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Abstract—Financial Multivariate Time Series (Fin-MTS) fore-
casting is increasingly critical in the financial market. Unlike
other Multivariate Time Series (MTS) data, Fin-MTS exhibits
particular characteristics, including non-linearity, volatility, and
hidden periodicities, which thus introduce great challenges for
modelling it well. Existing state-of-the-art models for Fin-MTS
forecasting often overlook hidden periodic characteristics, such
as credit and monetary policy cycles. More importantly, these
models usually show limited capability in well capturing the
intra-series and inter-series dynamic information during the
modelling process, resulting in significant information loss in
quantitative finance modelling and thus limited forecasting per-
formance. To this end, in this paper, we introduce a novel
model called Fourier Graph Convolution Transformer (FreTrans-
former) for Fin-MTS modelling and forecasting. FreTransformer
is not only able to well model both the intra- and inter-series
dynamic dependencies, but also well capture the important
hidden periodicities embedded in Fin-MTS data. FreTransformer
first maps the original time domain data into the frequency
domain to disclose the hidden periodicities and then employs
a novel Fourier Graph Convolution Network to well capture the
complex intra- and inter-series dependencies within Fin-MTS.
Extensive experiments on real-world US market data across 12
phases demonstrate that our method outperforms current state-
of-the-art models. Our source code is publicly available at this
repository: https://anonymous.4open.science/r/FreTransformer

Index Terms—Multivariate Time Series, Financial Time Series
Forecasting, Transformer, Frequency domain, Graph.

I. INTRODUCTION

Along with the rapid development of Artificial Intelligence
(AI) and its wide applications, AI models provide promising
possibilities for Multivariate Time Series (MTS) forecasting
in various application scenarios in the real world, such as
traffic flow forecasting, financial market prediction [1], [2].
Actually, MTS forecasting in finance has been a critical
research problem for a long time. Conventional quantitative
finance analysis methods combine mathematical and statistical
techniques and financial theories to analyse financial assets,
attaining heightened attention in the past decades [3], [4].
In recent years, benefiting from the power of advanced AI,
advanced quantitative financial models have exhibited superior
performance, both experimental and theoretical. These models
generally provide accurate forecasting by capturing the high
dimensional, heterogeneous, non-stable, non-i.i.d dependen-
cies within and across Financial Multivariate Time Series (Fin-
MTS) data [5]. They have been widely utilised by global-
known finance organizations including Hedge Funds, Renais-
sance Technologies and Two Sigma. These AI models have
been able to help these organizations earn more excess returns

due to the deep and robust modelling of various complex
dependencies embedded in finance data.

In the early years, the modelling of financial market move-
ments relied on linear relationships over historical finance
data, e.g., historical asset price data. Linear regression meth-
ods based on technical indicators, such as Moving Average
(MA) [6] and Auto-Regression (AR) [3], are widely applied
among professional and amateur finance traders. However, in
the real world, the financial time series data often exhibits non-
linearity and hidden periodicities in the real world, such as the
credit cycle and monetary policy cycle. These characteristics
prevent the aforementioned linear models from achieving
perfect performance.

Therefore, in recent years, advanced deep learning ap-
proaches, including basic recurrent neural network (RNN)
and long-short-term memory networks (LSTM), have been
introduced to better model the financial time series data.
These models have shown promising capability to capture
the nonlinear relationships embedded in financial time series
data, especially the intra-series relationships. To capture the
inter-series relationships which commonly exist in Fin-MTS
data, more advanced financial deep learning models, including
RSR [7], HIST [8] and ESTIMATE [5] have been devel-
oped. These models generally utilise Graph Neural Networks
(GNNs) to capture inter-series relationships effectively. For
instance, RSR is a framework for stock MTS forecasting that
integrates Temporal Graph Convolution and LSTM to learn
complex relationships in stock data with a focus on intra-
series dynamics. Although promising performance has been
achieved, there are still two significant gaps which prevent
the further improvement of the performance of these existing
methods on Fin-MTS data. On the one hand, there is a lack of a
unified framework that can effectively capture both the intra-
and inter-time series decencies simultaneously and integrate
them well. On the other hand, most of the existing methods
cannot effectively capture the hidden periodicities which is
commonly embedded in Fin-MTS data, which is significant
for accurate Fin-MTS forecasting.

In order to bridge the above significant gaps, in this paper,
we introduce a novel model, called Fourier Graph Convolution
Transformer (FreTransformer), for Fin-MTS forecasting. To be
specific, FreTransformer first maps the original Fin-MTS data
into a new latent space, i.e., frequency domain, and then in-
troduces a novel Fourier Graph Convolution Network (FGCN)
enhanced Transformer structure to learn both the intra- and
inter-series dependencies in a unified way. In particular, the
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FGCN is able to effectively learn the weight matrices that
encode both the intra- and inter-series dependencies in the
frequency domain. At the same time, after the transformation
from the original data space to the frequency domain, the
hidden periodicities is well disclosed and thus can be easily
captured in the frequency domain. Thanks to such a novel
design, our proposed FreTransformer is able to effectively
learn both the intra- and inter-series dependencies in a unified
way while emphasising the hidden periodicities. The main
contributions of this work can be summarised below:

• We propose a novel framework called FreTrasnformer
to effectively capture both the intra- and inter-series
dependencies as well as hidden periodicities for Fin-MTS
forecasting.

• In FreTransformer, Fourier transform is introduced to
map the original data into the frequency domain to
effectively disclose the hidden periodicities, which is very
hard to directly capture from the original data.

• In addition, a novel FGCN-enhanced transformer is pro-
posed to learn both intra- and inter-series dependencies
in the frequency domain in a unified way and naturally
integrate them in a learnable complex value matrix.

Extensive experiments on real-world financial data from
Yahoo Finance were conducted to assess the performance
of FreTransformer in comparison with representative and/or
state-of-the-art Fin-MTS forecasting models including LSTM,
ALSTM, RSR, HIST, and ESTIMATE. Experimental results
demonstrate that FreTransformer outperforms the five baseline
models and the rationality of its design.

II. RELATED WORK

Graph deep models for financial multivariate time series
forecasting. Fin-MTS has adopted Graph Neural Networks
(GNN) because of their superior performance in modelling
the complex structural representations among the different
assets [5], [8]–[11]. Most GNNs adopt a pre-fixed graph
structure to capture the correlations and representations among
assets, as exemplified by models like HIST [8]. Some models,
such as MAN-SF [12] and TRACER [13], have successfully
employed attention mechanisms to learn cross-asset correla-
tions in graphs without explicit domain knowledge. Specif-
ically, MAN-SF utilises a graph attention network to learn
latent representations, while TRACER uses a concatenated
attention mechanism to integrate varying weights of intra-
series relationships. Nevertheless, these GNN approaches con-
sistently implement the graph network to study the intra-
and inter-series features separately [5], [8], [12] while in the
frequency domain is barely feasible due to the intra- and inter-
series information is in different representation when the data
is changed to harmonic signals. Therefore, the original intra-
and inter-series information changes in the frequency domain.
In our study, we introduce a frequency-based Transformer with
the Fourier Graph Convolution Network (FGCN), which is
inspired by the FourierGNN [14] to conduct a novel study of
capturing intra- and inter-series information within the Fourier
Space harmonic signals.
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Fig. 1. Illustration of the weighted graph with n distinct Fin-TS input. Fin-
TS denotes the Financial Time Series. Each feature within every time step of
each Fin-TS is represented as a node in a weighted graph.

Frequency based complex value Transformer for mul-
tivariate time series forecasting. Many Multivariate Time
Series deep learning forecasting models harmonized with the
frequency domain concept with complex value to improve
the performance [15]–[18]. For example, SFM [19] enhances
the vanilla LSTM by decomposing its latent space with the
Discrete Fourier Transform (DFT), leading to more accurate
stock price predictions. Recently, FEDformer [17] has been an
innovative network using frequency domain knowledge with
the low-rank approximation and Discrete Fourier Transform-
based attention mechanism. Autoformer [16], an enhanced
version of the Transformer, utilises the Fast Fourier Transform
(FFT) to disintegrate the components Query (Q), Key (K),
and Value (V), thereby capturing long-term period (secular)
dependencies within series through amplitude. Several newest
models [18], [20] aim to understand intra-series correlations
in the frequency domain by analysing amplitude values after
applying the FFT. They use these amplitude values to decom-
pose the original series into several distinct periods. However,
there is still a gap in capturing intra- and inter-series depen-
dency in the frequency domain by current frequency-based
Transformers. They only utilise the constant value weighted
matrix, whereas the MTS converted in Fourier Space includes
two types of information: amplitude and phase. Without the
proper learnable weighted matrix after the FFT, frequency-
based Transformer models will lose the intra- and inter-
series details. Therefore, intra- and inter-series information
is incomplete in current frequency Transformer models. This
paper proposes the FreTransformer, a model designed to study
the information from both intra- and inter-series information
without the aforementioned loss. It addresses the challenge of
Transformer model learning of intra- and inter-series features
in the frequency domain.

III. FOURIER GRAPH CONVOLUTION TRANSFORMER

A. The FreTransformer Architecture

This paper introduces a thoroughly frequency-based Trans-
former with FGCN for modelling the Fin-MTS. Before pro-
ceeding to the FFT, the Fin-MTS will be considered as a
fully connected weighted graph, detailed in Section III-B.
The lossless domain transformation will be shown in Section
III-C to prove the graph meaning in the frequency-based MTS
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Fig. 2. FreTransformer Architecture. Xt discloses the hidden periodicities. The FGCN effectively captures both the intra- and inter-series dependencies as
well as hidden periodicities. The Fourier Multi-Head Attention Mechanism (FHMA) is a naı̈ve variant of the basic Multi-Head Attention Mechanism.

forecasting. Section III-D specifics FGCN, which is the core
module for the FreTransformer to learn both intra- and inter-
series features in the frequency domain. The FreTransformer,
a sequence-to-sequence model with an input-encoder-decoder-
output framework, is shown in Fig 2.

B. Prior Fully Connected Weighted Graph Structure

The prior graph structure, a novel approach in Fin-MTS
forecasting scenarios [14], [21]–[23] leads to the following
definitions for forming a Fully Connected Weighted Graph.

Definition 1 (Graph Fin-MTS forecasting problem).
Given a MTS input, Xt = [x1,x2, . . . ,xt]

T ∈ RT×N ,
where xt ∈ RN represents the N features at time t. The
lookback window X̂t = [xt−T+1, . . . ,xt]

T ∈ RT×N as
the lag correlation feature. Fin-MTS forecasting problem can
be defined as to predict the value of next τ time Yt =
[xt+1, . . . ,xt+τ ] ∈ Rτ×N grounded in the historical t̂ time
observations X̂t̂ =

[
xt̂−T+1, . . . ,xt̂

]T ∈ Rt̂×N . Formulas
lead to the Fin-MTS forecasting procedure as follows:

Ŷt = fθ(X̂t) = fθ [xt−T+1, . . . ,xt]
T ∈ Rτ̂×N , (1)

where Ŷt denotes the entire forecast series based on the ground
truth Xt for τ̂ future time and fθ is the forecasting function
with parameters θ. After transforming to a weighted graph,
the original task can be reformulated as:

Ŷt = fθ,θg (X̂t) = fθ,θg [xt−T+1, . . . ,xt]
T ∈ Rτ̂×N . (2)

Equation 2 is a rewritten formula with the parameter θg ,
which means the graph network learns the intra- and inter-
series features representation with θg represents the FGCN
hyperparameter and other parameters θ.

C. Domain Transformation/Reversal

We have the fundamental lossless tool, Fourier Transform,
to transfer the time domain data to the frequency domain. Due
to the Fin-MTS being the discrete data, we have FFT [24]
to decompose it to capture the cyclical trend patterns within

the data advantageously. Thus, we have the discrete input Xt

convert into frequency domain:

Xt = FFT(Xt) = A(Xt)e
jΦ(Xt)

=

[
N−1∑
n=0

Xt[t, n] · e−
2πi
N kn

]N−1

k=0

= Re

(
N−1∑
n=0

Xt[t, n] · e−
2πi
N kn

)

+ i · Im

(
N−1∑
n=0

Xt[t, n] · e−
2πi
N kn

)
,

∀t ∈ {1, 2, . . . , T},

(3)

where we have Xt ∈ CT
2 ×N as FFT output, denoting the Fin-

MTS data in the frequency domain. A(Xt) is the amplitude
and Φ(Xt) is the phase. To briefly present in this study, we
have the abbreviation Xt = Re(Xt)+ i · Im(Xt), where Re(Xt)
and Im(Xt) separately rewrite the real part and imaginary part
in the Equation 3.In subsequent sections, for simplicity, we
will refer to Equation 3 as FFT and Equation 4 as iFFT. As
one of the most critical recent algorithms, FFT has the lossless
reversal method iFFT [24], which is shown as:

Xt = IFFT(Xt)

=

[
1

N

N−1∑
k=0

Xt[t, k] · e
2πi
N kn

]N−1

n=0

=
1

N

(
Re

(
N−1∑
k=0

Xt[t, k] · e
2πi
N kn

))

+ i · 1

N

(
Im

(
N−1∑
k=0

Xt[t, k] · e
2πi
N kn

))
,

∀t ∈ {1, 2, . . . , T}.

(4)

D. FGCN
To better capture the intra- and inter-series features in the

Fin-MTS data, we propose an enhanced module in the Fourier



domain FGCN based on the FourierGNN [14].
Proposition 1 (Fourier Graph Convolution Network).

For a weighted graph GW = (X,A) with the X ∈ RT×N as
the nodes and the A ∈ RT×T as the adjacency matrix to study
the inner series representation, where the T is the number of
nodes (time) and N as the features. We have a learnable weight
matrix W ∈ RN×N to learn the cross-series information. By
applying Hadamard product on A and W , we can form a
tailored Green’s kernel κ : [N ] × [N ] → RT×T , T > N with
κ[i, j] := Aij ◦W .

The difference between traditional convolution neural net-
work (CNN) [25] compared to the pure math convolution
concept is only the kernel direction, where the pure math
convolution has a derivative formula in the frequency domain
based on the convolution theorem [26] can be rewritten as:

FFT(X)FFT(κ) = FFT((X ∗ κ)[i][j]), (5)

where for all i ∈ [N ] and j ∈ [N ]. We can implement the
weighted graph concept GW = (X,A)to constitute the FGCN
from Equation Equations (3) to (5) as:

FGCNW (X,A) = σ(

L∑
l=0

(FFT(AXW ) + B))

FGCNK(X) = σ(

L∑
l=0

(X× K[i][j] + B)).

(6)

Proof. The proof demonstrates the equivalence in Equation
6 between the complex input in Fourier space and graph
input in the time domain. It also confirms that the unified
complex learnable weighted matrix K contains the same
information learned from the weighted matrices W and A.
According to κ[i, j] := Aij ◦ W , we can expand the graph
convolutions AXW in the time domain to Fourier space:

FFT(AXW ) = FFT

(
n∑

i=1

AijXW [j]

)
= FFT

(
n∑

i=1

X[j]k[i, j]

)
= FFT((X ∗ κ)[i][j]) = FFT(X)FFT(κ[i][j])
= X× K[i][j],

where we arrive at the equivalence expression
FGCNW (X,A) = FGCNK(X) in the Equation 6.

Thus, we can incorporate the FGCN into the experimen-
tal programming framework as detailed in Section III-D by
reformulating it as the following equation:

X× K[i][j] + B
=(Re(X) + i · Im(X))·
(Re(K)[i][j] + i · Im(K[i][j])) + B

=(Re(X)Re(K)[i][j]− Im(X)Im(K[i][j]) + Re(B))+
i(Re(X)Im(K[i][j]) + Im(X)Re(K)[i][j] + Im(B)).

(7)

E. FreTransformer

We have innovated the Transformer [27] model by inte-
grating it with an FGCN, creating a frequency-based deep
learning structure named FreTransformer, as shown in Fig. 2.

This structure includes the Weighted Graph FFT Input along
with a corresponding Encoder and Decoder.

FreTransformer Input. The inputs of the encoder and
decoder part are denoted as Xen ∈ CT

2 ×N and Xde ∈ CT
2 ×N .

Each embedding initialisation is combined with two parts:
FGCN Fin-MTS embedding to learn the representation of the
assets data and the positional embedding (PE) [27] to learn
the intra-series features with phase in the frequency domain.
The inputs are formulated as follows:

Xen = FGCNK(X) + PE(X)
Xde = Concat(Xen,X).

(8)

Fourier Multi-Head Attention Mechanism. The Fourier
Multi-Head Attention (FMHA) is a variation of the original
attention mechanism [27]. We directly separate the real and
imaginary parts of the input Xen and get through the linear
transform Linear to form the relative Q, K, V. For the
simplicity, we only demonstrate the Q below:

Q = Complex(Linear(Re(Xen)),Linear(Im(Xen)). (9)

With the Complex input Q, K, V, we straightforwardly refine
the Attention function to FHMA as presented:

FMHA(Q,K,V) = Complex(Softmax(Re(
QKT

√
dK

)),

Softmax(Im(
QKT

√
dK

)) · V.
(10)

Encoder/Decoder. As illustrated in Fig. 2, the encoder is
assembled of a stack of N layers. Each layer in the encoder
has two components: FMHA and FGCN. The FMHA in the
encoder generates the attention units from the Xen, and FGCN
is to learn the representation in the embedding space further.
AddNorm indicates LayerNorm(x + Sublayer(x)) which is a
residual link design. The equations are specified as:

Xl,1
en, = AddNorm(FMHA(Xl−1,1

en ) + Xl−1,1
en )

Xl,2
en, = AddNorm(FGCN(Xl,1

en) + Xl,1
en),

(11)

where ” ” is denoted as the void attention output. Xl
en =

Xl
en, l ∈ {1, . . . , N} stands for the output of the l-th encoder

layer and Xl,i
en refers to the ith unit in the Xl

en.
The decoder is constructed with a series of M stacked layers,

with three elements in each layer: FMHA, FMHA and FGCN.
The first FMHA unit is extract the latent information from the
Xde, while the second FMHA unit is to inference as:

Xl,1
de = AddNorm(FMHA(Xl−1,1

de ) + Xl−1,1
de )

Xl,2
de = AddNorm(FMHA(Xl,1

de ,X
N
en) + Xl,1

de )

Xl,3
de = AddNorm(FGCN(Xl,2

de ) + Xl,2
de ),

(12)

where ” ” is denoted as the void attention output. Xl
de =

Xl
de, l ∈ {1, . . . ,M} represents the output of the l-th decoder

layer and Xl,i
de refers to the ith unit in the Xl

de.



Fig. 3. Arranged S&P500 dataset phases for experiments. The line indicates a real-world S&P 500 Index closing price. The grey line segment on the left
side denotes the training and validation data in phase 1. The spacing between two adjacent grid lines on the x-axis corresponds to one phase period.

IV. EXPERIMENTS

This section details the evaluation process for our Fre-
Transformer comprehensive analysis of four research ques-
tions, which exhibit as follows:
(RQ1) Can our proposed FreTransformer model outperform
state-of-the-art Fin-MTS prediction solutions?
(RQ2) What impact does each component of the model have?
(RQ3) Does our model display hyperparameter sensitivity?
The in-depth analysis comprises benchmarks, experiment
setup, performance evaluation, and sensitivity analysis, each
detailed in the following subsections.

A. Benchmarks

To evaluate the effectiveness of our model, we selected five
financial time series forecasting models as benchmarks, includ-
ing the vanilla Transformer, current state-of-the-art baselines,
and classic machine learning methods, which are specifically:

• LSTM [4], where is a type of advanced, recurrent neural
network (RNN) architecture used in the field of deep
learning, capable of learning long-term dependencies
in data sequences, incredibly efficient in financial deep
learning.

• ALSTM [28], is an enhanced version of the traditional
LSTM network, which incorporates an attention mecha-
nism to improve the learning of long-term dependencies
for more accurate stock market predictions.

• RSR [28] is a novel deep model for stock prediction
named Relational Stock Ranking. It utilises the graph re-
lation embedding within the LSTM framework to capture
the cross-asset representation in Fin-MTS.

• HIST [8], where a graph-based framework forecasts stock
trends by leveraging shared information across different
stocks. The graph is organized around concept-oriented
structures to enhance prediction performance.

• ESTIMATE [5], the newest deep learning model specially
developed for stock movement prediction using attention
mechanism onto an LSTM network with hypergraph and
wavelet transform. It is abbreviated as ESTI in table I,II.

B. Experiment Setup

Datasets. To assess the performance of the proposed model,
we utilise open-source real-world data from popular data
provider Yahoo Finance. Ran Aroussi developed a threaded
and Pythonic Library named yfinance, which allows us to
download the specified open-source market data from Yahoo
Finance1. For fairness and trustworthiness, we apply the most
influential index, S&P500, which stands for the Standard and
Poor’s 500, ticker symbol ĜSPC. The dataset consists of three
components: training dataset, validation dataset, and backtest
dataset. The entire dataset covers 2016/01/01 to 2022/06/01
(1593 trading days) and split the data into 12 phases [5],
[8] due to the markets period with different representations,
volatility, trading volume, and markets sentiment in Fig 3.
Each phase contains training data with a duration of 10
months, a validation dataset with a duration of 2 months, and
a backtest dataset with a duration of 6 months. For each day,
S&P500 has six features, which are Open, High, Low, Close,
Adj Close, and Volume.

Performance Metrics. Mainstream time series forecasting
metrics, mean absolute error (MAE), mean absolute percent-
age error (MAPE), mean squared error (MSE), and rooted
mean squared error (RMSE), are not significant in financial
data forecasting. We adopt the typical financial evaluation met-
rics, which are both quantitatively and qualitatively significant
in finance, to gauge the accuracy of the experiment as details:

• Information Coefficient (IC): reflects the relationship of
predictions to the ground truth, determined through the
average Pearson correlation coefficient.

• RankInformation Coefficient (Rank IC): is a variation of
IC, calculated by the Spearman coefficient, evaluating the
ranking of assets based on intra-series potential profit.

• Information ratio based IC (ICIR): is a metric that
combines two key aspects, accuracy and consistency of
a financial forecaster, computed by dividing the average
IC by the standard deviation of the IC.

1http://finance.yahoo.com

http://finance.yahoo.com


TABLE I
OVERALL ACCURACY2 , IC.

Ms/Ps LSTM ALSTM RSR HIST ESTI Ours
1 0.014 -0.024 0.008 0.003 0.061∗ 0.100
2 -0.030 -0.025 -0.009 0.000 0.010∗ 0.113
3 -0.016 0.025∗ -0.003 0.005 0.134 0.125∗

4 0.006∗ -0.009 -0.017 -0.010 -0.030 0.124
5 0.020 0.029∗ -0.009 0.006 0.012 0.112
6 -0.034 -0.018 0.018∗ 0.008∗ 0.003 0.132
7 -0.006 -0.033 0.011∗ 0.005 0.006 0.094
8 0.014∗ -0.024 -0.005 -0.017 0.012 0.074
9 -0.002 0.045 -0.036 0.006 0.160 0.111∗

10 -0.039 -0.046 0.018 0.009 0.031∗ 0.096
11 0.022 0.016 -0.058 0.011 0.043∗ 0.126
12 -0.023 -0.015 0.003 0.006 0.093∗ 0.145

ICstd 0.022 0.028 0.022 0.008 0.057 0.018∗

ICmean -0.006 -0.007 0.003 0.003 0.045∗ 0.113
DiffICm 0.000 -0.001 +0.009 +0.009 +0.051∗ +0.119
ICIR -0.282 -0.232 0.139 0.326 0.777∗ 6.290

DiffICIR 0.000 +0.050 +0.421 +0.608 +1.059∗ +6.572

• Rank information ratio based IC (Rank ICIR): is the
information ratio of computed by average Rank IC and
standard deviation of the rank IC [29].

Reproducibility environment. Our experiments are stan-
dardized to ensure a certain level of reproducibility by a
defined playing field with certain Python package versions.
The versions selected for all implementations were Python
3.8.13, PyTorch 1.13.1, Numpy 1.22.3, CUDA toolkit 11.6.1,
and scikit-learn 1.2.2. All experiments were conducted on an
Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz system with
180 GB of main memory and Quadro RTX 6000 graphic
cards with driver version 525.105.17 and CUDA version 12.0.
Furthermore, we integrated a module to control randomness,
utilizing seed values to manage the stochasticity in various
computational units, including the GPU, Python, and PyTorch.

C. Performance

The financial time series forecasting performance on the
S&P500 dataset is detailed in Table I,II, with baselines
comparative data originating from [5]. In terms of IC
and Rank_IC Metrics, our FreTransformer outperformed the
current deep financial models [27] and achieved overall best
performance across all the phases. The metrics ICIR and
Rank_ICIR are utilised to respectively evaluate the level of
randomness and trustworthiness in the predictive models for
IC and Rank_IC. Our model realized overall best compared
to the baseline models, featuring the greatest number of opti-
mal IC and Rank_IC in conjunction with leading ICIR and
Rank_ICIR. Specifically, with extraordinary stationary per-
formance, our method significantly outperforms in the ICIR
and Rank_ICIR, proving our contributions. On the other
hand, with stable training and validation data, applying our
model to a highly unstable backtest dataset will cause inferior
performance. Our method fails to achieve the best IC and
Rank_IC in some phases due to the training and validation

TABLE II
OVERALL ACCURACY2 , RANK IC.

Ms/Ps LSTM ALSTM RSR HIST ESTI Ours
1 -0.151 -0.211 0.031 0.085 0.040∗ 0.100
2 -0.356 -0.266 -0.018 -0.008 0.016∗ 0.083
3 -0.289 0.049 -0.005 0.125∗ 0.108 0.129
4 0.089∗ -0.099 -0.033 -0.225 -0.019 0.095
5 0.186∗ 0.182 -0.009 0.192 0.026 0.116
6 -0.091 -0.289 0.029 0.204 0.016 0.146∗

7 -0.151 -0.476 0.001 0.107 -0.014∗ 0.194
8 0.201 -0.243 -0.007 -0.328 -0.006 0.150∗

9 -0.019 0.242 -0.019 0.174∗ 0.160 0.130
10 -0.496 -0.323 0.017 0.256 -0.002 0.170∗

11 0.259 0.094 -0.072 0.215∗ 0.047 0.129
12 -0.397 -0.174 -0.031 0.157∗ 0.052 0.196

R ICstd 0.251 0.267 0.228 0.181 0.053∗ 0.034
R ICmean -0.101 -0.096 -0.007 0.080∗ 0.035 0.137
DiffR ICm 0.000 +0.005 +0.094 +0.181∗ +0.136 +0.238
R ICIR -0.403 -0.360 -0.030 0.438 0.670∗ 4.055

DiffR ICIR 0.000 +0.043 +0.373 +0.841 +1.073 ∗ +4.458

periods being both highly volatile. This volatility is primarily
attributed to the occurrence of black swan events, which
significantly impacted market periodic dynamics. Our model
limitation is neglecting the real-world black swan events,
resulting in insufficient performance on the highly volatile
phases. Despite that, it is worth remarking that naı̈ve deep
learning methods are still competitive in financial datasets in
some phases. LSTM achieved the best Rank_IC performance
in phases 8 and 11. ALSTM attained the peak Rank_IC
achievement in phase 9. ESTIMATE is the top-performing
model among the baselines, showing superior performance in
phases 3 and 9. The reason is wavelet hypergraph attention in
ESTIMATE captures both intra- and inter-series correlations.
Overall, our model outperforms the baseline according to the
mean values of the metrics:IC and Rank_IC.

TABLE III
OVERALL ACCURACY, IC, RANK IC.

FreTransformer FT-1 FT-2 FT-3 FT-4
IC 0.1449 0.0144 0.0372 0.0887 0.1309

Rank IC 0.1956 -0.0225 -0.0022 0.0734 0.1265

D. Ablation Study

To address the Research Question (RQ2), we assessed the
significance of each component within our model by develop-
ing four distinct variants: (FT-1) This variant eliminates the
FGCN operators in the encoder layers within FreTransformer.
(FT-2) This variant eliminates the FGCN operators in the
decoder layers within FreTransformer. (FT-3) This variant

2For each phase, the three best-performing methods are denoted using
distinct markings: bold for the top method, superscript asterisk∗ for the
second-best, and underline for the third-best. While Diff refers to the metrics
difference between the first model and the model in the related column.



(a) FGCN Dimensions (b) Multi-head Attention (c) Loss Functions

Fig. 4. Sensitivity analysis of FreTrans related hyperparameters indicates significant findings: (a) shows that the FGCN operators d ff in FreTrans profoundly
influences outcomes, with optimal performance when the dimension ranges between 16 and 32. (b) demonstrates that n heads exerts a notable effect on
optimization, peaking in efficacy at 8. (c) indicates the most superior Reconstruction Loss Function is the SmoothL1Loss.

(a) Epochs (b) Batch Sizes (c) Learning Rate

Fig. 5. Sensitivity analysis of time series deep learning related hyperparameters reveals critical outcomes: (a) The best performance was observed at 60
epochs. (b) A batch size of 4 yields optimal results. (c) The superior performance of the learning rate is revealed at 8× 10−5.

removes the FGCN operators in the encoder embedding layers.
(FT-4) This variant removes the FGCN operators in the
decoder embedding layers. Table III demonstrates the detailed
experiment results.

E. Sensitivity Analysis

To meticulously evaluate the influence of hyperparameters
within our proposed method, we carried out a thorough
sensitivity study. This extensive analysis assesses a multitude
of hyperparameter configurations across the entire end-to-end
training process in phase 12.

• Primarily, we explore the FreTransformer unique hy-
perparameters crucial for the model performance, such
as FGCN Dimensions d fgcn in FGCN, Multi-head
Attention n heads, and reconstruction loss function.

• Furthermore, we analyse the regular hyperparameters in
time series deep learning research questions, including
the number of epochs, batch sizes, and learning rate.

In each experimental sequence, we rigorously test a set of
designed hyperparameters across an available range, finding
the best setting and showing the ascending and descending
trends for each hyperparameter. We preserve the default setting
for all of the other hyperparameters to distinctly evaluate the
influence of each parameter on our model efficacy.

1) Effects of FreTransformer: Generally, the Transformer
architecture has advantages in capturing complex and long data
relationships by its advanced attention mechanisms embedded
with deep neural networks to achieve great performance in
sequential data. Nevertheless, the real-world financial data

performance of Transformers in tasks such as time-series fore-
casting or anomaly detection can vary significantly due to the
diversity of data distribution, task requirement, and the drift of
the concept or data. To independently evaluate and understand
the impact of these elements on the performance of financial
time series forecasting, we initiate a comprehensive sensitivity
analysis, focusing on three essential hyperparameters.

FGCN Latent Dimensions. The dimensions of the FGCN
Operators specify the density of latent information in FGCN
that influences the model’s capacity for capturing data repre-
sentation in the embedding and encoder/decoder layer. The
d fgcn also determines the ability to seize the few shot
financial daily data in the encoder/decoder layers. This hy-
perparameter is similar to the dimension of the feedforward
network d ff in the vanilla Transformer, which is vital in
processing sequential data. To create an efficient FGCN Op-
erator, we performed experiments that varied the dimensions
of the latent dimension d fgcn, specifically inspecting in
{4,8,16,32,40,48,64}. These experiments’ results and thorough
analysis are presented in Fig. 4 (a), which highlights the
optimal dimension of d fgcn.

Multi-head Attention. The number of heads in the multi-
head attention mechanism of FreTransformer, denoted as
n heads, is important in deciding the model’s proficiency
in interpreting diverse aspects of simultaneous input data.
We chose to experiment with values in the set {6,7,8,9,10},
aiming to understand how varying n heads affects the model’s
learning ability. The detailed outcomes are demonstrated in
Fig. 4 (b).



Loss Functions. The choice of loss function in FreTrans-
former is a critical factor in defining the model’s ability
to learn from the training data accurately. We experimented
with a range of loss functions, including Mean Squared Error
(MSELoss), Mean Absolute Error (L1loss), and Huber Loss
(SmoothL1loss). The comparison and analysis of three types
of loss functions are visualised in Fig. 4 (c).

2) Effects of Deep Learning: In deep neural networks, the
number of epochs, batch sizes, and learning rate count towards
optimal performance.

Number of Epochs. The number of epochs in the Fre-
Transformer impacts the performance in the training phase,
so we test the model’s forecasting capacity at epochs
{60,80,100,120,140} to explore the consistency and random-
ness, while Fig. 5 (a) details the results and insights.

Batch Sizes. The batch size in FreTransformer signifi-
cantly affects the model’s learning dynamics and computa-
tional efficiency. Therefore, we tested various batch sizes
{4,8,16,32,40,64} to find the gap between adequate and in-
adequate learning per experiment. Fig. 5 (b) illustrates the test
findings and explorations.

Learning Rates. The learning rate in FreTransformer de-
fines how quickly the gradient descended in the model. We
experimented with a range of learning rates between 1×10−6

and 2 × 10−5 to find the stability of gradient updates and
optimal experiment results. Fig.5 (c) shows the study results
and reviews.

V. CONCLUSION

In this paper, we explore a novel model, the FreTransformer,
which overcomes the aforementioned hidden periodic prob-
lem. The model utilises a prior graph with an FGCN to map the
Fin-MTS into the frequency domain. This approach addresses
the limitations associated with forecasting loss in Fin-MTS.
Extensive experiments demonstrate that the FreTransformer
achieves state-of-the-art performance. Additionally, the struc-
ture of the FreTransformer exhibits strong capabilities in
capturing both intra- and inter-series dependencies.
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