Noel, J. Elizondo, and J. Kirtley, “Microgrid fault detection based on

wavelet transformation and park’s vector approach,” Electric Power Systems Research,

vol. 152, pp. 401–410, 2017.

[130] A. Megahed, A. M. Moussa, H. Elrefaie, and Y. Marghany, “Selection of a suitable

mother wavelet for analyzing power system fault transients,” in 2008 IEEE Power and

Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st

Century. IEEE, 2008, pp. 1–7.

[131] W. A. Wilkinson and M. Cox, “Discrete wavelet analysis of power system transients,”

IEEE Transactions on Power systems, vol. 11, no. 4, pp. 2038–2044, 1996.

167



[132] C. Macal and M. North, “Introductory tutorial: Agent-based modeling and simulation,”

in Proceedings of the Winter Simulation Conference 2014. IEEE, 2014, pp. 6–20.

[133] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent systems with

JADE. John Wiley & Sons, 2007, vol. 7.

[134] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and practice,” The knowl-

edge engineering review, vol. 10, no. 2, pp. 115–152, 1995.

[135] M.-y. Yang and Y.-l. Zhu, “A cooperative protection system with multi-agent system,”

in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and

Pacific. IEEE, 2005, pp. 1–4.

[136] M. Uzair, L. Li, J. G. Zhu, and M. Eskandari, “A protection scheme for ac microgrids

based on multi-agent system combined with machine learning,” in 2019 Australasian

Universities Power Engineering Conference (AUPEC). IEEE, 2019, pp. 1–6.

[137] H. F. Habib, T. Youssef, M. H. Cintuglu, and O. A. Mohammed, “Multi-agent-based

technique for fault location, isolation, and service restoration,” IEEE Transactions on

Industry Applications, vol. 53, no. 3, pp. 1841–1851, 2017.

[138] M. J. Daryani and A. E. Karkevandi, “Decentralized cooperative protection strategy for

smart distribution grid using multi-agent system,” in 2018 6th International Istanbul

Smart Grids and Cities Congress and Fair (ICSG). IEEE, 2018, pp. 134–138.

[139] E. Kremers, J. G. de Durana, and O. Barambones, “Multi-agent modeling for the sim-

ulation of a simple smart microgrid,” Energy Conversion and Management, vol. 75, pp.

643–650, 2013.

[140] H. Karimi, B. Fani, and G. Shahgholian, “Multi agent-based strategy protecting the loop-

based micro-grid via intelligent electronic device-assisted relays,” IET Renewable Power

Generation, vol. 14, no. 19, pp. 4132–4141, 2020.

[141] H. Wan, K. Wong, and C. Chung, “Multi-agent application in protection coordination

of power system with distributed generations,” in 2008 IEEE Power and Energy Soci-

168



ety General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century.

IEEE, 2008, pp. 1–6.

[142] J. Ocampo-Wilches, A. Ustariz-Farfan, and E. Cano-Plata, “Modeling of a centralized

microgrid protection scheme,” in 2017 IEEE Workshop on Power Electronics and Power

Quality Applications (PEPQA). IEEE, 2017, pp. 1–6.

[143] F. B. dos Reis, J. O. C. Pinto, F. S. dos Reis, D. Issicaba, and J. G. Rolim, “Multi-agent

dual strategy based adaptive protection for microgrids,” Sustainable Energy, Grids and

Networks, p. 100501, 2021.

[144] L. L. do Nascimento and J. G. Rolim, “Multi-agent system for adaptive protection in mi-

crogrids,” in 2013 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT

Latin America). IEEE, 2013, pp. 1–8.

[145] A. Hussain, M. Aslam, and S. M. Arif, “N-version programming-based protection scheme

for microgrids: A multi-agent system based approach,” Sustainable Energy, Grids and

Networks, vol. 6, pp. 35–45, 2016.

[146] T. S. Aghdam, H. K. Karegar, and H. H. Zeineldin, “Variable tripping time differential

protection for microgrids considering dg stability,” IEEE Transactions on Smart Grid,

vol. 10, no. 3, pp. 2407–2415, 2018.

[147] Y. Zhu, S. Song, and D. Wang, “Multiagents-based wide area protection with best-effort

adaptive strategy,” International Journal of Electrical Power & Energy Systems, vol. 31,

no. 2, pp. 94–99, 2009.

[148] S. Kar, S. Samantaray, and M. D. Zadeh, “Data-mining model based intelligent differential

microgrid protection scheme,” IEEE Systems Journal, vol. 11, no. 2, pp. 1161–1169, 2015.

[149] D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining

based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid,

vol. 7, no. 5, pp. 2295–2304, 2015.

169



[150] S. Ranjbar, A. R. Farsa, and S. Jamali, “Voltage-based protection of microgrids using de-

cision tree algorithms,” International Transactions on Electrical Energy Systems, vol. 30,

no. 4, p. e12274, 2020.

[151] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference on

document analysis and recognition, vol. 1. IEEE, 1995, pp. 278–282.

[152] M. Esteve, J. Aparicio, A. Rabasa, and J. J. Rodriguez-Sala, “Efficiency analysis trees:

A new methodology for estimating production frontiers through decision trees,” Expert

Systems with Applications, vol. 162, p. 113783, 2020.

[153] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[154] T. Hastie, R. Tibshirani, and J. Friedman, “Random forests,” in The elements of statis-

tical learning. Springer, 2009, pp. 587–604.

[155] A. J. Sage, U. Genschel, and D. Nettleton, “Tree aggregation for random forest class

probability estimation,” Statistical Analysis and Data Mining: The ASA Data Science

Journal, vol. 13, no. 2, pp. 134–150, 2020.

[156] M. Al Karim, J. Currie, and T.-T. Lie, “Dynamic event detection using a distributed

feature selection based machine learning approach in a self-healing microgrid,” IEEE

Transactions on Power Systems, vol. 33, no. 5, pp. 4706–4718, 2018.

[157] M. Uzair, M. Eskandari, L. Li, and J. Zhu, “Machine learning based protection scheme

for low voltage ac microgrids,” Energies, vol. 15, no. 24, p. 9397, 2022.

[158] S. Baloch, S. S. Samsani, and M. S. Muhammad, “Fault protection in microgrid using

wavelet multiresolution analysis and data mining,” IEEE Access, vol. 9, pp. 86 382–86 391,

2021.

[159] S. Baloch, S. Z. Jamali, and S. A. R. Shah, “A protection technique for microgrid using

wavelet packet transform and data mining classifier,” Engineering Proceedings, vol. 20,

no. 1, p. 33, 2022.

170



[160] S. Netsanet, J. Zhang, and D. Zheng, “Bagged decision trees based scheme of microgrid

protection using windowed fast fourier and wavelet transforms,” Electronics, vol. 7, no. 5,

p. 61, 2018.

[161] Q. Cui and Y. Weng, “Enhance high impedance fault detection and location accuracy

via µPMU,” IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 797–809, 2019.

[162] G. Niu, B. Dai, M. Yamada, and M. Sugiyama, “Information-theoretic semi-supervised

metric learning via entropy regularization,” Neural computation, vol. 26, no. 8, pp. 1717–

1762, 2014.

[163] S. Kolla and P. Onwonga, “Identification of faults in microgrid using artificial neural

networks,” in 2020 IEEE Green Technologies Conference (GreenTech). IEEE, 2020, pp.

115–120.

[164] P. J. Haley and D. Soloway, “Extrapolation limitations of multilayer feedforward neu-

ral networks,” in [Proceedings 1992] IJCNN International Joint Conference on Neural

Networks, vol. 4. IEEE, 1992, pp. 25–30.

[165] R. Ransing, M. Ransing, and R. Lewis, “On the limitations of neural network techniques

for analysing cause and effect relationships in manufacturing processes–a case study,”

WIT Transactions on Information and Communication Technologies, vol. 29, 2003.

[166] M. Manohar, E. Koley, and S. Ghosh, “Microgrid protection under wind speed intermit-

tency using extreme learning machine,” Computers & Electrical Engineering, vol. 72, pp.

369–382, 2018.

[167] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory and appli-

cations,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006.

[168] X. Liu, S. Lin, J. Fang, and Z. Xu, “Is extreme learning machine feasible? a theoreti-

cal assessment (part i),” IEEE Transactions on Neural Networks and Learning Systems,

vol. 26, no. 1, pp. 7–20, 2014.

[169] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

171



[170] E. Casagrande, W. L. Woon, H. H. Zeineldin, and N. H. Kan’an, “Data mining approach

to fault detection for isolated inverter-based microgrids,” IET Generation, Transmission

& Distribution, vol. 7, no. 7, pp. 745–754, 2013.

[171] M. Uzair, L. Li, and J. G. Zhu, “Identifying line-to-ground faulted phase in low and

medium voltage ac microgrid using principal component analysis and supervised machine-

learning,” in 2018 Australasian Universities Power Engineering Conference (AUPEC).

IEEE, 2018, pp. 1–6.

[172] T. S. Abdelgayed, W. G. Morsi, and T. S. Sidhu, “A new approach for fault classification

in microgrids using optimal wavelet functions matching pursuit,” IEEE Transactions on

Smart Grid, vol. 9, no. 5, pp. 4838–4846, 2017.

[173] M. Mishra and P. K. Rout, “Detection and classification of micro-grid faults based on

hht and machine learning techniques,” IET Generation, Transmission & Distribution,

vol. 12, no. 2, pp. 388–397, 2017.

[174] T. S. Abdelgayed, W. G. Morsi, and T. S. Sidhu, “Fault detection and classification based

on co-training of semisupervised machine learning,” IEEE Transactions on Industrial

Electronics, vol. 65, no. 2, pp. 1595–1605, 2017.

[175] H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protec-

tion combined with machine learning for microgrids,” IET Generation, Transmission &

Distribution, vol. 13, no. 6, pp. 770–779, 2019.

[176] J. James, Y. Hou, A. Y. Lam, and V. O. Li, “Intelligent fault detection scheme for

microgrids with wavelet-based deep neural networks,” IEEE Transactions on Smart Grid,

vol. 10, no. 2, pp. 1694–1703, 2019.
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