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Abstract 

The three-disulfide inhibitor cystine knot (ICK) motif is a fold common to venom peptides from 

spiders, scorpions and aquatic cone snails. Over a decade ago it was proposed that the ICK motif 

is an elaboration of an ancestral two-disulfide fold coined the disulfide-directed β-hairpin (DDH). 

Here we report the isolation, characterization, and structure of a novel toxin (U1-LITX-Lw1a) 

from the venom of the scorpion Liocheles waigiensis that is the first example of a native peptide 

that adopts the DDH fold. U1-LITX-Lw1a not only represents the discovery of a missing link in 

venom protein evolution, it is the first member of a fourth structural fold to be adopted by 

scorpion venom peptides. Additionally, we show that U1-LITX-Lw1a has potent insecticidal 

activity across a broad range of insect pest species, thereby providing a novel structural scaffold 

for bioinsecticide development.  
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Introduction 

Scorpions are one of the most ancient venomous animals, with the oldest fossil scorpion dating to 

the Silurian Period around 430 million years ago (1). Scorpion venoms are consequently the 

product of millions of years of evolutionary fine tuning, resulting in the chemically and 

pharmacologically complex mixture present in extant venoms (2). The predominant components 

of scorpion venoms are bioactive peptides, many of which have potential application in the 

pharmaceutical (3) and agrochemical (4) industries. 

 

Over the past 60 years, ~730 scorpion venom peptides have been isolated from 56 species (5). 

The vast majority of scorpion toxins characterized to date contain a common core topology 

comprising one or two short α-helices connected to a triple-stranded antiparallel β-sheet 

stabilized by three or four disulfide bonds (6). This fold, known as the cystine-stabilized α/β 

(CSα/β) motif, is one of only three structural scaffolds that have been found in disulfide-

containing scorpion venom peptides. The topologically unrelated cystine stabilized α-helix-loop-

helix (CSα/α) fold consists of two short α-helices connected by a β-turn; only seven scorpion 

peptides have been discovered that adopt this fold (7). The third fold found in scorpion-venom 

peptides is the inhibitor cystine knot (ICK) motif (8) that dominates the venom peptidome of 

spiders (9) and is also present in peptides from evolutionarily unrelated organisms (10). 

 

The CSα/β scorpion neurotoxins evolved by recruitment into the venom and subsequent 

neofunctionalisation of CSα/β defensins (11). The CSα/β defensins are antimicrobial peptides 

that are widely distributed in plants, fungi, nematodes, and the arthropod classes Insecta and 

Arachnida. The conservation of gene structure between scorpion CSα/β defensins, which are 
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found in the haemolymph, and the CSα/β venom neurotoxins, supports a paralogous relationship 

between these two classes of peptides (12). In contrast, little is known about the evolutionary 

origins of the CSα/α and ICK folds. It was previously suggested that the three-disulfide ICK fold 

is an elaboration of a simpler, ancestral two-disulfide fold coined the disulfide-directed β-hairpin 

(DDH) (13). 

 

Here we describe the discovery of a scorpion venom peptide that represents the first example of a 

novel fourth scorpion toxin fold. Moreover, this structure is the first example of a native peptide 

that adopts the previously hypothetical DDH fold. Thus, the current work provides support for 

the hypothesis that the DDH fold is the evolutionary precursor of the ICK motif. 

 

Results 
Mass profile of the Liocheles waigiensis venom peptidome 
Research on scorpion venoms has focused primarily on members of the medically important 

Buthidae family. There have been far fewer studies on non-buthids, and very little research has 

been performed on Australian scorpions despite their evolutionary significance. We therefore 

decided to examine the venom of the non-buthid Australian scorpion L. waigiensis (Scorpiones: 

Scorpionoidea: Liochelidae) as this species had not been studied previously. MS analysis of 

L. waigiensis venom revealed 200 distinct masses ranging from 1 kDa to >10 kDa. The majority 

(88%) of observable masses were smaller than 5 kDa (Fig. 1B), indicating that the venom is 

dominated by small peptides. Mass profiling of the venom using both nano-electrospray and 

MALDI-ToF instruments proved to be complementary, with only ~30% of the total masses (57 of 

192) observed using both methods (Fig. 1B). 
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Isolation and sequencing of a novel peptide 
A novel peptide of mass 4171.91 Da was purified from L. waigiensis venom using reversed-

phase (rp) HPLC (Fig. 1A). Since its molecular target remains to be determined, the peptide was 

named U1-liotoxin-Lw1a (U1-LITX-Lw1a) based on the recently introduced nomenclature for 

venom peptides (14). Reduction of the purified peptide followed by alkylation with 

iodoacetamide led to a mass increase of 232 Da, indicating the presence of two disulfide bonds. 

The reduced and alkylated peptide was subjected to N-terminal sequencing which, combined with 

tandem mass spectrometry (MS/MS) analysis, revealed the primary structure of the 36-residue 

peptide as DFPLSKEYESCVRPRKCKPPLKCNKAQICVDPNKGW. 

 

U1-LITX-Lw1a is expressed as a prepropeptide 
The DNA sequences of clones from 5’ RACE analysis of a venom-gland cDNA library revealed 

the presence of a unique transcript upstream of the region encoding the mature U1-LITX-Lw1a 

toxin. Analysis of the transcript using SignalP 3.0 (15) indicated that it is comprised of a 5’ UTR, 

signal peptide, propeptide, mature toxin encoding region, and a 3’ UTR (Fig. S3 and Fig. 5), with 

a polyadenylation signal (AATAAA) 41 nucleotides downstream of the stop codon. The signal 

peptide consists of 25 residues, 16 of which are hydrophobic. The propeptide comprises 14 

residues and half of these are acidic. While acidic propeptide regions are a common feature of 

spider-venom toxin transcripts (16), of those scorpion toxin precursors known to have a 

propeptide region, only a few members of the calcine family have a high number of acidic 

residues in the propeptide region. 

 

Synthesis of U1-LITX-Lw1a and determination of disulfide bond connectivity 
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Synthetic U1-LITX-Lw1a was produced by solid-phase peptide synthesis. Oxidation of the 

synthetic peptide resulted in one major peak that was shown to co-elute with the native peptide 

on rpHPLC (Fig. S1). Since the synthetic peptide co-eluted with the native peptide, and there was 

only a limited amount of native material, the disulfide-bond connectivity was determined by 

tryptic digest of the synthetic toxin. There are three connectivities possible for a peptide with two 

disulfide bonds (Fig. S2A). However, as there is a tryptic cleavage site between each of the 

cysteine residues in U1-LITX-Lw1a, digestion of the fully oxidized peptide with trypsin should 

give a unique mass fingerprint for each of the three possible disulfide bond connectivities. 

Indeed, the mass spectra obtained for the oxidized peptide following tryptic digestion (Fig. S2B) 

allowed unambiguous determination that the cysteine residues in U1-LITX-Lw1a are arranged in 

a 1–3, 2–4 connectivity (top panel in Fig. S2A). 

 

Structure of U1-LITX-Lw1a 
The three-dimensional structure of U1-LITX-Lw1a was determined using homonuclear NMR 

methods. Statistics highlighting the high precision and stereochemical quality of the ensemble of 

20 U1-LITX-Lw1a structures are shown in Table S1. The highest-ranked member of the 

ensemble has a MolProbity score of 2.54, placing it in the 45th percentile relative to all other 

structures ranked by MolProbity.  

 

The structure of U1-LITX-Lw1a is remarkable for a scorpion venom peptide. It does not contain 

the CSα/β, CSα/α or ICK motif common to other disulfide-rich scorpion toxins but instead 

contains a novel two-disulfide scaffold (Fig. 3). The only elements of secondary structure are two 

short but well-defined two-stranded β sheets. The N-terminal β sheet comprises β strands 1 and 2 

(residues 4–5 and 16–17, respectively), while the C-terminal β sheet is composed of β strands 3 
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and 4 (residues 22–23 and 29–30, respectively) (Fig. 3). 

Remarkably, a search for structural homologs of U1-LITX-Lw1a using DALI (17) yielded a total 

of 29 unique matches with a statistically significant Z score ≥ 2. Of these structural homologs, 28 

contain an ICK motif, including 23 spider toxins and one cone snail toxin. Notably, however, all 

of these structurally homologous toxins contain at least one additional disulfide bond. 

 

ICK toxins have proliferated in spider venoms to the point where they now dominate most 

spider-venom peptidomes (18). The marked insensitivity of this structural scaffold to changes in 

intercystine resides has enabled spiders to develop diverse pharmacologies using the same 

disulfide framework. Fig. 4 shows an overlay of U1-LITX-Lw1a on the structure of ICK spider 

toxins with different pharmacologies, including toxins with high affinity for P2X3 receptors, NaV 

channels, KV channels, and calcium-activated potassium (KCa) channels. The inherent functional 

diversity of ICK toxins means that these structural homologs provide few clues as to the likely 

target of U1-LITX-Lw1a. In contrast, as discussed below, U1-LITX-Lw1a might provide an 

indication of the evolutionary origin of ICK venom peptides. 

 

U1-LITX-Lw1a is a potent insecticidal toxin 
U1-LITX-Lw1a was lethal to all three insect pest species tested (Fig. 2). In crickets, intermittent 

twitching of appendages was initially observed and by 2 h post-injection the degree of paralysis 

ranged from slight at low doses to complete paralysis at high doses. Blowfly larvae also exhibited 

a dose-dependent contractile paralysis. The LD50 ranged from 0.78 nmol/g in mealworms to 

5 nmol/g in adult blowflies (Fig. 2). 

 

We attempted to determine the molecular target of the toxin by analyzing its effect on ion 
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channel currents in cockroach dorsal unpaired median (DUM) neurons. However, no significant 

effects were observed on the amplitude, kinetics, or the voltage-dependence of activation of 

voltage-gated sodium (NaV), potassium (KV), and calcium (CaV) currents when up to 3 µM 

U1-LITX-Lw1a was applied to DUM neurons. 

 

Discussion 
Evolution of the inhibitor cystine knot 

Despite its abundance in invertebrate venoms such as spiders, scorpions, and cone snails, the 

evolutionary origin of the ICK motif is unclear as there are no invertebrate body proteins known 

to contain this motif. The ICK motif comprises a “ring” formed by two disulfides and the 

intervening sections of polypeptide backbone, with a third disulfide piercing the ring to create a 

pseudo-knot (Fig. 4F). The compact hydrophobic core of the ICK motif consists largely of the 

two central disulfide bridges that emanate from the two β-strands that characterize the ICK fold 

(19). In contrast, the N-terminal disulfide bridge contributes very little to the hydrophobic core 

and it has been demonstrated that the tertiary structure and thermal stability of the ICK-

containing trypsin inhibitor EETI II is largely unperturbed by removal of the N-terminal disulfide 

bridge (20, 21). Thus, we previously proposed that the ICK fold is a minor elaboration of a 

simpler ancestral fold that we referred to as the disulfide-directed β-hairpin (DDH) (13). 

 

The DDH fold is shown schematically in Fig. 4F and its amino acid consensus sequence was 

determined to be CX5–19CX2[G or P]X2CX6–19C, where X is any amino acid (13). The DDH fold 

differs from the ICK fold in that there are only two mandatory disulfide bridges that form the 

bulk of the hydrophobic core, so that loop 1 is no longer necessarily bounded by an N-terminal 
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Cys residue, and loop 3 is generally five residues in length with a central Gly or Pro to ensure a 

tight turn prior to the first β-strand. The residue following the Gly/Pro in loop 3 is generally a 

hydrophobe as this residue, along with the two buried disulfide bridges, constitute the mini-

hydrophobic core of this domain. Based on their studies on EETI II, Heitz and coworkers (20) 

also proposed the existence of an elementary motif which they named the cystine-stabilized β-

sheet (CSB). The CSB motif is in fact a more stringently defined DDH, containing smaller first 

and third loops and a triple-stranded β-sheet. Because the DDH motif is less rigidly defined, it 

should be considered the ancestral fold as it includes many proteins that are excluded from the 

CSB fold. 

 

It is clear from Fig. 4 that the two disulfides in U1-LITX-Lw1a overlay well with the two central 

disulfides in the ICK motif; in contrast, the “outer” solvent-exposed disulfide that closes the ring 

of the ICK motif is missing in U1-LITX-Lw1a. Thus, the structure of U1-LITX-Lw1a 

corresponds exactly to the previously hypothesized DDH fold. Although the Liochelidae family 

to which L. waigiensis belongs is not believed to be an evolutionarily ancient scorpion (22), 

U1-LITX-Lw1a adopts the heretofore-missing native ancestral DDH fold that may be the 

evolutionary precursor to the ICK motif. Thus, U1-LITX-Lw1a lends supports to the hypothesis 

that the ICK toxins, at least in arachnids, may have originated from a DDH-encoding gene that 

was recruited into the venom and subsequently elaborated to encode an additional disulfide bond. 

 

The phylogeny of scorpions is highly controversial, with recent estimates of the number of extant 

families ranging from 13 to 18 (23-25). Nevertheless, it is clear that Liochelidae is not a basal 

group (22). Thus, it is possible that U1-LITX-Lw1a is not the precursor of an ICK peptide but 
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rather derived from it. However, this would leave unsolved the question of how the ICK fold was 

recruited into the venom peptidome. In contrast, as pointed out previously (13), the DDH fold is 

present in numerous eukaryotic body proteins and hence it seems likely that the highly stable 

ICK fold was derived by simple modification of an ancestrally recruited DDH motif. 

 

A novel bioinsecticide scaffold 

The primary structure of U1-LITX-Lw1a shows homology to three scorpion peptides: LaIT1 

(91% identity) from Liocheles australasiae (family Liochelidae) (26), OcyC10 (68% identity) 

from Opisthacanthus cayaporum (Liochelidae) (27), and SmpIT2 (80% identity) from Scorpio 

maurus palmatus (Scorpionidae) (28) (Fig. 5). LaIT1 and SmpIT2, like U1-LITX-Lw1a, are 

insecticidal, which is not surprising given that insects are the primary prey of most scorpions and 

hence this is the function of most venom toxins. LaIT1 induced limb spasms when injected into 

crickets at a dose of ~4.8 nmol/g (i.e., ~4-fold higher than the LD50 value for U1-LITX-Lw1a) 

(26), whereas injection of a venom fraction containing SmpIT2 into Sarcophaga falculata 

blowfly larvae caused flaccid paralysis (28). This contrasts with the contractile paralysis caused 

by U1-LITX-Lw1a in Lucilia cuprina blowfly larvae; thus, SmpIT2 and U1-LITX-Lw1a possibly 

have different effects on the same molecular target or act on different receptors altogether. 

 

The similar LD50 values obtained when U1-LITX-Lw1a was tested across a range of invertebrate 

orders implies that the molecular target of the toxin is evolutionarily conserved. Moreover, this 

molecular target may be novel for arachnid toxins since high doses of U1-LITX-Lw1a (3 µM) did 

not affect NaV, KV, or CaV currents in cockroach DUM neurons, ruling out most of the common 

targets of scorpion and spider toxins. U1-LITX-Lw1a did not alter NaV or CaV currents in rat 
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dorsal root ganglion neurons at a concentration of 1 µM, and no toxic effects were reported when 

~240 pmol LaIT1 (which shares 91% sequence identity with U1-LITX-Lw1a) was applied 

intracerebroventricularly to mice (26). Thus, the combined data suggests that U1-LITX-Lw1a is 

an insect-selective toxin that represents a new molecular scaffold for bioinsecticide development. 

Structure of the U1-LITX-Lw1a transcript 

It is becoming evident that venom from non-buthid species possess fewer high molecular weight 

long-chain NaV channel toxins than found in Buthidae scorpion venoms (2). The venom profile of 

L. waigiensis continues this trend as most of the observed peptide masses were less than 5 kDa. 

However, while the venom peptidome of L. waigiensis is consistent with that of other non-buthid 

venoms, the transcript encoding U1-LITX-Lw1a is atypical for scorpion-venom peptides. 

 

The mRNA transcript encoding U1-LITX-Lw1a comprises a 25-residue signal sequence and a 14-

residue propeptide preceding the 36-residue mature toxin sequence. Propeptide sequences are 

ubiquitous in transcripts encoding peptide toxins from cone snails and spiders, but they are 

uncommon in scorpion toxin transcripts (18). Of the 250 scorpion toxin transcripts that have been 

sequenced, only ~20 have a pro-region following the signal peptide (5); these correspond to 

members of the long-chain β and short-chain α potassium channel toxins, non-disulfide-bonded 

antimicrobial peptides, and the calcine family (29-31). 

 

Ten of the pro-region containing peptides belong to the calcine family. The calcines are cell-

penetrating peptides (CPPs) that target ryanodine receptors (32-34). They contain 33–35 residues, 

adopt the ICK fold (35) and, like most CPPs, have a high net positive charge (+7) (36, 37). An 
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alanine scan of maurocalcine and imperatoxin-A revealed a critical basic region containing an 

essential Arg residue at position 24 that is essential for activity at the ryanodine receptor (37, 38). 

Although U1-LITX-Lw1a and the calcines both have numerous basic residues and are similar in 

size, U1-LITX-Lw1a has a net charge of only +4 and it does not appear to have the attributes 

necessary for ryanodine receptor activation (Fig. S4). Nevertheless, the conservation of transcript 

architecture and the similarity in size and structure of the mature toxins suggests that the calcines 

and U1-LITX-Lw1a might be evolutionarily related. 

 

In conclusion, the solution structure of U1-LITX-Lw1a represents a new scorpion toxin fold. This 

new fold corresponds to the previously proposed but heretofore hypothetical DDH motif, and it 

provides support for the hypothesis that the DDH motif is the ancestral precursor of scorpion-

venom ICK toxins such as the calcines. Further research into the venoms of scorpions and other 

invertebrates might reveal the presence of additional peptides with the DDH fold, and analysis of 

their structure and function should provide a greater understanding of the evolutionary 

relationship between DDH and ICK toxins. 

 

Materials and Methods 
Venom extraction 
Liocheles waigiensis were purchased from The Green Scorpion (Port Macquarie, NSW, 

Australia). Venom was extracted manually by inducing the scorpion to sting a parafilm-covered 

Eppendorf tube. Venom was lyophilized before storage at –20°C. Each milking occurred at least 

two weeks after the previous milking. 

 

Venom fractionation 
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Lyophilized venom was reconstituted in 0.05% trifluoroacetic acid (TFA) in water (solvent A) 

before HPLC fractionation using a narrow bore reversed-phase C8 column (Zorbax C8, 2.1 × 

150 mm, 300 Å) on a Shimadzu VP system. Venom components were eluted at a flow rate of 

0.25 mL/min using a linear gradient of 5–60% solvent B (90% acetonitrile, 0.043% TFA) over 

115 min preceded by 5% solvent B for 5 min. Absorbance was monitored at 214 nm and 280 nm 

using a SPD-10AVP UV detector. Fractions were manually collected and lyophilized. 

 

Mass spectrometric analysis 

Lyophilized HPLC fractions were dissolved in solvent A and 0.5 µL was spotted onto a MALDI-

ToF plate with 0.5 µL α-cyano-4-hydroxycinnamic acid matrix (10 mg/mL in 60% acetonitrile). 

Spots were analyzed using an ABI 4700 Voyager mass spectrometer (MS) in positive reflector 

mode. For nanospray MS analysis, crude venom was dissolved in a minimal amount of a 50:50 

mixture of solvent A and B and then diluted to 0.5 mg/mL in solvent A. 0.75 µL of dissolved 

venom was fractionated by rpHPLC using a Vydac C18 column (300 Å, 5 µm, 150 × 0.3 mm). 

Venom components were eluted at a flow rate of 4 µL/min using a gradient of 2% buffer B (90% 

acetonitrile, 0.1% formic acid) for 10 min, followed by 10–40% buffer B over 110 min, then 40–

80% buffer B over 10 min. Online nano-electrospray analysis was performed using a QSTAR 

Elite mass spectrometer. 

 

Peptide sequencing 
U1-LITX-Lw1a was isolated from crude L. waigiensis venom. Disulfides were reduced with 

100 mM tris(2-carboxyethyl)phosphine (TCEP) in 100 mM ammonium bicarbonate (pH 6.5) at 

50°C for 1 h.  Cysteines were alkylated by incubation with 200 mM iodoacetamide in 100 mM 
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ammonium bicarbonate (pH 9.0) for a further hour at 50°C and the peptide desalted using 

rpHPLC. Reduced and alkylated U1-LITX-Lw1a was sequenced using an Applied Biosystems 

Procise HT Protein Sequencer at the Biomolecular Research Facility (University of Newcastle, 

Australia). For de novo sequencing using MS/MS, reduced and alkylated U1-LITX-Lw1a was 

digested by incubation with a ~1:50 molar ratio of trypsin (Proteomics Grade, Sigma) at pH 9 for 

14 h at 37°C, and the resultant cleavage products were separated using rpPHLC. A 4700 Voyager 

mass spectrometer was used for analysis of tryptic fragments; MS ions were selected for MS/MS 

followed by manual analysis of spectra using GPS DeNovo Explorer (version 3.6) and MS-

Product (http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct). 

 

Chemical synthesis of U1-LITX-Lw1a 
U1-LITX-Lw1a was chemically synthesized using the stepwise in situ neutralization protocol for 

Boc chemistry followed by HF cleavage (39). Boc-protected amino acids were purchased from 

Novabiochem and the following side-chain protected amino acids were used: C(MeBzl), 

D(Chxl), E(Chxl), K(ClZ), N(Xan), Q(Xan), R(Tos), S(Bzl), Y(BrZ). All other amino acids were 

unprotected. The cleaved peptide was purified using rpHPLC, then oxidized/folded in 30% 

isopropanol/0.1 M ammonium bicarbonate, pH 8.0 for 3 days. The folded peptide was purified to 

homogeneity using rpHPLC. 

 

Sequencing of U1-LITX-Lw1a transcript 
A QuickPrep Micro mRNA Purification Kit (Illustra, GE Healthcare) was used to extract mRNA 

from the telson of one L. waigiensis specimen three days after milking. The FirstChoice RLM-

RACE Kit (Ambion) was used to ligate a 5’ adapter sequence to the mRNA. Single stranded 

cDNA was synthesized from the ligated mRNA using Superscript III reverse transcriptase 
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(Invitrogen) and a poly dT primer. The 5’ region of the U1-LITX-Lw1a transcript was established 

by amplifying the region of cDNA between the 5’ adaptor and the start of the mature toxin. The 

5’ adaptor primer used was as per the Ambion kit and a degenerate primer was designed based on 

the N-terminal amino acid sequence of U1-LITX-Lw1a determined from Edman sequencing. The 

complete U1-LITX-Lw1a prepropeptide transcript was found by PCR using the 5’ adaptor primer 

and a poly dT primer. Amplified fragments were subsequently cloned and sequenced. 

 

Insect bioassays 
U1-LITX-Lw1a solutions in insect saline (40) were injected into Acheta domestica (house 

crickets, mass 60–100 mg), Tenebrio molitor larvae (mass 190–210 mg), and Lucilia cuprina 

larvae and adults (mass 38–42 mg and 18–22 mg, respectively) (41). The median lethal dose 

(LD50) was determined as described previously (42). Whole-cell recordings of ionic currents in 

DUM neurons isolated from the American cockroach Periplaneta americana were made as 

described previously (43), with minor modifications as described in SI text. 

 

NMR structure determination 

Lyophilized U1-LITX-Lw1a was resuspended at a final concentration of 300 µM in 90% 

H2O/10% D2O, pH 3.1. The sample was filtered using a low-protein-binding Ultrafree-MC 

centrifugal filter (0.22 µm; Millipore, MA, USA), then 550 µL was added to a 5 mm outer-

diameter susceptibility-matched microtube (Shigemi, Japan). NMR spectra were acquired at 

283 K using a cryoprobe-equipped 900 MHz Avance spectrometer (Bruker BioSpin, Germany). 

Two-dimensional TOCSY (spin-lock time of 80 ms), NOESY (mixing time of 250 ms), and 

DQF-COSY spectra were acquired.  
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NMR spectra were analyzed using the program XEASY (44). A complete set of sequence-

specific resonance assignments were obtained and chemical shifts were deposited in 

BioMagResBank (accession number 16963). The NOESY spectrum was manually peak picked 

and integrated, then the peaklists were assigned and an ensemble of structures calculated 

automatically using the CANDID module of the torsion angle dynamics package CYANA (45, 

46). The tolerances used for CANDID were 0.025 ppm in both 1H dimensions. The Phe2–Pro3 

and Lys18–Pro19 peptide bonds were determined to be in the trans conformation on the basis of 

characteristic Hα–Hδ NOEs, whereas the Arg13–Pro14 and Pro19–Pro20 peptide bonds were 

both clearly identified as cis based on characteristic Hα–Hα NOEs (47). Initial structure 

calculations in combination with analysis of NOE networks allowed assignment of χ1 restraints 

for all four Cys residues.  

 

The disulfide bond configuration of U1-LITX-Lw1a was unambiguously determined via chemical 

methods (see Results), thus allowing disulfide-bond restraints of 2.0 ≤ d ≤ 2.1 Å for Sγ(i)–Sγ(j), 

and 3.0 ≤ d ≤ 3.1 Å for both Cβ(i)–Sγ(j) and Sγ(i)–Cβ(j) to be used in the structure calculations. Six 

hydrogen bonds were clearly identified in preliminary rounds of structure calculation. Hydrogen-

bond restraints of 1.7–2.2 Å and 2.7–3.2 Å were employed for the HN–O and N–O distances, 

respectively, in subsequent structure calculations (48). In the final round of structure calculations, 

CYANA was used to calculate 100 structures from random starting conformations, then the 20 

conformers with highest stereochemical quality as judged by MolProbity (49) were selected to 

represent the solution structure of U1-LITX-Lw1a. During the automated NOESY 

assignment/structure calculation process the CANDID module of CYANA assigned 93.6% of all 

NOESY crosspeaks (1699 out of 1815), a significantly higher assignment rate than in most 
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previous reports (46, 50). Coordinates for the final ensemble of structures are available from the 

Protein Data Bank (accession number 2KYJ). 
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Figure Legends 

Figure 1. Analysis of the venom peptidome of L. waigiensis. (A) rpHPLC chromatogram of 

crude venom from the scorpion L. waigiensis. The acetonitrile gradient is shown in magenta and 

the peak marked with an asterisk corresponds to the U1-LITX-Lw1a peptide. (B) Left: Histogram 

showing the abundance of peptide toxins in the venom of L. waigiensis, sorted into 1 kDa 

molecular mass bins. The overlaid curve shows the cumulative total number of peptide masses 

identified from MS analyses. Right: Venn diagram showing overlap of peptide masses 

determined using electrospray and MALDI-ToF mass spectrometry. 

 

Figure 2. Dose-response curves resulting from injection of U1-LITX-Lw1a into various insects. 

The LD50 values are indicated. Data points are the mean ± SE of three experiments. 

 

Figure 3. Stereo view of the structure of U1-LITX-Lw1a. The 20 members of the structural 

ensemble are overlaid for best fit over the backbone atoms of residues 2–36. β-strands 1-4 are 

shown in cyan, and the sidechains of the two disulfide bonds are highlighted in red. The N- and 

C-termini are labeled. The hydrophobic core of the protein is composed of the two disulfide 

bonds and the sidechain of Leu21, which is shown in magenta. 

 

Figure 4. Overlay of U1-LITX-Lw1a and structurally homologous ICK toxins. The NMR 

structure of U1-LITX-Lw1a (red) is overlaid on the structures of different structurally 

homologous spider ICK toxins (grey), including (A) guangxitoxin (PDB code 2WH9), (B) 

GsMTX-4 (PDB code 1TYK), (C) hainantoxin-I (PDB code 1NIX), (D) purotoxin (PDB code 

2KGU), and (E) κ-hexatoxin-Hv1c (PDB code 1DL0). The two central disulfides of the ICK 
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toxins, shown as grey tubes, overlap with the two disulfides of U1-LITX-Lw1a (shown as gold 

tubes). Additional disulfide bonds in the ICK toxins are shown as blue tubes. The molecular 

target of each spider toxin is indicated. (F) Graphical representation of the DDH and ICK motifs, 

with the disulfides and β sheet of the DDH motif shown in orange and green, respectively. The 

third disulfide necessary for the formation of the ICK motif is shown in blue. 

 

Figure 5. Alignment of the amino acid sequences of U1-LITX-Lw1a, OcyC10, LaIT1 and 

SmpIT2.  The amino acid translation of the predicted signal and predicted propeptide regions of 

the U1-LITX-Lw1a and OcyC10 transcripts are shown. Only the mature toxin regions of LaIT1 

and SmpIT2 are available. Signal, propeptide and mature toxin regions are indicated with arrows.  

 

 


