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Exploring the Effect of Base Compliance
on Physical Human-Robot Collaboration

Ziqi Wang1 and Marc G Carmichael1

Abstract— Mobile physical human-robot collaboration
(pHRC) using collaborative robots (cobots) and mobile robots
has attracted much research attention. Many researchers have
focused on improving the control performance to comply with
human intentions. However, a problem that generally exists
with mobile pHRC but often gets neglected is the impact
of non-rigid components e.g. deformable tyres, suspension
systems and uneven terrain on human interaction experience
and task performance. To fullfil this current research gap, we
carried out an investigation on the above-mentioned problem
by altering a cobot’s base rigidity level (also referred to as
base compliance level or BCL) during pHRC experiments.
We explored how the task performance is affected by base
compliance as well as human operator’s experience and
cobot control parameters. Measurements include the human
operator’s physical effort, task velocity, and task error. From
the experimental results, it is discovered that base compliance
has a significant impact on task accuracy as it can easily
excite the system if an inadequate control strategy is deployed.
Furthermore, through ANOVA, it is discovered that the
influence of base compliance can be minimized and system
excitation can be avoided by sufficient human operator training
and the appropriate selection of cobot’s control parameters.

I. INTRODUCTION

Physical human-robot collaboration (pHRC) entails direct
physical contact between the human hand and the collab-
orative robot’s (cobot) end-effector [1], and combines the
human’s perception and decision making skills with the high
consistency, endurance and precision of robots. Using pHRC
to assist industrial tasks such as industrial abrasive blasting
[2], material sawing and surface polishing [3] and object
handling [4] has been developed by researchers.

The shared workspace of the human-robot team is gen-
erally limited since the robot is commonly mounted on a
rigid base, fixed in the environment. To increase this shared
workspace and enable more functionalities, cobots can be
mounted to wheeled mobile robots (WMR) to achieve mobile
pHRC so that they can work in the unlimited workspace.
Nevertheless, a new issue arises. The combined weight of
the mobile robot’s chassis, the cobot and the tool attached
at its end-effector could deform the WMR’s wheels and
suspension system. As shown in Fig.1, the interactive dy-
namics will propagate from the end-effector to the base of
the cobot through the kinematics chain, and eventually excite
a compliant mobile robot through the coupling between the
cobot and the WMR. This will result in cobot vibrations and
system instability, potentially affecting the human interaction
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Fig. 1. Illustration of system compliance during pHRC.

experience and reducing task accuracy. Besides the load, the
terrain on which the WMR operates could also introduce
instability and excite the mobile pHRC system. For example,
when WMR drives on soft or uneven terrains, its wheels and
suspension springs will be frequently compressed and ex-
tended, resulting in wobbling motions. The above-mentioned
paradigms that introduce undesired motions to the mobile
pHRC framework are referred to as compliance in this paper.
Even though compliance generally exists for overground
mobile pHRC, to the author’s knowledge, its impact on the
human interaction experience and task performance has never
been studied systematically, and base compliance is rarely
considered when developing pHRC controls.

This work addresses the research gap in the pHRC disci-
pline by empirically investigating how the base compliance
of a cobot affects a pHRC task. A specially made robot
base with controllable compliance characteristics is utilized
to systematically investigate its effects. In addition, the
effects of cobot control parameters and human experience are
also included. The main contributions of this paper are the
validation of a pHRC challenge through a novel experimental
framework; and the identification of significantly influential
factors.

The rest of this paper is structured as follows: Section II
summarizes related existing works; Section III presents our
experimental design and procedure; Section IV presents the
experimental results; The limitations of this study and future
work are discussed in Section V; Finally, conclusions are
drawn in Section VI.

II. RELATED WORK

The problem of controlling the manipulator while sup-
pressing base vibration has been widely researched in the



area of flexible manipulators. Because of lightweight materi-
als and the non-rigid base, the problems of link deflection and
base vibration are associated with flexible manipulators. To
ensure task precision and the safety of equipment, scholars
have proposed many novel solutions [5]–[13].

Fu [5] analyzed the influences of a flexible base, flexible
links and flexible joints of a space manipulator to achieve
trajectory tracking with vibrations suppression. Trajectory
tracking is achieved by a fixed time sliding mode control. The
link deflection and base vibration are decomposed separately
from the whole-body dynamic model and suppressed by
linear quadratic optimal control. Similarly, in [7], [8], the
base and flexible arms vibrations are also decomposed from
the whole-body dynamics. In the former, an optimal linear
quadratic regulator controller is adopted to damp out the sys-
tem vibrations and an adaptive fuzzy controller is designed to
suppress system vibrations in the latter. In [10], the authors
considered a flexible manipulator on a rotatable base and
proposed an adaptive fault-tolerant boundary control method.
The angles of the manipulator and the base are tracked
and the deflection and vibration are also eliminated simul-
taneously; Likewise, [9] also proposed a boundary control
law to regulate the flexible manipulator’s orientation while
suppressing elastic vibration. In [12], a 6-axis force-torque
sensor is used at the base of the macro/micro manipulator.
From the measured reaction force/torque, feedback control
is implemented. Alongside the visual servo control, precise
positioning of payloads and base vibration suppression are
realized.

Despite the success in suppressing system vibrations in the
aforementioned papers, their proposed solutions are not con-
sidered for the pHRC application. In these studies, vibration
suppression is achieved for the trajectory tracking problem
and humans are not included in the control loop. [6] and
[13] addressed the problem from the path planning stage.
In the former, a virtual control force is used to generate
the trajectory that can stabilize the system and by com-
bining it with the desired trajectory, the space manipulator
could track the desired trajectory while suppressing system
vibrations. In the latter, the trajectory planning and vibration
suppression problems are transformed into an optimization
problem and solved with particle swam optimization (PSO).
In the context of pHRC, offline trajectory planning cannot
be achieved because the manipulator is expected to follow
human intentions in real time. In [11], a novel variable-
speed control moment gyros (VSCMGs) is presented for
vibration suppression. However, the proposed actuators may
be difficult to implement because it requires major upgrades
to the manipulator’s mechanical system.

III. EXPERIMENT SETUP

To investigate how compliance affects human performance
during pHRC, the system that incorporates varying compli-
ance levels and allows physical human-robot collaboration is
set up as shown in Fig. 2 and Fig. 3. The system consists
of a collaborative robot mounted on a rigid pedestal; an
inertial measurement unit (IMU); an electromagnetic (EM)

tracking system; a 6-axis force-torque (FT) sensor; soft foam
sheets; an air bellow; a pneumatic regulator and a custom
made handle that contains a safety trigger and a laser diode
integrated inside.
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Fig. 2. System setup for the experiment

A. Task Design

The task design for the experiment is shown in Fig. 3.
Inspired by and extending the widely adopted point-to-point
task in human-robot co-operation and co-manipulation [14]–
[16], a square trajectory is used for the experiment. The
square reference trajectory with 100 mm side length is
printed on an A4 sheet and affixed onto the tabletop. A
handle with a laser pointer diode and an enabling safety
switch is attached at the end-effector of the cobot to al-
low human-robot collaboration. The laser pointer projects
a visible dot onto the paper to indicate its position. The task
is to control the motions of the cobot through the handle
such that the laser pointer completes 3 laps of the reference
trajectory at a reasonable speed (about 7 seconds per loop)
while maintaining high task accuracy.
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Fig. 3. The experiment task. The human grasps the handle and collaborates
with the cobot to use the laser pointer to complete the reference trajectory.

B. Collaborative Robot

The collaborative robot used in the experiment is the 6-
DOF (degree of freedom) Universal Robot UR10e mounted
on a rigid pedestal. With consideration of the experimental
task as introduced in the previous section, the cobot’s mo-
tions are restricted to the x-y plane and it is controlled by
an inertia-damping admittance control (AC) [17] at 500Hz
using admittance control law (1).

Mdẍ+Ddẋ = F (1)



The controller takes the interaction force/torque F ∈ R6×1

(measured from the F/T sensor) as input and computes the
desired end-effector task space velocity ẋ ∈ R6×1 according
to (1). Then, ẋ is converted from Cartesian to joint space
velocity q̇ ∈ R6×1 through inverse kinematics for the cobot
to execute.

Md ∈ R6×6 and Dd ∈ R6×6 in (1) are the positive-definite
virtual inertia and damping matrices respectively. They can
be tuned to create varying cobot admittance and therefore
result in different human interaction experiences: in the case
of low Md and Dd values, high admittance is created and the
cobot is easy to move. However, the system’s stability and
task accuracy can be compromised; When large Md and Dd

are implemented, the cobot has low admittance, it requires
more physical effort to move but generally becomes more
stable and easier for fine manipulations [18].

Due to the restricted motion of the end-effector, along the
diagonals of Md and Dd, only the values of the elements
corresponding to the x-y planar motion are experimentally
explored. Three levels of admittance values for x and y linear
motions were chosen as shown in Table I, where m and d
are the inertia and damping elements, respectively.

TABLE I
AC PARAMETERS USED IN THIS STUDY.

AC Parameters Admittance Level m (k.g.) d (m/s)
1 High admittance 2 10
2 Medium admittance 4 25
3 Low admittance 6 40

C. Base Compliance Levels (BCL)

In order to produce different compliance levels in the
system, soft foam sheets and an air bellow are placed
underneath the cobot’s pedestal to create base compliance.
With the bellow deflated, the combined weight of the cobot
and the pedestal compresses the foam sheets, leading to the
system having a low level of compliance. By inflating the
air bellow, it slightly lifts the pedestal from the foam so
that a higher level of compliance is achieved. A pneumatic
regulator is incorporated to control the volume of air used to
inflate the air bellow, by controlling the input voltage of the
pneumatic regulator, different base compliance levels (BCL)
can be achieved.

For our system that is shown in Fig. 2, it is found that
the air bellow predominantly generates angular compliance
about the y-axis of the base. Compliance in other directions
e.g. shear or translation, is very limited and can be neglected.
The base compliance is modeled as a spring whose angular
stiffness is estimated by

k = τ/α (2)

where τ is the applied torque, and α is the angular displace-
ment. Using the FT sensor to measure an applied torque, and
an IMU attached rigidly to the pedestal, the angular stiffness
of the base is estimated. As shown in Table II, four BCLs
are used in the experiment: BCL 1 is with the air bellow

completely deflated and the base is placed on the ground
rigidly; BCLs 2, 3 and 4 have increasing levels of base
compliance due to the bellow being inflated with increasing
levels of air pressure.

TABLE II
BASE COMPLIANCE LEVELS USED IN THE EXPERIMENT.

Base
Compliance
Level (BCL)

y-axis Angular Stiffness
(Nm/Degree)

1 1144.69
2 133.93
3 77.81
4 66.43

D. Electromagnetic (EM) Tracking System

When a cobot is mounted on a rigid base, the forward
kinematics are typically all that is needed to calculate the
pose of the cobot’s end-effector since the base frame of the
cobot is usually used as the world frame. However, with
our cobot on a compliant base, the electromagnetic (EM)
tracking system as shown in Fig. 3 needs to be used to
provide the world frame for our experiment. A graphical
illustration of the coordinate system of our experimental
setup is demonstrated in Fig. 4. The coordinate frames for
the cobot base, end-effector, EM sensor, EM field generator,
laser and the sheet that contains the reference trajectory are
denoted by {Base}, {EE}, {EM}, {F}, {L} and {P}
respectively. Three transformations (marked in red) are also
defined: the transformation from {L} to {EM} denoted as
TEM
L which is fixed; the transformation from {F} to {P}

denoted as TP
F which is also fixed; and the transformation

from {EM} to {F} denoted as TF
EM which is provided

by the EM sensor. Using the kinematic calibration method
presented in [19], the laser pointer’s position in the x-y plane
of {P}, denote as PTp can be computed. The accuracy of
PTp is checked for all the BCLs, the results in Table III
show that the magnitude of PTP error is acceptable and it
is consistent across 4 BCLs.

TABLE III
RESULTS OF VIRTUAL PTP UNDER DIFFERENT BCLS.

PTP (x, y)
Ground
Truth BCL 1 BCL 2 BCL 3 BCL 4

(0, 0) (-0.25, -0.05) (-0.37, 0.43) (-0.39, 0.5) (-0.32, 0.55)
(0, 100) (-0.14, 100.18) (-0.21, 99.8) (-0.33, 99.97) (-0.48, 99.98)

(-100, 100) (-100.36, 99.85) (-100.55, 99.79) (-100.37, 99.85) (-100.32, 99.82)
(-100, 0) (-100.48, -0.05) (-100.06, 0.01) (-100.15, -0.05) (-100.24, 0.01)
Average

Error (0.31, 0.11) (0.30, 0.21) (0.31, 0.18) (0.34, 0.19)

E. Experiment Procedure

Considering the aforementioned 3 AC Parameters and
4 BCLs, twelve distinctive combinations can be achieved.
Participants are asked to complete the experiment with all 12
combinations following the experimental sequence generated
by the balanced Latin Square [20]. Throughout the entire
experiment, the combination of AC Parameters and BCL, as



Fig. 4. Coordinate system for the experimental setup. The transformations
TEM
L and TP

F are fixed and were estimated using the Matlab Optimiza-
tion toolbox; TEM

F is measured by the EM sensor; TP
L is obtained by

TP
F TF

EMTEM
L .

well as the experimental sequence, are kept unbeknownst to
participants.

First, participants are introduced to the experiment. The
task design (Section III-A) are explained verbally, and a
demonstration of the experiment is provided. Next, partic-
ipants are given a few minutes to practice with the cobot.
During the practice phase, BCL 1 and AC Parameters 2
are used. The task speed is monitored during practice and
feedback is given to let participants know whether they
need to move faster or slow down. The experiment com-
mences when participants can achieve the expected speed
consistently (about 7 seconds per loop). To keep participants
engaged throughout the experiment, the total experiment
time (including the verbal introduction and practice time)
for each participant is limited to under 15 minutes. Previous
trials found that participants began to lose focus when
the duration of a pHRC experiment exceeded this length.
After the experiment, the participants are reimbursed (a $10
gift card) for their time. The experiment was performed
in the University of Technology Sydney (UTS) Robotics
Institute (RI) laboratory under UTS Human Research Ethics
Committee Approval ETH22-7370.

IV. RESULTS

A total of 36 experimental subjects were recruited for the
experiment. They are categorized into 2 cohorts according
to their pHRC experience: experienced and inexperienced.
For the experienced cohort, 12 people (11 males and 1
female) were recruited within the UTS RI laboratory. For the
inexperienced cohort, 24 people (16 males and 8 females)
were recruited through personal connections and inciden-
tal engagements at UTS. All the participants followed the
experimental protocol strictly so that each combination of
AC Parameters and BCL was repeated 36 times. In total,
432 sets of data which consist of the collaboration force,
end-effector velocity and PTp are collected on the Robot
Operating System (ROS) platform.

In the analysis below, t0 and tf denote the experiment
start time and finish time respectively; T is the number of
sensor measurements, the subscripts i ∈ {1, . . . , 12} denotes
different combinations of AC and BCL, and the superscript
n ∈ {12, 24} is the size of cohort.

A. Physical Effort

The physical effort is measured using the collaborative
force in the x-y plane. For the i-th combination of AC
and BCL, the average magnitude of the collaborative force
Fm is computed by F i

m = 1
n

∑n
1 (

1
T i
n

∑tf
t0
||F i

n(t)||) where
||F i

n(t)|| is the magnitude of the collaborative force in the
x-y plane, measured at timestep t with respect to {Base}.
The results are presented in Fig. 5 for both cohorts.

First, it is observed that the average values and standard
deviations of the inexperienced cohort are larger than those
of the experienced cohort for all 12 combinations of AC
and BCL. This reflects that the operator’s experience has an
effect on physical effort: less experienced human operators
will exert a larger collaborative force during pHRC and the
variation between subjects will be larger, too.

From the results, the effects of AC Parameters and BCL
can be clearly perceived as well. For the former, the required
collaboration force rises discernibly with the increases in
the AC’s virtual inertia and damping parameters for all the
BCLs and across both cohorts. This result directly reflects
the characteristics of AC as introduced previously: increased
AC parameters will decrease the admittance of the cobot,
and more physical effort is required to execute the task.
On the other hand, when different BCLs are deployed under
the same AC Parameters, the variation in the collaborative
force is very narrow for all 3 AC Parameters among both
cohorts. From these results, it can be viewed that the physical
effort is mostly affected by the operator’s experience and AC
Parameters, not by the base compliance.
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Fig. 5. Magnitude of the mean collaborative force for (a) the experienced
cohort and (b) the inexperienced cohort. The inexperienced cohort have
exerted more collaborative force than the experienced cohort and their
standard deviations are also larger, indicating the human experience has
an impact on physical effort. When examining the unicolor bars across AC
Parameters, a persistent rising trend can be observed for all 4 BCLs. On the
other hand, for each set of AC Parameters, narrow and arbitrary variations
can be noted when comparing the size of coloured bars. These results are
indicating that physical effort is directly influenced by AC Parameters, and
BCL has a very limited impact. Similar results are seen in both experienced
and inexperienced cohorts.

B. Task Velocity

The average magnitude of task velocity Vm for the i-
th combination of AC Parameters and BCL is computed
by V i

m = 1
n

∑n
1 (

1
T i
n

∑tf
t0
||V i

n(t)||) where ||V i
n(t)|| is the

magnitude of PTP velocity in the x-y plane at timestep t.
The results are shown in Fig. 6.

By comparing the task velocity values between the two
cohorts, it is observed that the inexperienced cohort has
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Fig. 6. Magnitude of the mean task velocity for (a) the experienced
cohort and (b) the inexperienced cohort. The inexperienced cohort achieved
a higher task velocity than the experienced cohort for the AC and BCL
combinations because a larger collaborative force was exerted by this cohort.
When comparing the bars in the vertical direction (varying the BCL and
constant AC Parameters), small and inconsistent variations in task velocity
can be observed. With AC Parameters tuned larger while BCL being kept
at the same level (unicolor bars on the horizontal direction), both cohorts’
results show decreases in end-effector velocity. These results demonstrate
that task velocity is only impacted by AC Parameters and not by base
compliance level.

achieved a faster task velocity than the experienced cohort for
all AC and BCL combinations. This result is closely related
to the previous physical effort results because according to
(1), higher velocity will be achieved with a higher collabo-
rative force.

From both Fig. 6a and Fig. 6b, it can be observed that
under the same AC Parameters, the variation of Vm with the
increase in BCL is insignificant and arbitrary. This suggests
the task velocity is not influenced by BCL. On the other
hand, when studying the bars with the same color, a slight,
consistent decreasing trend can be observed. This variation
of Vm is attributed to the increasing AC parameters, which
requires larger forces to move the end effector, leading
to slower speeds despite the participants being asked to
maintain a similar speed across trials. Similar to physical
effort, the task velocity is also significantly influenced by
AC Parameters and not by BCL.

C. Task Error

The average task error e for the i-th combination of AC
and BCL is computed by ei = 1

n

∑n
1 (

1
T i
n

∑tf
t0
din(t)) where

din(t) is the Euclidean distance between PTp and the virtual
trajectory in the x-y plane at timestep t.

The results in Fig. 7 support that the task error is also in-
fluenced by the cohort’s experience level. The inexperienced
cohort generated larger errors than the experienced cohort
for all combinations of AC and BCL. In addition to this, the
following two observations can be made.

1) Base compliance has a negative impact on task accu-
racy: To examine the impact of base compliance on task
accuracy, the errors produced under AC Parameters 1 are
studied. Taking the BCL 1 error (when the pedestal is on
most rigid) as the ground truth, the errors generated under
BCLs 2, 3, and 4 are compared with it, and the ratios of
change are computed. For the experienced cohort, the error
for BCLs 2, 3 and 4 increase by 12.50%, 26.92% and 7.69%
respectively. For the inexperienced cohort, their respective
increases in error are 63.96%, 89.19% and 88.46%. From
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Fig. 7. Average task error for (a) the experienced cohort and (b) the
inexperienced cohort. Task error is impacted negatively by base compliance
and positively by larger AC Parameters. By comparing the results on the
same vertical axis, for AC Parameters 1, both cohorts’ results show an
increase in error as BCL increases from 1 to 4. When the larger AC
Parameters 2 and 3 are utilized, both cohorts’ performance in terms of
task accuracy is not affected by BCL as significantly as before: task errors
become consistent for different BCLs and reductions in error are achieved.
The experience level also impacts the task error as it can be observed that
the inexperienced cohort’s task errors are consistently larger than those of
the experienced cohort for all the experimental runs.

the figures and the numbers, it can be clearly seen that base
compliance negatively impacts task accuracy when the AC
Parameters are decreased.

2) Larger AC Parameters can reduce the task error initi-
ated by base compliance: To examine how the AC Parame-
ters reduces the task error, the above analysis can be carried
out for AC Parameters 2 and 3. For AC Parameters 2 in
Fig.7a, the experienced cohort’s task error varies by 3.26%,
10.87% and -3.26% for BCLs 2, 3 and 4 respectively; with
AC Parameters 3, the error varies by -17.39%, -2.17% and
-1.09%. For the inexperienced cohort, their task error varied
by -3.57%, -6.25% and -8.04% for AC Parameters 2 and
0.96%, 1.92% and 1.92% for AC Parameters 3. The negative
results imply reductions in error compared to the ground
truth. Comparing these results with the AC Parameters 1
results above, the effectiveness of larger AC Parameters in
reducing task error can be discovered. Moreover, consider-
ing the AC Parameters 1 results as the ground truth and
comparing the unicolor bars located at AC Parameters 2
and 3 in Fig.7 to it, significant reductions in error can also
be observed from both cohorts’ results. For the experienced
cohort, the error changes by -11.54% and -11.54% under
BCL 1; -18.80% and -35.04% under BCL 2; -22.73% and
-31.82% under BCL 3; -20.54% and -18.75% under BCL
4. For the inexperienced cohort, their average error changed
by 0.90% and -6.31% under BCL 1; -40.66% and -42.31%
under BCL 2; -50.00% and -49.52% under BCL 3; -47.45%
and -45.92% under BCL 4.

Through these results, it can be viewed that pHRC ex-
perience is helpful in reducing the task error and larger
AC Parameters can effectively compensate for the base
compliance to help human operators achieve higher task
accuracy.

D. Analysis of Variance (ANOVA)

The quantitative results are evaluated with 3-way analysis
of variance (ANOVA) to validate whether there are any statis-
tically significant differences between the means of different



TABLE IV
RESULTS OF 3-WAY ANALYSIS OF VARIANCE (ANOVA) ON HOW THE INDEPENDENT FACTORS (PARTICIPANT’S EXPERIENCE, AC PARAMETERS AND

BCL) AFFECT THE COLLABORATION FORCE, END-EFFECTOR VELOCITY AND TASK ERROR. FOR p-VALUE<0.05 (HIGHLIGHTED CELLS), IT INDICATES

THE INDEPENDENT FACTOR HAS A SIGNIFICANT IMPACT ON THE DEPENDENT VARIABLES.

Independent Variable Participant’s Experience Level AC Parameters BCL

Dependent Variable Physical
Effort

Task
Velocity

Task
Error

Physical
Effort

Task
Velocity

Task
Error

Physical
Effort

Task
Velocity

Task
Error

p-value 0.0033 0.0500 0.0052 <0.001 <0.001 <0.001 0.8689 0.8799 0.3004

groups of the independent factors. In this experiment, the
independent factors are the participants’ experience level, AC
Parameters and BCL. ANOVA is conducted with the Matlab
Statistics and Machine Learning Toolbox for the dependent
variables of our experiment: physical effort, task velocity
and task error. The ANOVA results are shown in Table IV.
Generally, a p-value less than 0.05 indicates a strong effect
due to the independent factor [21]. Using this standard
significance level and from the highlighted cells, it can be
viewed that the participant’s experience level influences the
physical effort and task error significantly as their respective
p-values are 0.0033 and 0.0052, and task velocity is not
significantly impacted. However, it should be noted that the
p-value for task velocity is lying on the cutoff of the standard
significance level. The p-values of AC Parameters for all 3
dependent variables are small enough to conclude that AC
Parameters have significant influences on physical effort, task
velocity and task error. Lastly, the large p-values of BCL
for all three dependent variables indicate that their mean
responses for different BCLs are not significantly different,
meaning that BCL does not influence the dependent variables
critically. ANOVA provided the same results as obtained
in the previous sections: physical effort and task error are
significantly influenced by the participant’s experience level
and AC Parameters, and they are independent of BCL; task
velocity is influenced predominantly by AC Parameters and
potentially by the participant’s experience level.

V. DISCUSSION

The experimental results show an interesting relationship
between the level of base compliance and the admittance
control parameters. Increasing the AC Parameters mitigates
the poor task error introduced by increasing levels of base
compliance. However, using large AC Parameters is not ideal
because the level of admittance set by the AC Parameters was
found to significantly affect physical effort and task velocity.
This is not entirely surprising as the AC Parameters directly
shape the interaction dynamics between the human and cobot
as per (1). Larger admittance control parameters result in
a higher physical workload for the human co-worker and
reduces task time efficiency. Ideally, a control system for
pHRC on a compliant base would be able to mitigate the
negative affects of base compliance whilst achieving high
task performance. If a mathematical model describing these
effects can be derived, we envision that a pHRC control
that accounts for the unwanted compliance while consider-
ing competing requirements may be developed. Regardless,

understanding the implications of these effects is critical to
enabling a high-performance pHRC on systems where base
compliance is present.

A limitation of this study is the size of the experimental
subjects. We recruited 36 participants for this study, such
a size is sufficient to draw conclusions for the experiment.
However, more experimental subjects will improve the ro-
bustness of the results. For example, in Table IV, the p-
value which determines the influence of the participant’s
experience level on task velocity is 0.0500. This result is
lying on the cut-off of the standard significance level, and
more experimental data is required to validate the influence
of the participant’s experience level on task velocity.

Besides, only quantitative studies were carried out in our
investigation. Qualitative results are also crucial in under-
standing pHRC. For example, in Section IV we have discov-
ered the compromises between physical effort, task velocity
and task accuracy. Qualitative analysis of the participant
experience during the interaction was not carried out due
to concerns about extended experiment durations leading
to participants losing focus during the experiment. Future
work should explore the qualitative impressions of users in
response to differing levels of base compliance, assuming
that an appropriate experimental protocol is used.

VI. CONCLUSIONS

In this paper, we presented an empirical study investigating
the influences of base compliance on physical effort, task
velocity and task error in a pHRC framework. A custom-
made base whose compliance can be modulated was used.
With 432 sets of data collected from 36 participants, we
successfully validated that base compliance significantly and
negatively influences task accuracy when low admittance
control parameters are used. On the contrary, higher admit-
tance control gains can stabilize the system effectively, but
result in a higher demand for physical effort and reduce task
efficiency. Moreover, human operator experience was found
to have a positive impact on performance.

Although it is shown that base compliance is not the
most influential factor in pHRC, it is still unclear as to the
appropriate strategy that compensates for the errors initiated
from the base compliance while providing a good balance
between the required physical effort for collaboration and
task speed. The outcomes of this paper motivate continued
research in this area, such as the modeling of the compliant
motion and the optimization control.
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