
©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Communicating Intent as Behaviour Trees for
Decentralised Multi-Robot Coordination

Rhett Hull1,2, Diluka Moratuwage1, Emily Scheide3, Robert Fitch1, Graeme Best1

Abstract— We propose a decentralised multi-robot coordina-
tion algorithm that features a rich representation for encoding
and communicating each robot’s intent. This representation for
“intent messages” enables improved coordination behaviour
and communication efficiency in difficult scenarios, such as
those where there are unknown points of contention that require
negotiation between robots. Each intent message is an adaptive
policy that conditions on identified points of contention that
conflict with the intentions of other robots. These policies are
concisely expressed as behaviour trees via algebraic logic simpli-
fication, and are interpretable by robot teammates and human
operators. We propose this intent representation in the context
of the Dec-MCTS online planning algorithm for decentralised
coordination. We present results for a generalised multi-robot
orienteering domain that show improved plan convergence and
coordination performance over standard Dec-MCTS enabled
by the intent representation’s ability to encode and facilitate
negotiation over points of contention.

I. INTRODUCTION

Multi-robot systems are increasingly being deployed in
large-scale and unstructured outdoor environments, such
as the ocean [1], underground tunnel networks [2], and
farms [3]. These multi-robot teams are required to coordinate
their actions so that the robots collectively achieve the
objectives of the mission. It becomes increasingly difficult
to achieve effective coordination in scenarios that require
robots to recognise and negotiate over points of contention,
such as junctions that lead to high-reward regions. Ideally,
this decision making should be decentralised, such that each
robot is making online decisions based on locally-available
information while communicating their “intent”—that is, the
planned motion policy of the robot—as the communication
infrastructure permits.

Decentralised Monte Carlo tree search (Dec-MCTS) [4]
has emerged as a powerful decentralised coordination al-
gorithm with demonstrated success in application domains
ranging from agriculture [5] to surveillance [6] and onboard
platforms including ground [5, 7, 8], aerial [6], and marine [9]
robots. In Dec-MCTS, each robot asynchronously cycles
between three steps: (1) incrementally plan this robot’s
actions using a new variant of Monte Carlo tree search,

This research is supported in part by the Commonwealth of Australia and
the Centre for Advanced Defence Research in Robotics and Autonomous
Systems, Australia.

1Robotics Institute, University of Technology Sydney,
NSW, Australia. rhett.c.hull@student.uts.edu.au,
{diluka.moratuwage, robert.fitch,
graeme.best}@uts.edu.au.

2Defence Science and Technology Group, Department of Defence, Aus-
tralia. rhett.hull1@defence.gov.au.

3Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Ore-
gon State University, USA. scheidee@oregonstate.edu.

Fig. 1. Concept diagram illustrating the proposed decentralised coordi-
nation algorithm. Each robot incrementally searches for promising action
sequences using a variant of Monte Carlo tree search (MCTS). The MCTS
tree is periodically compressed into the form of a behaviour tree that
is conditional on the intended actions of other robots, which facilitates
negotiation over recognised points of contention. These behaviour trees are
communicated asynchronously between robots and used to update the plans
of each robot to collectively improve mission performance.

(2) represent this intended plan in a compressed form, and
(3) communicate this plan to and from other robots.

In [4], the communicated intent representation in the
second step is proposed to be a probability distribution over
action sequences. This representation results in a higher
likelihood of convergence compared to communicating just
the single-best action sequence. However, to facilitate de-
centralised optimisation of these probability distributions,
this representation assumes independence between the action
selection of each robot, which limits the effectiveness in sce-
narios involving points of contention requiring negotiation.
Here, we seek an alternative representation that overcomes
these challenges while still being in a concise form suitable
for low-bandwidth communication infrastructure.

We propose employing behaviour trees (BTs) as a new
representation for expressing intent to be communicated
between robots during multi-robot coordination. BTs are a
data structure for conveniently representing policies that have
gained wide-spread use in computer games and a growing
popularity in robotics [10]. BTs encode an adaptive policy
and can provide real-time feedback to human operators

regarding behaviour selection and system state [2]. Fig. 1
illustrates our proposed algorithm in action where BTs are
generated and communicated between robots.

In order to incorporate BTs as the communication repre-
sentation within Dec-MCTS, two key algorithmic challenges
need to be addressed that we solve here. Firstly, the current
intent of a robot needs to be extracted from the partially-
expanded MCTS search tree; we achieve this by finding
promising action sequences in the tree, evaluating them
with respect to other robots’ actions, and encoding them as
a concise BT through algebraic logic simplification. Each
generated BT is a policy that is conditional on the intended
actions of other robots that are recognised as points of
contention. Secondly, the plan of a robot should be directly
influenced by the communicated intent of other robots; we
achieve this by evaluating the BTs of other robots within the
reward calculations of the MCTS rollouts.

We present simulated experiments for a problem domain
formulated as a generalisation of the multi-robot orienteering
problem. This problem domain is representative of important
information gathering problems, including coverage, explo-
ration, and logistics. We formulate a problem instance that
requires the robots to negotiate over a contentious junction.
Our results show improved coordination performance over
standard Dec-MCTS and baseline methods. Overall, the
proposed method enables the robots to effectively negotiate
over a point of contention and adapt to the changing intent
of other robots to find high-performing joint plans.

II. RELATED WORK

Decentralised algorithms are typically more suitable than
centralised algorithms for multi-robot systems operating in
environments without fixed communication infrastructure.
Dec-POMDP based approaches typically involve centralised
offline computation that enables decentralised execution [11].
The advantage of instead performing decentralised computa-
tion and execution is that it typically allows robots to adapt
online to unforeseen events, and many multi-robot systems
in practice follow this paradigm [2, 12–15]. The Dec-MCTS
algorithm [4] is a popular approach for this paradigm, and
is generally applicable to a wide range of robotics problems.
A key step in Dec-MCTS and other decentralised planners
is communicating intended plans between robots [16].

We investigate using BTs to facilitate this communication
of intent. A BT (as illustrated in the figures throughout this
paper) is a directed tree structure that models an adaptive
policy [10, 17]. Condition nodes (ellipses) are evaluated as
true (success) or false (failure) based on observations of the
system and the environment. An action node (rectangle) de-
scribes a behaviour that is executed when the node becomes
active and evaluates as success, running, or failure, as defined
by the implementation of the behaviour. Fallback nodes (“?”)
are true (success) if any of their children return success,
while sequence nodes (“→”) are false (failure) if any of their
children return failure. Determining which nodes are active
is performed with a recursive depth-first process controlled
by the logic of fallback and sequence nodes. The left-most

children of an active fallback node are active up to the first
child evaluated as true/success or running. Similarly, the left-
most children of an active sequence node are active up to the
first false/failure or running.

BTs have been commonly used in computer games and
have recently gained popularity in robotics due to the ease of
design and online introspection [2, 17–22]. BTs used in prac-
tice today are mostly hand-designed [2, 10], which typically
requires extensive time and domain expertise. Automatic
generation techniques have been proposed for providing
effective BTs with minimal human input, such as using an
offline simulator [20, 23–26] or online synthesis [19, 27].
While a key step of our proposed algorithm is the automatic
generation of BTs, the context is different here such that
the BT needs to compactly and accurately encode the policy
represented by a partially-expanded MCTS search tree, and
thus we require a new BT generation approach. BTs have
also been used in multi-robot contexts [2, 28–30], but not for
facilitating the communication of intent during decentralised
planning as we propose in this paper.

MCTS [31, 32] is becoming increasingly popular for on-
line planning in robotics. The most common MCTS variant
is the upper-confidence bounds applied to trees (UCT) al-
gorithm [33]. UCT performs an asymmetric expansion of a
search tree using a best-first policy that generalises the UCB1
policy [34], and is said to balance between exploration and
exploitation. A key component of Dec-MCTS [4] is a new
UCT variant that accounts for a changing reward distribution
by generalising D-UCB [35], which is particularly relevant
for decentralised multi-robot planning, and we also employ
in our proposed approach.

III. PROBLEM FORMULATION

Consider a set of robots R where each robot r ∈ R plans
a discrete action sequence xr = (xr

1, x
r
2, ..., x

r
N) ∈ X r with

the aim of maximising a known global reward function g
that encodes the problem at hand, e.g. information gathering
or task allocation. A cost cri is associated with each action
xr
i . Each robot has a cost budget Cr such that all feasible

action sequences have
∑N

i cri ≤ Cr; X r defines the set of
all action sequences that satisfy this cost constraint. The
collection of action sequences for the team of robots is
denoted x = {x1,x2, ...,x|R|}.

Problem 1 (Decentralised multi-robot coordination): We
define the multi-robot coordination problem as follows: find
the set of action sequences x∗ that maximises g; i.e.,

x∗ = argmax
{x1,x2,...,x|R|}

g
(
x1,x2, ...,x|R|

)
. (1)

This problem is to be solved in a decentralised manner, such
that each robot r computes the plan xr while considering
the reward function g and the intent of other robots. Since
the reward function and other robots’ intent may change
unpredictably, planning should be performed online. Addi-
tionally, it is necessary for robots to regularly communicate
their intent, but this communication may be subject to delays
or bandwidth limitations. The representation for these intent
messages are defined as part of the proposed solution.

1) Grow search tree
over the space X r

of robot r’s actions

2) Encode intent as
a behaviour tree

3) Communicate
behaviour tree

robot
r

Br

Br′
robot
r′

X̂ r Br B(r)

Fig. 2. Overview of the algorithm running on-board robot r. 1) The search tree is expanded by adding new actions (green). Periodically, the set of
best nodes (orange) is selected. 2) Encode robot r’s best action sequences into a BT by taking into account other robots’ BTs. 3) If possible, the BT is
communicated to other robots, and received BTs from other robots are used in subsequent planning iterations.

IV. DECENTRALISED COORDINATION FACILITATED BY
BEHAVIOUR TREES

We propose a solution to the decentralised multi-robot
planning problem using BTs to communicate intent between
robots. Our algorithm combines the non-myopic planning
capabilities of MCTS with the expressiveness and inter-
pretability of BTs. We extend the well-known Dec-MCTS [4]
coordination algorithm with a new BT-based representation
for communicating the intent of each robot.

As highlighted in Problem 1, robots coordinate their ac-
tions by communicating their intent. We must find a suitable
encoding of intent so that it accurately conveys the current
intent described by the planner, be compact for efficient com-
munication, and be interpretable by the receiving robot (and,
ideally, human operators). Therefore, we select BTs as the
representation due to their expressiveness and interpretability.
However, for BTs to be a useful representation of intent,
we require methods for automatically generating such BTs
within the planning loop of a decentralised planner.

This section begins by providing an overview of our
coordination algorithm that combines Dec-MCTS with BTs,
followed by our algorithm for encoding the current intent as
a BT suitable for communication, and then a brief analysis.

A. Dec-MCTS with BT Intents

Our algorithm consists of three main steps, depicted in
Fig. 2 and further described in Algorithm 1: 1) incremen-
tally expand the robot’s search tree, 2) encode this robot’s
intended plan as a BT, and 3) communicate the BT to other
robots. During the GROWTREE phase, the MCTS tree T r

is grown incrementally whilst considering the BTs of other
robots during SIMULATE. In the encoding phase, we select a
set of the most promising solutions in T r, along with the BTs
of other robots B(r) and generate the BT representation of the
robot’s intent, Br. Note, we use the superscript notation (r)
to refer to the set R\ r, where \ denotes the set difference.
During the communication, robots send their respective BTs
to one another and receive BTs from all other robots.

Algorithm 2 outlines the grow tree algorithm used to
incrementally expand the MCTS search tree. At line 2, we
select a candidate node to expand (line 3) from the tree. Due

Algorithm 1 Overview of Dec-MCTS with BTs
input: Objective g, computation budget Br and cost
budget Cr

output: action sequence xr for robot r
1: T r ← initialise MCTS tree
2: while Br is not exceeded at iteration n do
3: B(r) ← COMMUNICATERECEIVE
4: T r ← GROWTREE(B(r), T r, g, Cr) ▷ See Alg. 2.
5: Br ← ENCODETOBT(T r, B(r)) ▷ See Alg. 3.
6: COMMUNICATETRANSMIT(Br)
7: end while
8: return xr ← ROUNDROBINSELECT(x(r)′)

to the expected breakpoints in reward as a result of updating
behaviour trees, we use the discounted upper confidence trees
(D-UCT) selection policy [4] as it yields similar analytical
guarantees to standard MCTS in the context of changing
reward distributions. We then run the default policy until
the action cost budget Cr is exhausted in line 4 to yield
an action sequence xr. In line 5, we extract the action
sequences of other robots x(r) by iteratively evaluating BTs
in a randomised order, i.e. xj ← Bj(xi), xk ← Bk(xi∪xj),
xl ← Bl(xi ∪xj ∪xk) and so on. We do this iterative eval-
uation of other robots’ plans to make planning more reactive
to the intent of other robots, in comparison to Dec-MCTS
where each probability distribution is jointly optimised but
independently sampled. Given the action sequences, we can
evaluate the local utility of the robot fr, as defined on line 6,
rather than g directly, as this is less sensitive to uncertainty in
other robots’ plans [36]. Finally we update the node statistics
(mean and count) through backpropagation (line 7), which
influences the subsequent selection step. To select an action
to execute (line 8), the robots perform a random order round
robin evaluation of their BTs in a similar manner to line 5.

B. Encoding Intent with BTs

To convert the MCTS tree T r into a BT we need to find
a set of conditions and actions that sufficiently represents
the intent of the current robot with respect to other robots.
For compactness and computational efficiency, building a
representation of the entire tree T r is impractical; as such,

Algorithm 2 GROWTREE for robot r using Monte Carlo tree
search with the D-UCT action selection policy.

input: B(r), T r, g, Cr

output: T r

1: for fixed number of iterations do
2: id−1 ← SELECT(T r) ▷ D-UCT policy
3: [id, T r]← EXPAND(T r, id−1)
4: xr ← SIMULATE(T r,B(r), id, g, Cr)
5: x(r) ← EXTRACTSEQUENCEFROMBT(B(r), xr)
6: fr ← g(xr ∪ x(r))− g(xr

∅ ∪ x(r)) ▷ Local utility
7: T r ← BACKPROPAGATE(T r, id, f

r)
8: end for
9: return T r

our BT represents a sparse set of action sequences X̂ r

corresponding to nodes in T r with the highest expected
reward. For each action sequence xr, we generate a set of
conditions based on the set of anticipated action sequences
of other robots x(r), and apply algebraic logic simplification
to find a concise BT representation. The logic simplification
results in an adaptive policy that spans the entire space X̂ (r),
seeded by the conditions associated with X̂ r.

We detail our approach to automatic generation of BTs
as follows with reference to Algorithm 3. The algorithm
consists of three steps: 1) create a lookup table of conditions
and actions, 2) build a set of truth tables for each unique
action, and 3) apply algebraic logic simplification to create
a BT subtree. We repeat the last two steps to fill in the entire
tree, with the subtrees connected with a fallback root node.

Constructing the LUT: First, we build a lookup table
(LUT) containing (condition, action) pairs, where conditions
are the action sequences of other robots x(r) and the action
a is defined as the action sequence xr for robot r that is
associated with x(r). The LUT is filled in by first selecting
a set of the nodes with the highest expected reward in the
MCTS tree (line 3). Then, we evaluate the response of a
random subset of other robots (r)′ based on their commu-
nicated BTs (line 5), using the same approach as the rollout
phase (see Sec. IV-A). Then, the current robot’s best action is
selected from X̂ r with the highest local utility with respect
to x(r)′ (line 6). These actions are added as a pair to the
LUT (line 7). Since the BT evaluation order is randomised,
the output action sequence x(r) is not deterministic.

Converting the LUT to a logical expression: Secondly,
we convert this LUT into a BT (lines 9-25). We achieve this
by looking at each unique a in the LUT sequentially and
building a truth table (line 10-17). Each entry in the truth
table for a given a consists of three elements: “true” for
conditions that correspond to this a, “false” for conditions
that correspond to actions that have not yet been considered,
and “don’t-care” for conditions that do not correspond to
any a or correspond to an action that has already been
considered (V). We repeat this for all unique a sequentially,
with conditions corresponding to previously considered a
becoming “don’t-cares” for subsequent truth tables. We do
this as a BT is evaluated left to right, and therefore subtrees

Algorithm 3 Procedure ENCODETOBT for robot r, which
converts robot r’s current intent as a BT.

input: Current MCTS tree T r, received BTs B(r)
output: Robot r’s BT, Br

1: Br ← {(?)} ▷ Initialise BT with fallback as root
2: L ← {} ▷ LUT of (condition, action) pairs

▷ Create LUT of conditions x(r) and actions xr

3: X̂ r ← SELECTSETOFSEQUENCES(T r)
4: for ni iterations do
5: x(r)′ ← EXTRACTSEQSFROMBTS(B(r)′ , xr)
6: xr ← argmaxxr∈X̂ r fr(xr ∪ x(r)′)

7: L ← L ∪ {(x(r)′ ,xr)}
8: end for

▷ Build BT from unique actions in the LUT
9: V ← ∅ ▷ Evaluated actions to propagate “don’t cares”

10: for each unique action sequence xr ∈ X̂ r do
▷ Truth table T maps conditions to Boolean logic

11: T (c)← don’t care, ∀c ∈ C
12: for (c, a) ∈ L do
13: if a = xr then ▷ Current action sequence
14: T (c)← true
15: else if a /∈ V then
16: T (c)← false
17: end if
18: end for
19: V ← V ∪ {xr} ▷ Add action as “evaluated”
20: l← ESPRESSO(T) ▷ Simplify truth table logic
21: if l = true then ▷ Default action
22: Br ← ADDDEFAULTACTION(Br,xr)
23: else ▷ Add subtree
24: Br ← ADDSEQUENCESUBTREE(Br, l,xr)
25: end if
26: end for
27: return Br

are only activated if all previous conditions are evaluated to
false; this makes the representation more compact rather than
having redundant conditions.

Logical expression into a BT subtree: For each truth
table we use the ESPRESSO [37] 2-level logic minimiser
(line 19) to reduce the truth table into a logic formula l.
This logic formula is appended as a subtree to BT Br. Each
of these subtrees is defined as sequence node (→) with a
condition (l) and action (xr); this sequence node is connected
to a fallback root node (?). When l is simply “true” (when
we evaluate the last unique action sequence xr), this node
becomes the rightmost default action node in the BT. We
repeat these two steps to build the entire tree.

C. Analysis
As our proposed algorithm extends Dec-MCTS [4], the

main analytical result in [4] carries over to our proposed
algorithm. Our tree search algorithm in Sec. IV-A applies
the same D-UCT algorithm except using behaviour trees,
which provides guarantees for maintaining the exploration-
exploitation trade-off during node selection in scenarios
where the reward function is changing due to the changing

Fig. 3. Generalised team orienteering scenario with 6 robots and 25 discs.
Unvisited discs are shown in green, visited discs are shown in red, and
obstacles are shown in grey. Triangular markers represent the current state
of the robot and the line represents the path traversed.

intents of other robots. The time complexity of the BT
encoding step is dominated by the logic simplification step;
2-level logic minimisation is NP-complete, but polynomial-
time approximations can be employed as optimality for this
step is not necessary for our algorithm.

V. EXPERIMENTS: MULTI-ROBOT GENERALISED
ORIENTEERING

We evaluate the performance of our algorithm against the
generalised team orienteering problem [4], where a team of
robots aim to maximally visit a number of regions of interest
(discs) within a given distance budget, as shown in Fig. 3.
When a robot visits a disc, it collects the associated reward;
revisiting the disc more than once yields no additional
reward. This formulation is motivated by robot coverage,
exploration, and inspection tasks, which are often formulated
with a similar reward structure [4, 38].

A. Comparison Methods

To assess the effectiveness of our proposed approach, we
compare it to several alternative methods:

• Dec-MCTS with BTs: is our proposed algorithm.
• Dec-MCTS: standard Dec-MCTS [4] using the top 10

action sequences evaluated so far to create the proba-
bility distribution.

• Greedy: in a randomised round-robin manner, each
robot selects the nearest unvisited disc within its travel
budget until all robots exhaust their travel budget.

• Independent: each robots runs the UCB variant of
MCTS [39] without coordination or communication.

B. Experimental Setup

Fig. 3 illustrates the environment, with all robots starting
in the same location and obstacles are arranged to partition
the environment into two spaces. This scenario creates a

Fig. 4. Comparison of Dec-MCTS with Behaviour Trees against com-
parison methods for the generalised team orienteering problem. Solid lines
represent the average score over 100 repeated trials in the environment and
the shaded region denotes the standard error.

Fig. 5. Comparison of Dec-MCTS with and without BTs for a larger
instance of the generalised team orienteering problem tested against 100
randomly generated environments with 20 discs and 6 robots. Solid lines
denote the mean reward whilst shaded regions denote the standard error.

junction that forces the robots to negotiate whether to traverse
the passageway. Each robot follows a Dubin’s motion model
and plans over a probabilistic roadmap (PRM) of 400 nodes
with a fixed travel budget. While robots plan over the PRM,
the actions represented in the BT are the discs visited by each
robot. 50 iterations of Algorithm 1 are performed, each with
50 iterations of GROWTREE and 1 communication broadcast.
For D-UCB in Dec-MCTS we use a discount factor of 0.75
and exploration-exploitation constant of

√
2. Independent

MCTS, Dec-MCTS and our approach have an equivalent
compute budget of 2500 GROWTREE iterations.

C. Results

We evaluate our algorithm over a smaller problem instance
depicted in Fig. 6 of 20 discs and 4 robots over 100
trials. The results, depicted in Fig. 4 demonstrate our algo-
rithm’s superiority over standard Dec-MCTS when initialised

Communication Iteration
Robot 1 4 7

Blue

Green

Red

Environment

Legend

Fig. 6. Evolution of BTs of the blue, green and red robots at communication iteration 1, 4 and 7. Refer to the legend for the state of the behaviour tree.
Note, the BTs are evaluated in round-robin randomised order (refer to Algorithm 1).

with identical starting conditions. As expected, indepen-
dent exhibits the poorest performance due to the absence
of explicit coordination between robots. Greedy performs
marginally better due to the heuristic-based coordination.
Dec-MCTS only marginally exceeds both independent and
greedy benchmarks under 50 communication rounds whilst
the proposed approach performs approximately 25% better
than Dec-MCTS. We attribute this gain in performance to our
explicit modelling of the intent of other robots with respect
to the current robots’ actions.

To further understand the behaviour of our algorithm, we
inspect the BTs communicated between robots at iterations
1, 4 and 7 in Fig. 6. In general, the robots intuitively
conditioning their actions based on geographical distance;
e.g., the green robot at iteration 7 has its leftmost subtree
that says “if no other robot is doing disc 17, then do discs
12, 13, 14, 17 and 18”. We also observe implicit coordination
occurring; e.g., the leftmost subtree of the red robot at
iteration 7 indicates that if discs 18 and 19 are covered, then
it is likely that the region below disc 9 is covered by other
robots, hence it should visit discs above 9.

Our approach also demonstrates targeted communication

to negotiate over points of contention. For example, the green
and red robots share nearly identical trees at iteration 4; with
conditions deciding which of the lower LHS and RHS of the
region to cover. In iteration 7, the blue and red robot now
share nearly identical trees whilst the green robot prunes the
lower LHS region and now has two distinct solutions above
and below the narrow passage.

We further demonstrate our algorithm on a larger ori-
enteering instance with 6 robots and 20 discs over 100
trials in Fig. 5. The results are consistent with Fig. 4, with
Dec-MCTS with BTs outperforming Dec-MCTS, and only
our approach outperformed the greedy baseline.

VI. CONCLUSION AND FUTURE WORK

Our approach presents many options for future research.
Our BT-based intent representation could be further de-
veloped by the notion of action “preference” and time to
handle tightly-coupled coordination problems. In addition
our approach presents a promising opportunity to develop a
communication scheme that only targets points of contention.

REFERENCES

[1] S. McCammon, G. Marcon dos Santos, M. Frantz, G. Best, R. K.
Shearman, J. D. Nash, J. A. Barth, J. A. Adams, and G. A. Hollinger,
“Ocean front detection and tracking using a team of heterogeneous
marine vehicles,” Journal of Field Robotics, vol. 38, no. 6, pp. 854–
881, 2021.

[2] G. Best, R. Garg, J. Keller, G. Hollinger, and S. Scherer, “Multi-
robot, multi-sensor exploration of multifarious environments with full
mission aerial autonomy,” International Journal of Robotics Research,
2023.

[3] C. Lytridis, V. G. Kaburlasos, T. Pachidis, M. Manios, E. Vrochidou,
T. Kalampokas, and S. Chatzistamatis, “An overview of cooperative
robotics in agriculture,” Agronomy, vol. 11, no. 9, p. 1818, 2021.

[4] G. Best, O. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
MCTS: Decentralized planning for multi-robot active perception,”
International Journal of Robotics Research, vol. 38, no. 2-3, pp. 316–
337, 2019.

[5] F. Sukkar, G. Best, C. Yoo, and R. Fitch, “Multi-robot region-of-
interest reconstruction with Dec-MCTS,” in Proc. IEEE Int. Conf. on
Robotics and Automation, 2019.

[6] A. J. Smith, G. Best, J. Yu, and G. A. Hollinger, “Real-time dis-
tributed non-myopic task selection for heterogeneous robotic teams,”
Autonomous Robots, vol. 43, no. 3, pp. 789–811, 2019.

[7] M. Dalmasso, A. Garrell, J. E. Domı́nguez, P. Jiménez, and A. San-
feliu, “Human-robot collaborative multi-agent path planning using
Monte Carlo tree search and social reward sources,” in Proc. IEEE
Int. Conf. on Robotics and Automation, 2021.

[8] C. Yoo, S. Lensgraf, R. Fitch, L. M. Clemon, and R. Mettu, “Toward
optimal FDM toolpath planning with Monte Carlo tree search,” in
Proc. IEEE Int. Conf. on Robotics and Automation, 2020.

[9] G. D’Urso, J. J. Heon Lee, O. Pizarro, C. Yoo, and R. Fitch,
“Hierarchical MCTS for scalable multi-vessel multi-float systems,” in
Proc. IEEE Int. Conf. on Robotics and Automation, 2021.

[10] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An
introduction. CRC Press, 2018.

[11] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato, S.-Y. Liu, J. P.
How, and J. Vian, “Decentralized control of multi-robot partially
observable Markov decision processes using belief space macro-
actions,” International Journal of Robotics Research, vol. 36, no. 2,
pp. 231–258, 2017.

[12] M. Corah and N. Michael, “Distributed matroid-constrained submod-
ular maximization for multi-robot exploration: Theory and practice,”
Autonomous Robots, vol. 43, no. 2, pp. 485–501, 2019.

[13] Z. Xu, R. Fitch, J. Underwood, and S. Sukkarieh, “Decentralized co-
ordinated tracking with mixed discrete-continuous decisions,” Journal
of Field Robotics, vol. 30, no. 5, pp. 717–740, 2013.

[14] N. Atanasov, J. L. Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
SLAM,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2015,
pp. 4775–4782.

[15] S. Kim, M. Corah, J. Keller, G. Best, and S. Scherer, “Multi-robot
multi-room exploration with geometric cue extraction and circular
decomposition,” IEEE Robotics and Automation Letters, vol. 9, no. 2,
pp. 1190–1197, 2024.

[16] S. A. Gielis Jennifer and P. Amanda, “A critical review of commu-
nications in multi-robot systems,” Current Robotics Reports, vol. 3,
no. 4, pp. 213–225, 2022.

[17] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
behavior trees in robotics and AI,” Robotics and Autonomous Systems,
vol. 154, p. 104096, 2022.

[18] M. Iovino, J. Förster, P. Falco, J. J. Chung, R. Siegwart, and C. Smith,
“On the programming effort required to generate behavior trees and
finite state machines for robotic applications,” in Proc. IEEE Int. Conf.
on Robotics and Automation, 2023, pp. 5807–5813.

[19] E. Safronov, M. Colledanchise, and L. Natale, “Task planning with
belief behavior trees,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, 2020.

[20] E. Scheide, G. Best, and G. A. Hollinger, “Behavior tree learning for
robotic task planning through Monte Carlo DAG search over a formal
grammar,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2021,
pp. 4837–4843.

[21] C. I. Sprague, Ö. Özkahraman, A. Munafo, R. Marlow, A. Phillips, and
P. Ögren, “Improving the modularity of AUV control systems using
behaviour trees,” in Proc. IEEE/OES Autonomous Underwater Vehicle
Workshop (AUV), 2018.

[22] A. Wathieu, T. R. Groechel, H. J. Lee, C. Kuo, and M. J. Matarić,
“RE:BT-Espresso: Improving interpretability and expressivity of be-
havior trees learned from robot demonstrations,” in Proc. IEEE Int.
Conf. on Robotics and Automation, 2022, pp. 11 518–11 524.

[23] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of be-
havior trees for autonomous agents,” IEEE Transactions on Games,
vol. 11, no. 2, pp. 183–189, 2018.

[24] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving
behaviour trees for the Mario AI competition using grammatical
evolution,” in Proc. European Conference on the Applications of
Evolutionary Computation, 2011, pp. 123–132.

[25] J. Styrud, M. Iovino, M. Norrlöf, M. Björkman, and C. Smith, “Com-
bining planning and learning of behavior trees for robotic assembly,”
in Proc. Int. Conf. on Robotics and Automation, 2022, pp. 11 511–
11 517.

[26] B. Banerjee, “Autonomous acquisition of behavior trees for robot
control,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2018.

[27] C. Gao, Y. Zhai, B. Wang, and B. M. Chen, “Synthesis and online
re-planning framework for time-constrained behavior tree,” in Proc.
IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), 2021, pp.
1896–1901.

[28] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. Ögren,
“The advantages of using behavior trees in mult-robot systems,” in
Proc. International SYmposium on Robotics, 2016.

[29] Q. Yang, Z. Luo, W. Song, and R. Parasuraman, “Self-reactive
planning of multi-robots with dynamic task assignments,” in Proc.
IEEE Int. Symp. on Multi-Robot and Multi-Agent Systems, 2019, pp.
89–91.

[30] S. S. O. Venkata, R. Parasuraman, and R. Pidaparti, “KT-BT: A
framework for knowledge transfer through behavior trees in multirobot
systems,” IEEE Transactions on Robotics, 2023.

[31] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling et al., “A
survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[32] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte
Carlo tree search: A review of recent modifications and applications,”
Artificial Intelligence Review, vol. 56, no. 3, pp. 2497–2562, 2023.

[33] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proc. Eurpoean Conference on Machine Learning, 2006, pp. 282–293.

[34] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2, pp.
235–256, 2002.

[35] A. Garivier and E. Moulines, “On upper-confidence bound policies
for switching bandit problems,” in Proc. Int. Conf. on Algorithmic
Learning Theory, 2011, pp. 174–188.

[36] D. H. Wolpert, S. R. Bieniawski, and D. G. Rajnarayan, Handbook of
Statistics 31: Machine Learning: Theory and Applications. Elsevier,
2013, ch. Probability collectives in optimization, pp. 61–99.

[37] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic minimization algorithms for VLSI synthesis.
Springer Science & Business Media, 1984, vol. 2.

[38] G. Best, J. Faigl, and R. Fitch, “Online planning for multi-robot active
perception with self-organising maps,” Autonomous Robots, vol. 42,
no. 4, pp. 715–738, 2018.

[39] P. Coquelin and R. Munos, “Bandit algorithms for tree search,” in
Proc. Conference on Uncertainty in Artificial Intelligence, 2007, pp.
67–74.

	2024 IEEE
	Communicating Intent as Behaviour Trees for Decentralised Multi-Robot Coordination

