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Abstract: Images captured under adverse weather conditions often suffer from blurred textures and
muted colors, which can impair the extraction of reliable information. Image defogging has emerged
as a critical solution in computer vision to enhance the visual quality of such foggy images. However,
there remains a lack of comprehensive studies that consolidate both traditional algorithm-based
and deep learning-based defogging techniques. This paper presents a comprehensive survey of the
currently proposed defogging techniques. Specifically, we first provide a fundamental classification of
defogging methods: traditional techniques (including image enhancement approaches and physical-
model-based defogging) and deep learning algorithms (such as network-based models and training
strategy-based models). We then delve into a detailed discussion of each classification, introducing
several representative image fog removal methods. Finally, we summarize their underlying principles,
advantages, disadvantages, and give the prospects for future development.

Keywords: dehaze; image enhancement; traditional defogging algorithm; atmospheric scattering
model; dark channel prior; CNN; unsupervised learning; deep learning

1. Introduction

Haze or fog in bad weather, which may result in dull colors and blurred contrast for
captured images, is a traditional atmospheric phenomenon. Image dehazing is able to help
to improve the clarity and visibility of such degraded images, which makes it widely used
in unmanned, security monitoring, aerospace, and other fields to enhance the performance
and safety of these fields. Since 2004, the publication of image defogging or dehazing has
been increasing, and a large number of new methods have been proposed.

The essence of image defogging is to get rid of adverse visual effects caused by
haze or fog. The most intuitive way to address such issue is to employ the traditional
image enhancement techniques [1–8] to improve the contrast and saturation of fog images.
However, these methods do not work well on fog images. This is due to the fact that these
methods do not consider the mechanism that the deterioration of haze images is related to
the haze concentration. To alleviate this problem, numerous atmospheric scattering model
(ASM)-based [9] image dehazing techniques [10–21] have been developed. These methods
are mainly based on prior knowledge, such as dark channel prior [10] and color attenuation
prior [12], to reduce the uncertainty of ASM. Then, they use the estimated parameters to
reversely restore the high-quality scene from single image.

Recently, with the sharp development of artificial intelligence (AI), by leveraging
AI frameworks, many deep learning-based image dehazing methods have been further
proposed. Compared to physical-model-based dehazing method, this type of algorithm can
achieve better results because of its powerful fitting ability. In general, these image dehazing
methods either make use of different types of network architectures or employ different
loss functions during training. Therefore, they can be roughly divided by network used
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type and training strategy. In the category of training methods, according to whether there
is supervision information, it can be further divided into three categories: unsupervised
image dehazing methods [22–30], supervised image dehazing methods [31–36], and semi-
supervised image dehazing methods [37,38].

Although great progress in image dehazing or defogging have been made, there are
few survey papers on such field, to the best of our knowledge. Liu et al. [39] provide
a detailed summary of classical defogging methods, including depth estimation, wavelets,
enhancement, and filtering, but lack a detailed discussion of the latest neural network
models. Xu et al. [40] highlights image recovery algorithms, contrast enhancement al-
gorithms, and fusion-based defogging algorithms. Additionally, they describe current
video-defogging algorithms while still ignores an introduction to deep learning-based de-
fogging algorithms. Although Gui et al. [41] give a full summary and discussion of neural
networks and loss functions, they still lack a discussion of traditional defogging algorithms
and a systematic classification for defogging methods. Ancuti et al. [42] carries on with
some supervised defogging models. However, they do not focus on recent applications of
unsupervised methods.

In this paper, we conduct a comprehensive overview of image dehazing or defogging
techniques. Unlike the aforementioned survey works, this review firstly categorizes the
classic or state-of-the-art image fog/haze removal algorithms in detail, including traditional
image enhancement approaches, physical-model-based defogging, network-based dehaz-
ing models, and training strategy-based models. Moreover, we also conduct qualitative and
quantitative comparisons of each type of algorithm, aiming at pointing out their advantages
and disadvantages and raising the outlook that may boost the image defogging field.

The remainder of this paper is organized as follows. Following the introduction,
Sections 2 and 3 introduce non-deep learning defogging and deep learning defogging,
respectively. In detail, Section 2 depicts traditional image defogging algorithm and physical-
model-based defogging, while Section 3 illustrates the architecture of the deep network
and training strategy used for image defogging. Section 4 conducts extensive performance
evaluations of the state-of-the-art approaches mentioned in above, and illustrates the
advantages and disadvantages of each type of algorithm. Finally, the conclusions and
outlook for future are drawn in Section 5.

2. Non-Deep Learning Defogging

Early image defogging either simply enhances the local or global contrast, or explores
the hand-crafted priors on foggy images to achieve image fog removal. The former, namely
traditional image defogging algorithm, directly exploits the traditional methods, e.g., his-
togram equalization, signal analysis methods, and other traditional contrast enhancement
approaches. The latter, namely physical-model-based defogging, is based on a physical
model to estimate the imaging parameters, thereby realizing high-quality fog removal.

2.1. Traditional Image Defogging Algorithm
2.1.1. Histogram Equalization

The core idea of histogram equalization (HE) is based on redistributing images’ inten-
sity levels. This method is conducted by calculating the histogram of the image and then
generating the cumulative distribution function (CDF). Subsequently, a uniform distribu-
tion is obtained by mapping the original pixel values to new values according to the CDF.
Due to the implementation of the aforementioned measures, this method effectively spreads
out the pixel values across the intensity spectrum, thereby enhancing the visibility of image
details. Considering the mechanism of histogram equalization, there exists a relationship
between gray level and pixels:

sk = T(rk) =
k

∑
i=0

pr(ri) =
k

∑
i=0

ni

N
(1)
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where N is the total amount of pixels in the image, L represents the total number of gray
levels, sk is the value of the cumulative distribution function corresponding to the gray
level rk, pr(rj) is the probability density function value of the gray level rj in the original
image, and T is the transform function [1].

Although HE is able to improve the global contrast of an image, it lacks a selection
mechanism for processed signals, thus making it amplify noise. Subsequently, adaptive
HE (AHE) was proposed, and it partitions images into blocks and then applies specific
defogging methods to each block [2,3]. However, it brings a new issue, i.e., over-load
computational complexity that may reduce its real-time performance. Contrast limited
AHE (CLAHE), an improved version of AHE, which uses a bi-linear interpolation [4] to
mitigates these issues. Unfortunately, CLAHE still exhibit noticeable block artifacts and
substantial changes in overall brightness.

2.1.2. Signal Analysis-Based Approach

The most representative method of this type is the well-known homomorphic filtering.
In homomorphic filtering, the input image is decomposed into two components. The first
component represents the spatially varying incident light intensity, which changes slowly
and is primarily present in the low-frequency regions of the foggy image. The second
component encapsulates the scenario reflection perceived by the human eye, highlighting
the intricacies and details of the scenario. To balance these two components, a logarithmic
transformation was designed, whose key idea is to suppress low frequency and high
frequency [5]. Mathematically, homomorphic filtering can be formulated as follows:

g(x, y) = H(u, v)F(u, v)

H(u, v) = γ(u, v) · Flp(u, v) + (1 − γ(u, v)) · Fhp(u, v)
(2)

where g(x, y) is the pixel value of the output image, F(u, v) is the Fourier transform of the
input image in the frequency domain, H(u, v) is the frequency response function of the
homomorphic filter, (u, v) is a variable in the frequency domain, and γ(u, v) is a function
that controls the degree of mixing of the low and high-frequency components.

Flp(u, v) and Fhp(u, v) are the low-pass and high-pass filters. The advantages of homo-
morphics lie in the removal of multiplicative noise, enhancement of contrast in adjacent
regions, and compression of the overall dynamic range of the image. However, there still
exist several notable disadvantages in homomorphic filtering, e.g., being unable to deal
with scenarios with severe fog conditions and lacking the ability to maintain the local
details during processing. Therefore, to address such limitations, the Fourier transfor-
mation is replaced by the wavelet transform in homomorphic filtering for high-quality
fog removal. Compared to the Fourier transformation, the wavelet transform provides
a multi-dimensional transformation connecting spatial, temporal, and frequency domains.
By incorporating the localized adaptation nature of short-time Fourier transformation and
utilizing finite-length wavelets that decay, the wavelet transforms significantly enhance its
capacity to process non-stationary signals [6].

WT(a, τ) =
1√
a

∫ ∞

−∞
f (t) ∗ Ψ(

t − τ

a
) (3)

where the parameter a controls the wavelet us contraction scale, while t controls its transla-
tion. The wavelet transform outperforms homomorphic filtering in handling with local
image details and enriching overall information, but it may alter image brightness, causing
distortions like blurred edges. To address these, the two-dimensional wavelet transform
and threshold function are introduced. This combination separates high- and low-frequency
components, emphasizing or eliminating detail levels to enhance useful information. While
it improves contrast and information in defogged images, it does not fully and effectively
address image distortion and edge blurring.
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2.1.3. Other Traditional Image Enhancement Used for Image Defogging

In addition to the aforementioned image enhancement algorithms, there are other
competitive alternatives that utilize Partial Differential Equations (PDEs) [7]. These PDE-
based methods integrate Laplace operators with Retinex algorithms. A notable advantage
of PDE-based approaches is to offer a more physically explanatory and rational method
compared to alternative techniques. By leveraging models of light propagation and scatter-
ing, PDE-based algorithms achieve a globally consistent fog removal effect. However, these
methods also have certain disadvantages. In contrast to the histogram equalization and
signal analysis-based defogging algorithms mentioned earlier, PDE-based methods exhibit
higher computational complexity. Moreover, when handling with complex scenarios, the
defogging process may cause overcompensation, which will lead to areas to be excessively
bright or dark.

The Laplace operator-based algorithm aims to enhance image contrast through quadratic
differentiation for sharpening. The main advantage of this method is its low complexity.
However, it proves less effective in challenging defogging scenarios, often resulting in
severe noise and artifacts. Another approach, the Retinex algorithm, enhances images
by separating them into albedo and light components, thereby emphasizing details and
contrast to achieve fog removal. Various implementations of Retinex algorithms include
single-scale Retinex (SSR) [8] and multi-scale Retinex (MSR) [4]. MSR applies a convolution
kernel at multiple scales, convolving the image to generate reflective images across these
scales. These images are subsequently fused, weighted, and averaged to produce the final
defogging output. While the multi-scale Retinex algorithm enhances defogging capabilities
for diverse scenes and objects compared to the single-scale approach, it also significantly
escalates computational complexity and introduces potential noise and artifacts.

While those algorithms employing image enhancement techniques have shown some
effectiveness in defogging, their results remain room for improvement. Consequently,
researchers have tried to introduce imaging model or deep learning theory to gain a better
restoration performance.

2.2. Physical-Model-Based Defogging

This type of algorithm belongs to non-deep learning, and its essence is to search
imaging parameters that are used for fog removal. Figure 1 showcases the schematic
diagram for physical-model-based defogging. As shown, hand-crafted prior knowledge,
e.g., dark channel prior (DCP), color attenuation prior (CAP), and gamma correction prior
(GCP), is initially imposed on the atmospheric scattering model (ASM) [9] to derive the
transmission map t and atmospheric light A. Then, these estimated parameters, along with
the original foggy image, are fed into ASM to obtain the haze-free scene.

( )yx ,I

A
yxt

AyxI
yxJ +

−
=

),(

),(
),(

Transmission Map 
t(x,y)

DCP,CAP,GCP

Prior Knowledge

Atmospheric light 
A

J( , )x yASM Model

Figure 1. Schematic diagram for physical-model-based defogging approaches.
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2.2.1. Atmospheric Scattering Model (ASM)

Before describing physical-model-based defogging approaches, it is necessary to
introduce well-known ASM. Formally, the ASM can be further expressed by

I(x, y) = J(x, y)t(x, y) + A(1 − t(x, y)) (4)

where A is the global atmospheric light, I is the haze image, J is the haze-free scene that
is expected to be restored, and t is the transmission. In detail, the transmission can be
written as

t = e−kd(x,y) (5)

where k and d(x, y) represent the atmospheric scattering coefficient and scene depth,
respectively. It is obvious from this equation that, on fog-free scenarios, k is very close to
0, which leads to J = I according to ASM. When taking pictures on foggy scenarios, k > 0
cannot be ignored, and the light source received by the detector would be interfered with
by fog. In this case, the collected light primarily originates from two sources: one is the
target-reflected light attenuated by particles and detected by the system, while the other
is atmospheric light resulting from particle scattering of the light source. Once these two
parameters have been determined, the haze-free scenes can be easily restored by:

J(x, y) =
I(x, y)− A

t(x, y)
+ A (6)

where a useful solution of getting A and t is to impose prior knowledge or extra information
on ASM. In the following, several classic defogging algorithms will be briefly outlined.

2.2.2. Dark Channel Prior Image Dehazing

The dark channel prior (DCP) defogging algorithm, introduced by He et al. [10], is
known for its superior performance compared to other prior-based defogging methods.
He et al. note that every region in a fog-free image contains at least bright colors or dark
elements, such as shadows. Therefore, each region typically shows a channel with very low
pixel values, known as the DCP. Formally, it can be defined as follows:

Jdark (x, y) = min
C∈{R,G,B}

(
min

z∈µ(x,y)
JC(x, y)

)
(7)

where c is the color index, µ(x, y) represents the neighborhood, Jc stands for each color
channel, and Jdark represents the dark channel map. Apart from the sky regions, the
intensity of Jdark is low and close to 0. Combining DCP and ASM, the transmission can be
computed by

t(x, y) = 1 − ω min
C

(
min

z∈µ(x,y)

I(x, y)C(Z)
AC

)
(8)

where ω denotes the fog retention coefficient, which aims to preserve a minimal amount
of fog in the distant regions of the original image. In Equation (8), the value of ω is
assigned as 0.95 and the atmospheric light is obtained from the region where the darkest
5 percent is. Once these imaging parameters are determined, the clear version can be
recovered by Equation (7) from a single foggy image. It should be pointed out that the
transmission obtained through this method generally offers high accuracy; however,
its high complexity limits its practical application. To address this limitation, He et al.
proposed the guided filter (GIF) [11], which improves its computational efficiency.
Furthermore, this approach still has some other drawbacks, e.g., it cannot deal with
images with sky regions.
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2.2.3. Color Attenuation Prior Image Defogging

As is well known, human perception can swiftly discern areas with or without fog,
as well as distinguish between near and far distances without relying heavily on additional
data. Building upon this observation, Zhu et al. [12] propose a color attenuation prior (CAP)
by assuming that haze concentration correlates with the disparity between brightness and
saturation. Mathematically, the CAP is expressed by the following:

d(x) = θ0 + θ1v(x) + θ2s(x) + ε(x) (9)

where θ0, θ1, and θ2 are unknown linear coefficients, and ε(x) represents a random variable
that captures the inherent error of the model. Additionally, d(x), v(x), and s(x) correspond
to scene depth, brightness, and saturation, respectively. For simplicity, this approach further
assumes a Gaussian distribution for ε with zero mean and variance σ2 (i.e., ε(x)∼N(0, σ2)).
By leveraging the properties of the Gaussian distribution, Equation (9) can be detailed as

d(x)∼p(d(x)|x, θ0, θ1, θ2, σ2) = N(θ0 + θ1v + θ2s, σ2) (10)

To learn the coefficients θ0, θ1, and θ2 accurately, Zhu et al. further create a joint
conditional concentration in terms of Equation (10), i.e.,

L = p(d(x1), . . . , d(xn)|x1, . . . , xn, θ0, θ1, θ2, σ2) (11)

where n is the total number of pixels within the training hazy images, d(xn is the depth
of the nth scene point, and L is the likelihood. The main advantage of this method is its
highly effective performance. However, it may be invalid when processing certain cases,
e.g., scenes with strong lighting or complex colors.

2.2.4. Gamma Correction Prior to Image Defogging

As discussed above, most currently available methods fail to accurately search the
scene depth that is useful for transmission estimation. To this end, Ju et al. [13] firstly intro-
duces a novel pre-processing technique called gamma correction preprocessing (GCP), i.e.,

Ic
s = 1 − (1 − Ic)Γ, (12)

where Is is the virtual result, and Ic is the color channel of the hazy image. Having the
input image and the prepossessed result, single-image defogging can be subtly changed to
multi-image defogging. Taking ASM as theory, the imaging equation of the input image
and the prepossessed result is described by

Ic(x, y) = Ac · ρ(x, y) · e−β·d(x,y) + Ac · (1 − e−β·d(x,y)) (13)

Ic
s (x, y) = Ac

s · ρ(x, y) · e−βs ·d(x,y) + Ac
s · (1 − e−βs ·d(x,y)) (14)

where Ac s is the atmospheric light of the virtual results Ic. By solving this equation, the
scene depth can be computed by

d =
− ln max(Ac−Ic ,ϵ1)

max(Ac
s−Ic

s ,ϵ2)
− ln Ac

s
Ac

β − βs
(15)

where ϵ1 and ϵ2 are very small positive constants, ϵ1 is introduced to avoid the numerator
from exceeding the function definition field, and ϵ2 is introduced to make sure the denomi-
nator is not zero. For simplicity, Ju et al. further assume that the weather conditions do not
change spatially, which leads to

d =
1

β − βs
· d0 ∝ d0 = − ln

max(Ac − Ic, ϵ1)

max(Ac
s − Ic

s , ϵ2)
− ln

Ac
s

Ac (16)
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By substituting Equations (5) and (16) into ASM, the dazed result can be expressed as:

ρc =
Ic − Ac

Ac · e−
β

β−βs ·d0
+ 1 (17)

where the range of ρc is set to 0 ≤ ρc ≤ 1 in order to prevent pixel overflow. Consequently,
the modified expression for reconstructing the scene contents can be formulated as follows:

ρc = dehaze(θ, Ic, Ac, d0)

= min((max( Ic−Ac

Ac ·e−θ·d0
) + 1), 0), 1) (18)

where dehaze(·) is the abbreviation of the albedo restoring function. Note that dehaze(·) is
a function of four parameters, where Ic is the input, Ac can be easily calculated according to
Equation (18), d0 is the depth ratio obtained in the previous subsection, and θ = β/(β − βs)
is the only unknown parameter. To estimate the value of θ with low complexity but high
accuracy, a globally optimized function is designed as:

θ = argmin{∑
c

f (dehaze(θ, (Ic) ↓n, Ac, (d0) ↓n))} (19)

where f (·) represents a vision indicator designed via single or multiple images prior,
and ↓n is a down-sampling operator with coefficient n. With this estimated θ, the clear
version can be directly recovered according to Equation (18). Unlike the other defogging
methods employing pixel-wise, patch-wise, scene-wise, non-local-wise, and learning-wise
strategies, this technique makes use of a global-wise strategy to achieve a high-quality image
defogging. Nevertheless, because of the fact that it assumes weather conditions do not
change spatially, thus making it fails to deal with the images with non-homogeneous fog.

2.2.5. Physical-Model-Based Defogging Using Other Prior Knowledge

Tan [15] assumes a fixed atmospheric light value in the local region and employs
a Markov model framework to maximize local contrast for processing foggy images. This
is achieved by developing a cost function and estimating the optimal atmospheric light
using graph segmentation knowledge. The algorithm effectively enhances image contrast
and improves visibility; however, it may lead to color over-saturation post-fog removal
and introduce halo effects in certain interface areas.

Fattal [16] assumes that the local region’s reflectance remains constant, while the
object’s surface chromaticity demonstrates local statistical intercorrelation with media
propagation. Nevertheless, accurate estimation can pose challenges in cases where relevant
components lack noticeable changes or when color information is limited.

Tarel et al. [17] proposed a fast fog removal algorithm, which estimates the dissipation
function by analyzing the distortion caused by the median filter. Regrettably, inappropriate
parameter configurations during the application of the median filter estimation method
can introduce halo artifacts.

Ju et al. [18] explores a region line prior (RLP), i.e., when the image is divided into n
regions, the brightness corresponding to the blurred image and the fog-free image in each
region is positively correlated with the scene depth. Then, combining RLP and ASM, they
further proposed the defogging algorithm. To solve the dim effect and better simulate the
outdoor hazy scene, Ju et al. [43] also developed a simple yet effective image enhancement
technology based on the grayscale world hypothesis and an enhanced ASM.

Berman et al. [19] proposed the non-local image defogging algorithm based on the
assumption that the color of the haze-free image can be well estimated from hundreds of
strict colors. Since this algorithm is based on pixels rather than patches, it can have a high
efficient and exhibit a high-quality enhancement effect.

Oakley et al. [20] postulated the availability of scene depth information and utilized
Gaussian functions to restore scene contrast by predicting the optical path. Importantly,
their approach did not necessitate any weather-related predictions. However, the imple-
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mentation conditions were demanding, requiring specific hardware devices for obtaining
depth-of-field (DOF).

Kopf et al. [21] employed a combination of hardware and software devices to acquire
auxiliary information, thereby facilitating the collection of depth-of-field (DOF) and texture
data. Despite their development of a novel system, it still fails to address the limitations
associated with the requirement for specific equipment to obtain DOF.

3. Deep Learning Defogging

Deep learning technologies have made significant advancements in the field of image
defogging. Depending on the deep networks or training strategies used during learning
stage, in this section, we will introduce the deep learning fog removal algorithm in two parts,
i.e., the architecture of a deep network and training strategy used for image defogging.

3.1. Architecture of Deep Network Used for Image Defogging

Currently available deep learning fog removal methods select different deep networks
(e.g., Convolutional Neural Network (CNN), Generative Adversarial Network (GAN),
Residual Network (ResNet), Attention Mechanism Network, and autoencoder) as their
backbone to implement fog removal, depending on their concerns, as shown in Figure 2.

Autoencoder
Attention 

Mechanism Netwok

ResNetGANCNN

Network

Figure 2. The network architecture diagram of deep learning defogging algorithms.

3.1.1. CNN-Based Defogging Methods

CNN is well-suited for image defogging, based on its capability at capturing local
features by using filters and feature maps. Such abilities enable the network to better
learn edges, textures, and other low-level visual elements. Pooling layers then reduce
the spatial dimensions of the images and realize computational efficiency. Finally, the
fully connected layers integrate the high-level features learned by the previous layers,
enabling the network to make complex decisions and classifications. One of the most
typical networks using CNN, DehazeNet [44], is the first deep learning-based method for
image defogging. It estimates the medium transmission map of a hazy image through an
end-to-end trainable system. The system employs a CNN architecture, with layers designed
to embody established assumptions and priors. The core contributions of DehazeNet are
as follows:

• End-to-end learning: The mapping relations between hazy patches and their medium
transmissions can be directly learned and estimated by DehazeNet. Such an end-to-
end learning method brings strong flexibility to the method.

• Novel nonlinear activation function: DehazeNet proposes a new nonlinear activation
function called the Bilateral Rectified Linear Unit (BReLU) to improve the quality of
restored haze-free images. BReLU reduces the search space and enhances convergence
through bilateral restraint.
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• Connection with traditional dehazing methods: DehazeNet integrates its components
with the assumptions/prior knowledge used in existing defogging methods, which
makes it better performing compared to the traditional methods.

DehazeNet’s architecture includes multiple convolutional and pooling layers, as well
as Maxout and BReLU activation functions. The medium transmission is estimated through
four steps:

1. Feature extraction: maximize unit extraction features and generate almost all haze-
relevant features.

2. Multi-scale mapping: to achieve scale invariance, multi-scale features are extracted
through parallel convolutional operations.

3. Local extremum: local extremum operations are employed to achieve spatial invari-
ance, aligning with the assumption of locally constant medium transmission.

4. Nonlinear regression: nonlinear regression is conducted using the BReLU activa-
tion function to restrict transmission values within a reasonable range, which can
effectively decrease noise issues.

CNN has become a foundation in image defogging due to its powerful feature
extraction capabilities and end-to-end ability. However, the demand for efficiency and
effectiveness continues to drive the development of newer models. One such recent devel-
opment is the Light-DehazeNet [45], which stands out for its ability to deliver high-quality
defogging results with improved computational efficiency. This algorithm involves the
following advancements:

• Efficient design: Light-DehazeNet is designed to be lightweight, making it much more
practical for application.

• Advanced feature learning: it adopts complex yet efficient convolutional layers that
can capture detailed features, even in low-visibility conditions.

• Seamless integration: the model’s structure allows for seamless integration with exist-
ing CNN-based pipelines, which can ensure compatibility with traditional methods
and offer enhanced performance at the same time.

• Real-time capability: with its streamlined processes, Light-DehazeNet is capable of
real-time defogging, which is a significant advantage for applications requiring instant
visual clarity.

While previous studies have made significant advancements in the field of image
defogging through its lightweight architecture and end-to-end training strategy, further
research is still required. This includes integrating the atmospheric scattering model directly
into deeper neural networks and exploring more complex network structures to enhance
defogging performance.

3.1.2. GAN-Based Defogging Methods

GAN [46] has revolutionized deep learning by offering a unique approach to generative
modeling. Introduced by Ian Goodfellow and colleagues in 2014, GAN consists of two
neural networks, a generator and a discriminator. The goal of the generator is to produce
synthetic data that mimics real data, whereas the discriminator’s role is to distinguish
between genuine and generated data. Hence, a network trained in this way can output
almost real images. The intricate dynamics within GANs and their ability to capture
complex data distributions make them a compelling subject of study in the application of
image defogging.

For example, Cycle-Dehaze is an end-to-end network designed specifically to address
the single image defogging without the requirement for paired hazy and clear images for
training. Additionally, Cycle-Dehaze does not need to estimate atmospheric scattering
model parameters.

To generate visually superior haze-free images, Cycle-Dehaze improves upon the
CycleGAN formulation by incorporating cycle consistency and perceptual losses. A per-
ceptual loss based on the VGG16 feature extractor is introduced to preserve the original
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image structure by comparing images in the feature space rather than the pixel space. To de-
crease image quality deterioration during the defogging process, the Laplacian algorithm is
used for up-sampling. Building upon the foundation laid by earlier GAN-based dehazing
methods, like the Cycle-Dehaze mentioned above, the ADE-CycleGAN [47] introduces
a significant leap forward in the preservation of image details. This approach addresses the
limitations of previous techniques where fine details were often lost during training. Its
contributions are as follows:

• Enhanced detail preservation: by integrating a multi-head attention mechanism within
a CycleGAN framework, ADE-CycleGAN effectively captures and retains the intricate
details of hazy images.

• Improved performance metrics: the novel structure demonstrates a substantial im-
provement over traditional CycleGAN in quantitative assessments, reflecting a higher
accuracy in the reconstructed images.

• Adversarial training: ADE-CycleGAN employs adversarial training to ensure that the
dehazed images are not only detail-rich, but also visually realistic.

• Cyclic consistency: the framework also incorporates cyclic consistency loss, ensuring
that the dehazed image remains true to the original, thus avoiding artifacts that older
GAN models might introduce.

The introduction of ADE-CycleGAN signifies a refinement in GAN-based dehazing
techniques, offering a more nuanced and effective approach to recovering clear visuals
from hazy scenes.

3.1.3. ResNet-Based Defogging Methods

Residual Networks (ResNets) [48], as a type of deep neural network structure, have
demonstrated outstanding performance in image-defogging tasks. Figure 3 illustrates
the structure diagram of a ResNet. Its main function is to address the common issue of
vanishing gradients during the training process of deep neural networks by introducing
residual blocks, making the network easier to train and enabling it to learn image features
more deeply.

Image

7*7 
conv

64
/2

Pool
/2

3*3 
conv

64

3*3 
conv

64

3*3 
conv

64

3*3 
conv
128
/2

3*3 
conv
128

3*3 
conv
128

3*3 
conv
256
/2

3*3 
conv
256

3*3 
conv
256

3*3 
conv
512
/2

3*3 
conv
512

3*3 
conv
512

Avg
pool

Fc
1000

Figure 3. A visualization to illustrate ResNet.

To apply ResNet in image defogging, researchers have designed various specialized
defogging networks that incorporate residual blocks to enhance defogging performance.
This network structure excels not only in removing atmospheric scattering effects, but
also in capturing deep image features, contributing to the preservation of more details,
and improving the visual quality of the images. For instance, the most representative
of this class is AOD-Net [49] proposed by Boyi Li et al. at the 2017 IEEE International
Conference on Computer Vision (ICCV). It employs a Convolutional Neural Network
(CNN) approach, particularly adapting the design philosophy of ResNet. The core
advantage of AOD-Net lies in its end-to-end learning. AOD-Net generates clear images
directly from hazy images through a lightweight CNN, eliminating the need for addi-
tional post-processing steps. This end-to-end learning approach reduces mistakes that
might be introduced by intermediate stages. As a result, the defogging performance
is significantly enhanced. Moreover, AOD-Net has high processing speed, with the
ability to process a 480 × 640 pixel image in approximately 0.026 s, making it suitable for
real-time applications.
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3.1.4. Attention Mechanism Network-Based Defogging Methods

An Attention Mechanism aims to enable the network to focus more on crucial regions
of the image, allowing for more effective extraction and utilization of key information.
Its core idea is to simulate the human visual system’s attention mechanism, enabling
the network to concentrate on significant parts of the image during processing. Such
a mechanism allocates varying weights to different layers or channels in the network.
This personalized attention capability makes the network more flexible, and allows it to
better adapt to image-defogging tasks with varying complexity and feature distributions.
Therefore, the application of Attention Mechanism Networks brings new advancements
to the field of image defogging, offering innovative solutions for addressing atmospheric
scattering issues in real-world scenarios.

One of the most representative methods of using an attention mechanism network,
GridDehazeNet [50], an attention-based multi-scale Convolutional Neural Network, has
demonstrated its effectiveness in single-image defogging tasks. The network consists of
three main modules: a pre-processing module, a backbone network module, and a post-
processing module.

• Pre-processing module: This fully trainable module generates learned inputs that are
more diverse and relevant compared to those derived from hand-selected pre-processing
methods. This learned pre-processing approach better highlights different aspects of
the image, providing richer information for subsequent defogging operations.

• Backbone network module: This is the core of GridDehazeNet. It implements a novel
attention-based multi-scale estimation method on a grid network. The structure allows
for dense connections between different scales, effectively relieving the bottleneck
issues commonly encountered in conventional multi-scale approaches. Each scale
consists of a series of residual dense blocks (RDBs) connected by upsampling or down-
sampling blocks, enabling flexible aggregation and fusion of features across scales.

• Post-processing module: To address the issue that features from different scales
may have varying weights, GridDehazeNet incorporates a channel-wise attention
mechanism. This mechanism allows the network to generate trainable weights for
feature fusion, thereby flexibly adjusting the contributions from different scales and
further improving defogging quality.

Grid-DehazeNet showcases the potential of attention mechanisms in image-defogging
tasks, particularly in handling multi-scale features and enhancing defogging quality. This
network design provides a new perspective for the field of image defogging and may
inspire future research on applying attention mechanisms in other image restoration tasks.

3.1.5. Autoencoder-Based Defogging Methods

Autoencoder [51], a crucial neural network structure in deep learning, has demon-
strated remarkable performance in image defogging tasks. The design of autoencoder aims
to learn a concise representation of data through unsupervised learning, enabling efficient
information reconstruction between input and output. The core structure of an autoen-
coder comprises an encoder and a decoder. The encoder maps the input image to a low-
dimensional representation space, while the decoder reconstructs this low-dimensional
representation into a reconstructed image. This structure enables the autoencoder to cap-
ture essential features in image defogging tasks, reducing noise and blur effects during the
reconstruction process, and thereby enhancing image clarity and quality.

In the application of image defogging, the network structure of autoencoder is often
adjusted by modifying the layers and nodes of the encoder and decoder to accommodate
different tasks and datasets. For example, an autoencoder-based Contrastive-Regularized
Network (AECR-Net) is a defogging network that integrates concepts from autoencoders,
single image defogging, and contrastive regularization. The network employs a compact
framework that includes an autoencoder for feature extraction and reconstruction, which is
beneficial for memory storage and performance balance.
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The key innovations of AECR-Net is the introduction of a novel Contrastive Regu-
larization (CR) technique. This technique is grounded in contrastive learning, which uses
both the hazy and clear images as negative and positive samples, respectively. The CR
aims to improve the network’s ability to distinguish between the features of hazy and clear
images, thus enhancing the defogging outcome. The network architecture of AECR-Net is
compact, making it suitable for applications where computational resources are limited.
Despite its compactness, AECR-Net can produce high-quality dehazed images, making it
a promising approach in the field of image processing for defogging tasks.

While AECR-Net and related research during the same period have laid the ground-
work for feature learning in image defogging, the latest developments have pushed the
boundaries further. One such breakthrough is the RIDCP [52], which integrates the concept
of high-quality codebook priors into the autoencoder framework. Unlike earlier methods
that relied on hand-crafted features and heuristic models, RIDCP leverages the power of
VQGAN to encapsulate robust priors directly from a large-scale dataset of pristine images.

Its innovations are as follows:

• High-quality codebook priors: By pre-training on a diverse set of high-quality images,
RIDCP creates a discrete codebook that serves as a rich source of prior knowledge for
the defogging task. This approach contrasts with older methods that often struggled
with limited training data and less representative features.

• Phenomenological data synthesis: addressing the synthetic-real gap, RIDCP intro-
duces a synthesis pipeline that mimics real-world degradation more closely than
traditional models, enhancing the generalizability of the learned features.

• Controllable priors matching: a novel aspect of RIDCP is its controllable matching
mechanism, which refines the alignment between hazy image features and the learned
priors, leading to improved defogging outcomes compared to the more rigid matching
strategies of older autoencoders.

The introduction of RIDCP signifies a shift towards more sophisticated autoencoder
models that can better handle the intricacies of real-world defogging. It builds upon the
foundational work of previous autoencoder techniques, taking a significant leap forward
in terms of performance and adaptability.

3.2. Training Strategy Used for Image Defogging

Currently available deep learning fog removal methods utilize a supervised mode,
unsupervised mode, and semi-supervised mode to train their constructed network. Figure 4
showcases a diagram of how different training modes are embedded in the network. It
is easily concluded from this figure that these available networks either employ paired
datasets or unpaired datasets to fit the pre-set deep models.

Network

Semi-supervised LossSupervised Loss Unsupervised Loss

Unsupervised 
Learning

……

……

Paired Dataset

Hazy Image

Ground Truth

……

Raw Dataset

……

Unpaired Dataset

Input Output

Training Stage

Hazy Image

……

Hazy Image

Ground Truth

Figure 4. Example description of how different training modes are embedded in the network.
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3.2.1. Image Defogging Based on Supervised Learning Mode

Supervised defogging algorithms aim to enhance visibility of hazy images by lever-
aging the labeled training data. The basic steps involve collecting a dataset of hazy and
corresponding clear images, extracting features by each layer in deep network, training
the designed model using supervised learning loss, and finally applying the trained model
to achieve image fog removal. Through this process, the model learns to estimate and
remove haze by understanding the relationship between hazy and clear image pairs. In gen-
eral, such supervised methods can achieve better performance compared to unsupervised
approaches that do not require image pairs, particularly in challenging conditions with
varying haze levels and complex scenes.

3.2.2. Image Defogging Based on Unsupervised Learning Mode

Although the aforementioned supervised image-defogging methods have demon-
strated outstanding results, their performance heavily relies on paired datasets during
training. To address the challenge of dataset shortage, the unsupervised learning image-
defogging methods have garnered significant attention. The unsupervised method can
effectively reduce the cost of data acquisition, which makes it more suitable for real-world
defogging tasks. To the best of our knowledge, the unsupervised image defogging can
be roughly divided into unsupervised learning approach based on prior knowledge and
unsupervised learning approach based on generative adversarial network.

Unsupervised learning based on prior knowledge: The unsupervised learning ap-
proach based on prior knowledge involves combining, transforming, and deriving feature
information through domain knowledge related to physics and statistics. Such knowledge
not only helps to improve generalization capabilities, but also reduces over-fitting dur-
ing training. For example, Golts et al. [22] proposed a method combining dark channel
prior (DCP) and unsupervised fog combination. They tune the network’s parameters
directly minimizing DCP on foggy images, ensuring color fidelity and generalization ability.
In ref. [23], Sham et al. presented a prior-based adversarial training approach to ensure con-
sistent performance on synthetic and real datasets. This method efficiently leverages both
low-frequency and high-frequency components of an image to safeguard critical color and
structural details in the recovered image, resulting in improved generalization capabilities
and reliable performance in practical scenarios. Golts et al. [24] proposed an simple but
effective approach that trains deep neural networks (DNNs) through the minimization of
energy functions rather than generic loss functions.

Unsupervised learning based on GAN: In addition to the previously mentioned unsu-
pervised strategies, there is another type of network worth paying attention to, namely GAN.
The model is trained by two networks, the generator and the discriminator. The model was
trained through the constant confrontation between the generator and the discriminator. In un-
supervised single image dehazing with generative adversarial network [28], they proposed
a network consisting of a generator, a global test discriminator, and a local context discrimina-
tor, combined with an attention mechanism based on a dark channel prior to dealing with
unevenly distributed haze. In AAGAN [29], an attention-to-attention generative adversarial
network (AAGAN) is presented for single image defogging. This network incorporates
a dense channel attention model within the encoder and a multi-scale spatial attention model
within the decoder, aiming to enhance the defogging performance. This attention-to-attention
model can better extract the global features and achieve better defogging performances. The
researchers further introduce spectral normalization of all convolutional layers to stabilize the
training process. Most deep learning methods for image defogging tend to treat hazy images
regardless of their varying degrees of haziness as belonging to the same image domain, over-
looking the significant domain differences that arise from different haze densities. In Discrete
Haze Level Dehazing Network [30], the discrete haze level defogging network (DHLDehaze)
was proposed, aiming to process multiple haze level domains. Leveraging the adversarial
training process involving the source and target domains enables the network to transform
the haze level of an image while preserving the integrity of its scene content.
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3.2.3. Semi-Supervised Image Dehazing Methods

Due to the lack of paired data, researchers also develop several semi-supervised image-
defogging methods. The mainstream framework of semi-supervised image-defogging
methods mainly contains two branches: the supervised training branch and the unsuper-
vised training branch. The main difference between the supervised branch and the unsu-
pervised branch is mainly reflected in the setting of the loss function. In Semi-Supervised
Image Dehazing [37], an algorithm employing a deep CNN is presented, comprising a su-
pervised learning branch and an unsupervised learning branch. The semi-supervised
approach performs better than the unsupervised approach in completely eliminating the
haze, but it is prone to color shifts and stains. To address the issue, a channel-spatial
self-attention (CSSA) mechanism composed of three parts: channel attention, spatial at-
tention, and self-attention were introduced to the network, called SAD-Net, proposed in
Semi-Supervised Domain Alignment Learning for Single Image Dehazing [38]. The CSSA
method flexibly assigns weights to features that enable the network to better extract impor-
tant information, thereby enhancing the network’s defogging performance. To enhance
generalization in real-world scenarios, researchers [38] introduced a domain alignment
module and a haze-aware attention module into their network architecture. These modules
help the network to narrow the distribution distance between synthetic data and realistic
hazy images in a latent feature space, and adaptively respond to different hazy areas.

4. Experiment

In this section, to intuitively illustrate the advantages and disadvantages of differ-
ent types of algorithms, their recovery performances are evaluated from qualitative and
quantitative perspectives. First, we conducted a comparison of classic traditional methods
(HE, AHE, CLAHE, Homomorphic Filtering [53], SSR, MSR, and Laplace [54]) to reveal
the shortcomings of simply increasing contrast (here, we remark that, despite the fact that
these traditional methods comes from older literature sources, they represent the early
evolution of image enhancement). Then, the results restored by physical-model-based
methods (CAP [12], DCP [10], IDE [43], IDRLP [18], NLP [19], and TERAL [17]) were
evaluated and compared. Subsequently, we quantitatively and qualitatively compared
the results obtained by state-of-the-art deep learning-based technologies, including deep
models employing different networks (AOD, Cycledehaze, DehazeNet, GridDehazeNet)
and deep models using different training strategies (C2P-Net, FFA, Taylor, UHD, Vison,
DE, USID, SLA, SDA-GAN), on various challenging hazy images. For fairness, the codes of
selected available techniques for comparison were downloaded from authors’ homepage,
and the parameters used in these techniques were optimized according to the correspond-
ing references. Note that all of the experiments were implemented on a PC with an Intel(R)
Core(Tm) i5-4210U CPU @ 1.70 GHz, 8.00 GB RAM, and NVIDIA 3090 Ti GPU (for com-
parative algorithms, their more detailed configurations as shown in Table 1), and the hazy
images used in the experiments were collected from publicly available datasets (I-haze [55],
O-haze [56], and SOTS [57]).

Table 1. The list of the the classical and state-of-the-art methods used in our experiments.

Methods Selected for Experiments

Non-deep learning defogging:

Traditional Methods:
HE: ICCCNT, 2013 (CPU)
AHE: APCC, 2019 (CPU)

CLAHE: IEEE TIP, 2013 (CPU)
Homomorphic Filtering: Pattern Recognition Letters, 2011 (CPU)

SSR: ICDIIME, 2023 (CPU)
MSR: CAC, 2020 (CPU)

Laplace: McGraw-Hill, 1965 (CPU)
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Table 1. Cont.

Methods Selected for Experiments

Physical-Model-Based Methods:
CAP: IEEE TIP, 2015 (CPU)

DCP: IEEE CVPR, 2009 (CPU)
IDE: IEEE TIP, 2021 (CPU)

IDRLP: IEEE TIP, 2021 (CPU)
NLP: IEEE CVPR, 2016 (CPU)

TERAL: IEEE ICCV, 2009 (CPU)

Deep Learning-Based Methods:

Deep Learning-Based Methods of Network Architecture:
AOD: IEEE ICCV, 2017 (CPU) (ResNet)

Cycledehaze: IEEE CVPR, 2018 (CPU) (GAN)
DehazeNet: IEEE TIP, 2016 (CPU) (CNN)

GridDehazeNet: IEEE ICCV, 2019 (CPU) (Attention)

Deep Learning-Based Methods of Training Mode:
C2P-Net: IEEE CVPR, 2023 (GPU) (Supervised)

FFA: AAAI, 2020 (GPU) (Supervised)
Taylor: IEEE ICCV 2023 (GPU) (Supervised)
UHD: IEEE CVPR 2021 (GPU) (Supervised)
Vison: IEEE TIP 2023 (GPU) (Supervised)

DE: IEEE J-STSP 2021 (CPU) (Unsupervised)
USID: IEEE TIP 2020 (CPU) (Unsupervised)

SLA: IJCAI 2022 (CPU) (Semi-supervised Learning)
SDA-GAN: IEEE T CYBERNETICS 2023 (CPU) (Semi-Supervised)

4.1. Performance Description of Non-Deep Learning Defogging

As discussed above, non-deep learning defogging mainly includes two types: tradi-
tional image defogging and physical-model-based defogging. To investigate the advantages
and disadvantages of these two types of algorithms, we conducted a lot of experiments
based on O-haze, D-haze [42], I-haze, and DN-haze [58] datasets. Here, we remark that,
the reason of using these datasets is because they contain different real-world scenes
with different haze thickness distributions, which can better check the performance of
different algorithms.

4.1.1. Limitations of Traditional Image Defogging

Qualitative comparison: In this subsection, seven representative techniques, i.e., HE,
AHE, CLAHE, Homomorphic Filtering, SSR, MSR, and Laplace, were selected to check their
performance on a variety of challenging hazy images. The comparison results are illustrated
in Figure 5. As seen in Figure 5, HE is capable of dealing with most scenes. However, it may
lead to darker performances and suffer from severe artifacts. AHE may suffer from the color
cast issue, and CLAHE still leaves a significant amount of residual haze. The Homomorphic
Filtering method causes severe color distortion on given examples, and yields disastrous
results when processing high-brightness regions. SSR and MSR exhibits over-enhancement
of the sky regions and color distortions in misty scenes. Although Laplace effectively
enhances edges to a certain extent, it introduces noise and blurring.

Quantitative comparison: To reach a more comprehensive evaluation, Peak Signal-to-
Noise Ratio (PSNR) [59] and Structural Similarity (SSIM) [60] calculated on several repre-
sentative algorithms (HE, AHE, CLAHE, Homomorphic Filtering, SSR, MSR, and Laplace
approaches) based on the SOTS dataset are shown in Table 2. As seen from this table, all of
the selected traditional image enhancement algorithms can have a fast processing speed.
However, their scores of PSNR and SSIM still present several low values, which reveals
that these methods lack the ability to remove the haze cover in an images. Taking CLAHE
as an example, for a few examples, this method can eliminate the effect caused by haze
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thanks to its local contrast enhancement capability, while its enhanced results appear to
blur and color cast.

(a)

Original Image

(b)

HE

(c)

AHE

(d)

CLAHE

(e)

Homomorphic

Filtering

(f)

SSR

(g)

MSR

(h)

Laplace

(i)

Ground 

Truth

Figure 5. Comparison figure of image enhancement-based traditional defog algorithms on
synthetic images.

Table 2. Comparison table of image enhancement-based traditional defog algorithms.

Classification Metrics HE AHE CLAHE HF SSR MSR LAP

indoor
PNSR 12.88 15.20 15.69 12.71 7.67 8.34 12.01

SSIM 0.7182 0.7603 0.7765 0.7140 0.5554 0.5781 0.6657

outdoor
PNSR 16.09 18.23 19.88 17.11 10.63 11.63 15.21

SSIM 0.8201 0.8300 0.8684 0.8668 0.7155 0.7438 0.6990

Runtime (s) 0.0296 0.0303 0.0522 0.0761 0.0921 0.5929 0.0068

1. HF represents Homomorphic Filtering. 2. LAP represents Laplace operator. 3. The bold data is optimal data.

4.1.2. Limitations of Physical-Model-Based Defogging

Qualitative comparison: Figure 6 shows the results dehazed by six representative
techniques, including CAP, DCP, IDE, IDRLP, NLP, and TERAL. Note that these images
used for comparison were also picked from the above dataset. As shown in Figure 6,
the DCP-based approach shows its advantages on different datasets. However, the DCP
algorithm can lead to over-saturation and color distortion. For other mainstream algorithms,
CAP, IDE, and IDRLP all overmagnify the details of image content, and thus produce some
undesirable artifacts in the dehazed results.

Quantitative comparison: To obtain a more reliable conclusion, the calculated PSNR
and SSIM for CAP, DCP, IDE, IDRLP, NLP, and TERAL algorithms are summarized in
Table 3. By comparison, it can be found that IDRLP has the best performance in the test
results of the four data sets. In particular, its PSNR and SSIM indicators are excellent, and
the running time is very short. However, this does not mean that it can serve as an excellent
candidate for the image fog removal task. This is because the prior knowledge employed by
these physical-model-based defogging methods may fail in some cases, thereby resulting
in some negative effects in enhanced versions.
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Figure 6. Comparison figure of physical-model-based traditional defog algorithm on synthetic images.

Table 3. Comparison table of physical-model-based defogging algorithms.

Dataset Metrics CAP [12] DCP [10] IDE [43] IDRLP [18] NLP [19] TREAL [17]

I-haze

Runtime (s) 9.88 2.70 2.544 3.901 20.672 2.505
SSIM 0.779 0.617 0.72 0.789 0.706 0.595
PSNR 13.405 11.303 15.917 17.355 13.580 10.403
FADE 1.042 0.625 0.525 1.083 0.630 0.279

O-haze

Runtime (s) 10.299 2.438 2.170 2.352 27.709 1.491
SSIM 0.715 0.720 0.632 0.699 0.621 0.654
PSNR 15.29 14.906 14.299 16.949 12.686 12.563
FADE 0.754 0.379 0.460 0.698 0.527 0.135

SOTS-In

Runtime (s) 0.620 0.065 0.857 0.371 3.440 0.053
SSIM 0.799 0.779 0.798 0.901 0.769 0.766
PSNR 18.936 19.525 17.324 20.100 17.282 17.006
FADE 0.590 0.497 0.645 0.334 0.474 0.241

SOTS-Out

Runtime (s) 0.584 0.065 0.877 0.220 3.115 0.037
SSIM 0.850 0.810 0.820 0.847 0.770 0.741
PSNR 18.117 17.215 18.782 19.245 17.975 16.987
FADE 0.541 0.448 0.613 0.418 0.481 0.229

1.These methods are processed on Matlab(CPU) 2.The bold data is optimal data.

4.2. Performance Description of Deep Learning Defogging
4.2.1. Performance Analysis of Network Architecture

Qualitative comparison: In this subsection, we further checked the performance
among different image defogging methods, including DehazeNet (using CNN architec-
ture), GridDehazeNet (using Attention architecture), AOD (using ResNet architecture),
and Cycledehaze (using GAN architecture), on various challenging synthetic images. The
corresponding experimental results of the dehazing models using different architectures
are shown in Figure 7. It is easily noted from this figure that, regardless of the network
architecture used, it seems that deep learning defogging would have a better processing
performance than non-deep learning defogging techniques. The key to achieve this success
can be attributed to the strong fitting ability of deep models. However, these architectures
still have their drawbacks, e.g., CNN can not work well on dark regions and GAN fails to
deal with sky parts.
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Figure 7. Comparison figure of different deep learning models on synthetic images.

Quantitative comparison: To obtain a more reliable conclusion, the calculated PSNR
and SSIM for DehazeNet, GridDehazeNet, AOD, and Cycledehaze are summarized in
Table 4. Note that these metric scores were averaged over all the results from the used
datasets. Upon comparison, it is obvious that DehazeNet using CNN architecture generally
attains the best scores, while CycleDehaze employing GAN only gets the last place. This
means the unpaired dataset trained by GAN can not afford the adequate fog features to
defogging models. On the other hand, the values in this table are also further evident that
deep learning defogging outperforms non-deep learning defogging techniques in terms of
visual quality and quantitative scores.

Table 4. Comparison table of the effectiveness of image enhancement-based traditional defog algorithms.

Dataset Metrics DehazeNet [44] GridDehazeNet [50] AOD [49] CycleDehaze [46]

I-haze (640 × 480)

Runtime (s) 0.273 0.375 0.788 13.911
SSIM 0.841 0.721 0.641 0.702
PSNR 19.115 15.050 14.864 18.181
FADE 0.922 1.089 1.315 1.035

O-haze (640 × 480)

Runtime (s) 1.578 0.380 0.788 11.976
SSIM 0.729 0.604 0.641 0.655
PSNR 15.236 15.570 14.864 23.903
FADE 0.949 0.714 1.315 0.898

SOTS-In

Runtime (s) 1.476 0.265 0.788 8.069
SSIM 0.864 0.588 0.641 0.718
PSNR 19.976 14.280 14.864 16.405
FADE 0.588 0.395 1.315 0.527

SOTS-Out

Runtime (s) 1.218 0.187 0.273 8.329
SSIM 0.885 0.871 0.841 0.767
PSNR 22.923 22.730 19.115 12.446
FADE 0.722 0.456 0.922 0.804

The bold data is optimal data.

4.2.2. Performance Analysis of Training Mode

Qualitative comparison: In the above, we have experimentally shown that the impact
of different network architectures on defogging performance. In fact, the training mode
is also crucial to image fog removal models. Therefore, nine state-of-the-art methods



Electronics 2024, 13, 3392 19 of 24

(i.e., UHD, C2P-Net, Taylor, Vision, FFA, USID, DE, SLA, and SDA-GAN) were selected
to check the impact of different training mode. The corresponding results dehazed by
different available techniques are given in Figure 8. As expected, most of the selected
methods can exclude the haze cover in an image to some extent. However, they all have
their own limitations. For the methods using supervised mode, they are hard to balance the
enhancement quality between thickness haze and mist images. For the methods exploiting
unsupervised mode, they lack the ability to handle the regions where the brightness is
similar to atmospheric light.

(a)

Original Image

(b)

UHD

(c)

C2P-Net

(d)

Taylor

(e)

Vision

(i)

SLA

(j)
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(k)

Ground 
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(g)

USID

(h)

DE
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Figure 8. Comparison figure of supervised, unsupervised and semi-supervised methods on
synthetic images.

Quantitative comparison: To provide a more comprehensive evaluation, the calculated
PSNR and SSIM for the nine algorithms are summarized in Tables 5 and 6. As analyzed
from the tables, the defogging networks using the supervised mode have a more robust
capability than the ones using the unsupervised mode. However, their computational
complexity is significantly higher than that of ones using unsupervised mode and semi-
unsupervised mode.

Overall, non-deep learning defogging methods either leverage statistical image prop-
erties (traditional image enhancement) or a combined atmospheric scattering model and
prior knowledge (physical-model-based defogging) to realize image fog removal. This
make them relatively straightforward to implement with low algorithmic complexity and
less computational resource consumption. However, because of the fact that the limitations
of statistical image properties and prior knowledge, they always fail to deal with complex
scenes, especially for the images with uneven fog. For deep learning defogging, different
network architecture used in defogging algorithms may exhibit different defogging effects,
e.g., CNN is able to effectively extract local features, and transformer can excavate the
global features to enhance a single foggy image. Moreover, currently available defogging
networks generally make use of supervised, unsupervised, and semi-supervised modes
to train the created network. According to the experiment results, the networks using
supervised mode can have a reliable performance on synthetic dataset, while they may
invalid in real-world scenarios. On the contrary, the models employing unsupervised and
semi-supervised modes work well on scenes collected from the real world, yet they fail to
process the synthetic images.
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Table 5. Comparison table of supervised wise defog algorithms.

Dataset Metrics UHD [32] C2P-Net [31] Taylor [61] Vision [36] FFA [34]

I-haze (640 × 480)

Runtime (s) 0.347 1.016 1.089 0.111 0.641
SSIM 0.813 0.675 0.628 0.806 0.642
PSNR 20.186 14.853 14.422 18.008 17.205
FADE 1.130 0.735 0.440 1.306 3.054

O-haze (640 × 480)

Runtime (s) 0.325 0.971 1.091 0.112 0.623
SSIM 0.662 0.600 0.772 0.660 0.621
PSNR 15.322 14.720 16.565 12.901 12.899
FADE 0.784 0.382 0.615 0.933 0.768

SOTS-In

Runtime (s) 0.520 0.785 0.841 0.110 0.380
SSIM 0.779 0.508 0.870 0.851 0.968
PSNR 18.320 14.367 26.295 21.924 31.922
FADE 0.733 0.393 0.436 0.451 0.400

SOTS-Out

Runtime (s) 0.476 0.716 0.711 0.116 0.320
SSIM 0.905 0.822 0.899 0.811 0.858
PSNR 22.688 18.687 20.605 20.575 24.224
FADE 0.938 0.810 1.096 0.674 0.700

The bold data is optimal data.

Table 6. Comparison table of unsupervised and semi-supervised wise defog algorithms.

Dataset Metrics USID [22] DE [24] SLA [25] SDA-GAN [38]

I-haze (640 × 480)

Runtime 1.577 2.721 0.575 0.240
SSIM 0.548 0.616 0.793 0.860
PSNR 10.811 14.712 16.480 18.039
FADE 0.687 1.546 1.277 0.739

O-haze (640 × 480)

Runtime 1.224 2.685 0.627 0.221
SSIM 0.800 0.769 0.699 0.781
PSNR 15.346 17.454 13.966 15.841
FADE 0.386 0.981 0.658 0.387

SOTS-In

Runtime 1.139 2.380 0.351 0.216
SSIM 0.808 0.833 0.859 0.848
PSNR 17.666 19.207 19.761 18.768
FADE 0.457 0.761 0.580 0.447

SOTS-Out

Runtime 1.010 2.100 0.300 0.361
SSIM 0.730 0.857 0.892 0.841
PSNR 14.424 19.166 20.896 18.332
FADE 0.460 0.970 0.631 0.594

The bold data is optimal data.

5. Conclusions and Outlook
5.1. Conclusions

In this paper, we offer a comprehensive overview of recently developed defogging
methodologies. We initially categorize defogging techniques into two broad groups: tradi-
tional approaches and deep learning-based methods. Traditional techniques encompass
algorithmic methods that rely either on image enhancement techniques or on physical
models of fog formation. On the other hand, deep learning-based defogging algorithms are
further divided into network-based and method-based models. We then delve into each of
these categories, highlighting well-known fog removal models, and outlining their core
principles, strengths, limitations, and potential for future advancements.
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5.2. Outlook

Despite the significant advancements in the field of image defogging, there remains
considerable room for improvement. As a result, we point out several key issues that would
inspire and catalyze future research. The issues are as follows:

1. Computational efficiency and real-time processing: Currently, there are a variety of
applications that require real-time processing. Meanwhile, as network architectures
grow much more complex, computational efficiency has become a critical concern.
There is an urgent need for efficient defogging methods that reach a balance among the
scale of parameters, inference time, as well as quantitative performance. Future efforts
should be invested in the simplification of network architecture, possibly through
model compression, quantization, and exploration of distributed computing, as well
as hardware acceleration techniques.

2. Evaluation metrics and benchmarks: The majority of current defogging methods are
evaluated using PSNR and SSIM, which necessitate paired images (both result and
ground truth image) for assessment. However, for hazy images without corresponding
clear images, developing robust evaluation methods is important. Thus, there is an
urgent need to establish better non-reference evaluation metrics for image defogging.

3. Adaptability across varying fog conditions: Most defogging methods perform well
under certain foggy conditions, but struggle with others. Future research should focus
on developing adaptive methods that can dynamically adjust to different fog densities
and atmospheric conditions without requiring retraining.

4. Integration of physical models with deep learning: Our paper discusses the ad-
vantages of both physical-model-based and deep learning-based defogging methods.
Future work could benefit from hybrid models that integrate the physical understand-
ing of light scattering in fog with the learning capabilities of neural networks. Such
hybrid models may take advantage of both physical-model-based methods’ efficiency
and deep learning-based ones’ accuracy.

5. Unsupervised and self-supervised learning: Given the scarcity of large, annotated
datasets, unsupervised and self-supervised learning methods may be the best solution.
Future research could explore the use of synthetic data generation, self-supervision,
or other innovative methods to train robust defogging models without large-scale
paired datasets.
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