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Abstract
Time series data, characterized by large volumes and wide-ranging applications, requires accurate predictions of future values
based on historical data. Recent advancements in deep learning models, particularly in the field of time series forecasting,
have shown promising results by leveraging neural networks to capture complex patterns and dependencies. However, existing
models often overlook the influence of short-term cyclical patterns in the time series, leading to a lag in capturing changes and
accurately tracking fluctuations in forecast data. To overcome this limitation, this paper introduces a new method that utilizes
an interpolation technique to create a fine-scaled representation of the cyclical pattern, thereby alleviating the impact of the
irregularity in the cyclical component and hence enhancing prediction accuracy. The proposed method is presented along
with evaluation metrics and loss functions suitable for time series forecasting. Experiment results on benchmark datasets
demonstrate the effectiveness of the proposed approach in effectively capturing cyclical patterns and improving prediction
accuracy.

Keywords Time series prediction · Decomposition · Interpolation · Cyclical pattern

1 Introduction

Due to the large volumes of data generated in the modern
world every day, time series data has become one of the most
critical forms of data. Time series forecasting involves pre-
dicting values at future points based on historical data. It
has wide-ranging applications in finance [1], healthcare [2],
energy [3] and weather forecasting [4]. In recent years, sig-
nificant advances have been made in the field of time series
forecasting [5], particularly with the advancement of deep
learning techniques. Thesemodels leverage the power of neu-
ral networks to capture complex patterns and dependencies
in time series data, and have achieved accurate predictions.

Onekey aspect of time series forecasting is the decomposi-
tion of the time series into its underlying components, such as
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trend, seasonality, and cyclical patterns. Traditional decom-
position methods, widely used in the early 20th century,
formed the basis for many subsequent algorithms. These
methods assume that the cyclical component remains con-
stant within each cycle and often employ some simple
techniques such as moving average to separate the trend-
cyclical and seasonal components.

Some recent approaches, such as Autoformer [6], decom-
posed the time sequence into trend-cyclical and seasonal
components, and have significantly improved forecasting
accuracy for datasets exhibiting strong seasonality. How-
ever, they often overlook the influence of cyclical patterns
on the time series due to the lack of handling of the trend-
cyclical component after decomposition. As a result, they
exclude this factor from the scope of predictions. Such an
approach can potentially result in delays in capturing changes
and unable to track fluctuations in forecast data accurately.
This paper proposes a new method that incorporates interpo-
lation techniques to capture fine-scale cyclical information.
Interpolation techniques help fill in missing or irregularly
spaced data points in the cyclical sequence, creating a fine-
scale representation of the cyclical pattern. It also smooths
out the cyclical sequence, reducing the impact of short-term
fluctuations and noise, thereby enabling better identification
of underlying trends and patterns.
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Moreover, the existing time series prediction models
mostly employ some intuitive evaluation metrics and loss
functions to assess their performance and to guide their
training, including Mean Squared Error (MSE) and Mean
Absolute Error (MAE). In practice, we have found that when
dealing with data that has high sparsity and strong uncer-
tainty, such intuitive evaluation metrics can significantly
reduce the reliability of themodel. Theremay be cases where
the model has a very low MSE but performs poorly over-
all. In scenarios with strong uncertainty, where the ground
truth is inherently noisy or uncertain, MSE can not effec-
tively depict themodel’s performance. The squared error loss
function assumes that errors are normally distributed and of
equal importance across the data points, which may not be
the case when dealing with data with great uncertainty. Con-
sequently, the model may optimize for reducing errors in
noisy data points at the expense of overall predictive accu-
racy. Therefore, in our proposed method, we adopt Dynamic
TimeWarping (DTW) as amore effective loss function to cal-
culate the differences between the predicted sequence and the
ground truth. After comparing the performance of DTW and
MSE, we found that the training results using DTW yielded
predicted sequences that more closely resembled the original
sequence in shape.

In summary, our key contributions are as follows: 1) we
proposed a novel approach of adopting a temporal interpo-
lation technique to further improve the precision of time
series forecasting by separately predicting the Trend-cyclic
sequences; 2) we proposed an enhanced method for time
series prediction that leverages the power of DTW as an
effective loss function.

The rest of the paper begins by summarizing the existing
related work in Section 2, focusing on long-sequence time-
series forecasting and decomposition in time series. It then
introduces our improved method for time series prediction in
Section 3 and presents the proposed temporal interpolation
technique, along with evaluation metrics and loss functions
that are more suitable for time series forecasting. The exper-
iment design and results are presented in Section 4. Finally,
the paper concludes in Section 5.

2 Related work

2.1 Long sequence time-series forecasting

Long sequence time-series forecasting (LSTF) has always
been a hot topic in time series analysis. In most studies,
long sequence time-series problems typically do not handle
a window length larger than 100 [5]. However, in practical
applications, time series data is characterized by “massive,
high-frequency, and long-term prediction [7].” Combining
long sequence prediction to handle these data characteristics

is one of the key factors in improving the performance of
various time series prediction algorithms.

In the development of time series forecasting, existing
solutions can generally be classified into three categories,
traditional statistical models, machine learning models, and
deep learning models. Most traditional approaches rely on
statistical models, such as the commonly used mean regres-
sion [8], ARIMA [9] (autoregressive integrated moving
average), and exponential smoothing methods [10]. Mod-
els in this category, like the ARIMA model, are limited to
regression on univariate historical data and cannot handle
multivariate scenarios [11]. Although traditional statistical-
based methods for time series forecasting have advantages
such as lowcomplexity and fast computation speed, they have
limitations in handling complex real-world problems. These
limitations have prompted the development ofmachine learn-
ingmethods that aim to address these challenges and improve
the accuracy and flexibility of time series forecastingmodels.

Machine learning models treat time series forecasting as a
regression problem, transforming the temporal problem into
supervised learning. The commonly used methods can be
classified into two categories: tree-based models and neural
network models. Tree-based models, such as LightGBM and
XGBoost, are capable of addressing a wide range of complex
time series forecasting tasks [12]. They support complex data
modeling, handlemultivariate regression, and are effective in
solving nonlinear problems. However, a major drawback of
these models is that feature extraction can be laborious and
time-consuming. In recent years, the widespread application
of deep learning models in time series has also proven their
effectiveness, as shown in works [13–15]. Apart from the
earliest CNN models, another category of neural network
models incorporatedmanywidely used approaches in natural
language processing (NLP). Examples include specialized
models like LSTMandGRU,which are designed specifically
to address sequence prediction problems [16].

Recently, Transformer models [6, 17–19], originally
designed forNLP tasks, have also been extensively employed
in time series forecasting problems. Two of the most well-
known works based on the vanilla Transformer [17] in the
field of time series forecasting are the Informer model [18]
and the Autoformer model [6].

The Informer model [18] restructures the Transformer
model to address long-term and short-term forecasting chal-
lenges, achieving remarkable results and sparking enthusi-
asm for research in this direction. It employs a novel attention
mechanism, a temporal attention module, and a convolu-
tional feedforward network to capture the input sequence’s
long- and short-term dependencies. Shortly after that, the
researchers from Tsinghua University proposed the Auto-
former model [6], which builds on the previous work on
Informer’s design and significantly outperforms previous
models on the same forecasting task. Autoformer achieves a
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38% relative improvement in performance, demonstrating its
superiority in handling long sequence time series data. Aut-
oformer introduces a Decomposition Architecture to extract
predictable components from complex time patterns. This
separation creates multiple sub-series, each representing a
component with simple patterns. Consequently, Autoformer
captures crucial features more easily, leading to improved
prediction accuracy.

However, along with the mentioned improvements, the
above-mentioned models also have some common weak-
nesses. As highlighted in [20], a common limitation among
deep learning models is their inability to directly handle
missingvalues, necessitating theuseof imputationor interpo-
lation techniques to facilitate the training process. Although
recent advancements in state-of-the-art methodologies such
as [21] have begun to overcome this challenge, introducing
models capable of directly processing incomplete data, the
adoption of such approaches is not yet widespread across all
deep learning applications, and a significant number of mod-
els continue to rely on traditional methods to address missing
values in datasets.

In this paper, we extract the cyclical component from the
input time series and then propose a temporal interpolation
technique to the fine trend-cyclical component of the input
signals, to capture the fine cyclical patterns carried by the
signals. By using interpolation, the length of the time series
is proportionally extended, resulting in a smoother represen-
tation of the trend’s variation. It also helps reduce the impact
of short-term fluctuations and noise, and enables better iden-
tification of underlying trends and patterns. Furthermore,
algorithmic improvements are proposed in this article to com-
pare time series of variable size that are robust to shifts or
dilation over time.

Next, we will provide a more detailed explanation of the
current practices in decomposition, and the decomposition
algorithms used in the current models.

2.2 Decomposition in time series

2.2.1 Classical decomposition

The traditional time series decomposition method started in
the 1920s and was widely used until the 1950s. The steps of
the classic algorithm are relatively simple. It is also the basis
for many other decomposition algorithms. In our proposed
method, we adopt the additive model as a common basis
for decomposition. A time series yt that follows an additive
model can be written as:

yt = S(t) + T (t) + R(t), (1)

where S(t), T (t), and R(t) represent the seasonal compo-
nent, trend-cyclical component, and remainder component,

respectively. The classic decompositionmethod assumes that
the cyclical component is the same within each cycle. Most
classic algorithms adopt the concept of moving averages,
where the prediction T̂t is computed as:

T̂t = 1

m

k∑

j=−k

yt+ j (2)

In this equation, T̂t represents the smoothed or averaged value
at time point t in the time series. The parameter k determines
the window size, indicating the number of time steps to look
back and forward. m represents the total number of values
within the window. The equation calculates T̂t by averaging
the values of the time series over times from k steps before t
to k steps after t .

The later-developed SEATS decomposition algorithm
stands for “Seasonal Extraction in ARIMA Time Series”.
This method was developed by the Bank of Spain and is
now widely used in government departments around the
world [22, 23]. However, this algorithm is only for quarterly
and monthly data. Therefore, when the designers of Auto-
former built the Autoformer framework [6], they followed
the Transformer framework design and added a new decom-
position block to extract the intrinsic complex time series
trends in the model’s hidden state. Subsequent variants of
the Transformer also followed this design of Autoformer,
retaining the decomposition part and adding time embed-
dings to handle finer time information, such as daily, hourly
or per minute. The variants include recent works from
[19, 24].

2.2.2 Autoformer decomposition

In Autoformer, the Series Decomp Block utilizes traditional
decomposition operations to separate a time series into two
components: trend-cyclical and seasonal parts. The trend-
cyclical component captures short-term fluctuations and
overall trends, while the seasonal component reflects long-
term seasonal variations. As shown in Fig. 1, the “Seasonal”
component represents the influence of a specific moment
within a year on the time series and is highly correlated
with time embedding. It denotes known and fixed-frequency
variations. On the other hand, the “Trend” component repre-
sents long-term trends, which may not necessarily be linear.
The “cyclical” component represents short-term, non-fixed-
frequency oscillations. These models often treat trend and
cyclical components together because it is challenging to
algorithmically differentiate between them. Therefore, the
decomp block is used to separate the original time series into
long-term and short-term variations.

However, as shown in Fig. 2, these approaches do not
include short-term variations in the scope of prediction.
Instead, during each pass through the series decompmodule,
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Fig. 1 A time series can be
decomposed into a number of
components: seasonality, trend,
cyclical and error (irregular)

they add the mean of the previous time’s trend-cyclical to
the predicted seasonal sequence. In other words, these mod-
els overlook the influence of cyclical patterns on the time
series and exclude this factor from the prediction scope. This
approach often results in a lag in the changes in forecast
results, failing to accurately track fluctuations in forecast
data. To address this issue, we propose a new method that
captures more cyclical information by using interpolation
and a more effective loss evaluation function.

3 The proposedmethod

3.1 Motivation

In most time series forecasting or classification tasks, time
series are typically classified into four types [25]:

No trend, no seasonality This type of time series does
not exhibit any significant trend over the long term and does
not have a fixed seasonal pattern. Data points show random
fluctuations on the time axis without any noticeable trend or
periodic changes. They can be modelled and forecast using
simple methods like averaging or moving averages.

Trend, no seasonality This type of time series shows a
clear trend but does not have a fixed seasonal pattern. Data
points exhibit a gradual increase or decrease trend over time
without any fixed periodicity.

Seasonality, no trend This type of time series has a fixed
seasonal pattern but does not show any significant trend over
time. Data points exhibit repetitive seasonal patterns, such as
yearly, monthly, or weekly.

Seasonality and trend This type of time series exhibits
both a clear seasonal pattern and a long-term trend. Data
points show repetitive seasonal patterns along with a gradual
increase or decrease trend.

Specifically, directly predicting cyclical subsequences is
challenging. It is difficult to learn its frequency in a straight-
forward manner when cyclical patterns exhibit significant
irregularity. Some cyclical patterns may have very limited
samples during short periods, making it challenging to cap-
ture their trends effectively.

Similar to the traditional ETS (Error, Trend, Seasonality)
models [26, 27], Autoformer [6], and other variants of the
Transformermodels, primarily focus on considering seasonal
subsequences and overlook trend-cyclical subsequences. As
mentioned in [28], they directly ignored the trend-cyclical

Fig. 2 Autoformer model structure [6]
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component because the model they proposed did not per-
form well in predicting this part of the subsequences. While
in reality, althoughcyclical patterns are distinct fromseasonal
patterns, they still contain valuable time-related informa-
tion that is worth predicting [29]. Unlike predicting seasonal
patterns, forecasting cyclic type sequences often requires ref-
erence to multidimensional features or spatial attributes due
to the lack of regular timing information.

In our proposed method, we adopt the decomposition
approach of Autoformer [6] and decompose the input time
series into two components: trend-cyclical and seasonal
parts, and then depict the fine-scale cyclical patterns in the
trend-cyclical component. Furthermore, to tackle the short-
age of sample points to depict significant random cyclical
patterns, we propose augmenting the time information of the
cyclical component with a fine-scale interpolation mecha-
nism to smooth the original cyclical sequence. This enables
us to capture trends within cyclical patterns better. Addition-
ally, through linear interpolation, we can mitigate the impact
of missing or irregularly spaced data points in the time series,
thereby improving the effectiveness of predictions.

3.2 Overall model structure

As shown inFig. 3, our proposedmethod adopts aTransformer-
like encoding-decoding architecture, inherited from the base-
line model Autoformer [6]. Each layer consists of three
modules: Auto-Correlation, Series Decomp, and Feed For-
ward, and uses residual structures.

The decoder adopts a dual-path processing mode, where
the upper branch handles the seasonal part, and the lower
branch handles the trend-cyclical part. We adopt the Series
Decomposition Block from Autoformer [6], which utilizes
traditional decomposition operations to separate a time series
into two components: trend-cyclical and seasonal parts. As

shown in Fig. 3, the Seasonal init, serving as the input to
the decoder’s upper branch, is derived from the output of
the Series Decomp block in the encoder. It is composed
of the seasonal component obtained after decomposing the
original time series. To ensure consistent sequence length,
this process involves sampling where the latter half of the
seasonal component obtained after decomposition is con-
catenated with a sequence of zeros, serving as a placeholder.

In the upper branch, the Auto-Correlation block is first
used to extract the intrinsic temporal dependencies of future
forecasting states. This block analyzes the time series data to
identify and capture the relationships between different time
steps, providing crucial information for accurate forecasting.

Next, the output of the Auto-Correlation block, alongwith
the encoder’s outputs, undergoes another round of series
decomposition using a Series Decomp block. This block
is responsible for extracting information from historical
sequenceswith high-order temporal dependencies, contribut-
ing to amore comprehensive understanding of the time series
data. The output of the Series Decomp block is then used as
the query input for the subsequent Auto-Correlation block,
with the encoder’s output serving as the key and value inputs.
This step enables the model to refine its understanding of
temporal dependencies and capture intricate patterns in the
data. Finally, the output of the Auto-Correlation block, along
with the processed encoder outputs, passes through the Feed
Forward layer for prediction. The Feed Forward layer is
responsible for transforming the extracted features into pre-
dictions, contributing to the final forecasting outcome.

In contrast, the lower branch utilizes weighted addition
to combine the outputs of each sub-layer from the upper
branch. The proposed interpolation module is added to
the lower branch. That is, after the original time series is
decomposed into seasonal and trend-cyclical components,
the trend-cyclical sub-sequencewill pass through the interpo-

Fig. 3 The structure of the proposed model
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lation module to smooth short-term oscillations. Then, after
completing the prediction through a linear Regression block,
it will undergo downsampling to match the length of the sea-
sonal sub-sequence for the final result summation.

3.3 Interpolation

Denote the input series as X , the trend-cyclical component
from decomposition as XT , and the Seasonal fluctuations
of the sequence as XS . Here, XS retains the seasonal
smoothness of the sequence after subtracting the short-term
fluctuations, as:

XS = X − XT (3)

Due to the difficulty in distinguishing between them, XT

may also contain shorter-term cyclical information XC . XT

can be obtained by storing the average value of each sliding
window as:

XT = AvgPool(Padding(X)). (4)

As shown in Fig. 4, in our approach, XS still goes through
the seasonal prediction block and predicts the correspond-
ing Y S . Nevertheless, XT will undergo linear interpolation,
where each input sequence is interpolated based on pre-
determined scales. Due to the lack of seasonal temporal
information in the Trend-cyclic sequence, we conduct inter-
polation before its prediction to smooth out short-term
oscillations and achieve finer-scale prediction of the Trend-
cyclic sequence. In addition, when there aremissing readings
in some real-world datasets, ourmethod of filling themissing
gaps using interpolation can also improve prediction accu-
racy. These missing readings can occur due to various factors
such as sensor malfunctions or devices going offline. In our
experiment, a scale parameter of 5 was chosen, meaning that
there will be five interpolated points between every two orig-

inal points t1 and t2. The detailed interpolation process is
described below.

Specifically, let t∗ represent the target time points for inter-
polation, t1 represents the known time point before the target
time points, and t2 represents the known time point after the
target point. Let xTt∗ represent the output value of the inter-
polation, and xTt1 and xTt2 represent the values at the first and
second known time points, respectively. The interpolation
can be expressed as:

xTt∗ = xTt1 + (t∗ − t1) ·
(
xTt2 − xTt1
t2 − t1

)
. (5)

After the interpolation is completed, XT becomes a longer
sequence, denoted as XT (large), which will then be fed into
a regression block to complete the prediction for the trend-
cyclical sequence.

Following the approach in [24], we employ a linear regres-
sion strategy to make predictions about the trend-cyclical
sequence, where

Y T (large) = Regression(XT (large)) (6)

Up to this point, Y T (large) does not match the original
sequence length. Therefore, it will be downsampled back to
the original length using a down-sampling block, resulting in
Y T . For a sequence Y T (large) = {y1, y2, ..., yN } of length
N and another sequence Y T of length M where M < N
indicating the target length, Y T (large) is downsampled to
match the target length M as:

y′
i = 1

D

iD∑

j=(i−1)D+1

y j , (7)

where D = N
M ensures the length of the downsampled

sequence matches M .

Fig. 4 The proposed interpolation structure
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This approach averages every D consecutive points from
Y T (large) to produce the shorter sequence Y T to ensure that
Y T has the same length as Y S . Then, we combine the inter-
polated sequence Y T with Y S as the target sequence and
compare it to the ground truth sequence Y gt.

3.4 Loss functions

In addition to using interpolation to improve the decomposi-
tion module, our method also explores a more suitable loss
function for time series which emphasizes the inclusion of
cyclical information.

The existing time series prediction models mentioned
above employ several intuitive evaluation metrics and loss
functions to assess their performance and to guide their train-
ing. The most commonly used evaluation metrics and loss
functions include Mean Squared Error (MSE) and Mean
Absolute Error (MAE), which are calculated as:

MSE = 1

n

n∑

t=1

(yt − ŷt )
2 (8)

and

MAE = 1

n

n∑

t=1

|yt − ŷt | (9)

Here, n represents the number of samples, indicating the
quantity of samples used when evaluating the model’s per-
formance, yt denotes the true value, representing the actual
observation or label of the sample t , and ŷt stands for the
predicted value, representing the model’s predicted output
for sample t .

MSE and MAE are both indicators of the error between
the predicted and the true results: MSE represents the aver-
age of the squared errors and MAE represents the average
of the absolute errors. Typically, MSE is more sensitive to
capturing cases of large errors, whereas MAE is more sensi-
tive to cases of small errors. In real-time sequence prediction,
however, due to noise and other uncertain factors, even if the
shape of the input sequence in the first half is similar, the
second half sequences to be predicted will not be exactly the
same. Instead, they will exhibit fluctuations. Since MSE or
MAE loss calculates distances on a one-to-one basis, the final
predicted result becomes an average over time. This kind of
result is certainly very poor.

In practice, we find that when dealing with data that has
high sparsity and strong uncertainty, such intuitive evaluation
metrics can significantly reduce the reliability of the model.
There may be cases where the model has a very low MSE
but performs poorly overall.

Therefore, in our proposed method, we adopted Dynamic
Time Warping (DTW) as the loss function to calculate the

differences between the predicted sequence and the ground
truth. DTW is an algorithm used to compare the similarity
between two time series with different lengths and time axis
changes. By applying the DTW algorithm to the loss func-
tion f , it can effectively avoid the inaccuracies caused by the
stretching of the prediction axis and better reflect the rela-
tionship between the predicted results and actual data. This
method was also employed in work [30, 31] and resulted in
improved training outcomes.

However, the DTW algorithm operates discretely and
lacks differentiability. Consequently, we cannot directly
employ it as a loss function for neural networks. To address
this issue, Marco Cuturi et al introduced the concept of soft
minimum instead of the DTW minimum and devised a dif-
ferentiable version called Soft-DTW [32]. The objective of
Soft-DTW is to find the best path where the elements on the
path correspond to the alignment points between the query
and reference sequences, taking into account the similarity
at each alignment point. Soft-DTW provides a differentiable
version of the DTW algorithm. Compared to the Euclidean
loss and original DTW, Soft-DTW allows for better align-
ment between the predicted results and the actual shape of
the data.

The Soft-DTW of two series Y and Ŷ can be expressed as:
DTWS(Y , Ŷ ) = S(Y , Ŷ ) + min [DTWS(Y−1, Ŷ ), DTWS

(Y , Ŷ−1), DTWS(Y−1, Ŷ−1)].
(10)

Here, S(Y , Ŷ ) represents a weight matrix used to measure
the similarity between the data points in two time series Y
and Ŷ . In our case, Y represents the ground truth sequence
of the target, while Ŷ represents the prediction of Y , and Y−1

refers to the sequence Y with one data point removed. This
removal allows for exploring different alignment scenarios,
enhancing the flexibility of the alignment process. In Soft-
DTW, the objective is to minimize the total alignment cost
between the two sequences while considering the similar-
ity between corresponding points. This formulation allows
for a differentiable loss function suitable for training neural
networks.

In practical applications, the choice of an appropriate dis-
tance or similarity measure depends on the specific problem
and data type.We followwidely adopted practice and use the
Euclidean distance to compute the differences between the
corresponding data points, Yi and Ŷi , of two time series, as:

S(Y , Ŷ ) =
√√√√

n∑

i=1

(Yi − Ŷi )2 (11)

Here, n represents the length of the time series, and Yi and
Ŷi represent the values of time series Y and Ŷ at the i-th time
point.
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4 Experiments

To evaluate the effectiveness of the proposed approach, we
conducted comprehensive experiments and compared our
method with the state-of-the-art methods such as iTrans-
former [33] and Crossformer [34]. In addition, we also
conducted ablation experiments to validate the effective-
ness of the proposed approach of using Soft-DTW loss
and interpolation techniques. We chose Autoformer [6] and
Informer [18] as baseline models and compared their per-
formance with and without incorporating Soft-DTW loss
and interpolation. Following the existing practice, we utilize
MSE as the metric in Table 1 to compare the performance of
different models and loss functions.

In our experiments, we followed the same evaluation
scheme as SOTA works such as Autoformer [6] and iTrans-
former [33], where the real-world datasets used for experi-
ments are already split into Train, Validation and Test sets.
Section 4.1 presents the details of the datasets. In addition,
three groups of experiments were conducted with different
prediction lengths to assess themethod’s performance in both
short-term and long-term prediction tasks. All groups had an
input window size of 96, while the target prediction sequence

length (a.k.a, target window size or forecasting horizon) are
24, 48, and 96, respectively.

4.1 Experiment datasets

To evaluate the performance of our proposed method, we
conducted experiments on two different datasets: the ETT
(Electricity Transformer Temperature) dataset [18] and the
weather dataset.

TheETTdataset [18] is awidely used benchmark dataset
in time series forecasting tasks. It consists of historical
records of transformer temperatures, collected from a power
grid monitoring system. The dataset contains multiple trans-
former temperature time series, each corresponding to a
specific transformer unit. The data is sampled at regular inter-
vals and spans a considerable duration, allowing us to capture
various temporal patterns and trends.

We selected four sub-datasets: ETT-h1, ETT-h2, ETT-m1,
and ETT-m2. These sub-datasets share the same data struc-
ture but exhibit different patterns in their time series. The
differences include the presence or absence of short-term
oscillations, the length of pattern cycles, and the presence of
upward or downward trends.

Table 1 Experiment results on
ETT and weather datasets. The
best performance in each set of
experiments is highlighted in
bold

Method ETT Weather
h1 h2 m1 m2

with an input window size of 96, and a target window size of 96

Informer [18] 0.4973 0.4021 0.5085 0.2919 0.3049

Informer DTW 0.4728 0.3742 0.4791 0.2719 0.2839

AutoFormer [6] 0.4486 0.3462 0.4462 0.2551 0.2663

AutoFormer DTW 0.4260 0.3222 0.4156 0.2373 0.2479

iTransformer [33] 0.3857 0.2973 0.3342 0.1795 0.1744

Crossformer [34] 0.4231 0.7445 0.4038 0.2867 0.1583

Our method 0.4042 0.3000 0.3905 0.2016 0.2308

with an input window size of 96, and a target window size of 48

Informer [18] 0.4724 0.3619 0.4827 0.2659 0.2744

Informer DTW 0.4493 0.3388 0.4301 0.2457 0.2588

AutoFormer [6] 0.4264 0.3258 0.4243 0.2423 0.2558

AutoFormer DTW 0.4047 0.2900 0.3948 0.2245 0.2231

iTransformer [33] 0.3664 0.2700 0.3178 0.1705 0.1569

Crossformer [34] 0.3808 0.6328 0.3632 0.2438 0.1345

Our method 0.3839 0.2726 0.3709 0.1915 0.2077

with an input window size 96, a target window size of 24

Informer [18] 0.4010 0.3076 0.4223 0.2247 0.2371

Informer DTW 0.4046 0.2925 0.3665 0.2090 0.2146

AutoFormer [6] 0.3657 0.2928 0.3775 0.2126 0.2390

AutoFormer DTW 0.3393 0.2465 0.3455 0.1923 0.1895

iTransformer [33] 0.3176 0.2312 0.2861 0.1498 0.1333

Crossformer [34] 0.3427 0.5373 0.3256 0.2127 0.1143

Our method 0.3379 0.2295 0.3142 0.1628 0.1764
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The ETT-h1 and ETT-h2 sub-datasets consist of trans-
former temperature time series with short-term oscillations.
ETT-h1 has relatively shorter pattern cycles, while ETT-
h2 has longer pattern cycles. These sub-datasets challenge
the model to capture both short-term and long-term patterns
accurately.

On the other hand, the ETT-m1 sub-dataset represents
transformer temperature time serieswithout short-termoscil-
lations but still exhibiting varying pattern cycles. This
sub-dataset focuses more on capturing seasonal variations
or longer-term trends in the data.

Lastly, the ETT-m2 sub-dataset contains transformer tem-
perature time series with a clear upward or downward trend.
These time series exhibit a consistent increase or decrease in
temperatures over time, allowing us to evaluate the model’s
ability to capture and forecast long-term trends accurately.By
utilizing these two diverse datasets, we aim to validate the
effectiveness and robustness of our proposed method across
different domains and temporal characteristics. The datasets
provide a realistic and challenging testbed for evaluating the
performance of our approach and comparing it against base-
line models.

The weather dataset on the other hand, contains his-
torical weather observations such as temperature, humidity,
precipitation, andwind speed. This dataset provides a diverse
range of time series with different temporal characteris-
tics, including daily, monthly, and yearly variations. By
incorporating theweather dataset,we aim to evaluate the gen-
eralizability of our proposed method across different types
of time series data.

Experimental results are based on predictions made on
these datasets, with prediction targets of lengths 96, 48, and
24, while all input sequences have a fixed length of 96.

In terms of evaluation, we useMean Squared Error (MSE)
as the evaluation metrics to assess the performance of each
model. These metrics provide quantitative measures of the
accuracy and quality of the predictions compared to the
ground truth values.

Next, we will present the experimental results obtained
on these datasets and provide a detailed discussion of the
findings.

4.2 Results and discussion

The results obtained from the experiments are summarized
in Table 1, which presents the MSE values for each model
and prediction target length. This tabulated data provides a
clear comparison of the predictive performance of our pro-
posed method against the baseline models and two SOTA
models [33, 34]. The results of other methods shown in the
table are based on reproducing their outcomes using their
publicly available code. All methods were trained and evalu-
ated using consistent hyperparameters, with efforts made to

maintain uniformity across models as much as possible. This
included ensuring the same number of layers in the encoder
and decoder andmaintaining the dimension ofmodels. Addi-
tionally, the same training and testing datasets were utilized
for all experiments.

According to our experimental results, we observed a sig-
nificant relationship between the model’s performance and
the target window size. This phenomenon can be attributed to
the inherent challenges posed by varying sequence lengths.
While our improved model demonstrates enhanced capabil-
ities in handling longer sequences, it is essential to note that
shorter sequences present comparatively fewer challenges
than longer ones.

Additionally, we provide graphical representations of
selected experimental results to illustrate the prediction out-
comes visually. These graphs showcase the predicted values
alongside the actual ground truth values, allowing for a more
intuitive understanding of the model’s performance in cap-
turing the underlying patterns and trends of the time series
data.

Analyzing the results presented in Table 1, it becomes
apparent that the majority of experiments show improved
performance with the inclusion of interpolation methods
compared to the baselinemodels.On the other hand, although
our method did not outperform the SOTA model iTrans-
former in most experiments, it has significantly narrowed
the gap with SOTA methods compared to Autoformer.
Our method even exhibited better performance than iTrans-
former in short sequence prediction. Our experiment also
demonstrates that, in addition to the patch method used in
iTransformer, the decomposition of sequences also plays a
significant role in predicting sequences. Improvement meth-
ods based on decomposition are worth considering in time
series prediction tasks. The approach we proposed, which
involves interpolating and separately predicting the Trend
sequence, effectively improves the performance of Auto-
former in prediction tasks.

The application of interpolationmethodsmay lead to a less
sensitive response of the model towards capturing the under-
lying patterns. Conversely, the performance of interpolation
tends to be more favourable for short sequence predictions
compared to long sequence predictions, suggesting that inter-
polation techniques contribute more informative features to
shorter sequences.

Additionally, comparing the charts in Fig. 5, it is evi-
dent that the inclusion of interpolation methods can lead to
smoother and better fitting predictions for time series with
higher oscillation frequencies. On the other hand, the base-
line model lacking smooth interpolation is more susceptible
to short-term fluctuations.

Furthermore, models that incorporate DTW, such as
AutoFormer and Informer with soft-DTW, outperform the
baseline models in terms of predictive accuracy. This finding
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Fig. 5 Visual comparison of the experiment results obtained with the baseline method Autoformer (left column) and our method (right column)

further supports the notion that DTW offers greater value in
time series prediction compared to traditional metrics like
MSE or MAE. It is important to note the practical impli-
cations of these findings. The application of interpolation
methods andDTW-basedmodels can potentially improve the
accuracy and reliability of time series predictions in various
domains.

While this study presents promising results, it is impor-
tant to acknowledge its limitations. The specific datasets used
and the experimental setup may not fully capture the diverse
range of time series characteristics encountered in real-world
scenarios. Therefore, future research should explore alterna-
tive interpolation techniques and investigate the performance
of DTW-based models on different types of time series data.

5 Conclusion

This paper highlights the importance of long-sequence time
series forecasting in various domains such as finance, health-
care, and weather forecasting. The increasing volume of
time series data requires advanced forecasting techniques
to make accurate predictions. Additionally, this paper pro-
vides a comprehensive overviewof long-sequence time series
forecasting and emphasizes the significance of models like
Informer and Autoformer in addressing the challenges asso-
ciated with long-term and short-term predictions. Moreover,
two methods are proposed to enhance existing models: one

focuses on the enhancement of existing trend-cyclical and
seasonal decomposition methods, while the other leverages
DTW-based evaluation methods during training. We also
introduce the concept of decomposition in time series anal-
ysis and present a novel method of temporal interpolation to
enhance the prediction of cyclical patterns. The findings and
contributions of this study are of significant importance for
the advancement of time series forecasting techniques and
provide valuable insights for future research in this field.
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