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Abstract

Objective: To systematically evaluate which lesion-based imaging features and

methods allow for the best statistical prediction of poststroke deficits across

independent datasets. Methods: We utilized imaging and clinical data from

three independent datasets of patients experiencing acute stroke (N1 = 109,

N2 = 638, N3 = 794) to statistically predict acute stroke severity (NIHSS) based

on lesion volume, lesion location, and structural and functional disconnection

with the lesion location using normative connectomes. Results: We found that

prediction models trained on small single-center datasets could perform well

using within-dataset cross-validation, but results did not generalize to indepen-

dent datasets (median R2
N1 = 0.2%). Performance across independent datasets

improved using large single-center training data (R2
N2 = 15.8%) and improved

further using multicenter training data (R2
N3 = 24.4%). These results were con-

sistent across lesion attributes and prediction models. Including either struc-

tural or functional disconnection in the models outperformed prediction based

on volume or location alone (P < 0.001, FDR-corrected). Interpretation: We

conclude that (1) prediction performance in independent datasets of patients

with acute stroke cannot be inferred from cross-validated results within a
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dataset, as performance results obtained via these two methods differed consis-

tently, (2) prediction performance can be improved by training on large and,

importantly, multicenter datasets, and (3) structural and functional disconnec-

tion allow for improved prediction of acute stroke severity.

Introduction

Acute stroke lesions disrupt physiological brain activity,

both directly at the lesion location, but also indirectly

through effects on the connected brain networks, and

both likely contribute to stroke deficits.1

Recent studies have used neuroimaging-based lesion fea-

tures, such as direct lesion location data, as well as indirect

structural and functional lesion connectivity data, to pre-

dict poststroke deficits.2–5 Direct lesion location data refer

to lesion segmentations derived from fluid attenuated

inversion recovery (FLAIR) or diffusion-weighted imaging

(DWI) abnormalities visible on the patient’s MRI scan.4,6,7

Indirect lesion connectivity refers to either the fiber tracks

intersected by the lesion (structural disconnection [SDC])8

or functional connectivity (FC) between the lesion location

and other brain regions (functional disconnection

[FDC]),9,10 as estimated from the combination of lesion

information from individual patients and connectivity data

from large cohorts of healthy participants.

Recent studies have come to different conclusions as to

which lesion features are most potent for the prediction

of deficits.2,4,5 While some studies found structural dis-

connection to be more potent than functional

disconnection,2,4 others found that functional disconnec-

tion may be more relevant for more complex deficits.5

These results2,4,5 were predominantly based on predicting

variance within a single dataset of ~130 patients recruited

from a single hospital.11 While this dataset is valuable

and very well phenotyped, generalization of these findings

to stroke populations at large is currently unclear. In

addition, previous work has focused on linear prediction

models (e.g., ridge regression,2,4 linear growth models,5 or

canonical correlation analysis12), yet non-linear algo-

rithms may also be useful for cross-dataset predictions.13

The aim of the current study was to systematically eval-

uate which imaging features and methods allow for the

best statistical prediction* of poststroke deficits at the

time of image acquisition, leveraging three large indepen-

dent stroke cohorts.11,16–19 We evaluated four lesion-

based imaging features (lesion volume, lesion location,

structural disconnection, and functional disconnection)

and three methodological variables: (1) properties of the

training sample (e.g., number of patients and single-

center vs. multicenter collection), (2) non-linear versus

linear prediction models, and (3) performance estimation

using cross-validation loops versus independent test data.

We altogether aimed to match our methodological

approach as closely as possible to prior stroke imaging

prediction studies2,4,7 to allow for comparability. In all

cases, our outcome metric was the prediction of acute to

subacute stroke severity, measured by the NIH stroke

scale (NIHSS). Although this score can be generated clini-

cally without the need for predictions from neuroimaging,

we used NIHSS as an outcome variable for three reasons:

(1) it is widely used across different clinical sites allowing

for cross-dataset comparisons; (2) it is measured in close

temporal proximity to the brain imaging used to define

the lesion features; (3) it has clinical and prognostic

value, informing acute stroke treatment decisions20 and

correlating with stroke outcomes in the chronic phase

poststroke.21,22

*We use “predict” and “prediction” with the statistical definition
in mind, that is, we want to predict a new data output based on
a specific data input, individually for each patient. This goal of
prediction contrasts the one of inference, that is explaining a
certain output at the group level.14,15 (Chapter 2.1.1 for refer-
ence 2). Importantly, “new data” can both refer to future data
that did not exist yet when the prediction was generated and
therefore represent a true forecast, or simply refer to data that
was not used for training of a model and was therefore unseen
and new to it independent of when it was obtained.
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Methods

Patient cohorts

Our study considered three separate cohorts of stroke

patients with acute stroke: A single-center† cohort of

patients with first-time ischemic and hemorrhagic stroke

enrolled at Barnes-Jewish Hospital and the Rehabilitation

Institute, Washington University, St. Louis (WashU

cohort: N1 = 109),11 a single-center cohort of patients

with acute ischemic stroke (AIS) that were part of a ret-

rospective Massachusetts General Hospital (MGH)-based

study (N2 = 638),16,19 and multicenter cohort of patients

with AIS from the international MRI–Genetics Interface

Exploration (MRI-GENIE) study (N3 = 794, 5 individual

centers in four different countries: Spain, Sweden, Bel-

gium, and the USA).17 More detailed inclusion and exclu-

sion criteria are reproduced in supplementary materials.

In brief, we included all those patients with available spa-

tially normalized lesion segmentations and information

on stroke severity in the acute to subacute phase, in most

cases at the time of hospital admission.

All patients or their proxies of the WashU and

MRI-GENIE cohorts gave written informed consent in

accordance with the Declaration of Helsinki. Given the

retrospective character of the MGH-based study, it was

performed under a waiver of consent. The study protocols

were approved by MGH’s Institutional Review Board (Pro-

tocol #: 2001P001186, 2003P000836, and 2013P001024)

and the Review Boards of individual sites.

Neuroimaging data and lesion
segmentation

WashU cohort: Neuroimaging scans were acquired with a

3T Siemens Tim-Trio scanner at the School of Medicine

of the Washington University in St. Louis. Lesions were

manually segmented onto structural MRI images obtained

1 to 3 weeks poststroke, non-linearly spatially normalized

to Montreal Neurological Institute (MNI)-space and

reviewed by two board certified neurologists (MC

and AC).

MGH cohort: Neuroimaging scans were obtained on

either a Siemens (Munich, Germany) 3T MRI or a Gen-

eral Electric (Fairfield, CT) 1.5T MRI machine, typically

within the first 48 h after admission. Lesion segmenta-

tions were generated via an in-house deep learning-based

algorithm and non-linearly spatially normalized.23 Manual

quality control of lesion segmentations and spatial

normalization occurred to guarantee a high quality of the

final lesion segmentations (JR).

MRI-GENIE cohort: Neuroimaging data were recorded

on various scanners depending on the recruiting site,

within the first few days of hospital admission.24 DWI-

based lesion segmentations were created via validated

automated algorithms.25 DWI data and respective lesions

were subsequently non-linearly spatially normalized. High

quality of lesion segmentations and spatial normalization

was ensured by two experienced raters (AKB and MB).

Further details on scanners and imaging parameters are

stated in Tables S1 and S2.

Computation of structural disconnection

We computed structural disconnection (SDC) maps via

the BCB toolkit, in accordance with previously published

methods.8 7T DWI data from 176 healthy participants

from the “Human Connectome Project” were used to

identify fiber tracks that passed through each lesion (age

29.5 � 3.6 years, 72 male participants; HCP7T).26,27

Computation of functional disconnection

FDC, that is, the temporal co-activation of the lesion

location with all other whole-brain voxels, was derived

using local software and in accordance with previously

published methods from our group:10,28,29 We utilized a

publicly available normative connectome dataset of 1000

healthy right-handed subjects (mean age: 21.3 (range:

18–35) years, 43% men, preprocessed in accordance with

Fox et al., 200530).31 We used this connectome to com-

pute resting-state functional connectivity between each

patient’s stroke lesion location and all other whole-brain

voxels, creating a single lesion network map for each

patient (including both positive and negative T-values).

Prediction of stroke severity

The outcome variable of interest was stroke severity in

the acute to early subacute phase poststroke32 as mea-

sured by the National Institutes of Health Stroke Scale

(NIHSS, 0: no symptoms, 42: death). For each dataset, we

selected the stroke severity score that was obtained closest

to the time of image acquisition. The different features of

neuroimaging data, that is, structural (FLAIR- or DWI-

derived) lesion location, as well as SDC and FDC, repre-

sented our main predictors of interest. We furthermore

evaluated the predictive capacity of (log-scaled) lesion

volume, by itself and in combination with each of the

lesion representations, resulting in seven different inputs.

We decided to include lesion volume as baseline predic-

tor, given its already considerable predictive capacity.33 In

†While patients were recruited at two institutions, the patient
population and scanning procedures were the same. We hence
here loosely use the term “single-center.”
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final exploratory analyses, we combined information on

lesion volume, SDC and FDC.

The analysis steps described in the following were per-

formed once with each individual cohort as the training

dataset. The other two cohorts, representing the respective

external data, were kept completely separate. We also ran-

domly, repeatedly downsampled the larger two cohorts

(N2 and N3) to the size of the smaller cohort (N1) and

hence obtained two further training datasets (times 100

repetitions). Additionally, we repeated our prediction

analyses for the first cohort (N1) considering those

patients with ischemic stroke only. Our modeling pipeline

began with an unsupervised principal component analysis

(PCA)-based dimensionality reduction. This PCA step

was performed separately for the three neuroimaging

lesion features, that is, lesion location, SDC, and FDC.

For each lesion feature, we retained as many PCA compo-

nents as were necessary to explain 95% of the variance in

the original data. Dimensionality-reduced lesion features

and the total, log-transformed lesion volume were subse-

quently standard-scaled.

Next, we employed one linear and one non-linear

machine learning algorithm in (1009) repeated nested

five-fold cross-validations with hyperparameter optimiza-

tion to predict stroke severity. We opted for the two most

frequently utilized algorithms in stroke deficit prediction

studies:2,7,13,34 l2-regularized ridge regression and a sup-

port vector machine (SVM) with a radial basis function

(RBF) kernel. For ridge regression, we optimized the reg-

ularization parameter alpha [0.00001, 0.0001, 0.001, 0.01,

0.1, 1, 10, 100, 1000, 10000, 10000], while for support

vector regression, we optimized the regularization param-

eter C [0.001, 0.01, 0.1, 1, 10, 100, 1000].

The performance for the prediction of each patient’s

stroke severity was evaluated using the coefficient of deter-

mination, R2, primarily for all patients included in the

external test data that was not used in any of the dimen-

sionality reduction or prediction steps described in the

previous paragraphs.35 We furthermore obtained an esti-

mate within the outer cross-validation-loop of the training

cohort to allow for comparisons between cross-validated

and external data results. Differences in predictive capaci-

ties between the seven inputs were evaluated via two-tailed

paired t-test (level of significance: P < 0.05, FDR-corrected

for multiple comparisons). Figure 1 presents a graphical

overview of our methodological approach.

Figure 1. Prediction of stroke severity. Lesion information was captured by total lesion volume, voxel-wise structural lesion segmentations, and

structural and functional lesion connectivity. For preprocessing, the voxel-wise features were each initially dimensionality reduced via principal

component analysis. We kept as many components as were necessary to explain 95% of the variance in the original data. We then trained either

linear ridge regression or kernel support vector regression models in a five-fold nested cross-validation to predict individual NIHSS scores.

Prediction performance was evaluated as explained variance (coefficient of determination, R2). Training of prediction models was repeated for

each of the three cohorts considered in this study: The WashU cohort with 109 patients,11 an MGH-based cohort comprising 638 patients,16 and

the multicenter cohort of 794 MRI-GENIE patients.17 For each of these cohorts, we trained prediction models considering each of the lesion

information features, in isolation and in combination with lesion volume. External test data were made up of the two cohorts not involved in the

training process. The nested cross-validation scheme figure is adapted from Ref. [45].

4 ª 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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Results

In this study, we utilized data from 1541 patients with

stroke across three independent cohorts (Table 1). The

overlay of stroke lesion locations was qualitatively similar

for all three cohorts, primarily affecting subcortical

regions in MCA territory (Figure 2). Low-dimensional

representations of lesion location, FDC, and SDC are

illustrated in Figure 3.

Identifying the most useful training
datasets

Prediction models that were trained using a small single-

site dataset (N1 = 109) performed well using cross-

validation within the same dataset (R2 = 14.7 � 5.5%).

However, prediction performance dropped dramatically

when used to predict stroke severity in independent test

datasets (R2 = 0.2 � 5.1%, Figure 6A). Models trained on

different downsampled single-site or multi-site datasets

showed a slightly higher, yet still very low prediction per-

formance in absolute terms for external test data

(N = 109 patients randomly sampled from N2 or N3, N2:

R2 = 7.1 � 5.4%, R2 = 8.8 � 6.8%, Figure 6B, C and

Tables S3 and S4). Furthermore, prediction estimates for

external data remained broadly the same when excluding

patients with hemorrhagic stroke and taking into

account only those patients with acute ischemic stroke

(N1,ischemic = 80, Table S5). As such, the low prediction

performance in external datasets is likely due to the sam-

ple size of the training cohort, not any specific character-

istics of the WashU dataset.

Prediction models trained using a larger single-site

dataset (N2 = 638) performed very well using within-

dataset cross-validation (R2 = 27.5 � 4.6%), but again

showed a reduction in explained variance when applied

to independent test datasets (R2 = 15.8 � 3.6%).

Finally, prediction models trained using our largest mul-

ticenter dataset (N3 = 794) performed moderately well

using within-dataset cross-validation (R2 = 20.6 � 5.6),

but were the only models that showed no decrement in pre-

diction accuracy when applied to external test datasets

(R2 = 24.1 � 3.9%). In fact, these models predicted more

variance in the independent test datasets than they did

within the heterogenous training dataset.

The model-wise differences between cross-validated

prediction estimates and those obtained in external data

can be found in Tables S6–S8 (two right-most columns).

Although there were small differences depending on the

model, results were largely independent of which lesion

features were included in the model and whether ridge

regression or support vector regression was used

(Figure 4).

Identifying the most useful lesion features

To determine which lesion attributes predicted the most

variance across independent datasets, we focused on

models trained using the larger multicenter data and

tested the models on the other two independent datasets.

First, we found that including connectivity information

in the model (SDC or FDC) consistently and significantly

outperformed lesion volume and location information in

the prediction of stroke severity (Figure 5). Similar results

were obtained when models were trained on the other

datasets (Tables S3–S8).
Second, we found that the ideal set of lesion attributes

for predictions in test data varied depending on whether

we used ridge regression or support vector regression. In

case of ridge regression, the best prediction performance

resulted from SDC with lesion volume (R2 =
34.30 � 0.04%) although results were similar without

lesion volume (R2 = 34.05 � 0.02%). With support vec-

tor regression, the best prediction performance was for

FDC in combination with lesion volume (R2 =
31.97 � 0.07%). The “best” performing lesion attributes

differed depending on the specific training dataset, train-

ing algorithm, and cross-validation method (Figures 6

and 7, Tables S3–S8 present a complete set of results for

all individual features in all scenarios). In the case of

structural disconnection, predictions were usually inde-

pendent of whether lesion volume was included as a

covariate. However, for functional disconnection, predic-

tions often improved considerably when including (log-

transformed) lesion volume, suggesting these variables

Table 1. Clinical characteristics of included cohorts.

WashU cohort

(single-site)

MGH cohort

(single-site)

MRI-GENIE

cohort

(multi-site)

Number of

participants

109 638 794

Age (years, mean, SD) 53.7 (10.6) 69.2 (14.7) 63.9 (14.8)

Sex (female) 47.7% 49.1% 38.3%

NIHSS (median, IQR) 3 (7) 4 (9) 4 (5)

Lesion volume

(mL, median, IQR)

18.2 (46.9) 8.4 (36.8) 3.2 (18.3)

Patients in the WashU cohort were on average younger than the

other two cohorts (54 years vs. 69 and 64 years, respectively) and

had larger lesions (18.2 mL vs. 8 and 3 mL). This difference in lesion

volumes could in part be due to the fact that the WashU cohort com-

bined patients with ischemic and hemorrhagic stroke, while the MGH

and MRI-GENIE cohorts exclusively focused on patients with ischemic

stroke. Of note, the difference in lesion volume did not go along with

comparable differences in median NIHSS scores, as the median NIHSS

score was the lowest in the WashU cohort (3 vs. 4 and 4).
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Figure 2. Lesion overlays of included cohorts. The maximum lesion overlap was found subcortically in the white matter in proximity to the lateral

ventricles, picturing the predominance of middle cerebral artery (MCA) strokes, for all three cohorts. Lesions in MGH and MRI-GENIE additionally

covered posterior circulation territories. Stroke lesions affecting the anterior cerebral artery territory were generally rare.

Figure 3. Low-dimensional lesion features, exemplarily illustrated for the MRI-GENIE cohort. To retain 95% of the variance of the original WashU

cohort dataset, we needed 57 components for lesion location, 29 for SDC, and 11 for FDC data. For the MGH cohort, we needed 251

components for lesion location, 65 for SDC, and 13 for FDC. For the MRI-GENIE cohort, we needed 285 components for lesion location, 66 for

SDC, and 14 for FDC. Going from the smallest to the largest dataset, the number of components needed to explain 95% of the variance

increased substantially for lesion location (from 57 to 285), approximately doubled for SDC data (from 29 to 66 components), and changed very

little for FDC data (from 12 to 14). For each of the three different sources of lesion information – lesion location, structural disconnection, and

functional disconnection – we here present all the components that individually explained more than 10% of the variance in the original dataset.

With respect to functional disconnection (C), the components qualitatively resembled gradients obtained via diffusion embedding;47 for example,

with the first components ranging from transmodal to primary sensorimotor regions.
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explain independent variance in stroke severity. With

some combinations, we did observe statistically significant

differences in prediction between SDC and FDC, but the

magnitude of the differences was always small and thus of

uncertain clinical significance.

In final exploratory analyses, we did not observe any

substantial or consistent increases in prediction perfor-

mance in external data when combining lesion volume,

SDC, and FDC (Tables S9–S11).

Discussion

In this present study, we systematically evaluated the per-

formance of various lesion-based imaging features in

dependence of the characteristics of the training dataset,

model, and evaluation method in predicting stroke severity

at the time of imaging acquisition in independent test data.

We found that (1) both structural and functional discon-

nection allow for improved prediction of stroke severity in

independent datasets, (2) prediction performance can be

improved by training on large multicenter datasets, and (3)

prediction performance in independent stroke data cannot

be inferred from cross-validated results within a single

dataset. We discuss most relevant results in turn.

We aimed to enhance the comparability to previous

stroke imaging prediction studies by aligning our meth-

odological approach to these studies as closely as

possible.2,4,7 However, we introduced one critical modifi-

cation: We focused on evaluating prediction performance

in independent test data. This approach stands in contrast

to most prior work that obtained performance estimates

using cross-validation within a single dataset from a sin-

gle site.2,5–7,12 Of note, some prior studies have studied

the prediction of lesion-induced deficits across indepen-

dent datasets.28,29,36 However, these studies did not

explicitly investigate differences between cross-validation

estimates within a single dataset versus estimates across

independent datasets.

Previous work that focused on lesion location-based

stroke deficit predictions described increases in prediction

performance with increasing sample sizes.16,37,38 In line

with this work, we saw a general increase in prediction

Figure 4. (A) Prediction performances across training cohorts and lesion features. While the average prediction performance decreased from

cross-validated estimates to estimates in external data for both small and larger single-center data, there was no such decrease observable for

larger, multicenter data. The prediction performance was the highest in case of training on large and multicenter data, making it the most

amenable scenario to evaluate the performance of individual lesion features. Each dot represents the average explained variance of one particular

lesion feature, such as lesion location, SDC, or FDC. Explained variance was measured as the coefficient of determination. (B) Illustration of

changes in explained variance from the cross-validated estimates in the training cohort to the estimates in external data. Each line represents a

separate lesion feature, that is, lesion location, SDC, and FDC, each in isolation and combination with lesion volume.
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performance in external data for training on larger sam-

ples as compared to smaller ones, also in case of lesion

connectivity features, in addition to lesion location-based

ones. However, even after training on a large single-site

dataset (N2), there was still a drop in performance when

tested in external data. Only in the case of training on

large multicenter data, did we find no drop in perfor-

mance between within-dataset cross-validated estimates

versus those in independent data. Conceivably, this find-

ing may illustrate that models trained on multicenter data

are less prone to deteriorate in their performance due to

potential data shift effects that can arise when samples of

patients for training and testing models differ in essential

characteristics.39 This interpretation is consistent with

results from other fields showing that training on multi-

center neuroimaging data has the potential to reduce the

biases of machine learning models with respect to the

performance across different groups of subjects character-

ized by age, gender, or race.40

Appreciating these differences in estimates for cross-

validation and external data, it occurs to us that it is of

prime importance for studies focused on predicting new

data to explicitly test the generalization performance in

external data. Otherwise, one may be adapting estimates

that are too optimistic, which may be particularly rele-

vant for conceivable later real-world applications. Simi-

larly, conclusions about the best method for predicting

variance within a dataset may not generalize to predicting

variance across independent datasets. For example, we

found that SDC predicted more variance within the

WashU dataset than FDC, consistent with prior work.2

However, in other datasets and model scenarios, FDC

performed better, especially when tested in independent

dataset.

Limitations and Future Directions

One of the main limitations of our study is focusing on a

single global measure of poststroke deficits (NIHSS) that

was obtained at the time of imaging acquisition, rather

than at a later point in time. This output variable was

chosen to maximize the amount of available individual

patient data since the NIHSS-based stroke severity score

is one of the most frequently obtained scores (e.g., 3-

month functional outcomes were not consistently avail-

able for our cohort and would have led to drastic

Figure 5. Prediction results of stroke severity in external data when training relied on the larger, multi-site MRI-GENIE training dataset. For both

ridge regression (A) and support vector regression (B), there was a clear benefit from integrating information from indirect connectivity

techniques, in case of FDC once combined with lesion volume information. The significantly highest performance was achieved by SDC in case of

ridge regression and FDC with lesion volume information for support vector regression (pair-wise t-tests, level of significance P < 0.05,

FWE-corrected for multiple comparisons). For the ease of interpretation of the bar graphs, the winning model is marked with a small, exemplary

brain rendering representing the respective lesion representation.
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decreases in sample size with sample size being one of the

most important factors in prediction scenarios). A

patient’s stroke severity in the hospital can of course be

determined clinically without the necessity to predict it.

The value of our study may therefore be seen in the

methodological insights offered – such as that large, mul-

ticenter data enabled reliably higher prediction perfor-

mances in external data – rather than the clinical ones.

Furthermore, the ability to predict acute stroke deficits

based on lesion location or connectivity may conceivably

aid prognosis and guide treatment decisions in the future.

For example, candidates for invasive thrombolysis or

thrombectomy are often identified based on a mismatch

between stroke severity on clinical exam and neuroimag-

ing findings.20 This clinical-radiographic mismatch

emerges when a patient presents with more severe stroke

symptoms than might be predicted based on the lesion

volume. These patients are considered good candidates

for intervention as they may have brain tissue that is dys-

functional, resulting in symptoms, but which has not yet

become a permanent lesion.41 Future work may specifi-

cally center on refinements of this clinical-radiographic

mismatch: Our study suggests that adding information

originating from more advanced imaging-based measures,

such as functional or structural lesion connectivity, to

lesion volume information could potentially enhance the

determination of this mismatch. In addition, it will also

be important to explicitly test the generalization of our

prediction results to outcomes in later phases poststroke,

such as modified Rankin Scale Score-based functional

outcomes and aim for even higher prediction perfor-

mances in general. We could explain only ~one third of

the variance in stroke severity, which may not suffice yet

to be of clinical relevance to support optimal planning

and care during recovery phases. Another technical aspect

that could be examined in future work is the algorithmic

choice for dimensionality reduction. While linear PCA, as

used here, is one of the most commonly used strategies,7

it is conceivable that other approaches, such as non-linear

matrix factorization,42 t-SNE,43 UMAP,36 and deep

learning-based techniques,37 could facilitate a higher pre-

diction performance. In prediction-focused analysis set-

tings, it is of prime importance to mitigate the risk of

data leakage.44 We paid great attention to adhere to gen-

eral recommendations35,45 and strictly separated all opera-

tions for analyses that used individual training and test

datasets. For cross-validated results within a dataset, we

fitted principal components based on the entire training

dataset, rather than just the inner loop of the nested

cross-validation (i.e., excluding the left-out subjects and

recomputing the PCA for every permutation). This deci-

sion was made to reduce the computational burden of

the analyses, maintain consistency with prior work,2 and

because PCA is a completely unsupervised technique that

relies on input data only, and thus should not result in

any advantage in determining associations with

outcome.15 Another potential statistical limitation of our

study is that we compared the prediction results originat-

ing from our various lesion representation models via

two-tailed t-tests, inspired by methodological approaches

in comparable prior work.36 This approach does not

make use of the variance across the estimates of the outer

loops. Permutation-based tests of group means are an

alternative, more rigorous statistical approach that could

be used instead of t-tests in future studies. Finally, the

differences in clinical characteristics between our individ-

ual cohorts (e.g., for age, etiology, lesion volume, and the

exact time of data acquisition), as well as missing granu-

lar information on the time after stroke, that is, the exact

days of time poststroke, could be seen as limitations.

However, we believe they rather represent strengths, as a

model’s generalization performance is more convincing if

it generates reliable predictions across a wide range of

independent cohorts.46 We also note that low prediction

performances in external data were observable for all sam-

ples comprising ~100 patients and did not appear to be

due to differences in clinical characteristics between the

WashU cohort and other cohorts. Future studies could

instrumentalize downsampling analyses that stratify for

specific patient characteristics, such as age, sex, lesion size,

Figure 6. Prediction results when training relied on the WashU cohort (A) or downsampled sets of the MGH and MRI-GENIE cohorts (B, C). On

the left, prediction performance across lesion features is summarized in box plots: The prediction performance obtained via cross-validation in the

training datasets depended on the actual training cohort and was on average higher for the single-center cohorts, that is, WashU and MGH

compared to the multicenter MRI-GENIE cohort. These differences could conceivably originate from cohort-specific patient characteristics and

inclusion/exclusion criteria (given that the sample size itself was the same in all three scenarios). Of note, the overall prediction performance in

external data was generally low across all three samples (on average <~9%). On the right, graphics visualize the winning lesion feature in each

individual scenario: While SDC led to the significantly highest prediction performance for all prediction model and cross-validation vs. external

data combinations in the WashU cohort, the situation became more complex for the further two cohorts: Here, all three lesion features, that is,

lesion location, structural disconnection, and functional disconnection excelled in different scenarios. As is also the case in Figures 5 and 7, the

winning representation is visually highlighted by brain renderings. The renderings themselves present examples of the respective lesion

representation but cannot be interpreted with respect to voxel-wise importances.
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and lesion type, to inform about each factors’ potential

effect on prediction accuracies.

Only in case of training prediction models on large,

multicenter data did we observe reliably higher prediction

performances in external data. In this scenario of large,

multicenter data, both structural and functional discon-

nection were powerful predictors of stroke deficits whose

capacities exceeded that of lesion volume and location

alone.
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