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Abstract 

Habitat variability is an important factor structuring fish assemblages of rocky reefs in 

temperate Australia. Accepting the generality of this model requires that habitat-related 

variation is consistent through time, across multiple spatial scales, and applies to all life 

history stages. We used repeated underwater visual surveys at multiple spatial scales over a 

22-month period to test whether three distinct rocky reef habitats had different wrasse 

assemblages and whether these assemblages were subject to spatial, temporal and ontogenetic 

variability. Overall, the strongest and most consistent habitat association was with sponge 

gardens, which had the most distinct assemblage, and the greatest species richness and 

density of individuals. Habitat associations in fringe and barrens were less consistent.  A 

substantial increase in the abundance of small individuals coinciding with warmer sea 

temperatures contributed to temporal fluctuations in the density of wrasses. Overall, habitats 

were not strongly partitioned among larger individuals of the most abundant species, 

suggesting that adults are largely habitat generalists but small, recruiting individuals showed 

greater habitat specialisation. The present study emphasises the importance of incorporating 

spatial, temporal and ontogenetic variability into surveys of fish assemblages to understand 

more fully the dynamics of temperate rocky-reef systems. 

 

 

Introduction 

Habitat, defined using physical (e.g. substrate type, depth, wave exposure) and biological 

(e.g. algal type and cover) attributes, influences the spatial distribution of temperate rocky 

reef fish assemblages (Anderson and Millar 2004; García-Charton et al. 2004; Consoli et al. 

2008). For example, in south-western Australia, Harman et al. (2003) found differences in the 

presence and abundance of fish species between limestone reefs which were highly fissured 

and granite reefs that consisted of large boulders and bedrock, with few crevices. 

Assemblages also differed between high- and low-relief limestone reefs and this pattern was 

attributed to differences in algal assemblages and structural complexity. In northern New 

Zealand, reefs dominated by high densities of laminarian and fucoid algae support large 

numbers of small fishes and few large benthic-feeding fish species, whereas coralline reef 

flats dominated by echinoids support a different fish assemblage, with more large benthic-

feeding species (Choat and Ayling 1987). Associations such as these are beneficial for marine 

conservation planning as habitat may be used as a surrogate for biodiversity for rapid and 

cost-effective selection of marine reserves (Ward et al. 1999). 

 

Attempts to describe habitat-related patterns in the distribution and abundance of fish 

assemblages need to recognise variability in these patterns because fish assemblages exhibit 

significant spatial (Anderson and Millar 2004; García-Charton et al. 2004; La Mesa et al. 

2011) and temporal (Letourner 1996; Thompson and Mapstone 2002; Malcolm et al. 2007) 

variability over various scales. Whilst many studies explore the interaction of these variables 
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on habitat associations among temperate fishes (e.g. Pihl and Wennhage 2002; Pérez-Matus 

et al. 2007), these are usually conducted for whole fish assemblages without sufficient 

resolution to determine the importance of habitat for particular species, families or functional 

groups.  

 

The family Labridae (wrasses, labrids) is one of the most species-rich and abundant families 

in tropical (Bellwood et al. 2002; Floeter et al. 2007) and temperate fish assemblages 

(García-Charton and Pérez-Ruzafa 1999; Pihl and Wennhage 2002; Kleczkowski et al. 2008). 

In temperate systems, wrasses are almost exclusively associated with rocky reefs and/or algal 

habitats (Treasurer 1994; García-Rubies and Macpherson 1995; Pihl and Wennhage 2002) 

where they prey on a variety of benthic invertebrates including molluscs, echinoderms, 

crustaceans, polychaetes, sipunculans and ascidians (Shepherd and Clarkson 2001; Morton et 

al. 2008b; Platell et al. 2010). The foraging behaviour of wrasses, in association with their 

high abundance and diversity, makes it likely they play a significant role in reducing prey 

abundances, altering prey behaviour and modifying subtidal assemblages (Choat 1982; Rilov 

and Schiel 2006; Morton et al. 2008b).  

 

An understanding of the distribution of wrasses is essential for determining the extent of this 

family’s ecological importance in temperate reef systems, so the distribution of this family 

(Fulton et al. 2001; Denny 2005; Tuya et al. 2009), or single species within this family (Jones 

1984b; Gillanders and Kingsford 1998; Kingsford and Carlson 2010), has been the focus of 

several studies. In many instances, wrasses have demonstrated strong associations with 

different rocky reef habitats. For example, higher abundances of Bodianus unimaculatus and 

Pseudolabrus miles occur in kelp-forests compared to other rocky reef habitats in north-

eastern New Zealand, and higher abundances of Notolabrus celidotus, Notolabrus fucicola 

and Coris sandageri are found in urchin-grazed barrens (Anderson and Millar 2004). On the 

central coast of New South Wales, Australia, Curley et al. (2002) found highest abundances 

of Austrolabrus maculatus, Eupetrichthys angustipes and Ophthalmolepis lineolatus in 

sponge gardens, whereas Pictilabrus laticlavius were more abundant in Ecklonia forests than 

urchin-grazed barrens. These habitat associations are influenced, at least in part, by the 

benthic invertebrate assemblages represented within each habitat (Underwood et al. 1991). 

For example, the association of P. laticlavius with Ecklonia forests is likely to be in response 

to the abundance in algal habitats of amphipods and small molluscs (Jones 1999; Edgar 2001; 

Shepherd 2006), which collectively contribute over 60% to the dietary volume of this species 

(Morton et al. 2008b). 

 

Habitat associations may also be influenced by the structure and availability of refuges. 

Refuge requirements of wrasses have not been well addressed; however, these fishes are 

known to shelter beneath algal canopies (Jones 1984a; Choat and Ayling 1987; Curley et al. 

2002), in holes, crevices and caves within, beneath and between rocks (Sayer et al. 1993; 
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Gillanders and Kingsford 1998), and beneath soft sediments and coral fragments (Tribble 

1982; Nanami and Nishihira 1999; Takayanagi et al. 2003). Refuges are important for 

providing places of retreat from predators, protection from wave surge, as areas for 

concentrated foraging activity, as nocturnal retreats and as nesting sites (Nanami and 

Nishihira 1999; Takayanagi et al. 2003; Russell et al. 2008). The association of wrasses with 

certain habitats may also be based on morphology, notably the relationship between pectoral 

fin morphology, swimming speed and their resulting tolerance to wave exposure (Bellwood 

et al. 2002; Wainwright et al. 2002; Floeter et al. 2007). In assessing the influence of pectoral 

fin morphology on temperate wrasse assemblages, Fulton and Bellwood (2004) found 

differences in fin shape and swimming speed corresponded to predicted patterns of 

distribution. In this study, low fin aspect ratios and slow relative swimming speeds in A. 

maculatus, E. angustipes and P. laticlavius are thought to have restricted these species to 

sheltered habitats with limited water movement. 

 

Contributing to changes in habitat associations among wrasses are increases in species 

richness and the density of individuals that coincide with late summer and autumn in 

temperate systems (Sayer et al. 1993; Magill and Sayer 2002; Pihl and Wennhage 2002). 

These dynamics are due primarily to periodic recruitment of juveniles of tropical origin 

expanding their distribution in response to seasonally warm sea temperatures at higher 

latitudes and recruitment of temperate fish stocks after a dispersive planktonic larval stage, 

which may last up to 50 days (Caselle and Warner 1996; Masterson et al. 1997; Fontes et al. 

2011). As juveniles, wrasses have reduced mouth size, gape and crushing strength of the 

pharyngeal jaws (Wainwright 1988; Helfman et al. 1997; Clifton and Motta 1998), so their 

diet is restricted principally to amphipods and small molluscs (Denny and Schiel 2001; 

Shepherd and Clarkson 2001; Morton et al. 2008b), which are abundant in shallow algal 

habitats (Jones 1999; Edgar 2001). Therefore, the association of recruits and juveniles with 

algal habitats, including those in temperate Australia (Gillanders and Kingsford 1998; Curley 

et al. 2002; Shepherd and Brook 2003) and New Zealand (Jones 1984a; Choat and Ayling 

1987; Pérez-Matus and Shima 2010), is likely to be due to their preferred prey being more 

available in these habitats. Algal habitats may also provide an opportunity to forage in a 

habitat with reduced competition from larger wrasses and other benthic carnivores that are 

known to avoid feeding in algal cover (Choat and Ayling 1987). Reduced risk of predation is 

also likely to be offered to individuals that use refuges created by canopy forming algae. 

 

Despite the likely ecological importance of wrasses in temperate rocky reef systems, there is 

still insufficient understanding of habitat-related patterns in their distribution and abundance, 

and spatial and temporal consistency of these patterns. Furthermore, despite differences in the 

habitat preferences of juveniles and adults of many species (Jones 1984a; Gillanders 1997b; 

Curley et al. 2002), many studies do not factor ontogenetic shifts in habitat use in their 

sampling design and, as such, the dynamics of wrasse associations with rocky reef habitats 

are not well described. The present study tested the hypothesis that distinct rocky reef 
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habitats are occupied by different wrasse assemblages and that these habitat associations vary 

temporally but not spatially. This study also investigated ontogenetic variation in the 

association of wrasses with rocky reef habitats by testing the hypothesis that there is a 

difference in the mean size of individuals among habitats and among sampling periods. It was 

predicted that the structure of wrasse assemblages would be distinct in each habitat as species 

exhibit differences in their resource requirements and locomotor abilities. It was also 

predicted that these associations would not experience large spatial variability; however, 

temporal and ontogenetic variability in the representation of wrasses was expected due to 

seasonal recruitment of small individuals of resident and tropical species, particularly into 

algal habitats. 

 

Methods 

Study location 

The present study was undertaken on the Central Coast of New South Wales (NSW), 

Australia, between August 2003 and May 2005, at two locations separated by approx. 30 km, 

namely Terrigal (33
o
27’ S, 151

o
27’ E) and Bull Reef (33

o
17’ S, 151

o
35’ E) (Fig. 1a). Three 

clearly differentiated rocky-reef habitats occurred in each location: fringe, barrens and sponge 

gardens. Fringe (3-7 m depth) consisted of several patchy, non-dominant algal species, 

including various crustose, filamentous and turfing algae. Patches of the canopy-forming, 

laminarian algae Ecklonia radiata were scattered throughout the fringe habitat. Barrens (8-15 

m) contained minimal algal coverage due to high densities of the herbivorous echinoid 

Centrostephanus rodgersii, which typically remove all but crustose coralline algae. Sponge 

gardens (15-22 m) consisted of distinct assemblages of erect and branched sessile fauna, 

including large sponges, gorgonians and bryozoans not found in shallower depths. Sponge 

garden habitat is termed ‘deep reef’ by Underwood et al. (1991). These habitats are more 

fully described by Underwood et al. (1991) and Andrew (1999). 

 

Data collection 

Wrasse assemblages were surveyed using a mixed-model hierarchical sampling design. 

Within each location, two sites separated by 250-800 m were sampled (Fig. 1b, c). Each of 

the three rocky-reef habitats were surveyed at each site. In each habitat, fish assemblages 

were recorded within each of six replicate transects located at least 10 m away from 

transitional zones between habitats. Surveys were conducted on 5 occasions, termed 

‘periods’, separated by approx. 4 months, over 22 months.  

 

Visual surveys of wrasse assemblages were completed by a single observer to ensure 

recording techniques were consistent, using SCUBA, between 1000 and 1600 h when 

visibility exceeded 8 m. Mobile non-cryptic species were surveyed in 5 x 25-m transects and 
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smaller cryptic species were surveyed in 1 x 25-m transects, with transects laid along a depth 

contour (Lincoln Smith 1988). Replicate transects within each site were separated by 10 m. 

Transects were laid whilst performing fish counts, termed the ‘simultaneous’ census 

technique (Fowler 1987), because many fishes would otherwise retreat from the presence of 

divers resulting in reduced richness and abundance estimates. Furthermore, inquisitive fish 

fishes, such as Ophthalmolepis lineolatus, are attracted to divers from beyond the transect 

boundary and may follow divers so overestimates of the abundance of these species and 

questions about the independence of transects arise when tape deployment and fish counts 

occur using the otherwise ‘sequential’ technique. All wrasses observed were counted and 

assigned to 50-mm total length (TL) size classes (e.g. 50-99, 100-149 mm etc.). Species were 

identified and distributions determined using Kuiter (1993, 1996).   

 

Data analyses 

The null hypotheses of no difference in wrasse species richness, total density of wrasses, and 

densities of the six most abundant wrasses (Ophthalmolepis lineolatus, Notolabrus 

gymnogenis, Achoerodus viridis, Pictilabrus laticlavius, Austrolabrus maculatus, 

Eupetrichthys angustipes) among habitats, locations, sites within locations and periods were 

each tested with a four-factor mixed-model analysis of variance (ANOVA). Habitat was 

analysed as an orthogonal factor with 3 levels (fringe, barrens, sponge) and period as an 

orthogonal factor with 5 levels (the 5 survey periods). Both habitat and period were treated as 

fixed factors as they were deliberately chosen to represent distinct habitat types and times of 

the year. Location was analysed as an orthogonal factor with 2 levels (Bull Reef, Terrigal) 

and site was analysed with 2 levels nested in each location. Locations and sites represented 

several potential survey areas so were treated as random factors. Analyses were performed 

with GMAV5 software (Institute of Marine Ecology, University of Sydney). Assumptions of 

homogeneity of variance were tested using Cochran’s C test and, when necessary, data were 

transformed when variances were heterogeneous (Underwood 1981). Significant main effects 

and interactions were examined using post-hoc Student-Newman-Keuls (SNK) multiple 

comparisons of means tests (Underwood 1981).  

 

The null hypothesis of no differences in wrasse assemblages among habitats, locations, sites 

within locations and periods was tested by a four-factor permutational multivariate analysis 

of variance using PERMANOVA+ (Anderson et al. 2008) in PRIMERv6 (Clarke and Gorley 

2006). Densities of cryptic wrasses were standardized to number per 125 m
2
 and combined 

with the data for larger mobile species. PERMANOVA was performed on the Bray-Curtis 

similarity matrix after square-root transformation of raw data. Monte Carlo P-values were 

obtained from 999 permutations of residuals. Variation in wrasse assemblages was visualised 

using non-metric multidimensional scaling (nMDS) ordination plots. The similarity 

percentages (SIMPER) routine in PRIMER v6 was used to determine the species that typified 
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the wrasse assemblages of each habitat and those used to distinguish between habitats (Clarke 

1993). 

 

For each of the abundant species O. lineolatus (size range 50-399 mm), N. gymnogenis (50-

399 mm), A. viridis (150-849 mm) and P. laticlavius (50-299 mm), a one-way ANOVA was 

used in SPSS 14.0 for Windows (2005) (SPSS Inc., Chicago, IL, USA) to test the null 

hypotheses of no differences in the mean size of individuals among habitats within each 

sampling period and no differences among sampling periods for each habitat. Size estimates 

at all sites were pooled to provide a mean size of individuals in each habitat across both 

locations. The assumptions of homogeneity of variance were tested using Levene’s test. 

When necessary, data were transformed to stabilise variances (Underwood 1981); however, 

heterogeneity could not always be removed. In such cases, a more conservative critical value 

of P<0.01 was adopted to reduce the chance of a Type I error (Underwood 1981) and this 

critical value was also applied to corresponding post hoc comparisons. Where significant 

effects were found, post-hoc tests were performed in SPSS using the SNK test (Underwood 

1981). Differences in the mean size of individuals among habitats was not tested for A. 

maculatus and E. angustipes (both 50-199 mm) as these species were typically represented 

only in sponge gardens. 

 

Results 

Overall wrasse assemblage 

Nineteen species and 3084 individuals of wrasses were recorded. The most abundant wrasses 

were Ophthalmolepis lineolatus (38% of all individuals), Notolabrus gymnogenis (20%), 

Austrolabrus maculatus (16%), Achoerodus viridis (10%), Eupetrichthys angustipes (6%) 

and Pictilabrus laticlavius (5%) (Table 1). These wrasses, in addition to Coris picta and 

Pseudolabrus guentheri, were recorded in all sampling periods. Seven species were endemic 

to the southern and/or eastern coastline of Australia, three had distributions extending from 

the south-eastern region of Australia to New Zealand, and six were distributed throughout the 

Indo-West Pacific.  

 

Wrasse richness and density 

The total number of wrasse species observed in fringe, barrens and sponge gardens was 5, 11 

and 10 species at Terrigal and 10, 13 and 11 species at Bull Reef, respectively. The mean 

species richness of wrasses at each location ranged from 1.3 to 4.6 species per 125 m
2
, and 

the mean density of wrasses ranged from 2.7 to 20.8 individuals per 125 m
2
 (Fig. 2). 

Significant differences in species richness among habitats did not occur at each location but 

significant differences did occur in wrasse densities (Table 2) with post hoc tests revealing 

significantly higher densities in sponge gardens than fringe and barrens which themselves did 
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not differ. Differences in species richness and densities among habitats were not consistent 

across sites (Table 2). Species richness and densities differed among sampling periods (Table 

2) with post hoc tests revealing both to be significantly higher in Dec 2003/Jan 2004, 

Apr/May 2004 and Apr/May 2005.    

 

Multivariate analyses of wrasse assemblages 

MDS ordinations showed assemblages in sponge gardens formed a discrete group at the 

bottom right of the plot in each sampling period (Fig. 3). Wrasse assemblages in fringe and 

barrens were broadly scattered across the plot and exhibited considerable overlap. 

Differences in wrasse assemblages among habitats were not consistent across locations and 

sites (Table 2) but post hoc tests revealed assemblages in sponge gardens remained 

significantly different to other habitats at both spatial scales, with sponge gardens having 

overall higher densities of O. lineolatus, A. maculatus and E. angustipes (Tables 1 and 3). 

Post hoc tests also revealed that significant differences in wrasse assemblages did not occur 

between fringe and barrens at either location but at each site these assemblages remained 

significantly distinct. Overall, the wrasse assemblages associated with fringe were 

distinguished from both barrens and sponge gardens by higher densities of N. gymnogenis, 

and from barrens by higher densities of A. viridis and P. laticlavius (Tables 1 and 3).  Wrasse 

assemblages differed significantly among sampling periods with post hoc tests revealing 

Aug/Sept 2003 assemblages differing to Apr/May 2004 and Apr/May 2005, and the latter 

also differing to Dec 2003/Jan 2004. 

 

Patterns in the abundance of selected labrids  

Mean densities of O. lineolatus, N. gymnogenis and A. viridis in all habitats ranged between 

0.3 and 15.5 individuals per 125 m
2
 at each location in all sampling periods (Fig. 4a-c). 

Lower mean densities of P. laticlavius (0.0-2.4 individuals per 125 m
2
) and highly variable 

mean densities of A. maculatus and E. angustipes (0.0-54.5 and 0.0-20.5 individuals per 125 

m
2
, respectively) were observed (Fig. 4d-f). Differences among habitats in the densities of O. 

lineolatus, N. gymnogenis, A. viridis and A. maculatus were inconsistent with significant and 

complex interactions between the effect of habitat at different sites and locations, and in 

different sampling periods (Table 4). A significant difference among habitats in the density of 

A. maculatus occurred at each location (Table 4) with post hoc tests revealing significantly 

higher densities in sponge gardens compared to fringe and barrens where this species was 

often absent (Fig. 4e). Similarly, despite a significant three-way interaction between habitat, 

site and period (Table 4), post hoc tests revealed a significantly higher density of A. 

maculatus in sponge gardens at each site in most sampling periods. The effect of habitat on 

the density of E. angustipes varied between locations (Table 4); however, post hoc tests 

revealed significantly higher densities at both locations in sponge gardens compared to other 

habitats.  
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Size-related patterns for selected wrasses 

O. lineolatus of sizes 100-349 mm, N. gymnogenis of sizes 150-249 mm and A. viridis of 

sizes 450-749 mm were recorded in all habitats in each sampling period and represented 

85.5%, 33.9% and 77.4% of all individuals, respectively. Small individuals (i.e. <200 mm) of 

O. lineolatus were typically found at higher abundances in sponge gardens (56.7% of all 

individuals of this size) compared with barrens (24.3%) and fringe (19%), whilst the majority 

of small individuals (i.e. <250 mm) of N. gymnogenis and A. viridis were recorded in fringe 

habitat (61.1% and 92.9%, respectively). A peak in the number of individuals belonging to 

the smallest size class (i.e. 50-99 mm) and an associated reduction in the mean size of 

individuals occurred for O. lineolatus in sponge gardens and N. gymnogenis in all habitats in 

Apr/May 2004 and Apr/May 2005 (Fig. 5a-b). In both species, significant differences in the 

mean size of individuals occurred among habitats in all sampling periods and across sampling 

periods for each habitat (all P<0.01). An increase in the number of small individuals (i.e. 

<250 mm) and a reduction in the mean size of individuals occurred for A. viridis in Apr/May 

2004 (Fig. 5c), contributing to a significant difference in the mean size of individuals among 

habitats in this sampling period only (P=0.001) and a significant difference across sampling 

periods in sponge gardens (P=0.003).  

 

Individuals of P. laticlavius of sizes 100-199 mm were observed most commonly in fringe 

and sponge gardens (i.e. 51.7 and 39.7% of all individuals, respectively) with the smallest 

size class (i.e. 50-99 mm) representing 51.9% of all individuals. A peak in the number of 

these smallest individuals and an associated reduction in the mean size of individuals 

occurred in the fringe and sponge gardens in Aug/Sept 2003 and in the fringe and barrens in 

Apr/May 2004 (Fig. 5d). Differences among habitats in the mean size of individuals occurred 

in these months and Sept/Dec 2004, and across sampling periods for each habitat (all 

P<0.05). The smallest size class of A. maculatus and E. angustipes (i.e. 50-99 mm) 

represented 85.6% and 61.7% of all individuals, respectively. The majority of these 

individuals (i.e. >90%) were recorded in sponge gardens. A peak in the number of small A. 

maculatus individuals occurred in Apr/May 2004 and a relatively high representation of small 

E. angustipes individuals occurred in fringe in Dec 2003/Jan 2004. 

 

Discussion 

Wrasses of the central coast region of NSW 

Wrasses were visually conspicuous on the rocky reefs of the central coast of NSW with 19 

species recorded in the present study. This number is similar to the 24 species previously 

reported in the region by Gladstone (2007) and the 19 species reported by Malcolm et al. 

(2007), but is substantially lower than the 83 species reported by Hoese et al. (2007) and the 

74 species reported by Parker (1999) in coastal waters of NSW.  Contributing to the higher 
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representation of wrasse species in the two latter studies are the larger number of habitats 

sampled and their inclusion of coastal waters in northern NSW. The northern region of NSW 

lies in the east Australian warm temperate-subtropical overlap zone and is strongly influenced 

by the south-flowing East Australian Current, which maintains sea temperatures warm 

enough for a high number of tropical wrasse species to survive. Although tropical wrasses 

may contribute up to 57 species to wrasse assemblages in coastal waters of northern NSW 

(Parker 1999), these tropical vagrants contributed only six species and less than 1.5% to the 

total abundance of wrasses in the present study, and so are not considered numerically 

important in the study region. 

 

Habitat associations among wrasse assemblages 

Prior to this study, it was predicted that the structure of wrasse assemblages would be distinct 

in each habitat. Overall, wrasse assemblages in sponge gardens remained the most distinct of 

all habitats. Sponge gardens supported the greatest species richness and densities of 

individuals including higher densities of Austrolabrus maculatus and Eupetrichthys 

angustipes which, given their infrequent occurrences in other habitats, suggests these species 

are habitat specialists. As sponge gardens occur at greater depths, they are protected from the 

high wave energy experienced in fringe and barrens. Fulton and Bellwood (2004) found slow 

swimming speeds associated with the low fin aspect ratios of A. maculatus and E. angustipes 

is likely to restrict these species to sheltered habitats with limited water movement, and may 

have restricted these species largely to sponge gardens in the present study. Furthermore, 

these wrasses infrequently use shelter (J. Morton, personal observation), so they are 

susceptible to wave-induced displacement from shallower habitats.  

 

Whilst depth may have an influence on the association of wrasses with different habitats, it is 

likely that other habitat characteristics also contribute to these associations (Anderson and 

Millar 2004). For example, cobbles and sediment are removed from fringe and barrens by 

high wave energy but these smaller substrates accumulate in deeper sponge gardens. Cobble 

regions and sand flats adjacent to sponge gardens may be used by A. maculatus and E. 

angustipes for foraging and/or for shelter and, thus, their distributions may be limited to 

sponge gardens due to ecological requirements rather than morphological constraints. The 

actual resources sponge gardens represent requires further examination; however, this habitat 

contains distinct assemblages of erect and branched sessile fauna, including sponges, 

gorgonians and bryozoans, which are not found in other habitats (Underwood et al. 1991; 

Andrew 1999); therefore, associated wrasses are likely to have a diet unique to those in other 

habitats. Future studies are required to determine the foraging behaviour, activity patterns and 

use of resources of these species as well as studies to determine the representation of 

invertebrate prey in the different habitats. 
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The association of wrasses with fringe and barrens were subject to the effect of spatial scale 

with differences occurring between habitats within each site but not at each location, 

suggesting that at the scale of hundreds of metres these habitats do not differ.  Contributing to 

the similarity of habitats is the strong association that three of the four most abundant species 

(i.e. Notolabrus gymnogenis, Ophthalmolepis lineolatus, Achoerodus viridis) have with each 

habitat. These habitat generalists attain relatively large sizes and, having larger mouths and 

greater crushing power of their pharyngeal teeth (Wainwright 1988; Clifton and Motta 1998), 

are able to incorporate a broad range of hard-shelled prey into their diet (Gillanders 1995b; 

Morton et al. 2008b). Larger size also provides these species with improved locomotion 

abilities allowing movements over large reef areas and into various habitats, including those 

that are wave-effected on exposed coasts (Fulton and Bellwood 2004). For example, N. 

gymnogenis and O. lineolatus feed in various microhabitats (Morton et al. 2008b) within 

broad reef areas in excess of 600 m
2
 and 2500m

2
, respectively (Morton 2007; Kingsford and 

Carlson 2010). Similarly, A. viridis feed in various habitats (Gillanders 1995b) and range 

over large reef areas, which in the similar species Achoerodus gouldii may be up to 15000 m
2
 

(Shepherd and Brook 2005). Habitat associations are therefore less meaningful for these 

species at larger spatial scales.  

 

Substantial spatial variability in fish assemblages is well documented (Fowler 1990, Meekan 

and Choat 1997; Floeter et al. 2001), as is the phenomenon of greatest variation occurring at 

small spatial scales (Curley et al. 2002; Anderson and Miller 2004). Spatial inconsistencies in 

the occurrence of wrasses in the present study could be due to several factors, including the 

observability of individuals and spatial variation in food and refuge availability, recruitment 

and microhabitat representation. The identification and experimentation of these factors was 

beyond the scope of this study but observations of wrasse behaviour and investigations into 

the dietary composition of wrasses provides substantial insight into the probable observability 

of individuals and habitat components most important to these fishes. For example, many N. 

gymnogenis and Pictilabrus laticlavius may not have been observed due to their frequent use 

of shelter (Morton 2007). Refuge-seeking behaviour of these and other fishes is an important 

consideration for methodological decisions aimed at maximising confidence in the 

estimations of fish densities based on transect surveying techniques.  

 

The higher overall abundances of N. gymnogenis and A. viridis in fringe and of O. lineolatus 

in sponge gardens suggests that these species exhibit habitat associations, although these 

associations were primarily due to high seasonal representation of 50-99 mm individuals. 

Habitats were not partitioned among larger individuals of these species. To allow larger 

individuals of these species to co-occur, inter-specific competition is likely to be minimised 

by using available resources differently.  For example, larger individuals of O. lineolatus 

forage opportunistically in a variety of microhabitats over broad areas of reef while N. 

gymnogenis forage increasingly on decapods in bare hard-structure microhabitats within 

relatively small reef areas (Morton et al. 2008b). Reliance on similar prey among smaller 
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individuals is likely to result in considerable inter-specific competition were it not for the 

high abundance of their crustacean prey, and recruitment of wrasses at different times of the 

year (Morton et al. 2008a) and into different habitats. There was no evidence of smaller 

individuals occupying habitats exclusive to that of larger individuals, suggesting that highest 

levels of recruitment occur where favourable resources exist rather than onto areas of reef 

where adult densities are lowest. Intra-specific competition among these co-occurring 

individuals is minimised by size-related shifts in diet (Morton et al. 2008b) and behaviour 

(Morton 2007), which assist in the partitioning of rocky reef resources. 

 

Temporal variation and recruitment in wrasse assemblages 

Wrasse assemblages experienced significant temporal variation owing to higher wrasse 

richness and densities in the autumn months of April and May (mean sea temperature = 21-

22
o
C: Manly Hydraulics Laboratory) and lower richness and densities in the late winter and 

early spring months of August to December (mean sea temperature = 18-19
o
C). This suggests 

that sea temperature is important in influencing the dynamics of wrasse assemblages in this 

study. For some temperate-zone wrasses, periods of cool water may significantly decrease 

activity levels (Sayer et al. 1993; Costello et al. 1997; Arendt et al. 2001), thus reducing 

encounter rates and apparent abundances in surveys. However, this is unlikely within the 

study region as seasonal temperature fluctuations are not substantial.  

 

Prior to the present study, it was predicted that seasonal recruitment of juvenile wrasses of 

tropical origin would occur and this would contribute to temporal fluctuations in the 

representation of wrasses. Holbrook et al. (1994) have recognised Thalassoma lunare, 

Halichoeres nebulosus and Stethojulis interrupta as wrasses likely to recruit into the study 

region, with these fishes indeed contributing to wrasse assemblages in the present study. In 

addition, this study also found the tropical wrasses Labroides dimidiatus and Anampses 

caeruleopunctatus present only in periods of warmest sea temperatures. However, these 

wrasses were recorded infrequently and in very low densities, and therefore contributed little 

to the observed increase in overall species richness and the density of individuals in late 

summer and autumn. 

 

Contributing most to temporal fluctuations in wrasse density was a substantial increase in the 

abundance of resident wrasses, particularly O. lineolatus and N. gymnogenis, of the size class 

50-99 mm. These individuals, which belonged to the smallest size class of each species, have 

been tentatively termed ‘recruits’ as the actual size at recruitment for each species is not 

known. A dramatic rise in the density of O. lineolatus recruits occurred in April and May (i.e. 

autumn), with most recruitment occurring into sponge gardens. Relatively high recruitment of 

N. gymnogenis occurred into fringe habitat from September to May (i.e. spring to late 

autumn), with recruitment peaking in April and May. In these months, relatively high levels 
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of recruitment also occurred into barrens and sponge gardens. Similarly, all recruits of A. 

viridis of the size class 50-149 mm were observed in April and May and only in the fringe 

habitat. For A. maculatus and E. angustipes, an increase in the density of small individuals 

(50-99 mm) in sponge gardens also typically occurred in April and May. The recruitment of 

wrasses during the period of warmest annual sea temperatures experienced in late summer 

and autumn coincides with the settlement of large numbers of crustaceans, including 

amphipods and copepods, which are important prey items for juvenile wrasses (Shepherd and 

Clarkson 2001; Shepherd 2006; Morton et al. 2008b). In contrast to the other species, the 

densities of P. laticlavius recruits were not observed to peak seasonally into their recruiting 

fringe habitat. 

 

Peaks in wrasse recruitment often occur soon after their known period of reproduction. For 

example, gonadosomatic indices of A. viridis peak in winter (Gillanders 1995a) and 

recruitment peaks in spring (Gillanders 1997b). Peak recruitment of N. gymnogenis is also 

likely to occur in spring if the planktonic larval stage for this species is of similar duration, 

given the gonadosomatic indices for this species also peaks in winter (Morton et al. 2008a); 

however, in the present study, recruitment for both species peaked in autumn. Asynchrony in 

the period of reproductive activity and the sighting of recruits may be due to the size, 

behaviour and habitat selection of recruits in the study region. For example, both N. 

gymnogenis and A. viridis recruited mostly into fringe habitat which has considerable algal 

coverage that may interfere with sightings of small, recently recruited individuals. Sightings 

of these individuals may occur only after they become larger and less reliant on algal 

canopies as frequent sightings of N. gymnogenis individuals of sizes 0-49 mm occur on 

sheltered reefs in early summer (J. Morton, unpublished data), suggesting that these 

individuals are recruiting earlier than was recorded in the present study. In the case of A. 

viridis, individuals may have exhibited post-settlement migrations from juvenile nurseries in 

other habitats (Gillanders 1997a), thus lengthening the time between reproduction and 

recruitment onto coastal rocky reefs. 

 

Reproductive activity of P. laticlavius peaks in late spring/early summer (Barrett 1995; 

Morton et al. 2008a), yet this period did not always coincide with recruitment events. 

Periodic recruitment in P. laticlavius was less evident than in other wrasses owing to one of 

at least two possibilities. Firstly, this species is relatively small with sexual maturity 

occurring at sizes of <95 mm and ages of <0.9 years (Morton et al. 2008a). Therefore, the 50-

99-mm size class used to define ‘recruits’ in O. lineolatus and N. gymnogenis included 

mature fishes in P. laticlavius which are not likely to have been recently recruited into adult 

populations (i.e. they may be up to 1 year old). Secondly, recruits of P. laticlavius are likely 

to be overlooked due to their relatively small size and cryptic behaviour (Morton 2007), 

which proves problematic for visual surveys. 
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The preferential use of shallow algal habitat by small individuals of N. gymnogenis, A. viridis 

and P. laticlavius has also been observed for wrasses from other rocky reefs in temperate 

Australia (Gillanders and Kingsford 1998; Curley et al. 2002; Shepherd and Brook 2003) and 

New Zealand (Jones 1984a; Choat and Ayling 1987).  Algal habitat provides smaller 

individuals with opportunities to feed on amphipods and small molluscs (Denny and Schiel 

2001; Shepherd and Clarkson 2001; Morton et al. 2008b), which are abundant in this habitat 

(Jones 1999; Edgar 2001). However, in these shallow habitats small wrasses are susceptible 

to the influence of wave surge on their swimming performance and their ability to undertake 

daily activities (Fulton and Bellwood 2004). It is likely, that overhead algal canopies offer 

sufficient protection to allow these individuals to occupy reef areas from which wave surge 

would otherwise displace them. 

 

In contrast to other wrasses, highest gonadosomatic indices of O. lineolatus occur in late 

summer which precedes their observed peak in recruitment by little more than two months. 

Sightings of O. lineolatus recruits occur shortly after periods of reproductive activity as small 

individuals of this species are easily observed on rocky reefs due to their infrequent use of 

refuges (Morton 2007) and recruitment mostly into sponge gardens which is largely devoid of 

algal canopies. Like other wrasses, amphipods and small molluscs are similarly important for 

recruits and juveniles of O. lineolatus (Morton et al. 2008b), suggesting that diet may be less 

important in explaining size-related distributions for this species than elements of behaviour. 

For example, O. lineolatus utilise shelter substantially less frequently than N. gymnogenis and 

P. laticlavius (Morton 2007), making O. lineolatus individuals far more susceptible to 

displacement by wave surge in the relatively shallow fringe habitat. Furthermore, association 

of O. lineolatus with interfaces between rocky reef and sand flats, as occurs in sponge 

gardens in the study region, may be in response to a need for sandy habitat to bury within for 

nocturnal refuge (e.g. Breder 1951; Tribble 1982; Takayanagi et al. 2003). 

 

In conclusion, this paper has shown that wrasses demonstrate rocky reef habitat associations, 

with several species strongly associated with sponge gardens. The frequent representation of 

other wrasses in this habitat suggests that sponge gardens are biodiverse areas that require 

special consideration in the conservation of rocky reef fishes (Gladstone 2007). Juveniles of 

several species were strongly associated with fringe suggesting a significant conservation 

value as a nursery habitat. Variation in habitat associations at different spatial scales and over 

time highlights the importance of incorporating spatial and temporal replication into studies 

that describe patterns of fish distribution, and size-related shifts in habitat associations 

emphasises the need for recognising ontogeny in such studies. As this study did not include 

large spatial scales, further studies are needed to determine latitudinal variation in the 

association of wrasses with each habitat as these may vary in response to differences in ocean 

climate, delivery of larval fishes and the level of fishing pressure (Tuya et al. 2008). Finally, 

this paper has emphasised the need for future studies on the resource needs and habitat use of 
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wrasse species to understand more fully the mechanisms driving habitat associations and their 

role in the ecology of temperate rocky reefs. 
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Table 1. Wrasse species including the proportion of individuals recorded in each habitat and total abundances. 

Sampling periods are those in which the species was observed (1=Aug/Sept 2003, 2=Dec 2003/Jan 2004; 3=Apr/May 2004, 

4=Sept/Dec 2004, and 5=Apr/May 2005). Distributions are those reported in Kuiter (1993, 1996). 

      Species of wrasse 
Proportion of individuals 

 Total 
Sampling 

period/s 
 Distribution 

Fringe Barrens Sponge 
       

Ophthalmolepis lineolatus 0.22 0.31 0.47     1179 All Southern Aust. 

Notolabrus gymnogenis 0.46 0.25 0.29       625 All Eastern Aust. 

Austrolabrus maculatus 0.01 0.04 0.95       506 All Southern Aust. 

Achoerodus viridis 0.43 0.32 0.25       319 All South-eastern Aust. 

Eupetrichthys angustipes 0.08 0.08 0.84       196 All Southern Aust. 

Pictilabrus laticlavius 0.60 0.07 0.33       156 All Southern Aust. 

Coris picta 0.00 0.47 0.53         38 All Eastern Aust. to NZ  

Pseudolabrus guentheri 0.08 0.15 0.77         13 All Eastern Aust. 

Thalassoma lunare 0.00 0.92 0.08         13 2, 3, 4, 5 Indo-West Pacific 

Coris dorsomaculata 0.00 0.00 1.00         11 4, 5 Indo-West Pacific 

Labroides dimidiatus 0.14 0.00 0.86           7 2, 5 Indo-Pacific 

Stethojulis interrupta 0.17 0.83 0.00           6 5 Indo-West Pacific 

Halichoeres nebulosus 0.00 1.00 0.00           5  5 Indo-West Pacific 

Coris sandageri 0.00 1.00 0.00           4 2, 3, 4 South-eastern Aust. to NZ 

Pseudolabrus luculentus 0.00 0.50 0.50           2 1, 3 South-eastern Aust. to north-eastern NZ 

Anampses caeruleopunctatus 1.00 0.00 0.00           1 2 Indo-Pacific 

Unidentifiable 1 1.00 0.00 0.00           1 1 Unknown 

Unidentifiable 2 0.00 1.00 0.00           1 2 Unknown 

Unidentifiable 3 0.00 1.00 0.00           1 4 Unknown 
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Table 2. Summary of ANOVA and PERMANOVA results testing for differences in wrasse 

species richness, wrasse density and wrasse assemblages among habitats, locations, sites 

(within locations), and sampling periods.  
1
data square-root (x+1) transformed, 

2
data square-root transformed. Significant results are in bold. 

Source of variation  

Wrasse species 

richness 
 Wrasse density

1
  Wrasse assemblages

2
 

       F       P        F       P        F      P 
        

  Habitat (H)     18.76    0.051    44.57    0.022      4.13   0.019 

  Location (L)       5.12    0.152      2.72    0.241      5.31   0.017 

  Site (Location) = S(L)       2.20    0.113      6.50    0.002      4.91   0.001 

  Period (P)     34.63    0.002    25.39    0.004      3.65   0.008 

  H x L       0.27    0.777      0.23    0.805      2.57   0.043 

  H x S(L)       9.85  <0.001      6.84  <0.001      2.58   0.001 

  H x P       2.84    0.080      2.46    0.112      1.36   0.212 

  L x P       0.23    0.914      0.48    0.753      0.63   0.849 

  S(L) x P       0.81    0.949      1.19    0.306      1.27   0.122 

  H x L x P       0.61    0.755      0.86    0.569      1.08   0.372 

  H x S(L) x P       1.44    0.120      1.39    0.146      1.27   0.056 
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Table 3. Species contributing most to typifying the wrasse assemblage within fringe, barrens 

and sponge gardens (shaded), and the species distinguishing between habitats (non-shaded) as 

identified using SIMPER.  
Asterisks denote a higher density of individuals was recorded in the habitat at the top of the column. 

No asterisk signifies that a higher density of individuals occurred in the habitat at the left of the row. 

   Habitat              Fringe              Barrens      Sponge gardens 
 

   Fringe 
 

Notolabrus gymnogenis 

Ophthalmolepis lineolatus 

Achoerodus viridis 

  

   Barrens Notolabrus gymnogenis* 

Achoerodus viridis* 

Pictilabrus laticlavius* 

Ophthalmolepis lineolatus 

 

Ophthalmolepis lineolatus 

Notolabrus gymnogenis 

Achoerodus viridis 

 

 

   Sponge  

   gardens 

Notolabrus gymnogenis* 

Austrolabrus maculatus 

Ophthalmolepis lineolatus 

Eupetrichthys angustipes 

Austrolabrus maculatus 

Ophthalmolepis lineolatus 

Eupetrichthys angustipes 

 

Ophthalmolepis lineolatus 

Austrolabrus maculatus 

Notolabrus gymnogenis 

Eupetrichthys angustipes 
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Table 4. ANOVA results for the densities of six wrasse species.  
All data ln(x+1) transformed (Cochran’s C test, P>0.05). Significant results are in bold. 

Source of variation  

  Ophthalmolepis 

       lineolatus 

   Notolabrus 

   gymnogenis 

   Achoerodus 

       viridis 

   Pictilabrus 

    laticlavius 

  Austrolabrus 

    maculatus 

Eupetrichthys 

   angustipes 

      F     P    F     P     F    P     F      P      F      P     F    P 
              

Habitat (H)      5.62  0.151 1.41  0.415   0.96 0.510   3.02   0.249 244.23   0.004   4.75 0.174 

Location (L)    13.18  0.068 3.74  0.193   5.85 0.137   0.37   0.605     3.60   0.198   2.07 0.287 

Site (Location) = S(L)      7.85  0.001 4.67  0.010   1.57 0.210 23.38 <0.001     0.80   0.448   2.46 0.087 

Period (P)      6.86  0.044 8.30  0.032 11.06 0.020 15.23   0.011     8.77   0.029   1.91 0.273 

H x L      5.48  0.071 0.80  0.509   1.63 0.303   0.45   0.669     1.14   0.405 59.06 0.001 

H x S(L)      1.61  0.172 4.11  0.003   3.40 0.010 13.39 <0.001     0.47   0.755   0.16 0.959 

H x P      0.66  0.717 0.68  0.703   0.61 0.752   2.77   0.086   22.85 <0.001   2.89 0.077 

L x P      0.40  0.804 0.66  0.639   0.36 0.829   0.17   0.947     0.43   0.781   0.28 0.885 

S(L) x P      1.55  0.140 1.10  0.363   1.12 0.349   2.30   0.021     2.20   0.023   1.32 0.232 

H x L x P      1.32  0.300 0.85  0.575   3.97 0.009   0.50   0.839     0.18   0.990   0.67 0.713 

H x S(L) x P      1.85  0.025 2.07  0.010   0.53 0.932   3.29 <0.001     1.85   0.024   1.40 0.139 
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Fig. 1. Map of the central coast region of New South Wales (Australia) showing the two 

locations used for sampling wrasse assemblages (a). The position of the two sites within 

each location is indicated by grey shading on the expanded location maps of Bull Reef 

(b) and Terrigal (c). The general area used to sample subtidal fringe (F), barrens (B) and 

sponge gardens (S) is shown at each site. Exposed reef is shown in cross-hatched 

shading.  
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Fig. 2. Species richness (a) and density (b) of wrasses in fringe ( ), barrens ( ) and 

sponge gardens ( ) at Terrigal and Bull Reef in each combination of Habitat x Period 

(n=2 sites with each site representing the average across 6 transects). Values are mean 

and s.e. 

0 

1 

2 

3 

4 

5 

0 

5 

10 

15 

20 

25 

0

1

2

3

4

5

0

5

10

15

20

25

Bull Reef 

(a) 

 Aug/Sept     Dec 2003/      Apr/May      Sept/Dec     Apr/May Aug/Sept    Dec 2003/     Apr/May      Sept/Dec      Apr/May 
    2003    Jan 2004         2004           2004            2005    2003  Jan 2004         2004         2004          2005 
 Sampling period 

(b) 

Terrigal 

0

1

2

3

4

5

Aug/Sept 03 Dec 03/Jan 04 Apr/May 04 Sept/Dec 04 Apr/May 05

S
p

e
c
ie

s
 (
p

e
r 
1

2
5

m
2
)

0

5

10

15

20

25

Aug/Sept 03 Dec 03/Jan 04 Apr/May 04 Sept/Dec 04 Apr/May 05

In
d

iv
id

u
a

ls
 (
p

e
r 
1

2
5

m
2
)



 

29 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Non-metric multidimensional scaling ordinations comparing wrasse assemblages 

across sites (within locations) and habitats over five sampling periods. Habitats are 

fringe (▲), barrens ( ) and sponge gardens ( ) at Terrigal (shaded) and Bull Reef (non-

shaded) sites. 
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Fig. 4. Density of six wrasse species in fringe ( ), barrens ( ) and sponge gardens ( ) 

at Terrigal and Bull Reef in each combination of Habitat x Period (n=2 sites with each 

site representing the average across 6 transects). Values are mean and s.e. 
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Figure 4 continued… 
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Fig. 5. Size of individuals of four wrasse species in fringe, barrens and sponge gardens 

in each sampling period (locations have been combined). Values are mean and s.e. 
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