
“© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

  



1

Energy-Efficient Decentralized Federated Learning
for UAV Swarm with Spiking Neural Networks and

Leader Election Mechanism
Chen Shang, Dinh Thai Hoang, Senior Member, IEEE, Min Hao, Dusit Niyato, Fellow, IEEE,,

Jiadong Yu, Member, IEEE,

Abstract—Federated Learning (FL) has been considered a
critical technique for assisting Unmanned Aerial Vehicle (UAV)
swarm to efficiently perform tasks in dynamic environments.
However, deploying FL in UAV swarm is constrained by the
limited energy of the UAVs and the complex communication
environments within UAV swarm networks. This work introduces
a leader election-assisted Spiking Neural Networks (SNNs)-driven
decentralized FL framework for UAV swarm. This framework
enables UAV swarm to train a high-performance FL model while
minimizing energy and time consumption, thereby enhancing
real-time decision ability of UAV swarm. In particular, the
SNN-driven FL allows UAV swarm to train a shared model
with less energy consumption through its discrete spike event.
To this end, we conduct a systematic analysis of the training
challenges associated with SNN-driven FL, and we then propose
an approximate derivative algorithm to address these challenges.
Furthermore, we develop an intelligent leader selection scheme
based on Bayes theorem designed to reduce time consumption
of model parameter transmission and accelerate the model
aggregation. Simulation results show that the proposed scheme
outperforms baseline schemes in terms of model performance,
energy and time consumption.

Index Terms—Unmanned Aerial Vehicle, Federated learning,
Spiking Neural Network

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) swarms represent a
groundbreaking advancement in technology, offering a mul-
titude of practical applications. These swarms consist of
multiple coordinated UAVs, leverage advanced algorithms to
mimic natural swarm behaviors, enhancing their efficiency in
complex tasks like disaster management and environmental
monitoring [1]. The emergent behavior of UAV swarms in-
troduces new opportunities in automation and artificial in-
telligence, marking it as a rapidly evolving field. Federated
Learning (FL) is a revolutionary machine learning approach
that allows multiple UAVs in a swarm to collaboratively
learn a shared model while keeping all the training data on-
device. In practice, FL can enhance the operational efficiency
of UAV swarms in tasks like synchronized flight patterns,
obstacle avoidance, and area surveillance, by enabling on-the-
fly learning and decision-making, which is crucial in dynamic
and unpredictable environments [2].
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Despite the advantages offered by FL, its effectiveness in
UAV swarm is hampered by the inherent characteristic of UAV,
e.g., limited energy and higher mobility. The finite energy
resources of UAVs, predominantly allocated to maintain flight,
impose strict limitations on their computational capacities,
significantly influencing the extent, complexity, effectiveness
of the data processing, and learning tasks that can be under-
taken by UAVs. Moreover, the high mobility of UAVs leads
to dynamic changes in network topology, posing challenges
in achieving stable connectivity and managing latency. These
issues critically affect the communication and synchronization
necessary for effective FL [3].

Recently, several approaches have been proposed to ad-
dress above challenges. In [4], an energy-efficient dynamic
scheduling scheme was proposed, optimizing FL performance
by selecting specific UAVs to participate in model training.
The authors of [5] analyzed how the limited energy and high
mobility of UAVs impact FL convergence and designed a
framework to address these challenges. [6] explored how to
achieve high-level FL performance in a UAV swarm by jointly
optimizing training and network resources. Although these
methods effectively address the negative impacts of limited
energy and high mobility on FL performance, primarily focus-
ing on optimizing energy allocation, none of them considered
how the model architecture of FL affects energy consumption
within the UAV swarm. Additionally, [4] utilized over-the-air
computation (AirComp) for aggregating FL models. However,
the requirement for strictly synchronized transmissions in
AirComp poses challenges in highly mobile UAV swarms.

This work aims to propose a novel framework leveraging
the advantages of Spiking Neural Networks (SNNs) together
with an intelligent leader election mechanism to address the
above problems for FL-based UAV swarms. SNNs, recognized
as the third generation of neural networks, present a promising
approach to significantly reduce energy consumption for both
training models and tasks inference using their bio-inspired
architecture. Different from traditional neural networks (e.g.,
Artificial Neural Networks (ANNs)) that process information
through continuous values, SNNs leverage discrete events
(i.e., spike) for information transmission. This method allows
SNNs to activate and process information only in response
to spikes, substantially reducing unnecessary computational
activities and thus conserving energy. To enhance the efficacy
of SNN-driven FL deployed in UAV swarms, we conduct a
systematic analysis of the training challenges associated with
SNNs. Subsequently, we introduce an approximate derivative
algorithm to address these challenges, enabling the UAV



2

T

T

T

T

Axon
T

T

T

T

Axon
T

T

T

T

Axon

Leader UAV 

with model

Select a new leader, and the leader aggregates sub-models.

U
p
d
at

e 
m

o
d
el

Inputs Neuron Output

UploadBroadcast

T

T

T

T

Axon

Leader UAV 

with model

Select a new leader, and the leader aggregates sub-models.

U
p
d
at

e 
m

o
d
el

Inputs Neuron Output

UploadBroadcast

Fig. 1: An illustration of the SNN-Driven decentralized FL frame-
work. The leader UAV broadcasts the model to other UAVs for local
training. After completing local training, all model parameters are
transmitted to a new leader UAV, which then aggregates all received
model parameters to update the model.

swarm to train high-performance FL models while maintaining
lower energy consumption. Finally, we develop a decentralized
leader election approach leveraging the Bayes theorem to
mitigate the challenges posed by the high mobility of UAVs.
To the best of our knowledge, this is the first work using
SNN-driven FL model with leader election mechanism for
UAV swarm. The simulation results show that our proposed
framework can outperform other baseline schemes in terms of
model performance, energy and time consumption.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a UAV swarm, each UAV
represented by K = {1, 2, . . . ,K}. All UAVs cooperatively
execute an FL algorithm over wireless networks. In FL, the
phase where each UAV trains its local model using its own
collected data is named as local training, and the process
where these local models are transmitted to the leader UAV
for aggregation is called the global learning round.

A. Federated Learning Model

Let Fk (w) = L (w,Dk) represent the local training loss of
UAV-k with respect to model weight w, where L (·, ·) is the
predetermined loss function. The objective of the FL task is
to minimize the specified global loss function

F (w) =

K∑
k=1

|Dk|
D

Fk (w). (1)

As shown in Fig. 1, we propose a new FL-based UAV swarm
framework with two techniques to reduce the energy and time
consumption, i.e., SNN-driven FL and leader selection mech-
anism. Under the coordination of multiple UAVs, the UAV
swarm cyclically executes the following steps: (1) Selecting
the leader UAV; (2) The leader UAV broadcasts the latest
global model w to other UAVs; (3) Each UAV computes and
updates its local gradients wk using its local data; (4) the
UAVs upload new models to the leader UAV.

B. Computation and Communication Model

We use Dk with size |Dk| to denote the local training data
of the UAV-k, and D =

⋃K
k=1 Dk is the global data.

1) Computation Model: For the UAV-k at the e-th global
learning round, given the computing capacity of UAV-k fe,k,
the local training time can be calculated as [7]

T cmp
e,k =

τ |Dk|Ck

fe,k
, (2)

where τ is the number of local training rounds, and Ck

(cycles/bit) denotes the number of Central Processing Unit
(CPU) cycles needed for computing one data sample of UAV-
k. The energy consumption for computing at UAV-k can be
calculated as [8]

Ecmp
e,k = φf2

e,kτ |Dk|Ck, (3)

where φ denotes the effective switched capacitance. For the
leader UAV, the additional computation time and energy con-
sumption for model aggregation per global epoch is computed
by [9]

TAg
e,leader =

∑K
k=1 |Mk|Cleader

fe,leader
,

EAg
e,leader = φf2

e,kτ

K∑
k=1

|Mk|Cleader,

(4)

where |Mk| denotes the data size of the model update.
2) Communication Model: All UAVs will upload their local

FL models to the leader UAV through PC5 interface (i.e.,
the direct communication mode without the help of a base
station) [10] after local computation. In this work, we consider
an orthogonal frequency division multiple access (OFDMA)
scheme with a total bandwidth of B for wireless transmission.
At the e-th global learning round, for the UAV-k allocated with
the bandwidth bk, the achievable transmission rate between the
UAV-k and the UAV-q (k ̸= q) can be expressed as

rk,q = bk log2

(
1 +

Pkgk,q
δbk

)
, (5)

where Pk is the average transmit power of UAV-k, gk,q is the
channel gain between UAV-k and UAV-q, and δ denotes the
power spectral density of the Gaussian noise.

For the UAV-k at e-th global learning round, in order to
upload and broadcast updated model Mk with data size |Mk|,
the communication time T com

e,k (i.e., upload time T up
e,k and

broadcast time T bc
e,k) and energy consumption Ecom

k can be
respectively expressed as

T com
e,k = T up

e,k + T down
e,k , Ecom

e,k = T com
e,k Pk, (6)

where upload and broadcast time are equal to the model size
|Mk| divided by the current achievable transmission rate rk.
Note that we ignore the receiver power consumption, which
allows us to calculate the energy consumption for uploading
and broadcasting using Ecom

e,k [7]–[9].
Therefore, for the e-th global learning round, all the training

time is given by

T total
e = τ

{
max

k
T cmp
e,k +max

k
T com
e,k +max

k
TAg
e,leader

}
. (7)
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We use the synchronized updates scheme [8], wherein the
leader UAV aggregates the global model only after receiving
all local models from the other UAVs.
C. Energy Consumption Model of UAV

The flight energy consumption Eflt
k of UAV-k is denoted by

the UAV-k propulsion energy consumption per unit travelling
distance in Joule/meter (J/m) with speed vk, which can be
expressed as [11]

Eflight
k

(
T total, vk

)
=

T total∫
0

P (vk)dt, (8)

where P (vk) is the power of flight. For a global learning
round, the total energy consumption of UAV-k can be ex-
pressed as

Etotal
e,k =

{
Ecmp

e,k + EAg
e,leader + Eflight

e,k + Ecom
e,k , k is leader

Ecmp
e,k + Ecom

e,k + Eflight
e,k , otherwise

.

(9)
III. SPIKING NEURAL NETWORKS-DRIVEN FL AND

LEADER SELECTION BASED ON BAYES THEOREM

In this section, we first introduce the SNNs-driven FL and
its training challenges, and then we propose an approximate
derivative algorithm to solve these challenges. As aforemen-
tioned, the SNNs can reduce energy consumption through its
characteristic of spike event. Therefore, we consider only how
to efficiently train an SNN model in this section, the specifics
of conserving energy are detailed in Section IV. Moreover,
we propose a leader selection mechanism for accelerating the
convergence time of FL. Specifically, different from traditional
FL framework where all edge devices transmit their local
models to the central server, our proposed leader election
mechanism enables UAV swarms to operate efficiently without
a central server (i.e., decentralization), thereby expanding their
application scenarios (e.g., areas without a base station) and
enhancing their flexibility. Foremost, the leader election mech-
anism significantly reduces the transmission time of models
since all model parameters are transmitted to the leader UAV,
which is typically closer than a central server.

A. Spiking Neural Networks-Driven FL

We use the SNNs architecture to build an FL model, as
shown in Fig. 1. The spiking neurons are modeled by the
Leaky-Integrate-and-Fire (LIF) variant mechanism [12], which
can be expressed as

Uj(t+ 1) = (1− λ)Uj(t) + λ

N∑
i=1

Wi,jIi (t), (10)

where Uj (t) represents the membrane potential of the j-th
neuron at time step t, λ is the constant of membrane potential
decay with time, N is the set of neurons connected to neuron j,
Wi,j and Ii (t) denote the synaptic weight and input potential
from upstream neuron i, respectively. The neuron j fires a
spike Sj (t) if its membrane potential Uj (t) surpasses the
firing threshold Uth, and then, the membrane potential Uj (t)
goes back to a reset value Ur (t) (Ur (t) < Uth). The firing
process of spike is given by

Sj =

{
1, if Uj(t) ≥ Uth

0, otherwise
. (11)

B. Training Analysis for SNN-Driven FL Model
Neural networks learn and improve their accuracy by itera-

tively adjusting internal parameters. This process requires the
loss function of model to be differentiable, which enables the
efficacy of back propagation. In SNNs, the back propagation
process can be expressed as

∂L
∂Wi,j

=

T−1∑
t=1

∂L
∂Uj (t)

∂Uj (t)

∂Wi,j
+

∂L
∂Uj (T )

∂Uj (T )

∂Wi,j

=

T−1∑
t=1

(
∂L

∂Sj (t)

∂Sj (t)

∂Uj(t)
+

∂L
∂Uj(t+ 1)

∂Uj(t+ 1)

∂Uj(t)

)
× ∂Uj(t)

∂Wi,j
+

∂L
∂Sj (T )

∂Sj (T )

∂Uj(T )

∂Uj(T )

∂Wi,j

,

(12)
where T denotes the time step of SNNs training and will
be detailed in Section IV. It can be found that (12) contains

∂L
∂Sj(t)

and ∂Sj(t)
∂Uj(t)

. Specifically, the derivative of Sj is impulse
function, which is defined by

δ (x) =

{
+∞, x = 0
0, x ̸= 0

, (13)

therefore, it is unstable and non-trivial to directly calculate the
gradient and apply the gradient descent algorithm in SNNs.
C. Approximate Derivative Algorithm for SNNs Training

Based on the analysis in Section III-B, we propose
an approximate derivative algorithm to address the non-
differentiable part of SNN-driven FL, which enables UAV
swarm to efficiently update their model gradients and complete
learning task. Note that the algorithm is used only for back
propagation, the forward propagation still follows (10) and
(11). Define the curve function f(U − Uth) to approximate
the spike output function S (U − Uth), which can guarantee
that f(U −Uth) is well-defined and has a very close value as
S (U − Uth) when U − Uth = 0. The function f(U − Uth) is
defined as [12]

f (U − Uth) =
1

π
arc tan

(πη
2

(U − Uth)
)
+

1

2
, (14)

where η > 0 is the custom parameter. Let U − Uth = x, the
derivative of f(x) is

f ′ (x) =
η

2
× 1

1 +
(
πη
2 x

)2 . (15)

(14) and (15) enable SNN to acquire meaningful gradient
while SNN utilizes gradient descent algorithm. Therefore, the
function f can be approximated as lim

x→0
f (x) ≈ lim

x→0
S (x) . In

(12), ∂L
∂Sj(t)

and ∂Sj(t)
∂Uj(t)

can be replaced by the approximate
derivative function f (·).
D. Leader Selection Based on Bayes Theorem

As explained above, leader election significantly influences
performance of the model aggregation. Electing a leader
with robust communication ability and sufficient energy can
accelerate the FL model aggregation, thereby reducing the
total training time. Conversely, if a UAV with limited energy
and communication capability is chosen as the leader, it can
adversely affect the latency of the model aggregation.

Define a prior probability Pr (Lk) to represent the likelihood
of UAV-k being selected as the leader before considering its
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current state, which can be initialized by setting uniformly
across all UAVs. The likelihood function, defined as the prob-
ability of observing the current state θ (i.e., communication
ability and energy consumption) given that UAV-k is the leader
[13], can be expressed as

Pr (θ |Lk ) =
1

1 + exp
(
−
(
λcr̄k − λeEtotal

k

)) , (16)

where r̄k =
∑K

q rk,q/K is the average communication
quality between UAV-k and other UAVs, Etotal

k represents the
energy consumption. λe and λc are regulatory factors. Then,
the posterior probability, defined as the probability of UAV-k
being selected as the leader UAV based on its current state, is
given by

Pr (Lk |θ ) =
Pr (θ |Lk )× Pr (Lk)∑K
k=1 Pr (θ |Lk )× Pr (Lk)

. (17)

At the e-th global learning round, all UAVs update the
likelihood function and calculate posterior probability based
on (16) and (17), respectively. The UAV with the highest
posterior probability is elected as the leader. Besides, this
posterior probability is then leveraged as the prior probability
for the e + 1-th global learning round. This method enables
UAV with the robust communication capabilities and lower
energy consumption to be selected as the leader in each
global learning round, thereby enhancing the efficacy of the
FL model.

IV. PERFORMANCE EVALUATIONS

A. Simulation Settings

1) UAV swarm: We consider K = 20 UAVs randomly
flight within 1 km × 1 km square region for collecting data
and performing the FL training process. All the UAVs fly
with a fixed speed v ∼ [10, 15] m/s. The path loss model
is represented as 128.1 + 37.6 log10 dk, and dk denotes the
distance between the UAV k and the leader UAV in kilometers
[8]. Besides, the noise power spectral density is δ = −174
dBm/Hz [8], and the average transmit power and bandwidth
are Pk = 20 dB and bk = 1 MHz for all UAVs [8],
respectively. Each UAV has an equal computation capacity
fk = 2 GHz, Ck = 20 cycles/bit [9]. In addition, the effective
switched capacitance is φ = 10−28. Moreover, all flight-
related parameters are set the same as [11].

2) SNN setup: The SNN includes a spiking encoder network
and a classifier network. The spiking encoder network is com-
posed of 2×{Conv2d−BatchNorm− LIF − Pool}. The
spiking encoder can extract features from inputs and convert
them into the firing spikes at different time-steps. We take the
average-pooling for maintaining the smoothness and continuity
of signals and ensuring the effective capture of global spike
features across the entire input. The classifier network consists
of 2 × {Dropout− FC − LIF}. Specifically, the output of
the spiking neuron is binary, and the direct use of the results
of a single run for classification is easily disturbed by the
noise caused by coding. Therefore, the output of the SNN
can be regarded as the release frequency of the output layer
within a period of time, and the level of the release rate
indicates the response size of this category [12]. As a result,

the network necessitates operation across a span of time,
leveraging the average spiking rate observed after T moments
as the foundational criterion for classification. In this letter,
we set T = 6. Besides, the LIF related parameters η = 3,
Uth = 1, Ur = 0, and λ = 1

2 [12].
3) FL training: We use Fashion-MNIST [14] and MNIST

[15] to validate our proposed method, all datasets with data
size 44.92 MB are first shuffled and then partitioned into
60, 000/20 = 3000 equal parts. We employ the model as
illustrated in SNN setup, with a model update data size of
3.29 MB, i.e., |Mk| = 3.29 MB. For the learning hyper-
parameters, the learning rate, batch size and local epoch are set
as {0.01, 64, 1}. Besides, the λc = 1 and λe = 1, respectively.

4) Baselines: We conduct performance comparisons be-
tween our proposed method, denoted by SFLwE, and several
baselines (i) SNNs-driven FL without leader election (SFLE),
(ii) ANNs-driven FL scheme with leader election (AFwLE).

B. Simulation Results

1) Performance comparisons between SNN and ANN: For
evaluating the performance of the proposed framework, we
first compare the accuracy between FL-based on SNN and
FL-based on ANN. Note that we build the ANN model that
has similar framework with the SNN model.

Figs. 2(a) and (b) compare the accuracy between SNN and
ANN on Fashion-MNIST and MNIST, respectively. From Fig.
2(a), we can observe that SFLwE-based on SNNs shows a
progressive improvement in accuracy from 73.38% to 90.28%,
whereas AFLwE-based on ANNs exhibits a rise from 69.64%
to 86.86% over 40 training epochs. Over the course of 40
epochs, SFLwE exhibits an overall accuracy improvement
of 16.9% (from 73.38% to 90.28%), while AFLwE shows
a total increase of 17.22% (from 69.64% to 86.86%). The
similar trend can be found in MINIST dataset, as shown in
Fig. 2(b). SFLwE exhibits a substantial total accuracy increase
of 50.33% throughout the training, moving from 47.77% to
98.1%. Conversely, AFLwE demonstrates a total improvement
of 39.79%, from 57.73% to 97.52%.

2) Performance comparisons between SFLwE and SFL:
Fig. 2(c) and Fig. 2(d) verify the advantages of the leader
election. We compare the performance of the proposed SFLwE
with SFLE (i.e., without leader election) by recording the time
required to achieve 90.28% accuracy on the Fashion-MNIST
dataset and 98.1% accuracy on the MNIST dataset, respec-
tively. Given the same training time, incorporating leader se-
lection into FL models enhances time efficiency across various
accuracy benchmarks. We observe that the proposed SFLwE
achieves 90.28% accuracy in 1120 seconds, while SFLE (i.e.,
without leader election) requires about 1461 seconds to reach
the same level of accuracy. This represents a 23.34% reduction
in time consumption with the SFLwE scheme.

3) Comparisons of energy consumption between SNNs and
ANNs: We evaluate the energy consumption of model training
by the cumulative Floating Point Operations (FLOPS). This ef-
fectively mirrors the count of multiply-and-accumulate (MAC)
or dot product tasks conducted for every inference on each
input [16]. Note that the energy consumption is illustrated in
Section II-B considers the energy consumption of hardware,
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Fig. 2: Performance on various methods and datasets. (a) and (b): global accuracy vs. training round with SNN and ANN on Fashion-MNIST
and MNIST datasets, respectively. (c) and (d): Time consumption vs. global accuracy on Fashion-MNIST and MNIST datasets, respectively.

and this section only focuses on the energy consumption of
neural networks (i.e., convolution and fully connected layers
in SNNs and ANNs). Specifically, the calculations of SNNs
are based on binary (i.e., S=0 or S=1), the MAC operations
can be replaced by the accumulate (AC) operations.

TABLE I: The energy consumption of single sample inference on
ANN and SNN.

Method Energy (µj)

SNN 0.042 (1.0×)
ANN 2.763 (65.8×)

For a convolution layer in an ANNs or SNNs that uses a
kernel size of k×k, with N input channels, M output channels,
and an input feature map size of I × I , the total number of
FLOPS in a convolution is given by Fcon = I2×N×k2×M .
In the case of a fully connected layer with N inputs and
M outputs, the total number of operations is calculated as
Ffc = N ×M . The energy consumption of ANNs and SNNs
can be expressed as EANN = (Fcon + Ffc) × EMAC and
ESNN = Fcon × EMAC + (Fcon ×Rcon + Ffc ×Rfc) ×
T × EAC , where EMAC = 3.2 pJ and EAC = 0.1 pJ are
the energy consumption of MAC and AC, respectively, and
more details can be found in [16]. Rcon and Rfc denote
the firing rate of spike in convolution and fully connected
layer, respectively. The average firing rates of spikes were
determined by performing inference on the last sample of the
test set, resulting in firing rates of 0.157 (Conv2d), 0.044
(Conv2d), 0.08 (FC), and 0.09 (FC), respectively. As shown
in TABLE I, the ANN inference on one sample consumes
about 65.8 times energy than the SNN.

V. CONCLUSION

In this work, we have proposed an SNN-driven decen-
tralized FL framework deployed on a UAV swarm, aimed
at minimizing energy and time consumption while training
a high-performance FL model. Specifically, we have first
conducted a detailed analysis of how the SNN-driven FL can
reduce the energy consumption and its challenges (i.e., non-
differentiability) when deployed in UAV swarm. We have then
presented an approximate derivative algorithm to solve this
challenge. Furthermore, we have designed a leader election
scheme to mitigate the negative effects of wireless factors
and accelerate the aggregation of the FL model. Simulation
results have shown that our proposed scheme can outperform
baseline schemes in terms of model performance, energy and
time consumption.
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