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Summary Elevated atmospheric [CO2] (eCa) often decreases stomatal conductance, which 

may delay the start of drought, as well as alleviate the effect of dry soil on plant water use 

and carbon uptake. We studied the interaction between drought and eCa in a whole-tree 

chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their Ca 

treatments before a four month dry-down. Trees grown in eCa were smaller than those grown 

in ambient Ca (aCa) due to an early growth setback that was maintained throughout the 

duration of the experiment. Pre-dawn leaf water potentials were not different between Ca 

treatments, but were lower in the drought treatment than the irrigated control. Counter to 

expectations, the drought treatment caused a larger reduction in canopy-average transpiration 

rates for trees in the eCa treatment compared to aCa. Total tree transpiration over the dry-

down was positively correlated with the decrease in soil water storage, measured in the top 

1.5 m, over the drying cycle ; however, we could not close the water budget especially for the 

larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water 

measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger 

trees were able to extract more water from deep soil layers. These results highlight the 

interaction between rooting depth and response of tree water use to drought. The responses of 

tree water use to eCa involve interactions between tree size, root distribution and soil 

moisture availability that may override the expected direct effects of eCa. It is essential that 

these interactions be considered when interpreting experimental results. 

 

 



Introduction 

 

Atmospheric CO2 concentration (Ca) continues to rise as a result of anthropogenic emissions 

(e.g. Le Quéré et al. 2009). The effect of rising Ca on vegetation is likely to be profound, 

particularly on productivity and water use (Ainsworth and Long 2005). The effect of Ca on 

vegetation is, however, modified by a number of environmental factors, such as nutrient 

status, temperature, and water availability (e.g. Chaves and Pereira 1992; Kimball et al. 1993; 

Saxe et al. 2001; Norby and Luo 2004). Because water availability frequently limits plant 

productivity, there is a need to increase understanding of this potentially important interaction 

with Ca. It has long been recognized that elevated Ca may have a relatively large effect on 

plant biomass increment during periods of water stress (Gifford 1979; Conroy et al. 1988;  

Sionit et al. 1980; Tolley and Strain 1984; Rogers et al. 1994). However, the mechanisms 

underlying this interaction are complex and may be difficult to unravel (Wullschleger et al. 

2002). 

 

In particular, it is important to distinguish how Ca affects whole-plant water relations from 

the effects on water use at the leaf level. In most species, elevated Ca (eCa) leads to lower 

stomatal conductance and hence water use per unit leaf area (Eamus 1991; Medlyn et al. 

2001; Ainsworth and Rogers 2007). If this leaf-level response translates to a reduction in 

water use per unit ground area (e.g. Wullschleger and Norby 2001; Hungate et al. 2002), then 

soil water content should be higher in eCa, affecting various hydrological processes (Warren 

et al. 2010). If this saved water is in fact available for uptake (i.e. it does not drain below the 

rooting zone), then eCa would lead to a delay in the onset of drought. In studies with potted 

plants, reduced leaf-level water use is often counteracted, in varying degrees, by an increase 

in plant leaf area under eCa (Samarakoon and Gifford 1995; Roden and Ball 1996; Centritto 

et al. 1999, 2002), so that this drought delay effect is not usually observed. Studies that 

control the confounding effect of plant leaf area by maintaining a set soil water content 

sometimes do find a larger enhancement of biomass production under drought due to eCa 

(Atwell et al. 2007). Field-based studies in crops and grasslands often find lower water use 

per unit ground area and an increase in soil water content, as well as a delay in the drought 

effect on water use (Field et al. 1997; Niklaus et al. 1998; Owensby et al. 1999; Morgan et al. 

2004; Nelson et al. 2004). In field-grown trees however, evidence for each of these three 

components of eCa-induced delay in drought is scarce and ambiguous.  

 



Current free-air CO2 enrichment studies (FACE) in forests have not been designed to test 

drought interactions, and as such rely on comparing eCa effects across years with varying 

rainfall or brief periods of drought. These comparisons have not confirmed a clear soil water 

savings effect (Gunderson et al. 2002; Nowak et al. 2004; Uddling et al. 2008). In a 

deciduous beech forest, Leuzinger and Körner (2007) reported increased soil water content in 

an eCa patch, but soil water was only measured at 10 cm depth and the impacts of this water 

savings on drought occurrence was not explicitly studied.  During an episodic drought in an 

open-top chamber (OTC) experiment with field-grown scrub oak, Li et al. (2007) found a 

smaller reduction in net ecosystem exchange (NEE) in the eCa compared with the aCa 

treatment. However, there was no evidence for a water savings effect because soil water 

content did not differ between the Ca treatments. In the same experiment, Hymus et al. (2003) 

found that the eCa enhancement of NEE increased with soil water content, contrary to the 

expected response. The reasons for these mixed results are not clear, but interactions with 

other environmental factors are likely important. 

 

Long-term studies on the interaction between drought and eCa are complicated by a number 

of feedbacks that may occur (Beerling et al. 1996), which may help explain the varied and 

confusing results of Ca x drought experiments. One important feedback is plant size, which 

can affect the Ca x drought interaction in at least two important ways. First, larger size at eCa 

leads to greater water use and hence less water savings at a given water supply. Second, in 

field studies, larger plants can be expected to have deeper roots to tap additional water 

sources (Prior and Eamus 1999). Moore and Field (2006) found in a grassland species that 

growth at eCa stimulated root biomass and root depth, and resulted in water uptake at greater 

depth. Other studies have confirmed greater fine root mass under eCa, often also at greater 

depth (Day et al. 1996; Iversen et al. 2008; Iversen 2010). A feedback on plant water 

relations through enhanced root biomass at eCa would alter the Ca x drought effects observed 

in field studies. 

 

Here, we studied the effect of a prolonged drought on water use in Sydney blue gum 

(Eucalyptus saligna Sm.) growing at ambient and elevated (ambient + 240ppm) Ca. The 

experiment consisted of 12 whole-tree chambers that were operated as large cuvettes, 

allowing detailed analysis of whole tree water use (Barton et al. 2010). Trees were grown for 

19 months in well-watered conditions in the Ca treatments, resulting in a wide range of final 

tree sizes. Somewhat unexpectedly, final tree size was smaller at eCa than aCa, which was 



attributed to an early setback in growth in the trees growing in eCa. After this setback, which 

occurred during a time-span of a few weeks during early spring (Sept.-Oct. in the southern 

hemisphere), size-corrected growth rates were similar between Ca treatments, due to 

photosynthetic downregulation in the eCa trees (D.S. Ellsworth et al., unpublished data). We 

do not know the reason for the setback in the eCa treatment, but have the following 

hypotheses : 1) more severe frost damage in the eCa treatment in the 2007 winter (cf. (Barker 

et al. 2005), 2) growth reduction due to an insect attack that may have been more severe in 

the eCa treatment, and 3) low replication and high genetic variation. For half of the trees, 

water was withheld for five months, resulting in a clear decrease in soil water content. We 

tested the hypothesis that the smaller trees in the eCa would be less susceptible to drought 

through lower water use and hence water savings; amplified by the expectation that eCa 

reduces water use per unit leaf area. 

 

Methods 

 

Whole-tree chamber experiment 

 

A detailed description of the experiment is available in Barton et al. (2010). Twelve whole-

tree chambers were established at the Hawkesbury Forest Experiment (HFE) in 2006, and a 

single Sydney blue gum (Eucalyptus saligna Sm.) sapling was planted in each chamber in 

April 2007. Final harvest occurred in March 2009. The experiment is a crossed Ca x drought 

design with 3 replicate chambers in each of four treatments. The Ca treatments commenced at 

the time of planting and were ambient (ca. 380 ppm; aCa) and ambient + 240 ppm (eCa). The 

chambers are climate-controlled; excellent control of temperature and, to a lesser extent, 

relative humidity was achieved (Barton et al. 2010). All chambers were fitted with a root 

exclosure barrier that extended to 1 m depth, which prevented roots from the chamber tree 

growing beyond the chamber in the topsoil, and prevented those from neighbouring trees 

from growing into the chamber. Below 1 m, roots were able to grow freely. All chambers 

were well-watered until 27th October 2008 when 6 of the 12 chambers were subjected to a 

dry-down, imposed by completely withholding water. The remaining 6 chambers were kept 

well-watered for the entire period. The drought lasted until 13th February 2009 when heavy 

rainfall resulted in a cessation of the drought effect.  

 

Whole-tree water flux 



 

The whole-tree chambers operate as large gas exchange cuvettes, thereby allowing 

measurement of CO2 and H2O fluxes at high temporal resolution (every 14th minute) (see 

(Barton et al. 2010 for details). Here, we report only on the water fluxes during the dry-down. 

Whole-tree water flux was expressed on a per unit leaf area basis (EL) or expressed in 

equivalent depth (mm) for comparison to soil water storage; this could be accomplished 

because the ground surface area (the area enclosed by the root barrier) of each chamber was 

10 m2 and during the drought period tree crowns occupied the entire horizontal surface area 

of the chambers. Leaf area estimates were based on two accurate measurements (one based 

on leaf counting in April 2008, and the other from the final harvest in March 2009)., and 

interpolation using height growth and litter fall rates. We averaged all EL data by Ca and 

irrigation treatment into 2-hourly bins. We used generalized additive models (package mgcv 

in R 2.12.0; R Development Core Team 2010) (Wood 2006) to visualize the trends in EL with 

VPD and the differences between treatments. To test the interaction between Ca and irrigation 

treatments on EL, we used a linear mixed-effects model (package nlme in R) with chamber as 

the random effect (i.e. for this analysis EL was not averaged by treatment). In this analysis, 

VPD was used as a covariate (as well as the quadratic term of VPD due to a non-linear 

response of EL to VPD). 

 

Soil measurements 

 

The soil type is in the Clarendon Formation (Chromosol; Isbell 1996), an alluvial formation 

of low-fertility sandy loam soils (top 70 cm) with low organic matter content (0.7%). There is 

a partially cemented hard layer with manganese nodules (70-100 cm), and a clay layer (below 

100 cm). In each chamber, volumetric soil water content was monitored on an hourly basis 

using Sentek TriSCAN® sensors (Sentek Technologies, Stepney, SA, Australia). The probes 

were configured to measure volumetric soil water content measured at four depths (0.3, 0.7, 

1.1 and 1.5 m). Theta probes (Delta T Instruments) measured volumetric soil water content at 

10 cm depth within the chambers throughout the study period. In addition, a neutron probe 

(503DR Hydroprobe®, Instrotek, NC, USA) was used to measure soil water content to a 

depth of 4.25 m (with 0.25 or 0.5 m steps) at ca. bi-weekly intervals. Calibration of the 

Sentek sensors was difficult due to variation in bulk density across the site, and sensitivity to 

the geometry of the access tubes. We rescaled the soil water content measurements so that the 

maximum value matched that measured by the Theta probe in the topsoil. This method 



should yield reliable absolute soil water contents, because all chambers were irrigated very 

heavily post-drought, and soil water saturation was observed (resulting in temporary ponding 

of water at the soil surface due to low hydraulic conductivity of the hard deep soil layer). The 

maximum water content varied little by chamber (35.7%, SE=0.7), and compared well to 

estimates of porosity from bulk density in two soil pits dug at the site.  

 

Pre-dawn leaf water potentials 

 

A Scholander-style pressure chamber (Model 600, PMS Instrument Company, Corvallis, OR, 

USA) was used to measure pre-dawn leaf water potential (Ψpd) at regular intervals in each 

whole-tree chamber. Leaves were sampled from the middle- to upper-canopy and 

immediately sealed in a foil-laminate bag prior to measurement. 

 

Root water uptake 

 

We inferred root water uptake from vertical profiles of soil moisture measured by the neutron 

probes (Rambal 1984; Dye 1996; Calder et al. 1997). We did not correct for possible 

gravitational drainage of water, which could be mistaken for root water uptake, because soil 

water content in the clay layer (below 1 m depth) was constant in all chambers up to the 

drought period. It is therefore unlikely that drainage plays a large role in the soil water 

dynamics in this system. It is possible that some of the water extraction at depth constitutes 

hydraulic lift rather than direct uptake (Dawson 1996), but this is not important because 

hydraulic lift also implies that roots were present at that depth. Fractional water uptake at 

depth z (Fz) over the time interval t1 to t2 was calculated with Eq. 1. 
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where Wz,t is the soil water content (% volumetric) at depth z at time t and Zmax is the 

maximum depth of sensors (4.25 m). Fz integrates to unity up to the maximum soil depth of 

the sensors (4.25 m). 

 

Results 

 



There was substantial variation between chambers in the amount of soil water stored in the 

top 1.5 m of soil (Figure 1), and no clear effect of Ca treatment on soil water storage was 

observed during the dry-down. Soil water storage declined rapidly in the early stages of the 

drought, but the rate of decline slowed as the drought progressed. 

 

The drought treatment applied was effective in reducing the pre-dawn leaf water potential 

(Ψpd) (Figure 2, and see Zeppel et al., this issue)., Counter to our expectations, Ψpd did not 

differ between Ca treatments, neither at the peak of the drought, when the lowest Ψpd values 

were reached (t-test, P = 0.13), nor when considered over the entire period (see Zeppel et al., 

this issue). The two lowest Ψpd values, however, were reached for two eCa trees (-1.23 and -

1.1 MPa compared to -0.61 to -0.76 for the four other droughted trees). 

 

The whole-tree H2O flux expressed on a per unit leaf area basis (EL) was strongly controlled 

by vapour pressure deficit (VPD) (Figure 3). Because there were small differences in VPD 

between Ca treatments arising from differences in tree size, we analysed the effects of the 

drought treatment on EL with VPD as a covariate. In the well-watered treatments, EL was 

lower in the eCa treatment especially at low VPD. There was only a small effect of the 

drought treatment on EL during the early drought period (Figure 3 A,B), but a very strong 

reduction in EL at a given VPD during the later stages of the drought (Figure 3 C,D). The 

reduction in EL due to drought was larger in the eCa treatment (Figure 3D), and this 

interaction was especially clear when VPD was between 1.5 and 3kPa. Results from the 

linear mixed-effects model showed strong significant effects of VPD and irrigation treatment 

on 2-hourly EL (Table 1), as well as a significant interaction between Ca and irrigation 

treatment when accounting for VPD (the Ca*Water*VPD interaction was significant at P < 

0.001). Taken together, these results demonstrated that the drought treatment reduced EL at a 

given VPD, and EL was more reduced due to drought in the eCa treatment. 

 

Total tree water use (ET; litres per day) during the dry-down was strongly and linearly related 

to tree leaf area (AL) (Figure 4). Leaf area differed three-fold among the droughted trees (and 

four-fold among the irrigated trees), and leaf area was lower for the eCa trees compared to the 

aCa trees. We compared cumulative ET of droughted trees to the total drawdown in soil water 

storage and found that they were related (P=0.03, R2=0.65), but with a substantial ‘missing 

source’; that is, the total amount of water used in the drought period was much larger (by 27 

– 88 %) than the decline in soil water storage for the upper 1.5 m of the soil profile (Figure 



5A). This difference (the residual in Figure 5A) was smaller for the eCa trees (t-test, 

P=0.053), and was also weakly related to tree leaf area (P=0.065, R2=0.52).  

 

These results suggest that a substantial volume of water was taken up from depths below 1.5 

m, and that this uptake may depend on tree size. We were able to further test this conclusion 

using neutron-probe measurements to a depth of 4.25 m, which were recorded eight times 

during the dry-down. An example of the pattern of water extraction with depth is shown for 

one aCa chamber during the dry-down, distinguishing between the early and late drought 

periods (Figure 6). We calculated the relative water uptake with depth for the two periods of 

the drought from the relations shown in Figure 6B for all six droughted chambers. For the 

early drought, we found a clear difference between the Ca treatments in the pattern of relative 

water uptake with soil depth (Figure 7A). During this period, the proportion of soil water 

taken up by roots from 0 to 1.5 m soil depth was 0.68 - 0.84 for the aCa treatment, and 0.95-

1.0 for the eCa trees. This difference between the Ca treatments is qualitatively consistent 

with the smaller difference between transpiration and soil water storage decrease for the eCa 

trees (Figure 5). As the drought progressed, soil water uptake was greater from soil depths 

below 1.5m in all trees (Figure 7B), but was consistently from greater depths for aCa trees. 

 

Discussion 

 

Contrary to expectations, the smaller trees in the elevated [CO2] (eCa) treatment were not less 

susceptible to drought stress than were the aCa trees. Although trees in the eCa treatment used 

substantially less water than aCa trees because they had lower leaf area, there was no delay in 

the effect of drought stress on tree water use. The minimum Ψpd reached during the drought 

cycle was similar in the Ca treatments and the relative effect of withholding water on canopy-

average transpiration rate was greater in the eCa trees. This result can be explained in terms of 

rooting depth. We found that the larger trees in the aCa treatment accessed soil water to 

greater depths. Consequently, smaller trees in the eCa treatment could not substantially access 

deep soil water and therefore experienced greater drought stress than aCa trees, as evidenced 

by a greater reduction in water use compared to the irrigated treatment 

 

Our finding that smaller trees experience increased water stress is consistent with several 

previous studies. Prior and Eamus (1999) showed that Ψpd increased with sapling size in a 

savannah, and that this relationship was explained by difference in rooting depth. Dawson 



(1996) also showed that larger trees had access to groundwater while smaller trees did not. 

For an annual forb species, eCa led to increased root biomass and earlier extraction of water 

from deeper soil layers than the aCa controls (Moore and Field 2006). Our results show that it 

is vital that Ca x drought experiments provide observations of soil water content over the 

entire root profile, because plant size may affect the depth at which water is taken up, and 

hence the response to drought. 

 

Root responses to eCa have received much attention (Morison 1993; Norby 1994; Iversen et 

al. 2008, 2010), but usually with the focus on soil cycling of nitrogen and carbon (Norby 

1994; Iversen et al. 2008; Franklin et al. 2009), rather than whole-plant water relations. Many 

studies on crop and grassland species have shown that root biomass is more responsive to eCa 

than other plant parts (Rogers et al. 1994). At the Oak-Ridge FACE site within a plantation of 

Liquidambar styraciflua L.  most of the biomass response to eCa  was due to greater root 

biomass (Norby et al. 2004) which was more pronounced at greater depth in the soil (30-60 

cm) than shallower depths (Iversen et al. 2008,2010). The implications of increased root 

biomass for water relations are not clear because there is not a direct relationship between 

root biomass and total volume of water available for root uptake. An increase in root biomass 

can mean higher fine root density, deeper rooting depth, or both, but these two possibilities 

have profoundly different implications for plant water relations. In E. saligna, we found that 

the difference in root water uptake between the Ca treatments was greatest at depth (ca. 1 - 

2.5 m). The vast majority of studies on root responses to varying environmental conditions 

focus on the upper soil profile  (up to usually 50-100 cm depth at the most), presumably 

because the majority of root biomass is  in the upper 1 m of soil (Jackson et al. 1996). 

However, deep roots have a large influence on plant water relations (Eamus et al. 2006) and 

therefore, particularly in deeply rooted species such as Eucalyptus, responses of root biomass 

to eCa need to be studied in much greater detail. 

 

As the drought progressed at the HFE, water was extracted from deeper soil layers (Figures 6 

and 7), which is consistent with previous studies (Rambal 1984; Bréda et al. 1995; Romero-

Saltos et al. 2005). During the late drought period, five of the six droughted trees extracted 

ca. 40-60% of their water from soil depths below 2 m. Such relatively deep roots pose a 

significant problem for modelling the soil water balance, soil water extraction patterns and 

overall tree water use in drought. For example, Dye (1996) found only moderate water stress 

in Eucalyptus grandis W. Hill ex Maiden even though rainfall was excluded for more than 



seven months because  root water uptake occurred predominantly below 8 m depth. 

Similarly, Calder et al. (1997) found prolonged decoupling of water use from precipitation by 

Eucalyptus camaldulensis Dehnh. because roots extended deeper than the soil measurement 

limit of 7.5 m. More recently, for a native Eucalyptus woodland, Zeppel et al. (2008) 

observed that tree water use was independent of soil moisture content in the top 80 cm of the 

soil profile, despite the majority of root biomass occurring in this zone. Clearly, the 

connection between tree size and rooting depth is important in developing a deeper 

mechanistic understanding of whole-tree water use, particularly for Eucalyptus species that 

are often deep-rooted.   

 

Three potential mechanisms might explain the common observation that plant growth is 

stimulated more by elevated Ca during drought (Gifford 1979; Sionit et al. 1980; Tolley and 

Strain 1984; Conroy et al. 1988; Rogers et al. 1994). The first mechanism is a delay in the 

onset of drought due to lower water use in eCa, which we have ruled out in our experiment. It 

can also be expected that lower stomatal conductance (gs) in eCa should lead to higher mid-

day leaf water potentials (ΨL), thereby slowing the decline in ΨL resulting from a drying soil. 

Many studies have found an increase in ΨL in plants grown under eCa in crop or grassland 

species (Nelson et al. 2004) and in potted tree seedlings (Roden and Ball 1996; Polley et al. 

2002; Atwell et al. 2007), and for field-grown tree seedlings (Eamus et al. 1995), but not for 

loblolly pine in a free-air CO2 enrichment (FACE) experiment (Domec et al. 2009). However, 

it is not clear how much relief a slightly less negative ΨL offers during a severe soil drought. 

In particular, the response of plant water use to soil water potential is relatively insensitive to 

ΨL (Sinclair 2005), because the soil-to-root pathway becomes increasingly limiting as a 

drought progresses (Sperry et al. 1998; Williams et al. 2001; Fisher et al. 2006; Duursma et 

al. 2008), and ΨL has no control on the resistance in that pathway. In any case, more detailed 

modelling will be required to quantify the components of plant water relations that are altered 

under eCa (Wullschleger et al. 2002). 

 

A third mechanism that may lead to enhanced stimulation of plant growth by eCa under 

drought stress is the relative enhancement of photosynthesis. Because of the saturating 

response of leaf CO2 assimilation (A) to intercellular [CO2] (ci), the relative response of A to 

Ca is higher at low gs (Grossman-Clarke et al. 2001; McMurtrie et al. 2008). Thus, a 

reduction in gs during drought should lead to a relatively larger response of A to Ca. This 

mechanism has not been clearly demonstrated with measurements of gs and A during a dry-



down. Some experiments do seem consistent with this expectation (Picon-Cochard and Guehl 

1999), but in some studies the Ca treatment effect on A disappears during a drought rather 

than being enhanced (re-analysis of data in Damesin et al. 1996; Gunderson et al. 2002; 

Johnson et al. 2002). 

 

In summary, eCa reduced leaf level water use and smaller trees in the eCa treatment used less 

water overall, but drought stress was more severe due to more shallow rooting depth 

compared to larger trees in the aCa treatment. An implication is that the response of 

vegetation to eCa cannot be easily predicted from the direct leaf-level physiological 

responses. Other studies have confirmed that, in long-term field experiments, many feedbacks 

alter the initial response of vegetation to eCa (Chaves and Pereira 1992; Niklaus et al. 1998). 

As such, we should not prematurely conclude that, on a global scale, vegetation in a CO2-

enriched atmosphere will be less susceptible to drought, because whole-plant and ecosystem-

level feedbacks may well alter or even reverse this response. A better understanding of these 

feedbacks and interactions is needed to explain conflicting results in different experiments.  
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Tables 
 
Table 1. Linear mixed-effects model results for whole tree H2O flux expressed on a per unit 
leaf area basis (EL) during the late drought period. Num DF and Den DF are numerator and 
denominator degrees of freedom for the F-tests. 
 Num DF Den DF F-value P-value 
Intercept 1 3941 391.52 <0.001 
VPD 1 3941 2892.15 <0.001 
VPD2 1 3941 2836.49 <0.001 
Ca 1 8 2.65 0.14 
Water 1 8 14.07 0.01 
VPD x Ca 1 3941 1.6 0.21 
VPD2 x Ca 1 3941 82.14 <0.001 
VPD2 x Water 1 3941 70.4 <0.001 
VPD x Water 1 3941 322.75 <0.001 
Ca x Water 1 8 0.03 0.86 



VPD x Ca x Water 1 3941 26.45 <0.001 

 
 
Figure captions 

 

Figure 1. Soil water storage in the top 1.5 m for the six droughted chambers. The early 

drought was defined as the period just after the drought started when there was no discernable 

effect on either pre-dawn leaf water potential or whole-tree H2O flux. The late drought 

extends up to a period of heavy rain in February 2009, which affected soil water storage in 

spite of the root exclosures. 

 

Figure 2. Pre-dawn leaf water potentials (Ψpd) averaged by Ca and water treatment. Error bars 

denote one standard error. Each value is the average of three chambers.  

 

Figure 3. Canopy-average transpiration rate (EL, expressed on a leaf area basis) as a function 

of the vapour pressure deficit (VPD) for the early drought (A,B) and late drought (C,D) 

periods. Panels A and C show two-hourly averages of whole-tree fluxes averaged by 

treatment (each symbol is the mean for three chambers).  Panels B and D show smoothed 

regressions with approximate 95% confidence intervals (grey area) (see Methods). 

 

Figure 4. Total tree water use (ET, in litres per day) during the dry-down (early and late 

drought combined, see Figure 1) is related to average tree leaf area (AL). Solid line: 

regression line for well-watered trees (ET = 1.98 + 0.91 x AL, P = 0.006, R2 = 0.84), dashed 

line for droughted trees (ET = 0.52 + 0.75 x AL, P=0.02, R2=0.72). Note the lower leaf area 

and water use for eCa trees, and the substantially lower water use for the droughted trees over 

this period. 

 

Figure 5. A. Total decrease in soil water storage in the top 1.5m of soil (W) for the six 

droughted trees over the whole drought period (from Figure 1) compared to the total tree H2O 

flux over the same period (ET). The solid line is a 1:1 line. B. The residual in panel A as a 

function of average tree leaf area for the same period. The regression (dashed line) was 

marginally significant (P = 0.06), and the residual was smaller for eCa trees than aCa trees (t-

test, P = 0.053). 

 



Figure 6. A. Example of the decrease in soil water content from neutron probe measurements 

during the drought for one aCa chamber. The progression of the drought is from right to left 

(early and late drought periods are defined in Figure 1). Note the decrease in soil water 

between 200 and 350cm depth. B. Based on panel A, the relative water uptake (normalized to 

add up to unity, Eq.1) was estimated as a function of depth for the early and late drought 

periods. Note the shift in relative water uptake to deeper soil layers when the drought 

progressed. 

 

Figure 7. Cumulative relative water uptake for the six droughted trees for the early drought 

period (left panel) and the late drought (right panel). See Figure 1 for definition of early and 

late drought periods. Water extraction was normalized to be equal sum to unity at 4.25m 

depth. Note the difference in depth of water extraction between Ca treatments, and the shift to 

deeper soil layers as the drought progressed. 
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