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Abstract 216 

Perennial plants create productive and biodiverse hotspots, known as fertile islands, 217 

beneath their canopies. These hotspots largely determine the structure and functioning 218 

of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands 219 

under conditions of contrasting grazing by livestock, the most prevalent land use in 220 

drylands, remain virtually unknown. We evaluated the relative importance of grazing 221 

pressure and herbivore type, climate, and plant functional traits on 24 soil physical 222 

and chemical attributes that represent proxies of key ecosystem services related to 223 

decomposition, soil fertility, and soil and water conservation. To do this we conducted 224 

a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We 225 

show that aridity and plant traits are the major factors associated with the magnitude 226 

of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had 227 

little influence on the capacity of plants to support fertile islands. Taller and wider 228 

shrubs and grasses supported stronger island effects. Stable and functional soils 229 

tended to be linked to species-rich sites with taller plants. Together, our findings 230 

dispel the notion that grazing pressure or herbivore type are linked to the formation or 231 

intensification of fertile islands in drylands. Rather, our study suggests that changes in 232 

aridity, and processes that alter island identity and therefore plant traits, will have 233 

marked effects on how perennial plants support and maintain the functioning of 234 

drylands in a more arid and grazed world.  235 

  236 

Keywords: carbon sequestration, drylands, decomposition, fertile patch, soil fertility, 237 

soil condition, soil health, soil stability  238 
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Introduction 239 

Drylands are characterized by a sparse plant cover, with patches of perennial plants 240 

nested within an ocean of unvegetated bare soil 1,2. These plant patches and the 241 

enriched soil beneath their canopies, act as biogeochemical hotspots, critical for the 242 

maintenance of plant and animal diversity, and essential functions and services related 243 

to nutrient mineralisation and storage, and water regulation 1,3,4. Dryland vegetation, 244 

and the “fertile islands” they create, are predicted to be affected by livestock grazing, 245 

the most pervasive land use in drylands 5. Overgrazing by livestock and wild (native) 246 

herbivores is known to alter surface soils, suppress the infiltration of water, and 247 

increase runoff water and sediment discharge 6,7, potentially intensifying the fertile 248 

island effect by exacerbating the loss of resources from the interspaces and its 249 

supplementation in nearby islands 8. Yet, there is little support for this notion, other 250 

than studies showing that overgrazing leads to a greater relative effect of woody 251 

island soils over interspace soils, but that severe overgrazing leads to total collapse 9. 252 

Globally, there is little empirical support for the putative importance of grazing as a 253 

causal agent of the fertile island effect 10,11, particularly when considering the wide 254 

range of plant types characterizing drylands, from grasses to shrubs and trees. This 255 

makes it difficult to disentangle grazing effects from the inherent effects of those 256 

plants that form the islands. This is an important knowledge gap, as predicted declines 257 

in rainfall, changes in the structure of island plants, and forecasted increases of 258 

grazing over the next century will likely place increasing pressure on drylands and 259 

their perennial components, compromising their ability to sustain livestock, people, 260 

and their cultures 12.  261 

Yet, despite the extensive body of knowledge dedicated to their study, the relative 262 

importance of grazing, climate, and the traits of the focal island species on the 263 

distribution and magnitude of fertile islands across global drylands remains virtually 264 

unknown. To address this knowledge gap, we assess, for the first time, the relative 265 

association between grazing, plant traits, climate and soil properties, and fertile 266 

islands in grazed drylands worldwide. This improves our ability to predict the future 267 

of dryland biodiversity and function, and can improve the management of perennial 268 

vegetation, particularly as grasslands are likely to contract and woody dominated 269 

systems increase in a drier and more heavily grazed world 8,13.  270 

We examined the fertile island effect by comparing 24 soil physical, chemical 271 

and functional attributes beneath the canopy of perennial vegetation compared with 272 

their adjacent unvegetated interspaces across global drylands. The 24 attributes were 273 

assembled into three synthetic functions that represent the capacity of soils to 274 

mineralise organic matter (Decomposition), enhance fertility (Fertility), and conserve 275 

water and maintain stability (Conservation, see Methods). We gathered data from 288 276 

dryland sites across 25 countries on six continents (Fig. 1) to test the following two 277 

contrasting hypotheses. First, we expected that the magnitude of the fertile island 278 

effect would increase with increasing levels of both recent (standardised dung mass) 279 

and long-term or historic (heuristic assessment; ungrazed to high) grazing pressure 280 

(Hypothesis 1a). This prediction is based on the understanding that greater grazing 281 
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pressure will destabilise surface soils, mobilising sediment, seed, nutrients, and 282 

organic matter from unvegetated interspaces to plant patches, strengthening fertile 283 

islands 14,15. Additionally, livestock might be expected to have a greater effect than 284 

wild herbivores because they have not co-evolved with indigenous vegetation and 285 

therefore have more deleterious effects on both island plants and their soils 6, 286 

Hypothesis 1b). Alternatively, changes in climate and plant traits, factors that operate 287 

at much larger (regional and global) scales, could overwhelm the impacts of grazing, 288 

a factor that operates at the local scale, on fertile islands (Hypothesis 2a). More 289 

specifically, irrespective of grazing pressure, we would expect that plants would make 290 

a greater contribution to fertile islands in arid and hyper-arid ecosystems where soils 291 

are extremely bare and infertile compared with less arid ecosystems where the 292 

influence of plants would be relatively lower. For example, reduced rainfall and/or 293 

increased temperature would increase the harshness of the interspaces compared with 294 

the vegetated and more protected islands, thereby strengthening the fertile island 295 

effect. Plant effects might also be expected to vary among broad functional groups 296 

(tree vs shrub vs grass; Hypothesis 2b). These broad groups could have varying 297 

effects on soil biogeochemistry because of marked differences in shape, size, and 298 

structural complexity. Quantifying the contribution of grazing by different herbivores 299 

at different pressures, plant traits, climate, and soil properties on fertile islands 300 

allowed us to assess current and future impacts of grazing on ecosystem structure and 301 

functioning across global drylands, where woody vegetation is a predominant plant 302 

form 12. 303 

 304 

Results and Discussion 305 

We found stronger associations among factors such as aridity and plant traits 306 

(Hypothesis 2) than factors such as grazing pressure (Hypothesis 1a) and herbivore 307 

identity (Hypothesis 1b) and the fertile island effect in drylands worldwide. This 308 

knowledge is key to contextualise the ecosystem consequences of increased livestock 309 

grazing pressure on the capacity of plants to create and maintain hotspots of 310 

biogeochemical activity.  311 

Global fertile island effects 312 

Prior to exploring potential effects of grazing, plant traits, or environmental 313 

conditions, we examined the RII relationships of the 24 attributes distributed among 314 

the three synthetic functions. This exploration gives us a better understanding of how 315 

individual biogeochemical attributes and their three synthetic ecosystem functions 316 

might differ between islands and their interspaces (the fertile island effect). We found 317 

strong empirical evidence of a pervasive fertile island effect across all sites and 318 

continents and for 16 (67%) of the 24 attributes (Fig. 2). Our results are consistent 319 

with findings from empirical local studies revealing greater resource accumulation 320 

beneath perennial plant canopies for attributes as diverse as soil geochemistry 321 
11,13,16,17, soil physical properties 9, hydrology 18,19 and microbial community structure 322 
4. Of all possible effects, the Decomposition function (which comprised C, N and P 323 
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mineralisation), was the most strongly developed function within the islands (Fig. 2), 324 

likely due to greater litter inputs 4,20, microbial activity and plant biomass 21 beneath 325 

perennial plant canopies 22,23. The fertile island effect for the other functions was 326 

mixed, with strong positive effects for C, and to a lesser extent P, but not for 327 

micronutrients (Fig. 2). The fertile island effect for C and N was also greater in more 328 

arid drylands. These findings reinforce the view that perennial plant patches are 329 

hotspots of biological activity in drylands 4, and this likely accounts for their potential 330 

role as facilitators of protégé plant species through resource supplementation 24. 331 

The influence of grazing, island type and plant traits 332 

We then sought to quantify the importance of potential associations among 333 

measures of grazing and fertile islands. Using hierarchical linear mixed modelling 334 

(see Methods) we found no consistent influence of grazing, either recent (standardized 335 

grazing pressure) or long-term (ungrazed, low, medium, high) grazing pressure on the 336 

mean (overall) fertile island effect (the average standardized value of all 24 attributes 337 

shown in Table S1 in Supplementary Information). We also found a consistent, but 338 

extremely weak negative effect of recent grazing pressure on Decomposition, contrary 339 

to the results of global meta-analyses 25. There were no significant effects of 340 

increasing recent grazing pressure on either the Fertility or Conservation function 341 

(Fig. 3a, Table S2). There were no significant effects of long-term (historic) grazing 342 

pressure (ungrazed, low, medium, high) on any measures (Fig. S1, Table S2). 343 

Of all effects, aridity was by far the strongest (Table S2), with a strong positive 344 

effect on the Decomposition function, weak effects on the Fertility, but no effect on 345 

the Conservation function (Fig. S3a, Table S2). Although the effects of island type 346 

(tree, shrub, grass) were minor compared with the large aridity effect, we did identify 347 

some trends. For example, there were consistent positive, though weak, fertile island 348 

effects beneath shrubs, and to a lesser extent trees, irrespective of grazing pressure. 349 

The only other noteworthy grazing-related effect was the negative interaction between 350 

shrubs, and to a lesser extent trees, and mixed herbivores (Table S2). 351 

Our results provide fresh insights into the links between grazing and fertile 352 

islands, demonstrating that, across global drylands, grazing cannot be considered a 353 

causal agent of the fertile island effect. Thus, placed in a global context, the local 354 

influence of grazing on fertile islands is overshadowed by global environmental 355 

variability. This result challenges the view of fertile islands and their formation, 356 

which posits that islands are a biproduct of grazing 11. This view has largely been 357 

shaped by studies from the Chihuahuan Desert in the western United States where 358 

increases in woody plant (generally shrub) density are linked to a dominance of 359 

woody plant islands and ensuing desertification 26. Undoubtedly, grazing-induced 360 

disturbance can aggravate differences between perennial plants and their interspaces 361 

in some situations by disturbing interspaces and intensifying the movement of 362 

resources from interspace to island patches 27. However, neither short- nor long-term 363 

grazing pressure, nor herbivore type, were associated with the fertile island effect 364 

under the conditions experienced across our extensive global dryland survey. 365 
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Given the importance of plant traits, a Random Forest algorithm was then used to 366 

examine the degree to which a comprehensive suite of 15 functional traits of island 367 

woody plant species explained differences in the fertile island effect for the three 368 

synthetic functions studied. These traits, which are related to plant size and structure, 369 

leaf characteristics, and the ability to respond to environmental stimuli (palatability, 370 

resprouting, deciduousness, allelopathy, see Methods) potentially influence the way 371 

nutrients are stored, mineralized, and made available to plants, and how soil and water 372 

are conserved beneath plant canopies 28. Our trait data, which represent the most 373 

comprehensive dataset gathered to date across global drylands, were used to evaluate 374 

the relative importance of island plant structure. We used site-specific trait values 375 

rather than global averages, allowing us to account for potential differences in the 376 

morphology of island plants under different grazing pressure, herbivore type and 377 

environmental conditions. The extent to which different plant traits affected the three 378 

synthetic functions varied depending on the function considered (Fig. S4 in 379 

Supplementary Information). We found that the relative fertile effect for our three 380 

synthetic functions was generally greater when the islands were dominated by taller 381 

and wider plants, and to a lesser extent, by plants with larger leaves. Plant height was 382 

important for all functions, while the Decomposition function responded mostly to 383 

plant and leaf size, and the Fertility function was driven mostly by changes in plant 384 

size and leaf characteristics (Fig. S4 in Supplementary Information). 385 

Direct and indirect drivers of the fertile island effect 386 

We then used Structural Equation Modelling 29 to explore potential associations 387 

among biotic and abiotic factors and the fertile island effect. Our a priori model (Fig. 388 

S5 in Supplementary Information) included environmental drivers (aridity, 389 

temperature, rainfall seasonality), soil (sand content, pH) and vegetation (perennial 390 

plant richness, relative cover of woody plants) properties, plant traits (the nine most 391 

important plant traits related to size, leaf characteristics, and inherent properties of 392 

woody plants such as the type of roots or whether they are allelopathic; identified 393 

using the Random Forest analyses, see Methods), and grazing (recent grazing, long-394 

term grazing, and herbivore type). Grazing was included to test its potential indirect 395 

effects on the relative fertile island effect for the three soil functions evaluated. Our 396 

models revealed that decomposition was enhanced in areas of greater aridity 397 

(consistent with the hierarchical linear modelling, though not for carbon 398 

mineralisation, Fig. S2 Supplementary Information), more sandy soils, and where 399 

focal island species were more palatable (Fig. 4; Fig. S6 Supplementary Information). 400 

Fertility tended to be greater in sandy soils and with taller palatable species. Soils 401 

with larger values of the Conservation function (more stable, with greater water 402 

holding capacity) tended to be associated with taller island plants, potentially through 403 

mechanisms involving hydraulic lift 30, and at plots supporting more perennial plant 404 

species (Fig. S6 Supplementary Information. A potential explanation for the link 405 

between the Conservation function, and both plant height and richness could relate to 406 

a greater leaf area 31 of larger island plants and therefore reduced surface evaporation 407 
32. After accounting for all direct and indirect pathways from both abiotic and biotic 408 
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factors, our SEMs confirm that grazing had no effects on the three functions 409 

evaluated. 410 

Among plant traits, plant size (height and canopy) was particularly important, 411 

with larger canopies associated with greater RII values of all three functions (but only 412 

for grasses), and taller grasses with greater RII values of the Decomposition function 413 

(Fig. S7 in Supplementary Information. Larger grasses are functionally more efficient 414 

at capturing resources 33 and enhancing hydrological functions 34,35 and may be a 415 

response to declining landscape productivity 36. Larger plants may be avoided more 416 

by herbivores due to higher concentrations of tannins and secondary compounds 37. 417 

Similarly, taller shrubs were associated with larger values of the Conservation and 418 

Fertility, but not Decomposition, functions (Fig. S7 in Supplementary Information). 419 

Taller shrubs would return more litter to the soil surface 38, provide more varied 420 

habitat 39 and concentrate more resources excreted by canopy-resident invertebrates 421 
40, potentially accounting for greater fertility 20. Finally, larger shrubs would support a 422 

greater density of understorey protégé species 41 and have a larger legacy effect on 423 

soils after death 42. Interestingly, trees with larger canopies were associated with 424 

lower values of the Decomposition and Conservation functions (Fig. S7 in 425 

Supplementary Information). Large tree canopies are often preferred camping sites for 426 

herbivores 39, leading to declines in soil structure 43, and reductions in soil water 427 

holding capacity due to the proliferation of surface roots. Our results could suggest a 428 

waning of the fertile island effect under large trees.  429 

Overall, our work provides solid evidence that factors such as climate and plant 430 

traits can overshadow the influence of factors such as grazing pressure on the capacity 431 

of plants to create fertile islands across global drylands. Our findings indicate that 432 

fertile islands will prevail in more arid environments regardless of grazing pressure 433 

and the composition of herbivores. In these environments, fertile islands sustain 434 

healthy and functional soils, moderate adverse environmental conditions, and 435 

provides refugia for plants and animals. Our results dispel the long-term assumption 436 

that increasing grazing pressure, either recent or longer term, or differences in 437 

herbivore type, can explain the magnitude of fertile island effects in drylands. Plant 438 

size, with taller and wider shrubs and grasses, supported stronger island effects. Stable 439 

and functional soils were also linked to species-rich sites with taller plants. The 440 

overwhelming importance of aridity and plant traits suggests that fertile islands may 441 

represent an autogenic response to drying and warming climates. These 442 

biogeochemical hotspots are likely to be more important as Earth’s climate becomes 443 

hotter and drier. 444 

 445 

Methods 446 

Study area  447 

We surveyed 288 plots at 88 sites in 25 countries on all continents except Antarctica 448 

(Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, China, Ecuador, 449 

Hungary, Iran, Israel, Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, 450 
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Palestine, Peru, Portugal, South Africa, Spain, Tunisia, and United States of America, 451 

Fig. 1). We used the sites described in ref. 12, but excluded 10 sites that did not have 452 

sufficient trait data (see below). Site selection aimed to capture as much as possible of 453 

the wide variety of abiotic (climate, soil type, slope) and biotic (vegetation type, cover 454 

and species richness) features characterizing dryland ecosystems (e.g., grasslands, 455 

shrublands, savannas, open woodlands) found in drylands worldwide 12,44. Elevation 456 

varied between 12 m and 2214 m a.s.l, and slope from 0º to 31.6º. The surveyed sites 457 

encompassed a wide variety of the representative vegetation physiognomies, 458 

including grasslands, shrublands, savannas and open woodlands (Fig. 1) found in 459 

drylands. Sites were surveyed between January 2016 and September 2019 12,44.  460 

Establishing and defining local grazing gradients 461 

At each of the 88 sites, multiple 45 m x 45 m plots were sampled across a gradient in 462 

grazing pressure that was determined by local experts and compared with dung 463 

counts, livestock tracks, and livestock density data when available. Plots were 464 

selected from grazing gradients (distance to water measured using GIS) or specific 465 

paddocks that represented ungrazed, low, medium, or high levels of known grazing 466 

pressure. Thirty-five percent of sites had an ungrazed plot (e.g., an exclosure). All 467 

plots were established in areas representative of the vegetation and soil types found, 468 

so the impacts of grazing pressure could be assessed at each site without confounding 469 

factors associated with differences in climate, soil type or vegetation. 470 

Field surveyors, who were all intimately associated with the long-term grazing 471 

history of these sites, characterised their plots using this four-scale heuristic category 472 

(ungrazed, low, moderate, high). Grazing pressure gradients were confirmed by 473 

measuring the mass of herbivore dung in situ 6. Dung production is known to be 474 

closely linked to animal activity, time spent grazing, and therefore grazing pressure 475 
45,46, though more studies are needed in arid systems to validate these relationships. 476 

To measure dung, we collected the dung of different herbivores from within two 25 477 

m2 (where herbivores were large bodied, e.g., cattle, horses, large ungulates) or 1 m2 478 

(when herbivores were smaller bodied e.g., goats, sheep, rabbit, guanaco) quadrats 44. 479 

Dung was oven dried and expressed as a mass per area. Where herbivores produced 480 

pellets, dung was counted from different herbivores, a subsample collected, and 481 

following oven drying, used to calculate the relationship between counts and oven-dry 482 

dung mass (Text S1 in Supplementary Information).  483 

The mass of dung from each plot was then used to develop a continuous measure 484 

of grazing pressure. Dung mass represents the signature of grazing over periods of 485 

one to five years, depending on the presence of detritivores and litter decomposing 486 

invertebrates such as termites and dung beetles 47. Dung decay rates will also likely 487 

vary across our sites due to differences in climatic conditions, the presence of exotic 488 

invertebrate decomposers, trampling and other factors 48. Although these differences 489 

could potentially alter the amount of dung detected within a plot, this would have 490 

minimal impact on our measure of recent grazing pressure given the standardisation 491 

process we applied to dung mass across plots within a site. 492 
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For each plot, we standardised the value of the mass of dung of all herbivores 493 

within a plot by the maximum dung mass at that particular site (collection of plots). 494 

Standardized values ranged from 0 to 1 (0.30 ± 0.01, mean ± SE) across the 88 sites. 495 

A value of 1 for a particular plot indicates that this plot had the greatest grazing 496 

pressure for that site and zero was ungrazed. This approach to standardising dung 497 

mass within sites ensures the equivalence of sites that might have markedly different 498 

levels of dung production, due to variation in site productivity, but have the same 499 

level of grazing pressure (e.g., moderate grazing pressure). The method has also been 500 

validated multiple times in grazing studies 49,50. Across our global study we recorded 501 

29 different herbivore types, of which five were livestock (cattle, goat, sheep, donkey, 502 

horse)12. 503 

Dung mass was a good proxy of grazing pressure using two approaches (see Text 504 

S1 in Supplementary Information). First, there was a significant positive relationship 505 

between dung mass and livestock density for a subset of sites in Iran, Australia, and 506 

Argentina for which we had data on dung mass and animal density 12. Second, we 507 

performed a cluster analysis 51 to identify the optimum number of dung-based 508 

clusters, based on dung mass, and found that this aligned well with the four heuristic 509 

levels of grazing pressure 12.  510 

Third, we linked the four heuristic measures of long-term (decadal to multi-511 

decadal) grazing pressure to the presence of livestock tracks; semi-permanent features 512 

created by livestock when they traverse the same path to and from water 52. The 513 

density and size of these tracks is a useful indicator of the history of livestock grazing 514 
53. We measured the width and depth of all livestock tracks crossing each of the 45 m 515 

transects to derive a total cross-sectional area of tracks for each plot and expressed 516 

this as the total track density and cross-sectional area per 100 m of transect (Fig. S8). 517 

In summary, these three comprehensive measures of grazing intensity by herbivores 518 

showed very similar trends, irrespective of whether we used dung mass as a measure 519 

of recent grazing pressure, or the expert heuristic site classification as a measure of 520 

long-term grazing pressure. This gives us a high degree of confidence that the 521 

gradients we observed are true gradients in grazing pressure. 522 

Vegetation and plant trait measurements 523 

Field surveys followed a standardised sampling protocol 44. Briefly, within each plot, 524 

we located four 45 m transects oriented downslope, spaced 10 m apart across the 525 

slope, for the vegetation surveys. Along each 45 m transect we assessed the cover of 526 

perennial plants, by species, within 25 contiguous 1.5 m by 1.5 m quadrats. Perennial 527 

plants were then recorded every 10 cm along this transect to obtain a measure of 528 

perennial plant cover. Total plot-level plant richness was calculated as the total 529 

number of unique perennial plant species found within at least one of the survey 530 

methods (transects or quadrats) employed. In each site, we measured the height and 531 

lateral spread of five randomly selected individuals of the dominant island plants. 532 

Lateral spread (canopy width), a proxy of plant area, was assessed by measuring plant 533 

diameter in two orthogonal directions through the plant centre. Fresh leaves were 534 
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collected from the same plants to assess an additional four plant traits in the 535 

laboratory (leaf length, leaf area, and leaf carbon and nitrogen contents). These six 536 

traits describe the size and leaf characteristic of the 162 perennial species in the 537 

vegetation patch that was dominated by trees, shrubs, or large perennial grasses, and 538 

which we assessed as potential fertile islands (see detailed measurements in Text S2 539 

in Supplementary Information). Twenty-three percent of plots supported two co-540 

dominant island species (i.e., two different tree, shrub, or grass species). For these 541 

plots, soil biogeochemical and plant trait data were weighted according to the mean 542 

cover of the co-dominant species within a plot. 543 

We compiled information on eight additional plant traits (i.e., plant canopy 544 

shape, whether foliage reached the ground surface, N-fixation, deciduousness, 545 

allelopathy, palatability, resprouting, root type) using information from online plant 546 

trait databases such as BROT 54, PLANTS 55, Woody Plants Database 547 

(http://woodyplants.cals.cornell.edu) and TRY 56. The eight categorical traits above 548 

were ranked numerically such that a larger value equated with greater function in 549 

terms of its own growth or its facilitatory effect on surrounding neighbours and 550 

conditions. This procedure is described in detail in Text S2 in Supplementary 551 

Information.  552 

Soil properties and sampling  553 

Soils were sampled during the dry season. In each plot, five sampling points were 554 

randomly located in open areas devoid of perennial vascular plants (< 5% plant cover, 555 

hereafter ‘open’ microsite), and another five placed beneath the canopy of five 556 

randomly selected individuals of the dominant island plant (Text S3 in Supplementary 557 

Information). A composite sample of five 145 cm3 soil cores (0-7.5 cm depth) was 558 

collected from beneath each plant or bare area, bulked, and homogenized in the field. 559 

Soil samples were air-dried for 1 month, sieved (< 2 mm) and stored for physico-560 

chemical analyses. The samples were then bulked to obtain one composite sample per 561 

plot for vegetated (island) and a separate composite sample for open areas. All 562 

analyses described here are for two composite samples per plot. We assessed soil pH 563 

(1:2.5 soil water suspension, sand content 57, and the values of 24 soil ecological 564 

attributes that are linked to three ecosystem functions (Table S1 in Supplementary 565 

Information).  566 

Assessment of ecosystem functions  567 

We calculated a relative interaction index (RII) and its 95% confidence interval 58 for 568 

the 24 ecological attributes as measures of the fertile island effect. A positive (or 569 

negative) value indicates a greater (or lesser) value of that attribute, respectively, in 570 

island soils. The RII is defined as the relative difference between attributes beneath 571 

the perennial plant islands and their open interspaces and was calculated as RII = (XI 572 

– XO) ∕ (XI + XO), where XI and XO represent the mean values of a given ecological 573 

attribute beneath a perennial plant patch (island) and in the open interspace, 574 

respectively. Values of the RII range from -1 to 1, with positive values indicating 575 

greater levels of a given attribute beneath the island and vice versa. Evidence of the 576 
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fertile island effect (either positive or negative) is based on whether the 95% 577 

confidence intervals (95% CIs), calculated using ‘Rmisc’ package in R 59 cross the 578 

zero line. 579 

We focussed on three proxies of function derived from the average RII of 580 

different combination of the 24 soil attributes: 1) organic matter decomposition, 581 

quantified using the activity of five soil extracellular enzymes related to the 582 

degradation of organic matter [β-glucosidase, phosphatase, cellobiosidase, β-N-583 

acetylglucosaminidase and xylase], and measurements of soil carbon (hereafter 584 

‘Decomposition’ (2) soil fertility, evaluated using multiple proxies of soil nutrient 585 

availability and carbon (contents of dissolved organic and total N, NH4+, NO3-, total 586 

P, Mn, K, Zn, Mg, Fe, Cu and soil C, hereafter ‘Fertility’), and 3) resource 587 

conservation (water regulation, using measures of soil water holding capacity, soil 588 

porosity, stability of macro-aggregates >250 µm and mean weight diameter of soil 589 

aggregates (hereafter ‘Conservation’). Detailed measurements on these 24 soil 590 

ecological attributes are described in Table S1 in Supplementary Information. 591 

Data compilation and statistical analysis  592 

Rainfall seasonality (coefficient of variation of 12 monthly rainfall totals) data were 593 

extracted from the WorldClim Version 2.0 (http://www.worldclim.org/) 60 database, 594 

which provides global climate data (0’30” × 0’30”) for the 1970-2000 period. Aridity 595 

was identified as precipitation/potential evapotranspiration and was derived from the 596 

Global Aridity Index and Potential Evapotranspiration Climate Database v2 aridity 597 

database (https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-598 

evapotranspiration-climate-database-v2/) 61, which includes global aridity data (0’30” 599 

× 0’30”) for the 1970-2000 period. Soil texture is a major determinant of water 600 

holding capacity and pH is a major driver of plant and soil function in drylands 62. 601 

Sand content and pH data used in this study were obtained from samples taken from 602 

the open areas (to ensure that their effects on the ecosystem functions measured are as 603 

independent from those of organisms as possible). Relative woody cover was included 604 

to account for different levels of woody plants so that this would not bias any results. 605 

Standardized dung mass (dung mass in a plot/maximum dung mass within the site) 606 

was used as a measure of recent grazing pressure.  607 

Statistical analyses 608 

We fitted a Bayesian hierarchical linear mixed model to evaluate whether the fertile 609 

island effect differed (1) with increasing grazing pressure (continuous data: 610 

standardized dung mass), 2) with long-term grazing pressure (categorical data: 611 

ungrazed, low, moderate, high grazing), and 3) among herbivore types (categorical 612 

data: sites dominated by either livestock, native, or mixed groups of native and 613 

livestock). Our RII values were modelled with a Gaussian (normal) distribution, with 614 

all individual ecosystem attributes (n = 24) estimated simultaneously in a single 615 

model. Note that RII values are calculated at the plot level whereas grazing pressure is 616 

calculated at the site level. The standardised response variable (RII) was modelled 617 

hierarchically as a function of recent grazing pressure (standardised dung), long-term 618 

https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
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grazing pressure (high, medium, low, ungrazed), herbivore type (livestock, native, 619 

mixed), aridity, island type (tree, shrub, grass), and functional category 620 

(Decomposition, Fertility, Conservation). The model fitted individual ecosystem 621 

functional attributes as groups (random intercepts) with varying slopes associated 622 

with each of the main covariates (grazing and aridity). The model also included 623 

interactions between ecosystem function category and grazing, island type, and aridity 624 

to account for potential differences in the effects of each covariate within each 625 

ecosystem function category. We included site as a random intercept, accounting for 626 

the non-independence of data gathered from the same site.  627 

We specified weakly informative normally distributed priors for the intercept and 628 

all regression coefficients (mean = 0 and scale = 2.5). Default priors were used for 629 

sigma (exponential, rate =1) and variance-covariance matrix of the varying intercepts 630 

and slope parameters (shape and scale of 1). Posterior simulations of model 631 

parameters were undertaken using the No-U-Turn Hamiltonian Monte Carlo sampler 632 

within Stan 63. Posterior distributions were estimated from four chains, each with 633 

1000 iterations, after discarding the preliminary 1000 iterations. The convergence of 634 

models was assessed using visual diagnostics (autocorrelation, trace plots, and 635 

posterior predictive checks) and inspection of effective sample sizes (min. 1000) and 636 

r hat values (<1.01). Models were fitted using the package ‘rstanarm’ 64 within R 59. A 637 

hierarchical model provides several benefits over simple averaging of standardised 638 

indicators or multiple separate models 65: (i) simultaneous modelling of multiple 639 

attributes improves precision and estimates of uncertainty for each ecosystem function 640 

category; (ii) non-independence of multiple attributes within sites is explicitly 641 

accounted for; (iii) enables simultaneous estimation of overall fertile island effect for 642 

each  ecosystem functional category and the individual soil attributes within these. 643 

Structural Equation Modelling (SEM 29) was employed to explore the direct and 644 

indirect impact of climate (aridity [ARID], rainfall seasonality [SEAS]), soil pH (pH), 645 

sand content (SAND), vegetation attributes (plot-level perennial plant cover [COV] 646 

and plant richness [RICH], plant height [HT], canopy width [WIDTH], shape 647 

[SHAPE], leaf length [LNGTH], leaf area [AREA], palatability [PALAT], 648 

resprouting [RESP], deciduousness [DECID], and allelopathy [ALLELO]), and 649 

grazing (standardised grazing pressure) on the fertile island effect (RII) after 650 

accounting for the effects of location (latitude, cosine longitude, sine longitude) 651 

across the globe. All explanatory variables were standardized (z-transformed) in the 652 

SEM analyses. The nine plant traits used in these analyses were selected from a 653 

potential pool of 15 potential traits using the significance of percentage increase in 654 

mean square error using Random Forest analyses (Fig. S3 in Supplementary 655 

Information).  With these analyses we aimed to determine which traits are the most 656 

influential in describing the relative difference between islands and their interspaces 657 

(as measured with the RII) for each of the three synthetic functions (Decomposition, 658 

Fertility, Conservation). Random Forest is a robust approach when working with 659 

continuous and categorical variables. The 15 traits considered, which relate to plant 660 

size and structure, leaf characteristics, and ability to respond to environmental stimuli 661 
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(palatability, resprouting, deciduousness, allelopathy) potentially influence: 1) how 662 

nutrients are mineralized and made available to plants (Decomposition), 2) contribute 663 

to soil nutrient (including carbon) pools (Fertility) and 3) how soil and water are 664 

conserved (Conservation). Random forest analyses were conducted with the 665 

rfPermute package 66. 666 

Structural equation modelling allowed us to test hypothesized relationships 667 

among predictors and the fertile island effect based on an a priori model that 668 

constructs pathways among model terms based on a priori knowledge (Fig. S5 in 669 

Supplementary Information). This model predicted that spatial location would affect 670 

all the predictors such as climate, plant attributes (including site-level vegetation 671 

attributes and plant traits), soil attributes and grazing. Climate would influence the 672 

fertile island effect through its influence on soil properties, grazing, and plant 673 

attributes. Grazing and soil properties would affect the fertile island effect directly, or 674 

indirectly, by altering plant attributes. We ran the SEM on the RII of the three 675 

functional categories (Decomposition, Fertility, Conservation, Fig. S4 in 676 

Supplementary Information). To obtain the values for these three average functions, 677 

we employed the concept of the multifunctionality index and averaged the values of 678 

the RII for all individual attributes that comprised each function. Models with low χ2 679 

and Root Mean Error of Approximation (RMSEA < 0.05), and high Goodness of Fit 680 

Index (GFI) and R2 were selected as the best fit model for our data. In addition, we 681 

calculated the standardised total effects of each explanatory variable to show its total 682 

effect. SEM analyses were performed using SPSS AMOS 22 (IBM, Chicago, IL, 683 

USA) software. 684 
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The data used for this study is available via the Figshare repository 687 
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Other databases used in this study is listed as below: Global Aridity Index and 689 
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Figure Legends 742 

Figure 1. Average function (mean relative interaction effect value across 24 soil 743 

attributes, see Methods) for the 288 plots at 88 sites across global drylands and 744 

examples of fertile islands at selected sites. The background map shows the 745 

distribution of aridity (1- [precipitation/potential evapotranspiration]) across global 746 

drylands.  747 

 748 

Figure 2. The fertile island effect, as measured with the relative interaction effect 749 

(RII), beneath perennial dryland plants for the 24 soil attributes measured across three 750 

functions. N=288 for all the attributes, data are presented as mean ± 95% CI and 751 

darker colours indicate significant positive effects. 752 

 753 

Figure 3. Impacts of recent grazing and climate on the fertile island effect. (a) 754 

Relative interaction effect (RII) value surfaces for the three measures of ecosystem 755 

function (Decomposition, Fertility, Conservation) in relation to recent grazing 756 

pressure (standardized dung mass) and aridity, and mean (± 95% CI) predicted RII 757 

value for the three functions in relation to (b) long-term (historic) measure of 758 

herbivore grazing pressure (ungrazed, low, medium, high), and (c) herbivore type 759 

(livestock, native, mixed). Numbers in (b-c) are replicates for each category. 760 

 761 

Figure 4. Structural equation modelling assessing the direct and indirect effects of 762 

climate (aridity [ARID], rainfall seasonality [SEAS]), soil (pH and sand [SAND] 763 

content), plants (perennial cover [COV], perennial plant richness [RICH]), plant 764 

height [HT], plant shape [SHAPE], leaf area [AREA], leaf length [LNGTH], canopy 765 

width [WIDTH], palatability [PALAT], deciduousness [DECID], resprouting ability 766 

[RESP], and allelopathy [ALLEL]), and grazing (standardized grazing pressure) on 767 

the fertile island effect for soil decomposition (Decomposition), soil fertility 768 

(Fertility) and soil and water conservation (Conservation), after accounting for the 769 

effects of location (latitude, cosine longitude, sine longitude). Standardised path 770 

coefficients, adjacent to the arrows, are analogous to partial correlation coefficients, 771 

and indicative of the effect size of the relationship. Pathways are significantly 772 

negative (red unbroken line), significant positive (blue unbroken line) or mixed 773 

significant negative and significant positive (black unbroken lines). Non-significant 774 

pathways are not shown in the models. Model fit: (a) organic matter decomposition: 775 

χ2 = 31.9, df = 26, P = 0.20, R2=0.17, root mean error of approximation (RMSEA) < 776 

0.001, Bollen-Stine = 0.40 (2000 bootstrap); (b) Fertility: χ2 = 31.9, df = 26, P = 0.20, 777 

R2=0.19, root mean error of approximation (RMSEA) < 0.001, Bollen-Stine = 0.40 778 

(2000 bootstrap); (c) Conservation: χ2 = 31.9, df = 26, P = 0.20, R2=0.10, root mean 779 

error of approximation (RMSEA) < 0.001, Bollen-Stine = 0.40 (2000 bootstraps). 780 

N=288 for all analyses. 781 

 782 
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