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A B S T R A C T

The utilization of artificial intelligence in the design and operation of a microgrid (MG) can contribute to
improve its energy efficiency, resiliency, and cost of energy supply. This research proposes a new approach
to conduct a comprehensive analysis for transforming existing low-voltage networks into MGs to achieve the
net-zero goal by 2050. A data-driven machine learning-based clustering and profiling approach is designed
and implemented to extract the data, constraints, and dependencies from the historical data. Furthermore, the
constraints and dependencies are utilized for determining the renewable energy sources’ capacity. A Bi-level
optimization technique is developed to ensure appropriate coordination of cost and renewable energy source
(RES) capacity. A comprehensive analysis is carried out utilizing real historical demand and generation data of
an energy community in Australia. Based on the clustered analysis, the consecutive day’s data are considered
for the analysis. The findings reveal that the proposed microgrids achieve higher renewable RES utilization and
lower electricity costs compared to grid-connected systems, with the potential to reduce carbon emissions by
up to 98.23% when transitioning from coal-based grid systems to the proposed microgrid system. Additionally,
a transformation from a grid time-of-use tariff-based system to the proposed microgrid setup can lead to a cost
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reduction of 65.45%. These case studies will also assist the researcher in identifying new, potential ideas and
industries to accelerate the implementation of remote community microgrids.
1. Introduction

The development of a renewable energy sources (RESs)-based mi-
crogrid (MG) for a remote community is an effective way to reduce
energy costs and carbon emissions. Taking advantage of modern tech-
nology such as artificial intelligence (AI) and hybrid optimization,
the transformation of MGs with the integration of RES is one of the
appropriate candidates to improve the reliability of the present energy
system. The integration of RESs into the grid offers multiple benefits,
such as decreasing dependence on fossil fuels, enhancing RES usage,
lowering energy production costs, reducing greenhouse gas emissions,
and enhancing power quality.

In the realm of MG transformation, researchers have explored two
primary avenues. Firstly, attention has been directed towards transi-
tioning from traditional energy communities to RES-based MG systems.
Alternatively, another focus area involves converting various energy
systems into MG structures. Notably, a limited number of studies, such
as those conducted by Zhou et al. [1] and Bin et al. [2], delve into
the transformation of MGs from existing energy communities, empha-
sizing the consideration of crucial parameters and interdependencies.
Conversely, a predominant proportion of research efforts concentrate
on the transformation of MG systems from any energy system through
sizing and design aspects. Researchers have dedicated their investiga-
tions to this facet, concentrating on the integration of RES, battery
energy storage systems (BESS), and fuel cells (FC) [3,4]. Akter et al. [5]
investigate off-grid power systems powered entirely by RES, consid-
ering various combinations of RES technologies. The objective of this
research is to achieve optimal sizing for the MG. However, the focus
has been primarily on daily average and annual demand, rather than
employing a multifaceted, cluster-based, data-driven analysis.

The RES units can be incorporated into the energy system either
individually or in combination. Studies in [6,7] combine different types
of RESs, like photovoltaic (PV) and wind turbine (WT) systems, for
the development and design of MG systems. A BESS is utilized as a
storage solution, accounting for random demand and generation pro-
files without conducting a thorough analysis of demand and generation
profiles. Ref. [8] includes multiple generation profiles for PV modules;
however, it only takes into account the average demand and generation
profiles. In addition, Guru et al. utilized random energy demand and
PV generation profiles to ascertain the capacity of RES using a peak
load shaving approach [9]. Furthermore, the optimal sizing of PV-
BESS systems is determined using analytical methods that rely on
comprehensive data on PV production and energy prices, as outlined
in [10]. Out of the existing studies, none have opted for mini hydro
(mHydro) as a RES. On the other hand, only Khezri et al. took into
account the energy demand of electric vehicles (EV) when determining
the optimal size for a home MG [11]. However, these studies have not
incorporated AI-based, data-driven methodologies.

Several studies have been conducted using historical data and mak-
ing appropriate assumptions regarding the system. Refs. [2,12] applied
historical data without analyzing it or validating the obtained results
across operational days. Meanwhile, Khezri et al. presented results for
five operational days, yet the methodology for selecting these days
is not described [11]. A multi-objective optimization strategy was
employed to determine the optimal PV and WT capacity, focusing on
minimizing the levelized cost and reducing the probability of power
supply interruptions. The authors analyzed various combinations of au-
tonomy days, leveraging historical data for this purpose [13]. Similarly,
an approach grounded in electricity market dynamics was adopted for
the optimal dimensioning of RES, with historical data informing the

decision-making process [14]. A cost-centric framework was devised

2 
for standalone MGs to pinpoint the optimal size of PV and BESS using
an analytical and economic sizing model [15]. In those scenarios, the
analysis was conducted using historical data without engaging in any
clustering or detailed profiling of demand and RES generation patterns.
Conversely, the proposed model utilizes machine learning algorithms
to cluster historical data into distinct days, enhancing the system’s
efficiency in data analysis and application.

However, Refs. [16,17] employed seasonal trend analysis for deter-
mining the optimal size of RESs in the MGs. Bacha et al. leveraged
historical data alongside seasonal variations to ascertain the optimal
capacity of RES, aiming to minimize expenses in remote rural regions
and evaluated three distinct scenarios [18]. This approach limits the
ability to acquire a comprehensive understanding of energy demand
and RES generation patterns within the MG. Additionally, a selection
of random, average, or standard day data [19,20] was used for anal-
ysis. This approach limits the ability to derive varied scenarios for
energy communities from the data. The availability of RESs and the
rise in demand within these communities remain unexplored. Thus,
the sizing of RESs and storage systems is optimized only for specific
scenarios, not for the system as a whole. Conversely, Refs. [4] and [21]
implemented machine learning techniques, specifically k-means and
k-medoids clustering, to achieve optimal sizing of RESs in off-grid
MGs and on-grid households, respectively. These studies, however,
overlook the potential integration of available RESs with the emerging
demand, constrained by household and MG limitations. A recent study
introduced clustering algorithms using self-organizing maps and fuzzy
c-means to classify and generate consumption patterns [22]. A case
study is conducted for optimal resident MG configuration through the
integration of RES, diesel generator, and storage system [23]. In both
cases, the authors applied HOMER software for sizing the MG rather
than applying an advanced optimization algorithm.

The transformation of the MG from the existing energy system in-
volves both capacity and operation adjustments. However, the majority
of studies predominantly concentrate on identifying optimal capacities,
often overlooking the optimization of energy flow and operation by
employing linear programming (LP) and mixed-integer linear program-
ming (MILP) optimization algorithms. For instance, Refs. [17] and [24]
explored the use of metaheuristic algorithms like particle swarm opti-
mization (PSO) and genetic algorithms (GA) for optimal sizing. By using
a modified bio-inspired optimization algorithm and original PSO, the
authors in [25] design a WT/hydrogen hybrid MG system with eight
alternative small horizontal-axis WTs and investigate the effect of inte-
gration. Similarly, Mewafy et al. propose an optimized design approach
for multi-use hybrid MGs by using a one-layer technique implemented
with PSO to minimize costs and maximize reliability based on hourly
data intervals [26]. Moreover, a one-layer deterministic mixed-integer
nonlinear programming model is utilized for the optimal equipment
selection, design, and scheduling of a power-to-gas integrated MG [27].
The impact of shared BESSs on load demand patterns in commercial-
residential MGs, focusing on optimizing load demand patterns using
peak-to-average ratio and demand profile smoothness is investigated
to enhance performance and efficiency [28]. For sizing and optimizing
the RES, Tatar et al. proposes a multiperiod two-stage stochastic MILP
model by considering environmental uncertainty and carbon emission
constraints [29]. However, the research field of sizing and optimizing
RESs and storage systems for MGs and smart houses is extensive and
continuously evolving. To provide context and comparison for the
proposed study, the most relevant and recent studies in this area
are compiled in Table 1. This table serves as a critical reference
point, allowing readers to compare the methodologies, findings, and
innovations of the proposed research with the existing studies in the
field.



M.M. Alam et al. Applied Energy 377 (2025) 124523 
Nomenclature

𝛼 optimization factor
𝛽 binary variable
𝜂 efficiency
𝛾 interest rate
�̂�𝐶𝑜𝑚
𝐷 Energy demand

�̂�𝐹𝑉
𝐷 𝐻2 demand

C cost
Y life time in year
𝐇 set of house
𝜌 water density
𝜎 discount rate
𝜉 on/off status
𝐴 area
𝐶𝐸 carbon emission
𝐶𝐸𝐹 carbon emission factor
𝐶𝑂𝐸 cost of energy
𝑑 day
𝐸𝑚𝐻
𝐺 mhydro power generation

𝐸𝑃𝑉
𝐺 PV power generation

𝐸𝑊
𝐺 WT power generation

𝑔 acceleration
ℎ𝑖 height
𝑖 set of index
𝑗 interval
𝑁 set of natural number
𝑁𝑃𝐶 net present cost
𝑜𝑐 optimal number of cluster
𝑜𝑝𝑡 optimal
𝑟 rated/rate
𝑠 interval in terms time unit
𝑆𝑂𝐻 state of hydrogen
𝑇 set of time
𝑡 time
𝑇ℎ𝑟 set of time in hour
𝑇𝑚𝑛𝑡 set of time in minute
𝑇𝑠𝑛𝑑 set of time in second
𝑣 water speed
𝑤 wind speed
c cluster
Cap capacity
cc capital cost
ch charge
ci cut in
co cut out
Com Community
CoSA Cooperation search algorithm
CSA Chameleon swarm algorithm
D demand
dc discharge
EI energy intensity
els electrolyzer
ex export energy
f flat tariff
FV Fuel cell electric vehicle
G generation
3 
HSH hydrogen storage hub
im import energy
M number of module
mc maintenance cost
mg microgrid
mH mini-Hydro
MOO multi-objective optimization
mp medium-peak
NMPC Nonlinear model predictive control
op off-peak
p production
pk peak
rc replacement cost
RES renewable energy sources
rf refueling
SOC state of charge
ST storage tank
std standard
sur surplus of energy
TF tariff
th threshold
ToU time of use
VMO Vectorial microgrid optimization
WD water discharge

The literature review indicates that most research primarily con-
centrates on the sizing of RESs and energy storage systems based on
single-day scenarios or variable load and RESs generation profiles.
There is a general neglect of considering historical data analysis on
demand and generation for optimal sizing. The selection of demand
and RESs generation patterns throughout the year is not adequately ad-
dressed. Researchers often focus on individual, random daily instances
of PV generation and consumption profiles rather than examining
multiple scenarios. This approach has left the impact of daily load
and generation profile variability on cost–benefit analysis largely unex-
plored. The lack of long-term historical data on demand and generation
reduces the precision and reliability of the MG operation and cost-
benefit analyses. Therefore, the optimal sizing determined by these
studies is confined to the specific demand and generation profiles they
analyze, without encompassing the entire year.

To address these challenges, an AI-based data-driven approach is
introduced, which enables us to comprehensively explore the actual
benefits. The proposed system combines a machine learning-based
clustering and profiling (MLCP) approach with a PSO-MILP-based bi-
level optimization technique. This integration is specifically designed
to optimize both the capacity and operation of low-voltage community
MG. The novelty lies in the synergistic use of advanced machine learn-
ing techniques for data processing and state-of-the-art optimization
methods to address the specific challenges of future community MG.
Detailed mathematical models are formulated to support the MLCP
algorithm and optimization technique. The MLCP algorithm utilizes
K-means clustering along with a data distribution technique to real-
istically represent complex patterns in weather and energy usage over
extended periods. This approach is not merely a replication of existing
clustering techniques; instead, it extends their application by integrat-
ing them with complex optimization frameworks to address a very
specific problem set. Additionally, a cost–benefit analysis and a carbon
emission assessment on a real community MG is conducted. This evalu-
ation not only demonstrates the practical applicability of the proposed
system but also quantitatively measures its performance, providing a
clear benchmark against existing solutions. The key contributions are

the following:



M.M. Alam et al. Applied Energy 377 (2025) 124523 
Table 1
Overview of shortcomings in the existing studies (See [30]).

Ref. RES Storage Demand Analysis Approach

mHy
dro

PV WT BESS 𝐻2/
FC

Load FCEV Real
data

Cluster
ing

Sizing Operation OA AI

[1] × ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ × CSA N/A
[3] × ✓ ✓ ✓ ✓ ✓ × × × ✓ × PSO-GA N/A
[5] × ✓ × ✓ ✓ ✓ × ✓ × ✓ × MILP N/A
[30] × ✓ × ✓ × ✓ × × × ✓ × NMPC N/A
[8] × ✓ × ✓ × ✓ × × × × ✓ PSO N/A
[7] × ✓ ✓ ✓ × ✓ × × × ✓ × N/A N/A
[9] × ✓ × ✓ × ✓ × × × ✓ × CoSA N/A
[6] × ✓ ✓ ✓ × ✓ × ✓ × ✓ × LP N/A
[2] × ✓ × ✓ × ✓ × ✓ × ✓ × MILP N/A
[16] × ✓ × ✓ × ✓ × ✓ × ✓ × MOO N/A
[12] × ✓ × ✓ × ✓ × × × ✓ × VMO N/A
[4] × ✓ × ✓ ✓ ✓ × ✓ ✓ ✓ × LP K-means
[11] × × ✓ ✓ × ✓ ✓ ✓ × ✓ × PSO N/A
[21] × ✓ × ✓ × ✓ × ✓ ✓ ✓ × MILP K-medoids
[24] × ✓ × ✓ × ✓ × ✓ ✓ ✓ × GA N/A
This ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ PSO-MILP K-means
Fig. 1. The schematic diagram of community MG model.
• A novel hybrid algorithm integrating the MLCP approach with
a PSO-MILP-based bi-level optimization technique is developed
to optimize the capacity and operation of low-voltage future
community microgrids.

• Detailed mathematical models are formulated for each RES as
well as for energy and emerging FCEV demand to facilitate the
clustering algorithm. Moreover, constraints and objective func-
tions for PSO-MILP are developed.

• MLCP algorithm is developed by utilizing K means clustering
and data distribution technique to cluster and develop the pro-
file to represent a year long realistic meteorological and energy
consumption data.

• Finally, a cost–benefit analysis and carbon emission assessment
are conducted on real community MG to evaluate the perfor-
mance of the proposed system.

The rest of this article is organized in the following manner: Sec-
tion 2 introduces the system configurations, detailing modeling, cluster
analysis, problem formulation, and the optimization process. A case
study along with its pertinent data is elaborated upon in Section 3.
Section 4 discusses the results and analyses derived from this study.
Finally, Section 5 provides a conclusion to this article, summarizing
key findings and implications.
4 
2. Methodology

In this section, a thorough explanation of the proposed system’s
methodology is provided. A detailed representation of the MG’s config-
uration, including its energy sources, storage systems, and community
load is presented in Fig. 1. In addition, the process of the transition of
the existing system to the MG system is depicted in Fig. 2. In addition,
Fig. 3 illustrates the complete workflow of the proposed MLCP-based
PSO-MILP system. The flowchart details how PSO is applied to optimize
the capacity of RES and storage systems, followed by MILP to manage
daily operational costs, ensuring an efficient and cost-effective micro-
grid operation. The procedure is segmented into three components: 1.
Modeling and data processing, 2. Clustering and data preparation, and
3. Optimization and analysis.

2.1. Systems modeling

An energy community is taken into account, where PV, WT, mHy-
dro, BESS, and the hydrogen storage hub (HSH) are presented. In the
case of PV and WT, installation constraints are taken into account,
while BESS capacity is unrestricted. Furthermore, priority is given to
hydrogen demand over BESS charging, and the hydrogen demand must
be met from the HSH.
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Fig. 2. The schematic diagram of AI based MG transition process.
2.1.1. Network components modeling
The necessary components for the proposed system are elucidated

through the mathematical formulation, with real-time data employed
to model these components for the analysis.

Grid Power Modeling: As the energy community is interconnected
with the grid system, the proposed MG possesses the capacity to both
receive and provide energy to the main grid, subject to various opera-
tional constraints. The upper and lower limits for importing (im) and
exporting (ex) energy to and from the main grid are delineated below:

𝐸𝑔𝑟𝑖𝑑
𝑖𝑚,𝑚𝑖𝑛 < 𝐸𝑔𝑟𝑖𝑑

𝑖𝑚,𝑡 ≤ 𝐸𝑔𝑟𝑖𝑑
𝑖𝑚,𝑚𝑎𝑥 (1)

𝐸𝑔𝑟𝑖𝑑
𝑒𝑥,𝑚𝑖𝑛 < 𝐸𝑔𝑟𝑖𝑑

𝑒𝑥,𝑡 ≤ 𝐸𝑔𝑟𝑖𝑑
𝑒𝑥,𝑚𝑎𝑥 (2)

Photovoltaic Power Modeling: The PV generation power is deter-
mined using solar radiation data specific to the designated community
location. The power output is determined through a function of solar
irradiation (R𝑃𝑉 ) [31]:

𝐸𝑃𝑉 ,𝑀𝑖
𝐺,𝑡 =

⎧

⎪

⎨

⎪

⎩

𝐸𝑃𝑉 ,𝑀𝑖
𝐺,𝑟

(

(R𝑃𝑉 ,𝑡⋅R𝑃𝑉 ,𝑡)
R𝑠𝑡𝑑
𝑃𝑉 ⋅R𝑡ℎ

𝑃𝑉

)

,R𝑃𝑉 ,𝑡 ≤ R𝑡ℎ
𝑃𝑉

𝐸𝑃𝑉 ,𝑀𝑖
𝐺,𝑟

(

R𝑃𝑉 ,𝑡
R𝑠𝑡𝑑
𝑃𝑉

)

,R𝑃𝑉 ,𝑡 > R𝑡ℎ
𝑃𝑉

(3)

𝐸𝑃𝑉
𝐺,𝑡 =

𝑁𝑝𝑣,𝑚
∑

𝑖=1
𝐸𝑃𝑉 ,𝑀𝑖
𝐺,𝑡 ⋅ 𝜂𝑃𝑉 ⋅ 𝜉𝑀𝑖

𝑃𝑉 ,𝑡, 𝜉
𝑀𝑖
𝑃𝑉 ∈ [1, 0] (4)

Where, 𝐸𝑃𝑉 ,𝑀𝑖
𝐺,𝑡 is the PV power generation of the 𝑖th module (𝑀) at

time 𝑡. where 𝜂𝑃𝑉 and 𝜉𝑃𝑉 are the overall efficiency and operational
status of the PV system, respectively. Assume that the PV power will
be generated during the (𝑡𝑠𝑟𝑡 to 𝑡𝑒𝑛𝑑) period and time step (𝑠 = 𝑖 ⋅ 𝑗)
is the function of time interval 𝑗. Then the generated energy at each
interval and total generated energy within a day (𝑑) can be delineated
by Eqs. (5) and (6), respectively.

[

�̂�𝑃𝑉
𝐺,𝑑

]

=
([

𝐸𝑃𝑉
𝐺,𝑡 , 𝐸

𝑃𝑉
𝐺,𝑡+𝑠1

,… , 𝐸𝑃𝑉
𝐺,𝑡+𝑡𝑒𝑛𝑑

])

∀𝑡 ∈ 𝑇ℎ𝑟, ∀𝑇ℎ𝑟 ∈ 𝑇 ,∀𝑡 ∈ 𝑇𝑚𝑛𝑡, ∀𝑇𝑚𝑛𝑡 ∈ 𝑇 , ∀𝑡 ∈ 𝑇𝑠𝑛𝑑 ,∀𝑇𝑠𝑛𝑑 ∈ 𝑇
(5)

�̂�𝑃𝑉 ,𝑠𝑢𝑚
𝐺,𝑑 =

𝑡𝑒𝑛𝑑
∑

𝑖=0
�̂�𝑃𝑉
𝐺,𝑡 (𝑡

𝑃𝑉
𝑠𝑟𝑡,𝑡 + 𝑠) (6)

where 𝑡𝑒𝑛𝑑 ≈ 𝑛 ⋅ 𝑗. The following matrix expresses the PV generation for
𝑛 number of days:

[

�̂�𝑃𝑉
𝐺,𝑑𝑛

]

=

⎡

⎢

⎢

⎢

⎢

𝐸𝑃𝑉
𝐺,𝑡 , 𝐸𝑃𝑉

𝐺,𝑡+𝑠1
,… , 𝐸𝑃𝑉

𝐺,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝑃𝑉

𝐺,𝑑1
𝐸𝑃𝑉
𝐺,𝑡 , 𝐸𝑃𝑉

𝐺,𝑡+𝑠1
,… , 𝐸𝑃𝑉

𝐺,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝑃𝑉

𝐺,𝑑2
⋮ ⋮ ⋮ ⋮
𝑃𝑉 𝑃𝑉 𝑃𝑉 ̂𝑃𝑉

⎤

⎥

⎥

⎥

⎥

(7)
⎣

𝐸𝐺,𝑡 , 𝐸𝐺,𝑡+𝑠1
,… , 𝐸𝐺,𝑡+𝑡𝑒𝑛𝑑

= 𝐸𝐺,𝑑𝑛⎦
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Wind Power Modeling: The WT power output is the function of
the several threshold values of wind velocity (𝑤). In this case, cut-in
(ci), cut-out (co), and rated (r) values are considered to formulate the
equation [11]:

𝐸𝑊 ,𝑀𝑖
𝐺,𝑡 =

⎧

⎪

⎨

⎪

⎩

0, 𝑤𝑡 < 𝑤𝑐𝑖 or 𝑤𝑐𝑜 > 𝑤𝑡

𝐸𝑊 ,𝑀𝑖
𝐺,𝑟

(

𝑤𝑡−𝑤𝑐𝑖
𝑤𝑟−𝑤𝑐𝑖

)3
, 𝑤𝑐𝑖 ≤ 𝑤𝑡 < 𝑤𝑟

𝐸𝑊 ,𝑀𝑖
𝐺,𝑟 , 𝑤𝑟 ≤ 𝑤𝑡 < 𝑤𝑐𝑜

(8)

𝐸𝑊
𝐺,𝑡 =

𝑁𝑤,𝑚
∑

𝑖=1
𝐸𝑊 ,𝑀𝑖
𝐺,𝑡 ⋅ 𝜂𝑊 ⋅ 𝜉𝑀𝑖

𝑊 , 𝜉𝑀𝑖
𝑊 ∈ [1, 0] (9)

Where, 𝐸𝑊 ,𝑀𝑖
𝐺,𝑡 is the WT power generation of the 𝑖th module (𝑀) at

time 𝑡 where 𝜂𝑤 and 𝜉𝑤 are the overall efficiency and operational status
of the WT system, respectively. The daily generation at every interval,
its cumulative value, and its generation over a specific number of days
can be formulated in the following way:

[

�̂�𝑊
𝐺,𝑑

]

=
([

𝐸𝑊
𝐺,𝑡, 𝐸

𝑊
𝐺,𝑡+𝑠1

,… , 𝐸𝑊
𝐺,𝑡+𝑡𝑒𝑛𝑑

])

∀𝑡 ∈ 𝑇ℎ𝑟, ∀𝑇ℎ𝑟 ∈ 𝑇 ,∀𝑡 ∈ 𝑇𝑚𝑛𝑡, ∀𝑇𝑚𝑛𝑡 ∈ 𝑇 , ∀𝑡 ∈ 𝑇𝑠𝑛𝑑 ,∀𝑇𝑠𝑛𝑑 ∈ 𝑇
(10)

�̂�𝑊 ,𝑠𝑢𝑚
𝐺,𝑑 =

𝑡𝑒𝑛𝑑
∑

𝑖=0
�̂�𝑊
𝐺,𝑡(𝑡

𝑊
𝑠𝑟𝑡,𝑡 + 𝑠) (11)

[

�̂�𝑊
𝐺,𝑑𝑛

]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐸𝑊
𝐺,𝑡, 𝐸𝑊

𝐺,𝑡+𝑠1
,… , 𝐸𝑊

𝐺,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝑊

𝐺,𝑑1
𝐸𝑊
𝐺,𝑡, 𝐸𝑊

𝐺,𝑡+𝑠1
,… , 𝐸𝑊

𝐺,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝑊

𝐺,𝑑2
⋮ ⋮ ⋮ ⋮

𝐸𝑊
𝐺,𝑡, 𝐸𝑊

𝐺,𝑡+𝑠1
,… , 𝐸𝑊

𝐺,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝑊

𝐺,𝑑𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(12)

Mini Hydro Power Modeling: The power produced by mHydro is
the function of the water discharge flow rate (𝐴𝑢𝑖 ⋅ 𝑣𝑢𝑖 ). The power
output from the mHydro unit can be determined as follows:

𝐸𝑚𝐻,𝑢𝑖
𝐺,𝑡 = 𝜂𝑚𝐻 ⋅ 𝜂𝑊𝐷 ⋅ 𝜌 ⋅ 𝑔 ⋅ ℎ𝑖𝑢𝑖 ⋅ 𝐴𝑢𝑖 ⋅ 𝑣𝑢𝑖 (13)

𝐸𝑚𝐻
𝐺,𝑡 =

𝑁𝑤,𝑚
∑

𝑖=1
𝐸𝑚𝐻,𝑢𝑖
𝐺,𝑡 ⋅ 𝜉𝑢𝑖𝑚𝐻 , 𝜉𝑢𝑖𝑚𝐻 ∈ [1, 0] (14)

where, 𝐸𝑚𝐻,𝑢𝑖
𝐺,𝑡 is the power generation of the 𝑖th mini hydro unit at time

𝑡. where, 𝜂𝑚𝐻 and 𝜂𝑊𝐷 are the mHydro and water discharge efficiency,
respectively. The operational status of the mHydro unit is defined by
binary variable 𝜉𝑚𝐻 .

Microgrid Demand Modeling: The demand profile of a MG is
composed of the energy consumption of users in a community. The
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Fig. 3. Workflow for the proposed MLCP-based PSO-MILP system.
energy demand, which is the sum of individual energy consumption,
can be presented as follows:

[

�̂�𝐶𝑜𝑚
𝐷,𝑡

]

=

([𝑁ℎ
∑

𝑖=1
𝐸𝐻𝑖
𝐷,𝑡

])

,∀𝑡 ∈ 𝑇ℎ𝑟,∀𝑇ℎ𝑟 ∈ 𝑇 ,

∀𝑡 ∈ 𝑇𝑚𝑛𝑡,∀𝑇𝑚𝑛𝑡 ∈ 𝑇 ,∀𝑡 ∈ 𝑇𝑠𝑛𝑑 ,∀𝑇𝑠𝑛𝑑 ∈ 𝑇 ,∀ℎ ∈ 𝑁ℎ,∀𝐻 ∈ 𝐇

(15)

where, 𝐸𝐻𝑖
𝐷,𝑡 and �̂�𝐶𝑜𝑚

𝐷,𝑡 define the individual user demand and commu-
nity energy demand at time 𝑡, respectively. The daily demand at each
interval, its cumulative value, and demand over a particular number of
days can be expressed as follows:

[

�̂�𝐶𝑜𝑚
𝐷,𝑑

]

=
([

�̂�𝐶𝑜𝑚
𝐷,𝑡 , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑠1
,… , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑡𝑒𝑛𝑑

])

∀𝑡 ∈ 𝑇ℎ𝑟, ∀𝑇ℎ𝑟 ∈ 𝑇 ,∀𝑡 ∈ 𝑇𝑚𝑛𝑡, ∀𝑇𝑚𝑛𝑡 ∈ 𝑇 , ∀𝑡 ∈ 𝑇𝑠𝑛𝑑 ,∀𝑇𝑠𝑛𝑑 ∈ 𝑇
(16)

Then the energy demand of the community at each interval and total
energy demand within a day (𝑑) can be delineated by Eqs. (17) and
(18), respectively.

�̂�𝐶𝑜𝑚,𝑠𝑢𝑚
𝐷,𝑑 =

𝑡𝑒𝑛𝑑
∑

𝑖=0
�̂�𝐶𝑜𝑚
𝐷,𝑡 (𝑡𝐶𝑜𝑚

𝑠𝑟𝑡,𝑡 + 𝑠) (17)

[

�̂�𝐶𝑜𝑚
𝐺,𝑑𝑛

]

=

⎡

⎢

⎢

⎢

⎢

⎣

�̂�𝐶𝑜𝑚
𝐷,𝑡 , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑠1
,… , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝐶𝑜𝑚

𝐺,𝑑1
�̂�𝐶𝑜𝑚
𝐷,𝑡 , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑠1
,… , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝐶𝑜𝑚

𝐺,𝑑2
⋮ ⋮ ⋮ ⋮

�̂�𝐶𝑜𝑚
𝐷,𝑡 , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑠1
,… , �̂�𝐶𝑜𝑚

𝐷,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝐶𝑜𝑚

𝐺,𝑑𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(18)

Fuel Cell Electric Vehicle Demand Modeling: Due to the emer-
gence of fuel cell electric vehicles (FCEV), the demand for these vehicles
is taken into consideration by the proposed system. The charging of the

FCEV is facilitated by a designated HSH. The hydrogen requirements

6 
are the function of the number of FCEV refueling from the HEH at the
time 𝑡. The following equations can be defined as follows:

[

�̂�𝐹𝑉
𝐷,𝑡

]

=

([𝑁𝑣
∑

𝑖=1
𝐻𝐹𝑉𝑖

𝐷,𝑡

])

,∀𝑡 ∈ 𝑇ℎ𝑟,∀𝑇ℎ𝑟 ∈ 𝑇 ,

∀𝑡 ∈ 𝑇𝑚𝑛𝑡,∀𝑇𝑚𝑛𝑡 ∈ 𝑇 ,∀𝑡 ∈ 𝑇𝑠𝑛𝑑 ,∀𝑇𝑠𝑛𝑑 ∈ 𝑇 ,∀𝑣 ∈ 𝑁𝑣

(19)

where, 𝐻𝐹𝑉
𝐷,𝑡 is the hydrogen demand (𝐷) of FCEV at time 𝑡. where 𝑁𝑣

is the number of FCEV that are refueled from the HSH. Similarly, the
Eqs. (20), (21), and (22) represent the hydrogen demand to address the
different scenarios:

[

�̂�𝐹𝑉
𝐷,𝑑

]

=
([

�̂�𝐹𝑉
𝐷,𝑡 , �̂�

𝐹𝑉
𝐷,𝑡+𝑠1

,… , �̂�𝐹𝑉
𝐷,𝑡+𝑡𝑒𝑛𝑑

])

∀𝑡 ∈ 𝑇ℎ𝑟, ∀𝑇ℎ𝑟 ∈ 𝑇 ,∀𝑡 ∈ 𝑇𝑚𝑛𝑡, ∀𝑇𝑚𝑛𝑡 ∈ 𝑇 , ∀𝑡 ∈ 𝑇𝑠𝑛𝑑 ,∀𝑇𝑠𝑛𝑑 ∈ 𝑇
(20)

�̂�𝐹𝑉 ,𝑠𝑢𝑚
𝐷,𝑑 =

𝑡𝑒𝑛𝑑
∑

𝑖=0
�̂�𝐸𝑉

𝐷,𝑡 (𝑡
𝐻2
𝑠𝑟𝑡,𝑡 + 𝑠) (21)

[

�̂�𝐹𝑉
𝐺,𝐷𝐼

]

=

⎡

⎢

⎢

⎢

⎢

⎣

�̂�𝐹𝑉
𝐷,𝑡 , �̂�𝐹𝑉

𝐷,𝑡+𝑠1
,… , �̂�𝐹𝑉

𝐷,𝑡+𝑡𝑒𝑛𝑑
= �̂�𝐹𝑉

𝐺,𝑑1
�̂�𝐹𝑉

𝐷,𝑡 , �̂�𝐹𝑉
𝐷,𝑡+𝑠1

,… , �̂�𝐹𝑉
𝐷,𝑡+𝑡𝑒𝑛𝑑

= �̂�𝐹𝑉
𝐺,𝑑2

⋮ ⋮ ⋮ ⋮
�̂�𝐹𝑉

𝐷,𝑡 , �̂�𝐹𝑉
𝐷,𝑡+𝑠1

,… , �̂�𝐹𝑉
𝐷,𝑡+𝑡𝑒𝑛𝑑

= �̂�𝐹𝑉
𝐺,𝑑𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(22)

2.1.2. Renewable energy source co-ordination
The energy produced from RES is directed towards the load, BESS,

hydrogen generation, and grid. In some situations, excess energy is
either stored in the storage system or supplied to the main grid. This
mechanism is further articulated through the subsequent mathematical
representation.

̂𝑅𝐸𝑆 ̂𝑃𝑉 ̂𝑊 ̂𝑚𝐻
𝐸𝑠𝑢𝑟,𝑡 = 𝐸𝑠𝑢𝑟,𝑡 + 𝐸𝑠𝑢𝑟,𝑡 + 𝐸𝑠𝑢𝑟,𝑡 (23)



M.M. Alam et al.

𝐸

𝐸

𝐸

w
t
i
c

𝑆

𝑚

𝑚

𝑚

𝑚

𝑚

w
s
s
H
T
o

𝑆

𝑆

2

c
i
m
t
f

𝑇

Applied Energy 377 (2025) 124523 
�̂�𝑅𝐸𝑆
𝑠𝑢𝑟,𝑡 = �̂�𝑅𝐸𝑆−𝐵𝐸𝑆𝑆

𝑡 + �̂�𝑅𝐸𝑆−𝐷
𝑡 + �̂�𝑅𝐸𝑆−𝐺𝑟𝑖𝑑

𝑡 + �̂�𝑅𝐸𝑆−𝐻2
𝑡 (24)

where 𝐸𝑋
𝑠𝑢𝑟,𝑡 denotes the respective surplus amount of energy of the

system element 𝑋 at time 𝑡.

2.1.3. Storage model component
To enhance the reliability of energy quality, storage systems are

incorporated into the system. Given the higher uncertainty associated
with RES, storage systems play a crucial role in ensuring a continuous
energy supply. Within the framework of the proposed system, two stor-
age systems such as BESS and HSH are included. Details regarding the
configuration of these storage systems are provided in the subsequent
subsection.

Battery Energy Storage System Setting: The function of BESS is to
supply energy to the MG in the absence of sufficient energy to mitigate
the demand. The required parameters and constraints related to the
BESS are considered to model the BESS. The following equation depicts
the configuration of BESS within a MG.

�̂�𝐵𝐸𝑆𝑆
𝑐ℎ,𝑡 = �̂�𝑅𝐸𝑆−𝐵𝐸𝑆𝑆

𝑡 × 𝜂𝐵𝐸𝑆𝑆
𝑒𝑓𝑓,𝑐ℎ (25)

�̂�𝐵𝐸𝑆𝑆,𝑐ℎ
𝑟,𝑚𝑖𝑛 < �̂�𝐵𝐸𝑆𝑆,𝑐ℎ

𝑟,𝑡 ≤ �̂�𝐵𝐸𝑆𝑆,𝑐ℎ
𝑟,𝑚𝑎𝑥 (26)

�̂�𝐵𝐸𝑆𝑆
𝑑𝑐,𝑡 = �̂�𝐵𝐸𝑆𝑆

𝑡 × 𝜂𝐵𝐸𝑆𝑆
𝑒𝑓𝑓,𝑑𝑐 (27)

̂𝐵𝐸𝑆𝑆,𝑑𝑐
𝑟,𝑚𝑖𝑛 < �̂�𝐵𝐸𝑆𝑆,𝑑𝑐

𝑟,𝑡 ≤ �̂�𝐵𝐸𝑆𝑆,𝑑𝑐
𝑟,𝑚𝑎𝑥 (28)

̂𝐵𝐸𝑆𝑆
𝑐ℎ,𝑡 ≈ �̂�𝐵𝐸𝑆𝑆,𝑐ℎ

𝑟,𝑡 (29)

̂𝐵𝐸𝑆𝑆,𝑑𝑐
𝑟,𝑡 ≈ �̂�𝐵𝐸𝑆𝑆−𝐷

𝑡 (30)

here �̂�𝐵𝐸𝑆𝑆
𝑐ℎ,𝑡 and �̂�𝐵𝐸𝑆𝑆

𝑑𝑐,𝑡 are the charging and discharging energy at
ime 𝑡, respectively. The state of charge (SOC) is the function of the
nitial SOC and the charging and discharging energy of the BESS. It
an be defined as follows:

�̂�𝐶𝐵𝐸𝑆𝑆
𝑡 = ̂𝑆𝑂𝐶𝐵𝐸𝑆𝑆

𝑡−1 +

(

�̂�𝐵𝐸𝑆𝑆,𝑐ℎ
𝑟,𝑡 ⋅ 𝛽𝐵𝐸𝑆𝑆

𝑐ℎ − �̂�𝐵𝐸𝑆𝑆,𝑑𝑐
𝑟,𝑡 ⋅ 𝛽𝐵𝐸𝑆𝑆

𝑑𝑐

�̂�𝐵𝐸𝑆𝑆
𝐶𝑎𝑝

)

(31)

𝛽𝐵𝐸𝑆𝑆
𝑐ℎ + 𝛽𝐵𝐸𝑆𝑆

𝑑𝑐 = 1, 𝛽𝐵𝐸𝑆𝑆 ∈ [1, 0] (32)

̂𝑆𝑂𝐶𝐵𝐸𝑆𝑆
𝑡−1 ≈ ̂𝑆𝑂𝐶𝐵𝐸𝑆𝑆

𝑖𝑛𝑖 ,where 𝑡 = 1 (33)

̂𝑆𝑂𝐶𝐵𝐸𝑆𝑆
𝑚𝑖𝑛 < ̂𝑆𝑂𝐶𝐵𝐸𝑆𝑆

𝑡 ≤ ̂𝑆𝑂𝐶𝐵𝐸𝑆𝑆
𝑚𝑎𝑥 (34)

𝐸𝑃𝑉
𝐺,𝑡 ≤ �̂�𝐶𝑜𝑚

𝐷,𝑡 (35)

where 𝛽𝐵𝐸𝑆𝑆
𝑐ℎ and 𝛽𝐵𝐸𝑆𝑆

𝑑𝑐 are the charging discharging indicator binary
variables.

Hydrogen Storage Setting The aim of integrating the HSH is to
generate and store hydrogen in the storage system for supplying the
FCEV. The hydrogen will be produced from the excess PV and WT
generation. The liquid hydrogen will be stored in the HSH tank to
mitigate the FCEV demand. The quantity of renewable energy necessary
to drive the water electrolyzer within a standard 𝐻2 refueling station
for the production of hydrogen (measured in kilograms) can be derived
as follows:

𝑚𝑅𝐸𝑆−𝐻2
𝑝,𝑡 =

𝜂𝐻2
𝑒𝑙𝑠 × �̂�𝑅𝐸𝑆−𝐻2

𝑡

𝐸𝐼𝑒𝑙𝑠
(36)

𝐻2 ,𝑝
𝑟,𝑡 ≈ 𝑚𝑅𝐸𝑆−𝐻2

𝑝,𝑡 (37)

𝐻2 ,𝑝 𝐻2 ,𝑝 𝐻2 ,𝑝

𝑟,𝑚𝑖𝑛 < 𝑚𝑟,𝑡 ≤ 𝑚𝑟,𝑚𝑎𝑥 (38)

7 
𝐻2−𝐹𝑉
𝑟,𝑡 = 𝑚𝐻2 ,𝑟𝑓

𝑟,𝑡 (39)

𝐻2 ,𝑟𝑓
𝑟,𝑚𝑖𝑛 < 𝑚𝐻2 ,𝑟𝑓

𝑟,𝑡 ≤ 𝑚𝐻2 ,𝑟𝑓
𝑟,𝑚𝑎𝑥 (40)

𝐻2 ,𝑆𝑇
𝑡−1 ≈ 𝑚𝐻2 ,𝑆𝑇

𝑖𝑛𝑖 , where 𝑡 = 1 (41)

𝑚𝐻2 ,𝑆𝑇
𝑡 = 𝑚𝐻2 ,𝑆𝑇

𝑡−1 + 𝑚𝑅𝐸𝑆−𝐻2
𝑝,𝑡 ⋅ 𝛽𝐻2

𝑝 − 𝑚𝐻2−𝐹𝑉
𝑟𝑓 ,𝑡 ⋅ 𝛽𝐻2

𝑟𝑓 , 𝛽𝐻2 ∈ [1, 0] (42)

here 𝑚𝐻2−𝑃𝑟𝑜𝑑ℎ represents the mass of hydrogen produced. 𝐸𝐼𝑒𝑙𝑠

ignifies the energy intensity of the optimal water electrolyzer’s output,
pecifically hydrogen. The value of 𝐸𝐼𝑒𝑙𝑠 is set at 0.039 MWh/kg-
2 [32]. The symbol 𝜂𝐻2

𝑒𝑙𝑠 is indicative of the electrolyzer’s efficiency.
he amount of hydrogen in the HSH tank can be denoted as the state
f hydrogen (SOH). Therefore, the SOH can be defined as follows:

𝑂𝐻𝐻2
𝑡 =

𝑚𝐻2 ,𝑆𝑇
𝑡

𝑚𝐻2 ,𝑆𝑇
𝐶𝑎𝑝

(43)

𝑂𝐻𝐻2
𝑚𝑖𝑛 < 𝑆𝑂𝐻𝐻2

𝑡 ≤ 𝑆𝑂𝐻𝐻2
𝑚𝑎𝑥 (44)

.1.4. Tariff setting
In the proposed system, real tariff data collected from the energy

ommunity are utilized. The grid flat tariff (GFT) is calculated taking
nto account the daily allowance for energy consumption of the com-
unity. In addition, the time-of-use (ToU) pricing is also considered

o calculate the daily energy cost. Those equations are formulated as
ollows:

𝐹 𝑓
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑇𝐹 𝑓1
𝑡 , if 0 < 𝐸𝐶𝑜𝑚

𝐷 < 𝐸𝐶𝑜𝑚,𝑓1
𝐷

𝑇𝐹 𝑓2
𝑡 , if 𝐸𝐶𝑜𝑚,𝑓1

𝐷 ≤ 𝐸𝐶𝑜𝑚
𝐷 < 𝐸𝐶𝑜𝑚,𝑓2

𝐷
𝑇𝐹 𝑓𝑛

𝑡 , if 𝐸𝐶𝑜𝑚,𝑓2
𝐷 ≤ 𝐸𝐶𝑜𝑚

𝐷 ≤ 𝐸𝐶𝑜𝑚,𝑓𝑛
𝐷

(45)

𝑇𝐹 𝑇 𝑜𝑈
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑇𝐹 𝑜𝑝
𝑡 , if 𝑡𝑠𝑟𝑡𝑜𝑝 ≤ 𝑡 < 𝑡𝑒𝑛𝑑𝑜𝑝

𝑇𝐹𝑚𝑝
𝑡 , if 𝑡𝑠𝑟𝑡𝑚𝑝 ≤ 𝑡 < 𝑡𝑒𝑛𝑑𝑚𝑝

𝑇𝐹 𝑝𝑘
𝑡 , if 𝑡𝑠𝑟𝑡𝑝𝑘 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑𝑝𝑘

(46)

where 𝑇 𝑜𝑝
𝑡 , 𝑇 𝑚𝑝

𝑡 , and 𝑇 𝑝𝑘
𝑡 are the tariff amounts in the off-peak, medium-

peak, and peak periods.

2.2. Data clustering and profiling

In the study, non-dispatchable RES and demand are clustered to
ascertain the optimal daily demand and generation profile, aiming to
achieve the best capacity of RES under various configurations. In this
study, we utilize the MLCP strategy, with the procedures comprehen-
sively outlined in Algorithm 1 (see Fig. 4). The algorithm is divided into
two key sections: the initial part focuses on clustering, while the latter is
dedicated to approaches for data profiling. For the clustering phase, the
K-means clustering technique is employed. Eqs. (7), (12), (18), and (22)
serve as inputs for the K-means algorithm, facilitating the clustering of
daily generation and consumption profiles. Initially, the selection of the
optimal cluster number is made by analyzing one-year historical data
concerning demand and RES generation. Following this, the optimal
number of clusters is established. Subsequently, utilizing this optimal
cluster number, a profile is constructed. For demand, the maximum
value from each cluster is selected. Conversely, for generation, the
minimum value from each cluster is chosen. Finally, the profiles are
organized by date to ensure consistency between the generation and
demand profiles.

2.3. Optimal capacity and operation

The determination of the optimal capacity and operational strate-
gies for RESs and storage systems is achieved using the PSO-MILP
algorithm. This PSO algorithm is particularly applied in the context of

ascertaining optimal capacities. For the formulation of this optimization
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Fig. 4. (a) Algorithm 1 and (b) Algorithm 2.
roblem, the objective function alongside the constraints applicable to
ach RES is articulated in the following manner:

𝑖𝑛 ||
|

𝛼𝑃𝑉 ⋅ 𝐸𝑃𝑉
𝐺,𝑟 + 𝛼𝑊 ⋅ 𝐸𝑊

𝐺,𝑟 + 𝛼𝑚𝐻 ⋅ 𝐸𝑚𝐻
𝐺,𝑟 + 𝛼𝐵𝑆 ⋅ 𝐸𝐵𝐸𝑆𝑆

𝐶𝑎𝑝,𝑙 + 𝛼𝐻2 ⋅ 𝑚𝐻2 ,𝑆𝑇
𝐶𝑎𝑝,𝑙

|

|

|

(47)

𝑃𝑉
𝐶𝑎𝑝,𝑚𝑖𝑛 < 𝐸𝑃𝑉

𝐺,𝑟 ≤ 𝐸𝑃𝑉
𝐶𝑎𝑝,𝑚𝑎𝑥 (48)

𝑊
𝐶𝑎𝑝,𝑚𝑖𝑛 < 𝐸𝑊

𝐺,𝑟 ≤ 𝐸𝑊
𝐶𝑎𝑝,𝑚𝑎𝑥 (49)

𝑚𝐻
𝐶𝑎𝑝,𝑚𝑖𝑛 < 𝐸𝑚𝐻

𝐺,𝑡 ≤ 𝐸𝑚𝐻
𝐶𝑎𝑝,𝑚𝑎𝑥 (50)

̂𝐵𝐸𝑆𝑆
𝐶𝑎𝑝,𝑚𝑖𝑛 < �̂�𝐵𝐸𝑆𝑆

𝐶𝑎𝑝,𝑙 ≤ �̂�𝐵𝐸𝑆𝑆
𝐶𝑎𝑝,𝑚𝑎𝑥 (51)

𝐻2 ,𝑆𝑇
𝐶𝑎𝑝,𝑚𝑖𝑛 < 𝑚𝐻2 ,𝑆𝑇

𝐶𝑎𝑝,𝑙 ≤ 𝑚𝐻2 ,𝑆𝑇
𝐶𝑎𝑝,𝑚𝑎𝑥 (52)

=
C𝑐𝑐 ⋅ 𝑜𝑐
Y ⋅ 𝑑

(53)

By using capital cost (C𝑐𝑐), the optimal number of cluster (𝑜𝑐), and
he lifetime (Y) of the RESs, the optimization factor (𝛼) is calculated
y Eq. (54).

The MILP optimization algorithm is applied to find the optimal
cheduling of RES and storage systems. However, it is assumed that
he energy supplied by the grid originates from carbon-based power
eneration plants. Furthermore, the MG is restricted from supplying
nergy back to the grid. This scenario can be referred to as an ‘‘islanded
perational mode’’, signifying that no energy transactions will take
lace between the utility grid and the MG. Consequently, the objective
unction will be designed in such a way that the grid export and import
nergy should be zero and can be expressed by Eq. (54). The integrated
SO-MILP is depicted in Algorithm 2 (see Fig. 4).

𝑖𝑛 ||
|

�̂�𝐶𝑜𝑚
𝐷,𝑡 − (𝐸𝑔𝑟𝑖𝑑

𝑖𝑚,𝑡 − 𝐸𝑔𝑟𝑖𝑑
𝑒𝑥,𝑡 + 𝐸𝑃𝑉

𝐺,𝑡 + 𝐸𝑊
𝐺,𝑡 + 𝐸𝑚𝐻

𝐺,𝑡

−𝐸𝐵𝐸𝑆𝑆,𝑐ℎ
𝑟,𝑡 ⋅ 𝛽𝐵𝐸𝑆𝑆

𝑐ℎ,𝑡 + 𝐸𝐵𝐸𝑆𝑆,𝑑𝑐
𝑟,𝑡 ⋅ 𝛽𝐵𝐸𝑆𝑆

𝑑𝑐,𝑡

−�̂�𝑅𝐸𝑆−𝐻2
𝑡 ⋅ 𝛽𝐻2

𝑝,𝑡 + �̂�𝐻2−𝑑𝑒𝑚
𝑟,𝑡 ⋅ 𝛽𝐻2

𝑟𝑓 ,𝑡)
|

|

|

(54)

𝑔𝑟𝑖𝑑 𝑔𝑟𝑖𝑑
𝐸𝑖𝑚,𝑡 ≈ 0 and 𝐸𝑒𝑥,𝑡 ≈ 0 (55)
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2.4. Cost analysis

The cost of energy (COE) is determined by the net present cost
(NPC) and capital recovery factors (CRFs) of system components and
electricity, in addition to the yearly electricity demand. The following
equations represent the cost analysis of the proposed system [11].

𝐶𝑂𝐸𝑚𝑔 =
𝑁𝑃𝐶𝑚𝑔 ⋅ 𝐶𝑅𝐹𝑚𝑔

∑𝑜𝑐
𝑐=1 �̂�

𝐶𝑜𝑚,𝑠𝑢𝑚
𝐷,𝑑,𝑐 + �̂�𝐹𝑉 ,𝑠𝑢𝑚

𝐷,𝑑,𝑐

(56)

𝐶𝑅𝐹𝑚𝑔 =
𝜎 ⋅ (1 + 𝜎)𝑛

(1 + 𝜎)𝑛−1
(57)

𝑁𝑃𝐶𝑚𝑔 = 𝐸𝑃𝑉
𝐶𝑎𝑝,𝑜𝑝𝑡 ⋅ C

𝑃𝑉
𝑓𝑎𝑐𝑡 + 𝐸𝑊

𝐶𝑎𝑝,𝑜𝑝𝑡 ⋅ C
𝑊
𝑓𝑎𝑐𝑡 + 𝐸𝐵𝐸𝑆𝑆

𝐶𝑎𝑝,𝑜𝑝𝑡 ⋅ C
𝐵𝐸𝑆𝑆
𝑓𝑎𝑐𝑡

+ 𝐸𝑚𝐻
𝐶𝑎𝑝,𝑜𝑝𝑡 ⋅ C

𝑚𝐻
𝑓𝑎𝑐𝑡 + 𝐸𝐻2

𝐶𝑎𝑝,𝑜𝑝𝑡 ⋅ C
𝐻2
𝑓𝑎𝑐𝑡 (58)

C𝑓𝑎𝑐𝑡 = (C𝑐𝑐 + C𝑚𝑐 + C𝑟𝑐 ) (59)

C𝑚𝑐 =
C𝑚𝑐 ⋅ (1 + 𝛾)Y−1

𝛾 ⋅ (1 + 𝛾)Y
(60)

C𝑟𝑐 = C𝑟𝑐 ⋅
𝑡<𝑦<Y
∑

𝑡=1

1
(1 + 𝛾)𝑡𝑦

(61)

where, 𝛾 and 𝜎 denote the interest rate and discount rate, respectively.
Additionally, C𝑓𝑎𝑐𝑡, C𝑐𝑐 , C𝑚𝑐 , and C𝑟𝑐 represent the aggregated cost
factor, capital cost, maintenance cost factor, and replacement cost
factor, respectively. By considering the existing tariff, the energy cost
of the community (C𝐶𝑜𝑚

𝐺 ) can be determined by Eq. (62). The tariff data
is collected from the local community.

C𝐶𝑜𝑚
𝐺 =

𝑜𝑐
∑

𝑐=1

𝑇
∑

𝑡=1

(

�̂�𝐶𝑜𝑚
𝐷,𝑡,𝑐 + �̂�𝐹𝑉

𝐷,𝑡,𝑐

)

⋅ 𝑇𝐹 𝑇 𝑜𝑈
𝑡 or 𝑇𝐹 𝑓

𝑡 (62)

The equivalent carbon emissions (CE) from the energy community
before and after the transition of the MG are defined in Eqs. (63) and
(64). Different values of carbon emissions factor (CEF) for the different
technologies are considered [33].

𝐶𝐸𝑛𝑜𝑛−𝑅𝐸𝑆 =
𝑜𝑐
∑

(

�̂�𝐻ℎ ,𝑠𝑢𝑚
𝐷,𝑑,𝑐 + �̂�𝐹𝑉 ,𝑠𝑢𝑚

𝐷,𝑑,𝑐

)

⋅ 𝐶𝐸𝐹 (63)

𝑐=1
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Fig. 5. Historical data of (a) Electricity demand, (b) 𝐻2 demand.
Fig. 6. Historical data of (a) Solar irradiation, (b) Wind speed, (c) Water flow.
𝐶𝐸𝑅𝐸𝑆 =
(

𝐸𝑃𝑉
𝐶𝑎𝑝,𝑜𝑝𝑡 + 𝐸𝑊

𝐶𝑎𝑝,𝑜𝑝𝑡 + 𝐸𝑚𝐻
𝐶𝑎𝑝,𝑜𝑝𝑡 + 𝐸𝐵𝐸𝑆𝑆

𝐶𝑎𝑝,𝑜𝑝𝑡

)

⋅ 𝐶𝐸𝐹 (64)

3. Case study overview

The demand and RES generation-related data are taken from a
region of Tasmania, Australia. Real energy demand and RES parameters
data from the community are utilized, spanning one year. This data is
segmented into 30-minute intervals, resulting in 48 data samples per
day. Different data cleaning and processing approaches are applied to
clean the data, including anomaly removal and missing data filling.
Addressing a real-time issue, the actual tariff plan provided by the
local energy supplier is considered. Python programming is employed
to develop and implement the proposed model and a hybrid optimiza-
tion algorithm. The MILP for optimal power flow is solved using the
Gurobi optimizer (version 10.0.3), while the PSO method is applied
to determine the optimal capacity. The hardware used for this process
includes a high-performance computer equipped with 64 GB of RAM
and an Intel® Xeon® E-2288G CPU, operating at 3.70 GHz.

The subsequent sections will delve into the diverse input data
needed for the proposed scheme, encompassing both technical and
financial parameters.
9 
3.1. Energy and hydrogen demand

Fig. 5(a) displays the actual daily energy demand, measured at half-
hourly intervals, over one year, resulting in 48 data samples per day.
This figure provides a comprehensive visual representation of the MG’s
energy demand. Similarly, Fig. 5(b) portrays the hydrogen demand for
FCEV, expressing the demand in kilograms. In the absence of hydrogen
demand data at 30-minute intervals for the MG area, synthetic data was
produced through an analysis based on fuel demand.

3.2. RES parameters and constraints

Upon investigating the availability and limitations of RESs within
the energy community, systems such as PV, WT, and mHydro have
been chosen for the proposed setup. The primary determinants for the
generation of these RESs include solar irradiation, wind speed, and
water flow rate. Figs. 6(a), 6(b), and 6(c) present historical data on
solar radiation, wind speed, and water discharge flow rate, respectively,
within the energy community. In addition, the required parameters
of PV, WT, and mini-hydro are presented in Tables 2, 3, and 4,
respectively.
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Fig. 7. Data distribution of water flow rate (a) and (b).
Table 2
The required parameters of PV system.

Parametres Parametres

R𝑠𝑡𝑑
𝑃𝑉 1000 W/m2 𝜂𝑃𝑉 95%

R𝑡ℎ
𝑃𝑉 50 W/m2 𝐸𝑃𝑉 ,𝐶𝑎𝑝

𝑚𝑎𝑥 350 kW

Table 3
The required parameters of WT system.

Parameters Parameters

𝑤𝑐𝑜 25 m/s 𝑤𝑐𝑖 3.5 m/s
𝑤𝑟 13 m/s 𝜂𝑊 85%
𝐸𝑊 ,𝐶𝑎𝑝

𝑚𝑖𝑛 200 kW 𝐸𝑊 ,𝐶𝑎𝑝
𝑚𝑎𝑥 350 kW

Table 4
The required parameters of mHydro.

Parameters Water flow rate (m3/s)

ℎ𝑢𝑖 5 m min 2.07
𝜌 1000 kg/m3 max 59.58
𝑔 9.81 m/s2 mean 15.06
𝜂𝑇𝐸 40% 50% of data 11.76
𝜂𝑊𝐷 45% 75% of data 20.73

However, while both PV and WT are non-dispatchable RES, mHy-
dro can be dispatchable. The minimum and maximum energy supply
capacities of the mHydro are calculated based on the distribution of
water flow rates. Table 4 illustrates various parameters along with the
percentage distribution of data. Following this analysis, the maximum
and minimum energy supply capacities for the mHydro have been
established at 25 kWh and 100 kWh, respectively.

3.3. Storage parameters and constraints

In this study, the BESS is characterized by essential parameters like
capacity, power rating, SOC, and round-trip efficiency. Additionally,
constraints such as charge and discharge rates, and minimum and max-
imum SOC are also considered. Table 5 displays the BESS’s properties
utilized in the experiment. Similarly, the HSH features comparable
parameters and constraints, which include EI, maximum production
and supply volumes, and the efficiency of converting electrical energy
into hydrogen. The HSH’s maximum tank capacity and the minimum
quantity to be maintained in the tank are also taken into account. The
properties of this HSH are outlined in Table 6.

3.4. Microgrid cost and grid tariff

As the proposed system accounts for transitioning the current en-
ergy system into an MG, the assumption is that the system already
10 
Fig. 8. Different types of tariff used in the case study.

Table 5
The required parameters of BESS.

Parameters Constraints

𝜂𝐵𝑆𝑒𝑓𝑓,𝑐 95% ̂𝑆𝑜𝐶
𝐵𝑆
𝑚𝑖𝑛 20%

𝜂𝐵𝑆𝑒𝑓𝑓,𝑑𝑐 95% ̂𝑆𝑜𝐶
𝐵𝑆
𝑚𝑎𝑥 100%

�̂�𝐵𝑆,𝑐
𝑟,𝑚𝑎𝑥 200 kWh/interval 𝐸𝐵𝑆,𝐶𝑎𝑝

𝑚𝑎𝑥 3000
�̂�𝐵𝑆,𝑑𝑐

𝑟,𝑚𝑎𝑥 250 kWh/interval 𝐸𝐵𝑆,𝐶𝑎𝑝
𝑚𝑖𝑛 0

Table 6
The required parameters of H2 storage.

Parametres Parametres

𝜂𝐻2
𝑒𝑙𝑠 95% 𝑚𝐻2 ,𝑆𝑇

𝑆𝑜𝐻,𝑚𝑖𝑛 20%
𝐿𝐸𝐼𝐸𝑙𝑠 0.039 MWh/kg-H2 𝑚𝐻2 ,𝑆𝑇

𝑆𝑜𝐻,𝑚𝑎𝑥 100%
𝑚𝐻2 ,𝑔

𝑟,𝑚𝑎𝑥 10 Kg/FCEHV 𝑀𝐻2 ,𝐶𝑎𝑝
𝑚𝑎𝑥 70 kg

�̂�𝐻2−𝑑𝑒𝑚
𝑟,𝑚𝑎𝑥 5 Kg/FCEHV 𝑀𝐻2 ,𝐶𝑎𝑝

𝑚𝑖𝑛 0 kg

possesses an established energy distribution network, encompassing
distribution lines, transformers, and other electrical equipment. Ac-
cordingly, the focus has been on considering the capital, operational,
and maintenance (O&M) costs of the RES rather than the installation
costs of the network. Table 7 presents the costs of RES and storage
system [34,35]. In addition, three distinct tariff types are evaluated
based on the energy rates provided by suppliers within the energy
community. These tariffs include the low voltage residential general
(FT-1), low voltage business general (FT-2), and low voltage business
time of use tariff (ToU). A half-hourly tariff interval profile throughout
the day is depicted in Fig. 8.

4. Simulation result

The demand and RES generation-related data are taken from a
region of Tasmania, Australia. Real energy demand and RES parameters
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Fig. 9. Optimal cluster results (a) Electricity demand, (b) 𝐻2 demand, (c) PV generation, and (d) WT generation.
Table 7
The cost of RES and storage system in AUD/kW.

RES
name

Capital
Cost/kW

O&M
Cost/kW

Rep
Cost/kW

Year

PV 1441 17 300 10
WT 1950 25 300 10
BESS 2296 300 300 10
Hydrogen 8032 1000 600 10
mHydro 2185 48.07 300 10

data from the community are utilized, spanning one year. This data
is segmented into 30-minute intervals, resulting in 48 data samples
per day. Different data cleaning and processing approaches are ap-
plied to clean the data, including anomaly removal and missing data
filling. To address a real-time issue, the actual tariff plan provided
by the local energy supplier is considered. Python programming is
employed to develop and implement the proposed model and a hybrid
optimization algorithm. The MILP for optimal power flow is solved
using the Gurobi optimizer (version 10.0.3), while the PSO method is
applied to determine the optimal capacity. The hardware used for this
process includes a high-performance computer equipped with 64 GB of
RAM and an Intel® Xeon® E-2288G CPU, operating at 3.70 GHz. The
imulation results obtained from the proposed system are described in
he following:

.1. Optimal cluster and data preparation for optimization

Algorithm 1 (see Fig. 4) is employed to prepare data for both
nergy demand and hydrogen demand. The resulting optimal number
f clusters for both energy and hydrogen demand within the energy
ommunity is depicted in Figs. 9(a) and 9(b). These figures reveal
hat the optimal cluster number for both scenarios is 7. Additionally,
he clustered data for both energy demand and hydrogen demand are
isplayed in Figs. 10(a) and 10(b).
11 
Table 8
Optimal capacity of RESs and storage system.

PV(kW) WT
(kW)

BESS
(kWh)

Hydrogen
(Kg)

mHydro (min
-max)(kW)

280.27 240 2490 48.47 25-100

Due to the dispatchable nature of mini-hydro generation, a different
approach is taken: instead of clustering analysis, the minimum and
maximum energy supply amounts are selected, with data distribution
analysis presented in Fig. 7. Conversely, for both PV and WT genera-
tion, Algorithm 1 (see Fig. 4) is used to prepare the data. For PV, the
optimal number of clusters identified is 5, as shown in Fig. 9(c). Given
that most profiles are clustered into 7 groups, an additional 2 clusters
are chosen based on data distribution, and their average values are
utilized to form a 7-cluster structure. In the case of WT, the optimal
number of clusters is found to be 7, which is detailed in Fig. 9(d).
Consequently, the clustered data for both energy demand and hydrogen
demand are illustrated in Figs. 10(c) and 10(d).

4.2. Optimal capacity of renewable energy sources and storage

The optimal capacity for the RES and storage system aims to secure
a reliable and effective energy setup for the community. The higher un-
certainties associated with RES, increasing the storage system’s capacity
will lower the chances of energy disruptions. The optimization process
is conducted on the total clustered data, which effectively addresses
the uncertainty issues related to demand and generation. The MLCP
algorithm is applied for proper clustering and profiling the data. Fig. 10
presents the optimal number of clusters of the data of each component.
It can be observed that the optimal cluster of the most components is
7. Consequently, 30-minute intervals of 7 days of data are chosen for
the optimization process.

However, the size should be chosen to minimize the costs. Con-

sequently, capacities are determined by the optimization algorithm
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Fig. 10. Optimal clustered profile of (a) Electricity demand, (b) 𝐻2 demand, (c) PV generation, and (d) WT generation.
Fig. 11. Optimization results (a) PV capacity and (b) WT capacity in kW.
based on the actual values of the 𝛼. The 𝛼 values for various RESs and
storage systems are derived from their capital costs, with the values
being 2.76 for PV, 3.74 for WT, 4.40 for BESS, 15.40 for HSH, and
4.19 for mHydro. Table 8 displays the optimal capacities of RESs and
storage systems for the proposed MG system. The PV system, having the
lowest value of the 𝛼, aids the objective function in achieving a higher
capacity for PV. This principle is similarly applicable to WT, mHydro,
and BESS systems. Their respective 𝛼 values influence the objective
function to favor optimal capacities. For HSH, concrete constraints
are employed to ensure that the value of the 𝛼 does not significantly
impact the determination of the optimal capacity. Additionally, the
convergence graph for PV, WT, BESS, and HSH are presented in Figs. 11
and 12, respectively. However, the increased BESS capacity aims to
enhance system reliability. Consequently, the MG can ensure adequate
energy supply to the community even during periods of very low RES
generation.
12 
4.3. Optimal energy flow of the microgrid

The optimal energy flow within the MG dictates how the MG
operates efficiently and seamlessly. Analyzing the various scenarios
involving RES generation and MG energy demand ensures the MG’s
sustainability and reliability. Figs. 13(a) and 13(b) depict the overall
energy supply and demand of the MG across seven consecutive clusters.
The figure reveals various demand patterns that validate the system’s
performance, including sensitivity analysis. Table 9 provides compre-
hensive data on total energy demand, supply, and generation levels, as
well as the discrepancies between supply and demand, and generation
and demand.

Several key insights can be gleaned from these differences. Negative
values in the demand-generation difference indicate that surplus energy
is stored in the storage system, as indicated by the arrow symbol.
Conversely, positive values in the demand-generation difference signify
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Fig. 12. Optimization results (a) BESS capacity and (b) HSH capacity in kWh.
Fig. 13. Optimization result (a) demand and supply profile, (b) RES generation, charge and discharge, and demand, and (c) RES energy supply during the operation period.
Table 9
Optimal energy flow (total) during the operation of each cluster.

Cluster Total
demand
(kWh)

Total
generation
(kWh)

Total
supply
(kWh)

Dem-Gen
diff (%)

Status
high gen (↑)
Low gen (↓)

Action
store (→)
/supply (←)

Dem-sup
diff (%)

1 9991.76 11 499.98 10 138.92 −14.27 ↑ → −0.74
2 13 778.75 12 604.07 13 714.17 9.18 ↓ ← 1.19
3 6151.09 9283.62 6237.81 −49.84 ↑ → −0.68
4 10 416.46 7421.78 10 496.87 29.26 ↓ ← −0.05
5 9506.76 10 850.05 9493.94 −13.31 ↑ → 0.85
6 8133.25 7315.82 7997.91 10.70 ↓ ← 1.37
7 9993.29 9484.11 9893.67 5.78 ↓ ← 1.71
that the generation level exceeds the demand, with the excess energy
being supplied by the storage system. Furthermore, the demand-supply
difference value offers insights into how effectively the system balances
supply and generation operations. Negative values signify that the total
supply falls short of the total demand, whereas positive values indicate
that the total supply exceeds the total demand.
13 
Given that the MILP model optimizes the problem across all seven
clusters simultaneously, the sum of total demand and supply over
these consecutive days equals zero. An energy balance constraint is
imposed to limit the difference between demand and supply to not
exceed 2%. This constraint demonstrates the robustness and validity
of the proposed system. The energy supply patterns of RESs during
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Table 10
Optimal energy/𝐻2 flow of RES and storage system during the each cluster.

Cluster Grid RES Storage

Import
(kWh)

Export
(kWh)

PV
(kWh)

WT
(kWh)

mHydro
(kWh)

BESS Cha.
(kWh)

BESS Discha.
(kWh)

𝐻2 Pro.
(Kg)

𝐻2 Refu.
(Kg)

1 0.00 0.00 2700.86 1188.60 3479.12 876.46 3067.99 47.69 63.58
2 0.00 0.00 1121.11 8715.37 2767.58 2498.38 2768.29 58.10 80.99
3 0.00 0.00 407.71 6869.03 2006.88 1892.40 359.89 75.41 39.65
4 0.00 0.00 3108.54 168.37 4144.86 747.36 2565.06 13.94 46.42
5 0.00 0.00 1528.79 6688.29 2632.97 3307.37 2545.54 31.84 19.04
6 0.00 0.00 3248.58 1964.03 2103.21 2286.23 2894.12 47.23 50.45
7 0.00 0.00 2096.90 4906.92 1598.91 1825.18 2780.59 48.37 61.22
Table 11
Percentage of optimal RES and storage system energy/𝐻2 supply including losses during each cluster.

Cluster Grid RES Storage Calculated
total supply (%)

Losses
(%)

Import
(%)

Export
(%)

PV
(%)

WT
(%)

Mhydro
(%)

Battery
(%)

𝐻2
(%)

1 0.00 0.00 26.64 11.72 34.31 19.65 6.30 98.62 1.38
2 0.00 0.00 8.17 63.55 20.18 −0.03 6.77 98.65 1.35
3 0.00 0.00 6.54 110.12 32.17 −26.45 −23.83 98.54 1.46
4 0.00 0.00 29.61 1.60 39.49 15.44 12.60 98.74 1.26
5 0.00 0.00 16.10 70.45 27.73 −9.56 −5.64 99.09 0.91
6 0.00 0.00 40.62 24.56 26.30 5.64 1.38 98.49 1.51
7 0.00 0.00 21.19 49.60 16.16 6.47 5.22 98.64 1.36
Table 12
SOE and SOH status comparison across the clusters’ operational periods.

Cluster Battery SOE (kWh) Hydrogen (Kg) Battery SOC (%) Hydrogen SOH (%) Satisfied the
constraintsStart End Start End Start End Start End

1 2490.00 498.00 48.47 32.92 100 20 100 68 Yes
2 498.00 501.67 32.92 9.96 20 20 68 21 Yes
3 501.67 2148.11 9.96 45.91 20 86 21 95 Yes
4 2148.11 527.15 45.91 13.25 86 21 95 27 Yes
5 527.15 1405.19 13.25 26.01 21 56 27 54 Yes
6 1405.19 1110.23 26.01 23.09 56 45 54 48 Yes
7 1110.23 577.89 23.09 9.97 45 23 48 21 Yes
operational periods are depicted in Fig. 13(c). Utilizing actual data from
a specific location has revealed distinct generation patterns. Notably,
there is an increased likelihood of WT generation when PV generation
is low. Conversely, higher WT generation is typically accompanied
by reduced PV output. Additionally, the figure illustrates that during
periods of high generation from both PV and WT, the mHydro gener-
ation contributed a comparatively lower energy output. This analysis
underscores the dynamic interplay between different RESs in response
to varying operational conditions.

Table 10 details the energy supply from RESs over a seven-day
operational period, presenting actual energy values inclusive of charg-
ing/production and discharging/refueling amounts. This table specifi-
cally quantifies hydrogen production and refueling in kilograms (kg).
Furthermore, Table 11 provides a percentage breakdown of the energy
supply. It includes the total calculated percentage of energy supply and
associated losses incurred during operation. These losses stem from
inefficiencies in charging/production and discharging/refueling pro-
cesses, as well as from discrepancies in energy flow, including excesses
and shortages. Notably, the aggregate of the calculated total energy
supply and losses equals 100%, demonstrating the system’s optimal
energy flow performance. This data collectively offers a comprehensive
view of the operational efficiency and energy management within the
system.

Fig. 14(a) illustrates the charging and discharging periods, rates,
and SOC of the BESS, while Fig. 14(b) displays the 𝐻2 production
and refueling periods, rates, and SOH of HSH. These figures indicate
that the charging and discharging rates for both storage systems are
maintained within predefined constraints. The SOC and SOH curves

reveal that levels consistently remain within the 20% to 100% range
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under various conditions. Notably, a higher 𝐻2 production rate is
employed to utilize excess energy effectively. Conversely, the maximum
𝐻2 refueling rate is set to match the peak 𝐻2 demand, adhering to the
constraint that 𝐻2 storage must meet all 𝐻2 demands.

To provide a more detailed understanding, Table 12 compiles com-
prehensive data on these aspects. This table allows for the observation
of initial and final SOC and SOH values for each cluster. A key insight
from the table is the operational strategy: during periods of high
demand, the system fully discharges within acceptable limits, whereas
during lower demand, it conservatively retains energy for future use.
This demonstrates the system’s effective management in balancing
energy availability with demand requirements.

4.4. Techno-economic analysis

The cost analysis of transitioning from a grid-connected system
to a MG for a community setting is based on local energy provider
tariff rates. Various tariffs were considered to calculate the energy
cost for each cluster. Utilizing Eq. (56), the cost of energy for the
MG 𝐶𝑂𝐸𝑚𝑔 was determined to be 0.1776 AUD/kWh. Subsequently,
the MG’s cost was calculated using this value. Table 13 details the
total energy cost for each cluster under different tariff rates and MG
conditions. Furthermore, Table 15 presents the percentage of optimized
cost and carbon emission achieved by converting various tariffs to MG
configurations and non-RES to RES-based transformation, respectively.
Fig. 15(a) illustrates the percentage decrease in costs when the MG
demand corresponds to various clusters.

The analysis indicates that the maximum financial benefit from tran-
sitioning to an MG is observed for communities previously under the
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Fig. 14. Optimal scheduling of (a) BESS, charging and discharging rate, and SOC status and (b) 𝐻2 storage, production, and refueling rate, and SOH status during the operation
eriod.
Table 13
Energy cost of the existing system (considered as different energy communities) and the proposed MG system.

Cluster Total demand (kWh) GFT1 (AUD) ToU (AUD) GFT2 (AUD) MG (AUD)

1 9991.76 3389.00 2498.97 2760.82 1774.93
2 13 778.75 4673.48 3347.48 3807.21 2447.65
3 6151.09 2086.33 1497.34 1699.61 1092.68
4 10 416.46 3533.05 2492.55 2878.17 1850.38
5 9506.76 3224.50 2280.07 2626.81 1688.78
6 8133.25 9660.43 6819.75 7869.79 1444.79
7 9993.29 3389.52 2481.42 2761.25 1775.21
Table 14
Carbon emission during each cluster’s operation for different energy generation technology.

Cluster Total demand (kWh) Required carbon for different technology

GT (Kg) Oil (Kg) Coal (Kg) PV+WT+mHydro (Kg)

1 9991.76 4995.88 6494.64 8992.58 179.56
2 13 778.75 6889.37 8956.19 12 400.87 119.30
3 6151.09 3075.55 3998.21 5535.98 65.55
4 10 416.46 5208.23 6770.70 9374.81 201.80
5 9506.76 4753.38 6179.39 8556.08 132.87
6 8133.25 4066.63 5286.62 7319.93 208.05
7 9993.29 4996.64 6495.64 8993.96 152.38
Table 15
Percentage of optimized cost and carbon emission of the MG concerning different energy technology.

Cluster Optimized cost (%) Optimized carbon emission (%)

GFT1
→ MG

GToU
→MG

GFT2
→MG

GT → MG Oil → MG Coal → MG

1 47.63 28.97 35.71 3.59 2.76 2.00
2 47.63 26.88 35.71 1.73 1.33 0.96
3 47.63 27.03 35.71 2.13 1.64 1.18
4 47.63 25.76 35.71 3.87 2.98 2.15
5 47.63 25.93 35.71 2.80 2.15 1.55
6 85.04 78.81 81.64 5.12 3.94 2.84
7 47.63 28.46 35.71 3.05 2.35 1.69
business low voltage ToU tariff, followed by the residential low voltage
GFT-2, and then the business low voltage GFT-1 tariff. It is noted that
for GFT, the percentage of cost and cost savings remain consistent
across all seven clusters. However, for the ToU tariff, these figures vary,
highlighting the impact of tariff structure on the financial benefits of
adopting an MG system. This comprehensive analysis underscores the
economic advantages of transitioning to an MG, particularly for specific
tariff categories.

4.5. Carbon emission analysis

The carbon emission analysis for the MG, considering its grid-
connected energy community context, is conducted by accounting for
various energy generation sources. Recognizing that grid energy can
originate from diverse sources such as gas turbines (GT), oil, or coal-
based power plants, these technologies were employed to estimate
15 
the carbon emissions associated with utility grid energy. For the MG,
carbon emissions were calculated based on its optimal capacity. Ta-
ble 14 details the amount of carbon emissions, measured in kilograms,
for different clusters and technologies. The comparative analysis of
carbon emissions during the operation of the MG, post-transition from
a traditional grid, is presented in Table 15. This table illustrates that the
greatest reduction in carbon emissions is achieved when transitioning
from a coal-based grid to a MG, followed by transitions from oil and
GT-based systems, respectively. The data clearly indicates that adopting
MG technology significantly lowers carbon emissions, especially when
replacing energy sourced from high-emission technologies like coal.
In addition, Fig. 15(b) illustrates the percentage decrease in carbon
emission when the MG demand corresponds to various clusters. This
transition not only supports more sustainable energy practices but also
contributes to broader efforts to mitigate environmental impact.
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Fig. 15. Percentage of (a) cost and (b) carbon emission after the transition of the MG at different clusters.
Table 16
Overall RES and storage system energy/𝐻2 flow.

PV WT mHydro Initial BESS Initial 𝐻2

21.27% 47.37% 28.05% 1.60% 0.40%

Table 17
Comparison analysis of different transformation schemes.

Transformation
technology

Cost savings Carbon emission reduction

Tariff- based
GFT1→MG 47.03% –
GFT2→MG 57.73% –
GToU→MG 65.45% –

Resource- based
GT→MG – 96.82%
Oil→MG – 97.55%
Coal→MG – 98.23%

4.6. Overall analysis

In the preceding section, comprehensive analysis such as the energy
flow, cost savings, and carbon emission impacts for each cluster is
conducted within the proposed system. These clusters represent an
aggregate of the entire year’s energy generation and consumption data,
offering a holistic view of the system’s performance. Table 16 provides
an overview of the total energy supply contributions from various
RESs within the MG. This data indicates that the WT system is the
predominant energy supplier to the MG, followed by mHydro, and
finally the PV system. The analysis also takes into account the initial
SOC and SOH of the BESS and 𝐻2 storage, and their contributions
are delineated in the table. This comprehensive analysis, encompassing
the entire year, allows for a detailed understanding of the proposed
system’s energy dynamics, highlighting the significant contributions
of various RESs and storage systems to the overall energy matrix. It
underscores the effectiveness of integrating multiple energy sources and
storage solutions in enhancing the efficiency and sustainability of the
MG.

However, the cost analysis and carbon emission status for the
overall system operation are detailed in Table 17. The table provide
valuable insights into the economic and environmental benefits of im-
plementing the proposed MG system. The table reveals that significant
cost savings can be achieved, particularly among business users within
the community. For residential users, the implementation of the MG
system is projected to result in substantial energy cost savings, amount-
ing to approximately 53.27%. This indicates a notable financial benefit
for residents, highlighting the cost-effectiveness of the MG system.
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Regarding carbon emissions, the results demonstrate that transitioning
from a coal-based grid to an MG system offers the most substantial
reduction in carbon emissions, with a remarkable decrease of about
98.23%. This drastic reduction underscores the MG’s effectiveness in
significantly lowering the carbon footprint of energy consumption,
particularly when replacing coal-based energy sources. However, the
statistical analysis of cost reduction and carbon emission reduction are
presented in Figs. 16(a) and 16(b), respectively.

5. Discussion

The discussion revolves around optimizing the capacity of RES and
storage systems. According to the findings, the optimization process
utilizes a dataset clustered into seven groups to ensure a reliable and
cost-effective energy setup for a community. The results indicate that
the capacities of RES and storage systems are guided by the values of 𝛼,
which influence the optimization algorithm, favoring higher capacities
for systems with lower 𝛼 values to reduce costs. Despite its high 𝛼, HSH
is constrained to ensure its cost does not excessively affect the capacity
determination. Moreover, an increased capacity in BESS is targeted to
enhance system reliability, ensuring sufficient energy supply even when
RES generation is low.

The optimal energy flow analysis reveals the energy supply and
demand patterns across seven clusters, helping to validate the sys-
tem’s efficiency and reliability through sensitivity analysis. Notably,
discrepancies between demand and supply provide insights into the
system’s balance, indicating situations where energy is either stored due
to surplus or supplied from storage due to shortages. Key operational
details include the energy supply patterns of RESs, such as WT and PV,
which show a dynamic interplay depending on operational conditions.
The system’s ability to manage energy efficiently is also demonstrated
by the energy balance constraint, ensuring that the difference between
demand and supply does not exceed 2%. Additionally, the system’s
operational efficiency is reflected in how it manages charging and
discharging activities within the BESS and HSH, with storage levels
maintained within optimal ranges to match energy supply and demand
effectively.

Table 13 specifically examines the costs associated with existing
energy systems—categorized under GFT1, GFT2, and ToU—compared
to a proposed MG system. Notably, the proposed MG system presents
lower costs in nearly all instances when compared to the flat tariffs
and performs competitively under the ToU pricing. Moreover, Table 14
expands on the environmental aspect by detailing the carbon emis-
sions from different energy generation technologies. The data clearly
show that traditional technologies emit substantially more carbon than
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Fig. 16. Statistical analysis of the (a) percentage of cost reduction in different transition schemes and (b) percentage of carbon emission reduction in several tariff settings during
multiple clusters.
renewable technologies. Furthermore, Table 15 illustrates the poten-
tial for cost and emission reductions when switching from traditional
systems to an MG setup. It presents the optimized conditions for cost
and carbon emissions, demonstrating significant improvements in both
areas across all clusters. These findings highlight the cost effectiveness
and environmental advantages of transitioning the traditional energy
system to RES-based MG.

Tables 16 and 17 illustrate the overall benefits of transitioning the
existing energy system to RES-based MG. Table 16 shows that in an
optimal renewable energy setup under the considered energy commu-
nity, WT, and mhydro are the most significant energy contributors,
highlighting their reliability and availability. Table 17 reveals that
switching from traditional tariff-based energy systems to MG results
in significant cost savings, particularly when moving from ToU tariffs.
Moreover, transitioning from fossil fuel-based systems (GT, Oil, Coal)
to MG drastically reduces carbon emissions. These findings collectively
demonstrate the dual benefits of the MG system: achieving considerable
cost savings while also substantially reducing carbon emissions, thereby
contributing to both economic and environmental sustainability.

6. Conclusion

In this study, a hybrid MLCP-based bi-level PSO-MILP optimization
algorithm is developed to design and enhance the performance of
an MG within an energy community. The proposed system integrates
the MLCP approach to clustering and profiling the data by utilizing
historical meteorological data, RES parameters, and the community’s
energy demand and incorporating emerging technologies like FCEV
demand. This approach also uniquely combines two advanced opti-
mization models to simultaneously determine the optimal capacity of
RESs and storage systems through the optimal operation. The system’s
effectiveness was assessed through metrics such as optimal energy
flow, cost savings, and carbon emission reduction. The results indicate
significant improvements, with the system operating optimally in seven
clustered scenarios. Notably, the cost of running the MG could be
reduced by up to 65.45% compared to current energy expenses and
carbon emissions potentially decreased by as much as 98.23% when
transitioning from a coal-based grid. Similarly, transforming GFT1-
based and GFT2-based LV grid systems to MG led to cost reductions
of 47.03% and 57.73%, respectively. Additionally, carbon emissions
were decreased by 96.82% for the transition from GT to MG and by
97.55% for the transition from oil to MG. In conclusion, the pro-
posed AI-integrated system markedly enhances MG performance, and
future updates will focus on incorporating advanced AI algorithms
for day-ahead operations, shifting from traditional to intelligent grid
systems.
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