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ABSTRACT

Image Copy Detection (ICD) is developed to identify and track duplicated or manipulated images. The majority
of existing methods rely on Convolutional Neural Networks (CNNs) and are trained using unsupervised
learning techniques, which leads to subpar performance. We discover that by carefully designing the training
process, Vision Transformer (ViT) backbones yield superior results. Specifically, directly training a ViT for
ICD often leads to overfitting on the training images, which in turn results in poor generalization to unseen
(test) images. Consequently, we initially train a CNN (such as ResNet-50), and during the ViT training, the
distances between the features of CNN and ViT are regularized. We also incorporate an active learning
method to further enhance performance. Notably, due to the visual discrepancy between auto-generated
transformations and those used in the query set, we incorporate a small number (approximately 0.5% of
unlabeled training images) of manually produced and labeled positive pairs. Training models on these pairs
results in a significant performance boost though with little cost. Experimental findings demonstrate the
effectiveness of our approach, and our method achieves state-of-the-art performance. Our code is available

at: https://github.com/WangWenhao0716/ViT4ICD.

1. Introduction

Image Copy Detection (ICD) is a cutting-edge technology that iden-
tifies and locates instances of image duplication, manipulation, or
unauthorized reproduction, thereby safeguarding intellectual property
and fostering digital integrity. A demonstration of ICD can be seen
in Fig. 1. Numerous methods [1-5] rely on the CNN backbone and
employ self-supervised learning techniques to achieve this goal. Given
the success of Vision Transformers (ViT) [6] in various computer vision
tasks, we believe that ViT holds significant potential in the ICD domain.
Moreover, self-supervised learning may not be sufficient for the ICD
task, and manual labeling processes can be both time-consuming and
costly. Consequently, we propose incorporating active learning into
ICD, aiming to enhance performance while minimizing expense.

Training a ViT for ICD is not a straightforward task due to its
tendency to overfit. To address this issue, we propose a training method
called “regularized training” to adapt ViT for ICD. CNNs possess an
inductive bias and are easier to train, so we first train a CNN, such
as ResNet-50, as the base model for ICD. Using the trained CNN, we
obtain the feature distribution of the original images (those without
transformations). During the ViT training process, our objective is to
align the features extracted by the ViT with the feature distribution
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obtained from the CNN. To achieve this, we propose a loss function
that regularizes the L, distance between image features extracted by
the CNN and the ViT. After optimization, the two feature distributions
become similar. With a fixed feature distribution for the original im-
ages, the ViT can freely arrange the features of the edited copies in the
feature space. This regularized training process unlocks the potential of
the ViT, leading to improved performance.

To overcome the limitations of self-supervised learning in a time
and cost-efficient manner, we incorporate active learning into the ICD
community. As depicted in Fig. 2, we observe that training images
generated by auto-generated transformations display visual discrepan-
cies compared to the query images. Consequently, there is a need to
introduce manually produced and labeled positive pairs. However, con-
sidering the high costs associated with manual production and labeling,
we suggest an active learning approach that enables model training on
a limited amount of data. To avoid overfitting on this small dataset, we
maintain the use of losses in the training of CNN and ViT. Subsequently,
we minimize the feature distances between manually labeled positive
pairs and maximize the feature distances between negative pairs.
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Fig. 1. The demonstration for Image Copy Detection (ICD). Our goal is to identify edited copies rather than images that belong to the same instance or category.

Original image
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Fig. 2. The demonstration for the visual discrepancies between the transformations
utilized to generate query images and the auto-generated transformations employed
for creating training images. The query image is transformed by adding emojis and
applying Legofy [7], whereas the training image is generated by adding random noise.

In the Experiments section, we conduct a series of analyses to
evaluate our method. First, we compare our method to state-of-the-
art algorithms, demonstrating its superiority. Second, we establish the
effectiveness of the proposed regularized learning by contrasting it with
the vanilla training of ViT. Third, we carry out an ablation study for the
proposed active learning method. Fourth, we visualize the matching
results obtained from various models. Finally, we examine the changes
in cosine similarity during the last two training stages by means of
visualization.

To sum up, this paper makes the following contributions:

1. We introduce regularized training to improve ViT performance
in ICD by aligning features with a CNN-based distribution.

2. We propose an active learning approach that efficiently ad-
dresses self-supervised learning limitations by leveraging a small
amount of manually labeled data.

3. Extensive experimental results demonstrate the effectiveness of
both the proposed regularized learning and active learning meth-
ods.

2. Related work
2.1. Image copy detection

In the past, image copy detection methods have primarily relied
on unsupervised learning techniques. For instance, BoT [3] uses deep
metric learning by creating a “class” by augmenting an image multiple
times. SSCD [8] modifies the architecture and training objective of
SimCLR [9] to explore the effectiveness of self-supervised learning
methods on ICD. Another earlier work, Multigrain [10], uses joint
training to generate image embeddings at multiple levels, including
class, instance, and copy. While all of these methods rely solely on
unsupervised learning, this paper proposes an active learning approach
to achieve significant performance improvements by labeling only a
few samples.

Edited Copies

Y

Class

Fig. 3. The demonstration for generating edited copies. An original image and its
edited copies form a training class for ICD.

2.2. Vision transformer

Transformers [6] have achieved state-of-the-art results in various
computer vision tasks, including image classification [11,12], image
segmentation [13,14], object detection [15-17], video understand-
ing [18,19], and object re-identification [20]. Despite these successes,
adapting the ViT [6] to new tasks remains challenging due to (1)
the difficulty in training and convergence, given the large number of
parameters, and (2) the potential for overfitting on training data, owing
to the lack of inductive bias in ViT. This paper tries to apply ViT to ICD
tasks, demonstrating improved performance compared to CNNs [21].

2.3. Active learning

Active Learning (AL) [22-29] is a technique that concentrates on
maximizing performance improvements while minimizing the number
of labeled samples needed. This approach involves meticulously select-
ing the most valuable examples and presenting them to an expert, such
as a human annotator, for labeling. The goal of active learning is to
decrease labeling costs while maintaining high levels of performance.
In the case of the ICD task, there are typically no labels available.
However, we have discovered that by adding only a small number
of manually produced and labeled positive pairs (an image and its
edited copy), the ICD accuracy is significantly enhanced. Therefore, we
introduce active learning to the ICD community.

3. Method

The proposed approach includes three stages, i.e. the ICD baseline,
regularized learning for ViT, and tuning on produced and labeled pairs.
These stages are elaborated in the following sections.

3.1. The ICD baseline

In this stage, we train a CNN (ResNet-50 [30]) as the baseline to
extract features for ICD.

Generate edited copies. Given the original image, we use pre-
defined transformations to generate a training dataset. Specifically, we
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Fig. 4. The demonstration of the proposed regularized learning. During the training
process, features extracted from original images by the ViT are pulled closer to those
extracted by the trained CNN.
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Fig. 5. The comparison between with and without regularization. With regularization,
the features distribution of original images are similar between CNN and ViT.

randomly select various transformations and utilize them to convert the
original image into multiple modified versions. The original image and
its edited copies together comprise a training class. A demonstration is
shown in Fig. 3.

Perform deep metric learning. Utilizing auto-generated training
classes, we perform deep metric learning to train a CNN model. This can
be achieved using pairwise training [31,32], classification training [33—
35], or a combination of both methods. To simplify the process, we
exclusively use CosFace [35] as our loss function, denoted as L,,,.

3.2. Regularized learning for ViT

As depicted in Fig. 4, we introduce a training approach called reg-
ularized learning, specifically designed for training ViT in the context
of ICD.

Denote the original image as x,, the trained CNN as f, and the
ViT as g. The features of the original image extracted by CNN and ViT
can be represented by f (x,) and g (x,), respectively. We propose the
regularized loss to help the training of ViT:

L) ()
£reg = Z ” - ”2’
=0 (3 )l e (o) 1
where: N is the number of the original images, and || - ||, is L,

normalization. Therefore, when using ViT backbone, the final loss
is:

(€Y

Efimzl = Emtr + 4 Ereg’ ()]

where 1, is the balance parameter. The advantage of this regularization
approach is that, after training, the features extracted from the original
images by ViT will closely resemble those extracted by the CNN. This
transfers the inductive bias from the CNN to ViT, preventing ViT
from learning an ungeneralizable feature distribution. A comparison of
using this regularization loss versus not using it can be seen in Fig. 5.
Experimental results will demonstrate the effectiveness of this design.
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Fig. 6. The demonstration of active learning. By tuning ViT on a small number of
manually produced and labeled positive pairs, significant performance improvement is
observed.

3.3. Tuning on produced and labeled pairs

In this section, we introduce an active learning approach to further
enhance performance. It is shown in Fig. 6. Our findings indicate that
the auto-generated transformations utilized for training the CNN and
ViT models exhibit visual discrepancies with query images in the test
set. As a result, we aim to employ manually-generated edited images.
Given that manual generation and labeling of positive pairs (original
image and its edited counterpart) can be time-consuming and costly,
we investigate an active learning strategy that tunes models using
an extremely limited number of image pairs (approximately 0.5% of
unlabeled training images). Despite the low labeling cost, the pro-
posed tuning method proves to be effective and substantially improves
performance.

Denote the trained ViT as g,, two images in a positive pairs as x;
and xlz,, and x) as the hardest negative of x{, (j = 1,2). Therefore, we
have the training objectives:

s ()

g’(x;I’) _
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where M is the number of the positive pairs, and 4, is the balance
parameter. This active learning approach not only allows the ViT to
efficiently learn manually-produced transformations, but also prevents
overfitting on a limited number of image pairs by incorporating addi-
tional loss functions. Experimental results will demonstrate changes in
cosine similarity (between two images in the positive pairs) and the
effectiveness of fine-tuning ViT on this small dataset of image pairs.
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Table 1

Comparison with state-of-the-arts. Our method consistently demonstrates superior
performance when compared to methods from research papers and those from the
Facebook Al Image Similarity Challenge.

Method uAP (%) 1 R@P90 (%) 1 R@1 (%) t R@10 (%) 1
GIST [40] 15.21 10.44 24.06 24.93
Multigrain [10] 36.49 26.83 44.96 49.31
ASMK [41] 37.16 20.35 47.85 49.31
SSCD [8] 72.81 63.76 78.18 81.90
BoT [3] 72.73 67.25 78.91 82.15
EfNet [1] 75.81 67.61 79.91 83.57
CNNCL [5] 77.43 68.97 81.89 85.40
Ours 78.60 73.60 82.49 84.27

4. Experiments
4.1. Dataset and metrics

Dataset. We use DISC21 [36] for evaluation the proposed method.
DISC21 [36] is a comprehensive ICD benchmark that offers many
advantages for researchers and developers. First, it contains one million
training images and one million gallery images, providing a rich data
source for exploring deep learning algorithms. Second, it includes many
complex patterns, i.e. queries generated by sophisticated transforma-
tions, which greatly challenge ICD algorithms. Third, the number of
distractor queries is four times that of queries with true matches,
providing a realistic setting for the ICD task.

Metrics. We consider 4 common-used metrics, i.e. uAP, R@ P90,
R@1, and R@10. uAP is the area under the precision-recall curve
when all matching pairs are taken into account. R@ P90 refers to the
threshold where 90% of the relevant copies have been retrieved. R@k
measures the proportion of relevant items that appear within the top
k results returned by an algorithm, compared to the total number of
relevant items available.

4.2. Experimental settings

We use PyTorch [37] to implement our approach. For all training
stages, the batch size is 128, the number of GPUs is 4, and iterations
are 8000. The training epochs for the three stages are 25, 25, and
10, respectively. ResNet-50 [30] is pre-trained on ImageNet [38], and
ViT [6] is also pre-trained on ImageNet [38] by DeiT [39]. The balance
parameters in the loss functions are set as 4, = 100 and 4,, = 1. We
adopt the standard PK sampling, i.e. in each batch, there are P = 32
classes and each class has K = 4 images. Specifically, each group of
K images are generated with different transformations from a single
image. In the active learning stage, there are only about 5000 positive
pairs.

4.3. Comparison with state-of-the-arts

We compare the proposed method with state-of-the-art methods in
Table 1: GIST [40], Multigrain [10], ASMK [41], and SSCD [8] are
from research papers while BoT [3], EfNet [1], and CNNCL [5] are
the winning solutions of Facebook AI Image Similarity Challenge. Our
findings reveal that: (1) Traditional descriptors, such as GIST [40],
struggle to effectively handle the complexities of modern ICD tasks. In
comparison to other methods, GIST demonstrates significantly inferior
performance. (2) Some earlier deep learning-based ICD algorithms, like
Multigrain [10] and ASMK [41], can recognize simple transformations
but are unable to efficiently manage more complex ones. (3) When
compared to SSCD [8], our approach achieves improvements of +5.79%,
+9.84%, +4.31%, and +2.37% for the four metrics, respectively. This
highlights the effectiveness of our proposed ViT training and active
learning approach. (4) Interestingly, our straightforward method still
outperforms the more complex winning solutions. This comparison may
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Table 2
The ablation study for each component in our proposed approach.

Method HAP (%) 1 R@PY0 (%) t R@1 (%) t R@10 (%) t
Baseline 74.14 69.27 77.96 79.83
ViT-Only 54.32 50.22 58.23 61.11
ViT-Reg 74.68 69.27 78.89 80.79
Random 74.55 69.75 78.73 80.43
AL-10% 75.30 70.55 80.07 81.87
AL-20% 76.12 70.99 80.73 82.55
AL-50% 77.52 72.40 81.29 83.25
AL 78.60 73.60 82.49 84.27

be considered unfair, as these winning solutions employ sophisticated
techniques like detection augmentation [42], multi-scale testing, multi-
model ensembles, and post-processing, while our approach remains
direct and uncomplicated. Additionally, we provide the performance
of our method on VSC2022 [43]: our method achieves 85.1%u AP in
the VCD track and 77.1%u AP in the VCL track, yielding a +24.6% and
+33.0% performance improvement compared to the baseline method,
respectively [44].

4.4. Ablation studies

Our ICD baseline is strong. We train a ResNet-50 as our baseline,
detailed in Section 3.1. As observed in Table 2, the uAP reaches
74.14%, surpassing five state-of-the-art methods presented in Table 1.
This demonstrates that even without incorporating specific design tech-
niques, our baseline performs commendably. Furthermore, this strong
baseline lays the foundation for achieving even higher results in subse-
quent experiments. Additionally, by utilizing a strong baseline instead
of a weak one, we can truly identify and distinguish effective methods.

The effectiveness of regularized learning for ViT. In this sec-
tion, we compare our proposed regularization training (ViT-Reg) with
vanilla training (ViT-Only) as shown in Table 2. Vanilla training refers
to training a ViT using the same process as for CNNs. Although we
find that vanilla training can achieve convergent results, the final
performance is significantly lower by —20.36%, —19.05%, —20.66%, and
—19.68% when compared to regularization training, respectively. This
substantial performance discrepancy demonstrates that directly train-
ing a ViT for ICD is infeasible. Moreover, we observe that ViT-Reg
outperforms the baseline, with improvements of +0.54% in yAP and
+0.93% in R@1. This indicates that by carefully designing the training
procedure for ViT, the ViT backbone can achieve better performance
than traditional CNNs.

The effectiveness of active learning. The effectiveness of active
learning is demonstrated in Table 2. Despite using only a small number
of positive pairs for active learning, we observe a significant perfor-
mance improvement across the four metrics, with gains of +3.92%,
+4.33%, +3.60%, and +3.48%, respectively. We attribute this to two
factors: (1) the careful selection and labeling of image pairs, which
minimizes labeling costs while maintaining performance; and (2) the
specifically designed tuning process that enables the utilization of a
limited number of image pairs. For comparison, we randomly select
positive pairs from the training classes (denoted as Random in Ta-
ble 2). No performance improvement is observed for the four metrics.
Additionally, we investigate scenarios where the manually produced
and labeled image pairs are extremely low (such as 0.05% of the
original images, denoted as AL-10%). Experiments demonstrate that
improvements can be achieved even with an extremely low number of
labeled image pairs.

The success of our approach can be credited to the combination
of active learning and the customized training process. The active
learning strategy ensures that our model is able to learn from the most
informative and relevant data, which contributes to the performance
improvements observed. Furthermore, the tailored training process for
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Fig. 7. The visualization of the matching results from different models. “x” and “/” symbols indicate incorrect and correct matches, respectively. Given a query, the similarity

score between a reference and the query is displayed at the bottom of the reference.
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Fig. 8. The change of cosine similarities between training features of ViT and CNN in
relation to iterations. A sharp increase is observed during the first few iterations.

the ViT backbone, as well as the regularization techniques, enable our
model to achieve better results when compared to traditional CNNs and
other state-of-the-art methods.

4.5. Discussion

Visual comparison between different trained models. We select
the top-1 matches from the trained models after completing three
training stages. These models are denoted as “ResNet50”, “ViT”, and
“Active Learning” in Fig. 7. The first row illustrates that all three
models successfully achieve true matching. However, the similarity
scores vary, with the later models displaying higher scores, indicating
more confident matching. In the second row, “ResNet50” produces an
incorrect match, while “ViT” and “Active Learning” continue to show
true matches. This demonstrates that a carefully trained ViT outper-
forms ResNet50. Additionally, the similarity score increases following
the proposed active learning process. In the third row, both “ViT” and
“ResNet50” generate incorrect top-1 matches, while “Active Learning”
is still able to retrieve true matches, reaffirming the effectiveness of
“Active Learning”. Lastly, we present some failure cases in which
all three models are unsuccessful. The queries in row (4) are highly
unrecognizable, even to the human eye, making it understandable that
our model falters. This suggests that ICD remains an unresolved issue
that warrants further investigation.

0.80+

0.751

0.701

Cosine similaity

0.651

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of iterations in tuning

Fig. 9. The change of cosine similarities between the labeled positive pairs. The cosine
similarity increases from 0.62 to 0.82 gradually.

The change of cosine similarities between training features of
ViT and CNN. As illustrated in Fig. 8, we visualize the changes in
cosine similarities between training features obtained from ViT and
CNN during the regularized learning stage. We observe the following:
(1) At the initial stage, the cosine similarity is close to 0, indicating
that features derived from the same image by ViT and CNN are nearly
orthogonal. This highlights the necessity of introducing regularization
loss. (2) As we train the ViT, the cosine similarity increases to nearly 1,
demonstrating the success of our regularized training approach. (3) The
cosine similarity experiences a sharp increase during the first 10% of
iterations, suggesting that, throughout the majority of the ViT training
time, the feature distribution of original images are fixed, leading to
improved performance.

The change of cosine similarities between the labeled pairs.
We assess the change in cosine similarities between labeled pairs as
shown in Fig. 9 and make the following observations: (1) The ini-
tial cosine similarity is approximately 0.62, indicating that training
on auto-generated images is beneficial but not perfect. (2) As active
learning progresses, the cosine similarity gradually increases to 0.80,
signifying the success of our training procedure. (3) The upper limit of
cosine similarity is about 0.82 instead of 1, illustrating that our active
learning approach does not overfit to the small number of image pairs.
Our findings suggest that active learning strategies can successfully
improve model performance in ICD, particularly when dealing with
limited labeled data.
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5. Conclusion

This paper explores the process of training a Vision Transformer
(ViT) and presents an innovative active learning approach for Image
Copy Detection (ICD). In order to train a ViT, we initially employ a
Convolutional Neural Network (CNN) as the foundation model, and
subsequently introduce a regularized learning technique to constrain
the feature distribution of original images. This method enables the suc-
cessful training of the ViT, leading to improved performance compared
to the CNN. By generating and annotating a limited number of image
pairs that exhibit visual discrepancies compared to auto-generated
ones, we propose an active learning strategy for ICD. Our experi-
mental findings highlight the substantial performance enhancement
achieved through this active learning approach. Additionally, although
our method achieves favorable performance, it still cannot identify any
edit copies, i.e., some missing is expected. We plan to design a more
efficient and effective method to deal with new transformations.
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