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Abstract: The advent of Industry 4.0 has heralded advancements in Human–robot Collaboration
(HRC), necessitating a deeper understanding of the factors influencing human decision making
within this domain. This scoping review examines the breadth of research conducted on HRC, with a
particular focus on identifying factors that affect human decision making during collaborative tasks
and finding potential solutions to improve human decision making. We conducted a comprehensive
search across databases including Scopus, IEEE Xplore and ACM Digital Library, employing a
snowballing technique to ensure the inclusion of all pertinent studies, and adopting the PRISMA
Extension for Scoping Reviews (PRISMA-ScR) for the reviewing process. Some of the important
aspects were identified: (i) studies’ design and setting; (ii) types of human–robot interaction, types
of cobots and types of tasks; (iii) factors related to human decision making; and (iv) types of user
interfaces for human–robot interaction. Results indicate that cognitive workload and user interface
are key in influencing decision making in HRC. Future research should consider social dynamics
and psychological safety, use mixed methods for deeper insights and consider diverse cobots and
tasks to expand decision-making studies. Emerging XR technologies offer the potential to enhance
interaction and thus improve decision making, underscoring the need for intuitive communication
and human-centred design.

Keywords: human decision making; human–robot collaboration; human–robot interaction; human
factors; Industry 4.0

1. Introduction

As a socio-technical system, collaborative robots (cobots) are designed to improve
productivity, flexibility, and ergonomics, and to increase customised production rather than
mass production. Since the fourth industrial revolution (Industry 4.0), concerns regard-
ing the human workers’ role in the production environment [1] have increased causing
Human–robot Collaboration (HRC) to become an emerging area of robotic and cobotic
research in recent years. A popular discussion about the next industrial revolution (Indus-
try 5.0) is human–robot co-working [2], which emphasises bringing human workers back
to the production process loop [3]. An HRC system combines human soft skills such as
decision making, intelligence, problem-solving, adaptability and flexibility with robots’
precision, repeatability, and the ability to work in dangerous environments [4].
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For this reason, cobots are adopted to work and interact safely with humans on shared
tasks, in a shared workspace simultaneously [5–7]. Cobots have enormous potential for
their increased use in many industries. To introduce industrial cobots clearly, [8] proposed
a framework which categorises the interaction between humans and robots into four types
(Figure 1). First type is the full automatization of conventional industrial robots, and the
latter three types are categorised based on the interaction between humans and cobots:
coexistence, cooperation, and collaboration. In the coexistence scenario, humans and cobots
work sequentially in different workspaces. In the cooperation scenario, the humans and
cobots work in a shared space, and the tasks of the humans and cobots are linked. In the
collaboration scenario, which is the highest level of interaction, humans and cobots work
in the shared space on the shared tasks simultaneously.
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1.1. Human Decision Making

Since humans and robots can work together as a team in HRC, they both have the
authority to make decisions. Robots can make decisions by using algorithms based on
models such as Markov decision processes (MDP) [11], partially observable Markov deci-
sion processes (POMDP) [12], Bayesian Decision Model (BDM) [13], Adaptive Bayesian
policy selection (ABPS) [14], and others. Therefore, the performance of robot decision
making relies on algorithms. With the emergence of technologies such as Artificial Intel-
ligence (AI) and Machine Learning (ML), robots can make decisions on their own and
be more intelligent in some specific situations [15]. Different from robots, humans make
decisions based on normative inference, influenced by their previous experiences, un-
conscious drives, and emotions [16]. Robots are good at making decisions in stable and
predictable situations, while human decision making is essential for handling complex and
dynamic situations [17].

One example of a dynamic situation where humans are working with robots is robot-
assisted surgery. In this scenario, a surgeon makes decisions based on their knowledge,
experience, and the current situation in the operation theatre. Other factors such as com-
munication within the surgical team, situation awareness, and workload are related to
the surgeon’s decision making [18]. For instance, during a procedure, a surgeon must
carefully choose the right instrument based on the specific needs of the task and the current
conditions. They must evaluate the completion of each step satisfactorily, be ready with an
alternative plan if necessary, and always consider the most appropriate next action. The
quality of the surgeon’s decisions regarding patient care, incision placement, and procedure
steps directly affects the overall success of the surgery. Another dynamic example is a
search and rescue task. In this scenario, humans make decisions based on the data collected
from a robot where effective information can aid humans to make decisions necessary for
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the search. For instance, in an Urban Search and Rescue (USAR) task [19], robots provide
data continuously to human operators, and human operators analyse the data, update
search strategy, and reassign tasks to ensure the efficiency and safety.

Therefore, collaboration between humans and robots necessitates that human op-
erators apply their expertise to make situationally appropriate decisions. This decision
making process aligns with the concept of the Naturalistic Decision Making (NDM) theory
proposed by Klein et al. in 1993 [20]. This theory elucidates decision-making processes in
environments that are both significant and familiar to humans, portraying them as expert
decision makers with domain-specific knowledge and experience. Klein et al. further
introduced the Recognition-Primed Decision making (RPD) model as a framework for
understanding how effective decisions were made [20,21].

This model starts with an assessment of whether the situation is familiar. If it is
not, the individual seeks more information and re-assesses the situation. If the situation
is familiar, the model predicts that the individual will have expectancies about what is
normal for that situation. If these expectancies are not violated, the individual engages in a
mental simulation of the action, essentially predicting the outcome of an action without
actually performing it. If the mental simulation suggests that the action will succeed, the
individual implements the action. If not, they modify the plan and re-evaluate its potential
success through another mental simulation. This process repeats until a workable plan
is formulated.

RDP model, along with the NDM theory, has been applied to various real-world
domains, including Unmanned Air Vehicles (UAV) operations by Yesilbas and Cotter in
2019 [22] and human–agent collaboration by Fan et al. in 2005 [23], demonstrating its broad
applicability.

1.2. Cognitive Workload and Human Decision Making

In human decision making, cognitive workload plays a critical role, especially in envi-
ronments where humans interact with complex systems or technology, such as robotics [24].
This factor is frequently examined alongside human decision making due to its profound
impact on performance and outcomes [25]. Effective decision making is a complex cognitive
process that necessitates the optimal distribution of an individual’s attention and mental ca-
pacity. The quality of decisions heavily relies on the ability to analyse information, evaluate
possible outcomes, and choose the best course of action [26,27]. However, cognitive over-
load can significantly impede this process. When an operator faces an excess of information
or task demands that exceed their cognitive resources, they are likely to experience mental
fatigue [28,29], which can lead to reliance on simplifying strategies, known as heuristics.
While heuristics can be useful for quick judgments, they often ignore much of the available
data and the nuance required for high-quality decision making [30,31].

For example, using tools designed to minimize cognitive effort in pattern recognition
can significantly improve group-decision outcomes by allowing better resource allocation
decisions in dispersed groups [32]. Similarly, the frontal network in the brain responds
to uncertainty in decision making tasks by modulating cognitive resource allocation, and
the cognitive control in navigating uncertain situations is important [33]. In complex op-
erations, cognitive readiness, which includes situation awareness, problem-solving, and
decision making, is essential for effective resource allocation. In addition, supporting
long-term anticipation in decision making can significantly improve performance in com-
plex environments, and cognitive support tools can enhance the anticipation of future
outcomes [34].

For this reason, this scoping review is conducted in order to identify the factors that
affect human decision making and cognitive workload during human–robot collaborative
tasks. The research questions guiding this research are as follows:

RQ1. What are the factors that impact human decision making and cognitive workload
during HRC tasks?

RQ2. What are the potential solutions to address these factors?
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2. Methods

This Scoping review is guided by PRISMA Extension for Scoping Reviews (PRISMA-
ScR) [35]. Papers selected for this scoping review focused on human decision making
and cognitive workload in HRC tasks. Peer-reviewed journal articles, conference papers
and book chapters were included if they were published from 2019 to 2023 and written
in English. Quantitative, qualitative, and mixed-method studies were included in order
to consider different aspects of human decision making and cognitive workload in HRC.
Papers were excluded if they did not fit into the theme of this study, which focused on
autonomous mobile robot, telerobot, AI bot, social robot, military robot, machine learning,
reinforcement learning, robot decision making, algorithmic decision making, decision
making modelling, robot’s planning process, conversation or voice agent and design
process (Table 1).

Table 1. Selecting criteria.

Inclusive Criteria Exclusive Criteria

journal articles
conference papers

book chapters
published from 2019 to 2023

written in English
quantitative, qualitative, and mixed-method

autonomous mobile robot, telerobot, AI bot,
social robot, military robot

machine learning, reinforcement learning
robot decision making, algorithmic decision
making, decision making modelling, robot

planning process
conversation or voice agent

design process

Due to the multidisciplinary and state-of-the-art nature of the topic, the search was
conducted in the following different databases from 2019 to November 2023: Scopus, IEEE
Xplore and ACM digital library. As listed in Table 2, keywords were identified in two sets.
The first set of keywords was related to human–robot collaboration, and the second set
of keywords is related to human decision making and cognitive workload. The Boolean
operator “AND” is used between the two sets, and the “OR” operator was used within
each set. Searches covered titles, abstracts, and full texts in the databases. The search
strategy was drafted by Yuan Liu and further refined through team discussion. The final
search strategy is (“cognitive workload” OR “human decision”) AND (“human–robot
collaboration” OR cobot* OR “collaborative robot*” OR “human–robot interaction”). The
final search was conducted on November 8, 2023, and search results were exported into
Paperpile, and duplicates were removed by the Paperpile filter.

Table 2. Sets of keywords used in the search.

Human Decision making and Cognitive Workload HRC

“cognitive workload” OR “human decision”
“human–robot collaboration” OR cobot*

OR “collaborative robot*” OR
“human–robot interaction”

After the removal of duplicates, two reviewers screened the same 271 publications
according to the title and abstract. After that, the full text of the selected records was
scanned to remove publications that were inconsistent with the research questions. Each
exclusive criterion was discussed among all authors. To achieve comprehensive coverage
of related and up-to-date studies, 5 relevant publications were snowballed. The Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) chart (Figure 2) was
adopted to illustrate the steps of paper identification and selection.
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Figure 2. PRISMA flow chart.

The data was charted in three phases, phase (1) main characteristics, phase (2) study
design and setting, and phase (3) findings related to the research questions. For main char-
acteristics, data including title, year of publication, country, and study aims were extracted
(Appendix A). For study design and setting, methodology, sample size, experiment setting
and measures for assessment were extracted. Finally, the key findings related to research
questions including factors related to human decision making and cognitive workload,
types of human–robot interaction, cobots, tasks and interfaces, and potential solutions
were identified.
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3. Results

The search for literature was conducted in November 2023. A total of 41 publications
were included after the screening process, 5 publications were snowballed, and a final of 46
studies were included (Appendix A).

3.1. Study Characteristics

As shown in Figure 3, the selected papers were published between 2018 and 2023.
The majority were published in the last three years (n = 31, 67.4%). Most papers are
peer-reviewed journal articles (n = 26), 19 are conference papers, and only 1 is a book
chapter (Figure 4). Most of the papers were conducted in the USA (n = 17, 37.0%) and Italy
(n = 15, 32.6%). The rest were conducted in Germany (n = 3), Switzerland (n = 3), Nether-
lands (n = 2), China (n = 2), Sweden (n = 1), Mexico (n = 1), Portugal (n = 1), and India
(n = 1) (Figure 4).
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3.2. Study Design and Setting
3.2.1. Study Settings

As Table 3 shows, among all the studies, most studies were conducted in the laboratory
setting (n = 28, 60%), the others were literature review (n = 9, 20%), studies conducted in the
virtual environment (n = 5, 11%), a study through an online survey (n = 1, 2%), and a study
conducted in realistic scenarios (n = 1, 2%). A total of 12 studies involved participants less
than 20, 5 studies involved 20–50 participants, and 3 studies involved participants more
than 50.
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Table 3. Study design and setting.

Research Type Study Setting Sample Size Measures Factors Were Measured

Conceptual
Research [36] Virtual

Environment -- -- Cognitive workload

Review [17,37–45] -- -- -- --

Survey and
Analysis [46,47] -- -- -- --

Design and
Development

[48] Laboratory -- NASA-TLX Cognitive workload
[49] Laboratory -- NASA-TLX Cognitive workload

[50] Virtual
Environment -- --

[51] Laboratory 92 NASA-TLX Cognitive workload

[52] Virtual
Environment 36 NASA-TLX Cognitive workload

[53] Laboratory -- HRV Stress

[54] Laboratory -- NASA-TLX, HRV,
Skin response Cognitive workload

[55] Laboratory -- HRV Cognitive workload
[56] Laboratory -- EEG Cognitive workload

[57] Laboratory 14

System Acceptance
Scale, NASA-TLX,

SSSQ, Trust in
Industrial

Human–robot
Collaboration
Scale, System

Usability Scale,
observation, video

recording,
semi-structured

interview

Trust, acceptance,
Satisfaction, Stress,

Cognitive workload

[58] Laboratory, Virtual
environment 35 NASA-TLX Cognitive workload

[59] Online Survey 14 Online Survey --
[60] Laboratory 15 HRV, NASA-TLX Cognitive workload
[61] Laboratory 52 -- --

[62] Laboratory -- Eye-tracking,
Likert-scale survey Control method

Implementation [63] Laboratory -- -- --
[64] Laboratory -- NASA-TLX Cognitive workload

Evaluation [65] Laboratory 8 NASA-TLX Cognitive workload

Empirical Research

[66] Laboratory 18 EEG, NASA-TLX Cognitive workload
[67] Laboratory 12 -- --
[68] Laboratory 99 -- --

[69] Virtual
environment 12

EEG, EMG, HRV,
EDA, MOV,
NASA-TLX

Cognitive workload

[70] Laboratory --
Questionnaire of

fluency perception,
NASA-TLX

Cognitive workload

[71] Laboratory 20

TAM
questionnaire,

System Usability
Scale, User
Experience,
NASA-TLX

Acceptance, Usability,
Cognitive workload
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Table 3. Cont.

Research Type Study Setting Sample Size Measures Factors Were Measured

Empirical Research

[72] Laboratory 14

Eye-tracking,
NASA-TLX,

System Usability
Scale

Feedback, Cognitive
workload, Usability

[73] Laboratory --

Observation, video
recording,

semi-structured
interview

Usability, Trust,
Satisfaction, physical
workload, Cognitive

workload

[74] Laboratory -- Eye-tracking, EEG,
Motion Capture Cognitive workload

[75] Laboratory 12
fNIRS, pre- and
post-experiment
questionnaires

Physical workload,
Cognitive workload

[76] Realistic Scenarios 47 HRV Stress

[77] Laboratory --

System Acceptance
Scale, System

Usability Scale,
NASA-TLX, SSSQ,
Trust in Industrial

Human–robot
Interaction

Questionnaire,
Eye-tracking

Acceptance, Usability,
Cognitive workload,

Stress, Trust

[78] Laboratory 7 Eye-tracking,
verbal report Cognitive workload

[79] -- 8

Upper-limb
kinematics, Muscle

activity,
Eye-tracking

Cognitive workload

[80] Laboratory 21
NASA-TLX,

Preference of
Automation Level

Cognitive workload

3.2.2. Measures

Among all the selected studies, subjective measures and biometric measures were
the main tools used to measure human factors. In total, 14 studies only used subjective
measurements, 5 studies only adopted biometric measurements, and 10 studies applied
both (Table 3).

For subjective measurement methods from the studies listed in Table 1, the NASA
Task Load Index (NASA-TLX) stood out as a golden standard for workload and the most
utilized measure employed in 17 studies. Other methods include various questionnaires
for assessing Fluency Perception, Technology Acceptance, System Usability, and User
Experience. Additional techniques such as direct observation, video recording analysis,
semi-structured interviews, the System Acceptance Scale for measuring system acceptance,
the Short Stress State Questionnaire (SSSQ) for measuring stress, and the Trust in Industrial
Human–robot Interaction Scale were also applied. Furthermore, preferences for automation
levels, Likert-scale surveys, diverse pre- and post-experiment questionnaires, verbal reports,
and online surveys also contributed to the subjective measurements in several studies.

In the selected studies, a diverse array of biometric measurements was employed
to analyse human physiological and behavioural responses. Eye-tracking emerged as
the most frequently used method, applied in six studies to assess visual attention and
physiological reactions. Electroencephalography (EEG) was a primary tool for monitoring
brain activity, while Electromyography (EMG) and Heart Rate Variability (HRV) provided
insights into muscle actions and heart rhythms. Other methods included Electrodermal
Activity (EDA) for skin conductance, Wrist Motion (MOV), Skin Response, and Motion
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Capture for movement analysis. Additionally, functional Near-Infrared Spectroscopy
(fNIRS), along with assessments of Upper-limb Kinematics and Muscle Activity, contributed
to a comprehensive set of biometric evaluations (Table 3).

3.3. Human–Robot Interaction
3.3.1. Types of Interaction and Tasks

As illustrated in Figure 5, among all the studies, most of the interaction type between
humans and robots is collaboration (n = 34, 72.9%), the others are cooperation (n = 8, 16.7%),
coexistence (n = 3, 6.2%), and teleoperation (n = 2, 4.2%).
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Figure 5. Types of interaction and tasks: (a) types of interaction; (b) majority of tasks.

Figure 5 shows that the studies reviewed primarily focused on assembly
tasks [38,39,48,53,54,57,58,61,63,64,72,73,76,77,80] with other frequent activities including
pick-and-place [44,55,60,65,79], screwing [41,70,71], handling [38,41], sorting [51,79], lift-
ing [41,49], transferring [36,70], and surgical procedures [47,69]. These tasks represent
the core applications of collaborative robots in current research. Additionally, a range of
specialized tasks such as surface polishing [38], welding [38], guiding [66], inspecting [70],
weighing [70], and search-and-rescue [46] were explored. Innovative applications extended
to collect-and-delivery [52], space exploration, wheelchair control, autonomous driving [47],
matching [75], testing, and tracking moving objects, showcasing the diverse potential of
cobots across various industries.

3.3.2. Types of Cobots

As listed in Table 4, among all the studies, 6 degrees of freedom (6-DoF) cobots were
the most used (n = 16). Other types of cobots were 4 degree of freedom cobots (4-DoF)
(n = 1), 7 degree of freedom (7-DoF) cobots (n = 6), surgical robots (n = 1), dual-arm robots
(n = 3), and virtual robots (n = 1). The majority of studies on 6-DoF cobots predominantly
featured various models from Universal Robots, including the UR3, UR5, and UR10, along
with their enhanced versions. The UR3 and its iterations were the most cited, followed by
the UR5 and UR10 series. In addition to these, SCHUNK’s PowerBall LWA 4P was also
mentioned. For 7-DoF cobots, models like the KUKA LWR4+, Franka Emika Panda, JACO
robotic arm, and UFACTORY xArm 7 were utilized, with some studies exploring dual-arm
coordination using two KUKA LWR4+. Dual-arm cobots like Baxter and ABB YuMi were
used to simulate more complex interactions. Other unique cobot types included a 4-DoF
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cobot, the surgical robot da Vinci, and virtual robots in simulated environments, indicating
a diverse range of robotic platforms used in HRC research.

Table 4. Types of Cobots.

Cobot Study

UR3, UR3e (6-DoF) [57,60,61,63,72,73,77]
UR5, UR5e (6-DoF) [62,64,75,79]

UR10, UR10e (6-DoF) [62,67,71]
UR16e (6-DoF) [55]

SCHUNK PowerBall LWA 4P (6-DoF) [66]
KUKA LWR4+ (7-DoF) [70]

Franka Emika Panda (7-DoF) [54,80]
JACO robotic arm (7-DoF) [58]

UFACTORY xArm 7 (7-DoF) [78]
Baxter (dual-arm) [51]

ABB YuMi (dual-arm) [53,76]
Dobot (4-DoF) [65]

da Vinci surgical robot [69]
virtual cobot [50]

3.4. Factors Related to Human Decision Making

Within the selected studies, 24 factors that influence human decision making dur-
ing tasks were identified. Generally, these factors affecting human decision making are
categorized into four groups: human factors, robot factors, communication factors, and
environmental factors. (Figure 6, Table 5).
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Table 5. Factors Related to Human Decision making.

Human Factors Robot Factors Communication Factors Environment Factors

trust [17,45,48,57,73,77] physical attribute of the
robot [39,70,72]

user interface
[37,38,42,46,51,60,63,64,73]

dynamic of the situation [75]

acceptance [17,57,71,77] robot errors [36,55] control modality [37,65,71] task complexity
[36,55,66,69,80]

human characteristics [39] trajectory and
movement [53,55,78]

feedback [39,48,51,52,62,72] design of
workspace [39,73,77]

physical workload [50] role of the robot [61,76,80] usability [71,73] physical safety [42]

cognitive workload [40] automation level [17,44,47,72] human intent
prediction [59,68]

operator’s ability
[39,41,67,74,76,79]

mutual awareness
[17,41,46,68]

stress [57,76,77]

feeling of satisfaction or
frustration [57,73]

perception of the situation
and environment [45,49]

3.4.1. Human Factors

In the realm of human factors impacting decision making in HRC, cognitive work-
load receives the most attention, as evidenced by its focus in 18 studies. Trust, operator
ability, human characteristics, and acceptance are also prominent, having been extensively
studied across multiple research works. Additionally, physical workload, stress levels, and
emotional responses such as satisfaction or frustration are deemed critical. These factors,
together with the perception of the situation and environment, play significant roles in
influencing human decision making during collaborative tasks with robots.

3.4.2. Robot Factors

Robot factors that influence human decision making in collaborative tasks encompass
a spectrum of the robot’s physical characteristics and actions. Key aspects such as the
force exerted by the robot, its speed, and the distance maintained from human operators
are crucial, directly impacting task performance and safety protocols. Additionally, the
frequency and nature of robot errors, as well as the trajectory and movement patterns, are
vital considerations. The role of the robot, whether as a leader or a follower, alongside the
degree of automation implemented, plays a significant part in shaping the human–robot
interaction dynamic.

3.4.3. Communication Factors

Communication factors include user interface design, control modality, feedback
mechanisms, usability, human intent prediction, and mutual awareness. These elements
facilitate interaction and are foundational for intuitive operation and effective teamwork
between humans and robots, as evidenced by numerous studies. The user interface is
particularly emphasized, as it directly impacts the efficiency and satisfaction of the operator.
Feedback and mutual awareness are also integral, ensuring that both humans and robots
can respond adaptively to each other’s actions and intentions.

3.4.4. Environmental Factors

Environmental factors include the dynamics of the situation, task complexity, workspace
design, and physical safety. Among the selected studies, task complexity received the most
emphasis. The design of the workspace was also deemed crucial, while the dynamics of
the situation and physical safety were likewise noted as important considerations.
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3.5. User Interface

Figure 7 shows that, among all selected studies, the Graphical User Interface
(GUI) [37,39,46,54,57,60,63,66,69,71–73,75,77,80] was the most utilized type of user interface,
implemented in 15 studies. Other interfaces include physical interaction [49,57,69,71–73,77]
and touch interfaces [46,55,65,71], which facilitate direct engagement with robots. Addi-
tional methods such as gesture recognition [38,39,63,65,72,73], voice control [36,38,63–65],
and eye gaze tracking [65,68] were employed, enhancing the versatility of interactions.
Haptic feedback [62] and extended reality (XR) interfaces [38,39,46,52,59,60,63] were noted
for their immersive and tactile capabilities. Furthermore, EMG-based interfaces [37,39]
and Brain–Computer Interfaces (BCIs) [36,39,40] have been adopted, indicating progress in
user command and collaboration with robots. Beyond the commonly used GUI, XR-based
interfaces have garnered more attention than other emerging technologies.
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3.6. Technologies Related to Human Decision Making

Numerous studies have highlighted a variety of advanced technologies such as XR,
gesture control, voice control, and AI-based perception, which significantly influence
human decision making in collaborative environments.

Some studies mentioned a multimodal interface which combines different sensory
input to improve interaction to enhance human decision making and collaboration. For ex-
ample, gesture recognition [38,57,63,65,72], speech recognition [38,63,65], cognitive signals
like EEG [36], ECG [55], fNIRS [75], and force sensory [36] were used in some studies.

XR-base interfaces including AR [38,52,59,63], VR [46], and MR [60] were discussed in
several studies. These technologies can help improve human decision making in HRC by
assisting with visual and other perceptions.

Other technologies such as Brain–Computer Interface (BCI) [40], eye gaze [65,68], and
AI-based perception [57,72] were also mentioned. Such technologies have the potential to
reduce cognitive workload and enhance users’ preference and needs therefore improving
their decision making.

4. Discussion

This scoping review aims to identify the factors related to human decision making
during HRC tasks and find potential solutions to reduce cognitive workload and improve
human decision making, therefore enhancing human–robot collaboration.

4.1. Key Findings

For the study design and setting, almost all the selected studies were conducted in
laboratory settings and virtual environments, and only 1 study was conducted in realistic
scenarios. While laboratory studies are valued for their controlled conditions, which ensure
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repeatability and safety, they frequently do not fully encapsulate the complex and dynamic
nature of real-world environments. The simplified settings within a laboratory may over-
look essential variables that naturally occur outside of these controlled environments. This
oversight can result in significant gaps in the applicability of research findings, as studies
may not accurately reflect the complexities and unpredictability encountered in everyday
situations. Consequently, this limitation can lead to a disconnect between theoretical re-
search outcomes and their practical implementation in real-world scenarios, underscoring
the need for complementary field studies to validate laboratory findings.

Besides, most of the studies used 6-DoF robot. However, the integration of diverse
cobots like exoskeletons and dual-arm systems is crucial for creating more adaptable,
efficient, and human-centric collaborative environments. Furthermore, a multimodal
human–robot collaboration, which combines single-arm, dual-arm, and wearable robots,
can cater to a broader range of tasks and environments, ranging from the precision of
assembly lines to the unpredictable conditions of construction sites or the sensitive needs
of patient care.

The specific tasks performed among all the studies were mostly assembly (34%) and
pick-and-place (11%), and other tasks were less frequent (7% screwing, 7% handling, 4.5%
sorting, 5% lifting, 5% transferring, 5% surgery, 2% surface polishing, 2% welding, 2%
guiding, 2% inspecting, weighing, 2% search-and-rescue, 2% collect-and-delivery, 2% space
exploration, 2% wheelchair control, 2% autonomous driving, 2% matching, 2% testing, 2%
tracking moving object).

Regarding the methods of measurement in all the selected studies, 14 studies employed
only subjective methods, 10 studies utilized both subjective and biometric measures, and
5 studies relied exclusively on biometric measurements. Among the subjective measures,
the NASA-TLX was the most frequently used, appearing in 17 studies. Other methods
were employed less frequently: 3 studies implemented the System Usability Scale, 2 em-
ployed the Short Stress State Questionnaire (SSSQ), 2 measured trust using the Trust in
Industrial Human–robot Interaction Questionnaire, 1 measured User Experience, 1 used
direct observation, 1 analysed video recordings, 1 conducted semi-structured interviews,
1 used the System Acceptance Scale, 1 used a questionnaire on the Preference of Automation
Level, 1 used a Likert-scale survey, 1 study used a questionnaire on fluency perception,
1 used the Technology Acceptance Model (TAM) questionnaire, 1 used various pre- and
post-experiment questionnaires, 1 collected verbal reports from participants, and 1 con-
ducted an online survey for participants to rate the design of an AR interface. Among the
biometric measures utilized in research, eye-tracking was the most frequently employed,
being featured in 6 studies. Heart Rate Variability (HRV) followed with 5 studies, and
Electroencephalography (EEG) with 4. Other methods were used less frequently, with
1 study each employing Electromyography (EMG), Electrodermal Activity (EDA), Metal Ox-
ide Varistor (MOV), skin response, motion capture, functional Near-Infrared Spectroscopy
(fNIRS), upper-limb kinematics, and muscle activity.

In the realm of human decision making, cognitive workload is the most extensively
discussed factor, featuring in 39% of the studies; it significantly influences decision making
during tasks [45]. User Interface (UI) was highlighted in 24% of the studies as a relevant
factor, while human trust was mentioned in 13%. Furthermore, operator’s ability, feedback,
task complexity, human characteristics, and robot attributes were each the focus of 13%
of the studies. Lesser discussed factors include mutual awareness, acceptance, physical
workload, robot errors, automation level, and control modality, each of them addressed
in 8% of the studies. Human stress, robot movement and trajectory, robot roles, and
workspace design were each considered in 7% of the studies. Usability, intent prediction,
user satisfaction or frustration, and situation perception were featured in 4% of the studies.
Lastly, the dynamics of the situation and safety of the physical environment were noted in
2% of the studies. While current research has considered factors from various perspectives,
some aspects have not been mentioned. For example, these include the social aspect, multi-
human–robot teams, psychological safety, cultural sensitivity, and others. Social factors
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and perceptions of psychological safety are crucial elements in HRC. Integrating these
elements into the design and collaborative processes of HRC can enhance teamwork and
productivity, as well as ensure the smooth adoption of robotic technologies.

Among all the studies, the conventional Graphical User Interface (GUI) was the most
used, featuring in 15 studies. Emerging interfaces, such as XR-based interfaces, were
present in 7 studies, as were physical interfaces. Gesture recognition was included in
6 studies, voice control in 5, touch interfaces in 4, Brain–Computer Interfaces (BCIs) in 3,
and eye gaze tracking in 2. Additionally, EMG-based interfaces were explored in 2 studies,
while foot interfaces and haptic feedback were each the subject of 1 study. Several studies
mentioned multi-model interfaces.

4.2. Potential Solutions

To improve human decision making, some studies suggested potential solutions. Clear
and intuitive communication was the most suggested solution. Norton et al. suggested
that clear and effective communication of a robot’s proficiency to human partners can
improve decision making and manage cognitive workload [44]. Ajoudani et al. suggested
the use of shared communication modalities and robotic learning techniques for gradual
mutual adaptation [37]. Villani et al. suggested developing user-friendly interfaces with
the application of cognitive engineering principles [38]. Intuitive interaction and well-
designed interfaces were also suggested as a solution in several studies [42,57,59]. However,
Kalatzis et al. indicated that while user interfaces can aid in HRC tasks, their complexity
(especially in mixed reality UIs) can increase cognitive workload and negatively impact
task performance, situational awareness, and trust [60]. Designers should consider these
factors and potentially develop less cumbersome and more intuitive user interfaces to
enhance HRC. Besides, Saren et al., indicated the need for careful selection of modalities
based on the task complexity and situational context [65].

Appropriate data visualisation and feedback is another potential solution. Szafir
suggested applying data visualization to the design of robot interfaces [46]. Cleaver et al.
claimed that appropriate visualization of the robot’s path can improve human decision
making and reduce cognitive workload by providing enough information without over-
whelming the user [52]. Zhou et al. suggested that intraoperative workload feedback
and user-driven autonomous assistance based on cognitive load sensing could improve
human decision making and reduce cognitive workload [69]. Lemasurier et al., sug-
gested that effective signalling of robot intent, like the LED bracelet, can be a solution [51].
Zhu et al. suggested a haptic shared control architecture, which integrates human and
robot control with fuzzy logic inference in tracking tasks [62].

Human-centred design is also discussed and suggested. For example, considerations
for a more human-centred HRC design [17]; understanding the bidirectional nature of
anticipatory actions and improving the accuracy of intent prediction [68]; using simula-
tions to predict and plan for human behaviour and developing tools for coupling human
models [50]; designing with consideration for operator states, appropriate task allocation,
and the use of adaptive interfaces [45]; and designing collaborative system features that
can adapt to individual user preferences and needs [72].

Adapting robots’ behaviour or role to humans in real-time is a dynamic approach.
Lagomarsino et al., suggested adapting the robot’s trajectory based on real-time assessment
of human cognitive load [55]. Bales and Kong suggested optimizing the information
presentation and interaction patterns between humans and robots based on real-time
cognitive state assessments [74]. Hostettler et al., suggested adapting the speed of the
robot to individual users [78]. In addition, adjusting the robot’s role in real-time based on
cognitive workload was discussed in several studies [76,80].

Other suggestions are integration of trust [48], safety [42,57,73], visibility and pre-
dictability of robot actions [57], and ensuring user acceptance [77].
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4.3. Limitations

This study has several limitations. It reviewed only papers published in English;
future studies would benefit from including articles in non-English languages for a more
comprehensive analysis. Furthermore, the literature search was confined to three databases:
Scopus, IEEE Xplore, and ACM Digital Library. To obtain more exhaustive results, expand-
ing the search to additional databases is recommended for subsequent research.

5. Conclusions

This scoping review investigates current research on factors that may impact human
decision making while collaborating with robots during tasks, and it discusses the po-
tential solutions to address these factors. Human factors and communication factors are
the most frequently discussed topics. Within human factors, cognitive workload receives
the most attention, highlighting its significant impact on decision-making processes. As
for communication factors, the design of the user interface is identified as the most in-
fluential factor affecting human decision making. However, there is a lack of attention
on other aspects, such as social aspects, human–robot teams, psychological safety, and
cultural sensitivity.

The majority of the studies were conducted in laboratory settings. Future studies
should be expanded in realistic scenarios to investigate the complexity and dynamic
situations in the real world. The assessment of cognitive workload was conducted using
subjective and biometric measurements. The most frequently used subjective approach
is the NASA-TLX, while eye tracking, EEG, and HRV are the most utilized biometric
measures. However, other factors, including trust, stress, acceptance, fluency perception,
and user experience, were assessed only through subjective approaches. Future studies
could employ a mixed-methods approach, incorporating both subjective and objective
measures to assess these aspects more comprehensively.

Related to human decision making and cognitive workload investigation, the most
frequently used cobots were 6-DoF single arms, primarily for assembly and pick-and-place
tasks. Future research would benefit from incorporating a wider variety of cobots, such as
surgical robots, dual-arm robots, and those with a higher DoF. Moreover, the scope of tasks
should extend beyond manufacturing to include other industries like agriculture, medicine,
and health care. Investigating a broader range of tasks, such as surgery, welding, surface
polishing, and agricultural activities like spraying and harvesting, would be advantageous.

Among the emerging user interfaces, XR-based interfaces are a growing trend. Tech-
nologies such as gesture recognition, voice control, Brain–Computer Interfaces (BCIs), and
eye tracking hold significant potential for application. As for suggested solutions, they
encompass intuitive and clear communication, appropriate data visualization, meaningful
feedback, the real-time adaptation of robot behaviour, and human-centred design prin-
ciples, all of which are integral to the design of user interfaces. These novel interaction
methods can significantly enhance human–robot interaction by facilitating more intuitive
and human-like communication. For instance, when robots can understand and respond to
human cues in a way that mirrors human-to-human interaction, it reduces the cognitive
load on humans, allowing them to make decisions more effectively.

In summary, cognitive workload and user interface design are the most prominent
factors influencing human decision making in HRC tasks. However, there is a notable
lack of research on social dynamics and psychological safety. Future studies would benefit
from realistic scenarios with context-rich data and real-world applicability. Furthermore, a
mixed-methods approach, integrating subjective and objective measures would be used
to provide a more comprehensive understanding. Additionally, exploring a variety of
cobots and task scenarios will broaden the scope of human decision-making research in
the domain of HRC. Furthermore, XR-based interfaces and related technologies represent
an emerging trend with significant potential to improve user interaction, emphasizing
the importance of intuitive communication and human-centred design in the design and
development of future interfaces.
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Appendix A

Table A1. Studies’ main characteristics.

Ref. Year Type Title Country Aims

[37] 2018 Journal Article Progress and prospects of the
human–robot collaboration Italy

Review the current state-of-the-art in HRC,
focusing on intermediate human–robot
interfaces, robot control modalities, system
stability, benchmarking, and relevant use cases.

[48] 2018 Journal Article

Collaborative assembly in
hybrid manufacturing cells:
An integrated framework for
human–robot interaction

USA Develop an integrated framework for effective
human–robot interaction (HRI).

[38] 2018 Journal Article

Survey on human–robot
collaboration in industrial
settings: Safety, intuitive
interfaces and applications

Italy

Explore collaborative robotics solutions where
human workers and robots share skills,
focusing on combining the advantages of
robots (accuracy, speed, repeatability) with the
flexibility and cognitive skills of human
workers.

[63] 2019 Conference Paper

A human-in-the-loop
cyber-physical system for
collaborative assembly in
smart manufacturing

Italy

Present a natural human–machine interface
(NHMI) that integrates human decision
making capabilities into the cybernetic control
loop of a smart manufacturing assembly
system.

[39] 2019 Journal Article Symbiotic human–robot
collaborative assembly Sweden

Provides an overview of symbiotic
human–robot collaborative assembly and
highlights future research directions.

[64] 2019 Conference Paper

Human Prediction for the
Natural Instruction of
Handovers in Human Robot
Collaboration

Germany
Presents an approach to integrate robotic
handover assistance into collaborative
assembly tasks using natural communication.

[49] 2019 Conference Paper

Human Features-Based
Variable Admittance Control
for Improving HRI and
Performance in
Power-Assisted Heavy Object
Manipulation

USA

Address the limitations of current power assist
robotic system (PARS) for lifting objects and to
propose a variable admittance control (VAC)
based on weight perception and kinematic and
kinetic features to improve HRI
and performance.

[36] 2019 Conference Paper

An effective model for human
cognitive performance within
a human–robot collaboration
framework

USA
Proposes a novel time-variant human
cognitive performance modelling approach for
human–robot collaborative actions.
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Table A1. Cont.

Ref. Year Type Title Country Aims

[66] 2019 Journal Article

Objective Assessment of
Human Workload in Physical
Human–robot Cooperation
Using Brain Monitoring

USA

Assess human workload in physical
human–robot cooperation, improving the
reliability and generalizability of workload
classifiers by selecting EEG features common
between different tasks.

[67] 2020 Conference Paper

Human decisions for robot
integration task allocation in a
plan based building
assignment

Germany Explore how inexperienced individuals adapt
to using a cooperative robot.

[40] 2020 Journal Article
Passive Brain–Computer
Interfaces for Enhanced
Human–robot Interaction

Netherlands
Review the state of the art in passive
Brain–Computer Interface (BCI) technology in
human–robot interaction (HRI).

[41] 2020 Conference Paper
Human–robot Collaboration
Systems: Components and
Applications

Mexico
Present a literature review analysis identifying
trends in Human–robot Collaboration (HRC)
in the manufacturing sector.

[68] 2020 Conference Paper
Examining the Effects of
Anticipatory Robot Assistance
on Human Decision Making

USA

Investigates whether a robot’s anticipatory
assistance influences a person’s decision
making during a task. It aims to measure
intent and examine if anticipatory robot
actions affect user decisions.

[69] 2020 Journal Article

Multimodal Physiological
Signals for Workload
Prediction in Robot-assisted
Surgery

USA

Demonstrate a computational framework to
predict user workload during telerobotic
surgery using wireless sensors to monitor
surgeons’ cognitive load and predict their
cognitive states.

[42] 2020 Journal Article Collaborative Robotics: A
Survey Italy

Provide an overview of collaborative robotics,
emphasizing the close interaction between
humans and robots in industrial settings.

[70] 2021 Journal Article

Contact-initiated shared
control strategies for four-arm
supernumerary manipulation
with foot interfaces

Switzerland

Explore the effectiveness of contact-initiated
shared control strategies to improve the
subjective fluency of human–robot interaction
and reduce the task load on participants.

[50] 2021 Conference Paper

A Cognitive Human Model
for Virtual Commissioning of
Dynamic Human–robot
Teams

Germany Develop a generic and configurable cognitive
human model for virtual commissioning.

[46] 2021 Conference Paper
Connecting human–robot
interaction and data
visualization

USA

Highlight the importance of integrating data
visualization knowledge into robot interface
design to enhance data analysis and decision
making in human–robot interaction (HRI).

[51] 2021 Journal Article

Methods for Expressing Robot
Intent for Human–Robot
Collaboration in Shared
Workspaces

USA

Improve interaction experiences between
humans and robots working in close proximity,
such as in factory settings. It reports on a user
study that tested various signals a robot might
use to communicate its intent to move, thereby
enhancing safety and efficiency.

[52] 2021 Conference Paper
Dynamic Path Visualization
for Human–robot
Collaboration

USA
Develop a method that conveys a robot’s
future navigation route in a quick and intuitive
manner using augmented reality in simulation.

[71] 2021 Journal Article

Facing with Collaborative
Robots:The Subjective
Experience in Senior and
Younger Workers

Italy
Understand the subjective experience of
younger and senior workers interacting with
an industrial collaborative robot (cobot).
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[47] 2021 Journal Article
Autonomy in Physical
Human–robot Interaction: A
Brief Survey

Italy

Collect and discuss the latest results in the
field of shared control (SC) and shared
autonomy (SA), with a particular focus on
Physical Human–robot Interaction (pHRI).

[53] 2021 Journal Article

Human–robot collaboration:
Optimizing stress and
productivity based on game
theory

Italy

Propose a novel paradigm that enables a robot
to adapt its behaviour online to optimize
human physiological stress and productivity in
real-time.

[43] 2021 Journal Article

Ergonomics and human
factors as a requirement to
implement safer collaborative
robotic workstations: A
literature review

Portugal

Conduct a literature review to understand the
integration of ergonomics and human factors
(E&HF) as a requirement in the
implementation of collaborative robots
(Cobots) to reduce work-related
Musculoskeletal Disorders (WMSD) risk.

[72] 2022 Conference Paper

Human–robot Collaboration
During Assembly Tasks: The
Cognitive Effects of
Collaborative Assembly
Workstation Features

Italy

Explore the effects of collaborative robotic
system features on workers’ perceived
cognitive workload, usability, and visual
attention.

[73] 2022 Conference Paper

Evaluation of Variables of
Cognitive Ergonomics in
Industrial Human–robot
Collaborative
Assembly Systems

Italy
Evaluate cognitive ergonomics variables in
human–robot collaborative assembly systems
(CASs) within the context of Industry 4.0.

[54] 2022 Journal Article

Pick the Right Co-Worker:
Online Assessment of
Cognitive Ergonomics in
Human–robot
Collaborative Assembly

Italy

Propose an online and quantitative method to
assess the cognitive workload induced by
interaction with a co-worker, which can be
either a human operator or an industrial
collaborative robot with different control
strategies.

[55] 2022 Conference Paper

Robot Trajectory Adaptation
to Optimise the Trade-off
between Human Cognitive
Ergonomics and Workplace
Productivity in
Collaborative Tasks

Italy

Propose a human–robot interaction framework
that adapts the robot’s behaviour online
according to the operator’s cognitive workload
and stress to address the balance between
worker comfort and safety and the
productivity of collaborative robots (CoBots) in
industrial settings.

[56] 2022 Journal Article

Cross-Task Cognitive
Workload Recognition
Based on EEG and
Domain Adaptation

China
Proposes a new framework for EEG-based
cross-task cognitive workload recognition
using domain adaptation methods.

[44] 2022 Journal Article

Metrics for Robot Proficiency
Self-assessment and
Communication of Proficiency
in Human–robot Teams

USA

Develop metrics to evaluate the characteristics
and performance of robot systems that can
self-assess their proficiency in accomplishing
tasks.

[74] 2022 Journal Article

Neurophysiological and
Behavioral Differences in
Human-Multiagent Tasks: An
EEG Network Perspective

USA

Understand the cognitive state of humans as
they interact with multiagent systems and to
use this understanding to improve
collaboration between humans and robots.

[75] 2022 Conference Paper

Towards Brain Metrics for
Improving Multi-Agent
Adaptive Human–robot
Collaboration: A
Preliminary Study

USA

Investigate brain metrics of workload and
collaboration in teams consisting of humans
and robots, focusing on two brain regions: the
right prefrontal cortex (rPFC) and the right
superior temporal sulcus (rSTS) during
collaborative tasks.
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[45] 2022 Journal Article

Human Factors
Considerations and Metrics in
Shared Space Human–robot
Collaboration: A
Systematic Review

USA

Systematically review the literature to evaluate
the most frequently addressed operator human
factor states in shared space human–robot
collaboration (HRC), the methods used to
quantify these states, and the implications of
these states on HRC.

[17] 2022 Journal Article

What about the human in
human robot collaboration?:
A literature review on HRC’s
effects on aspects of
job quality

Netherlands

Review the effects of human–robot
collaboration (HRC) on job quality, defined as
the quality of the working environment and its
impact on employee well-being.

[57] 2022 Journal Article

Development and evaluation
of design guidelines for
cognitive ergonomics in
human–robot collaborative
assembly systems

Italy
Develop and evaluate design guidelines for
cognitive ergonomics in human–robot
collaborative assembly systems (CASs).

[76] 2023 Book Chapter

Enhancing the Quality of
Human–robot Cooperation
Through the Optimization of
Human Well-Being and
Productivity

Italy
Enhance the quality of human–robot
cooperation (HRC) by optimizing human
well-being and productivity.

[77] 2023 Journal Article

Assessing the Relationship
between Cognitive Workload,
Workstation Design, User
Acceptance and Trust in
Collaborative Robots

Italy
Assesses the relationship between cognitive
workload, workstation design, user acceptance,
and trust in collaborative robots.

[58] 2023 Journal Article

UHTP: A User-Aware
Hierarchical Task Planning
Framework for
Communication-Free,
Mutually Adaptive
Human–robot Collaboration

USA

Develop a User-aware Hierarchical Task
Planning (UHTP) framework for
communication-free, mutually adaptive
human–robot collaboration.

[78] 2023 Conference Paper
Pupillometry for Measuring
User Response to Movement
of an Industrial Robot

Switzerland
Measure users’ cognitive workload (CWL)
responses to robot movements using
pupillometry.

[79] 2023 Conference Paper

Multisensory Evaluation of
Human–robot Interaction in
Retail Stores-The Effect of
Mobile Cobots on Individuals’
Physical and
Neurophysiological
Responses

USA

Assess individuals’ physical and
neurophysiological responses to a mobile
cobot in a retail environment, with a focus on
understanding how these interactions affect
short-term adaptation and to inform the
cobot’s behavioural and control algorithms.

[59] 2023 Conference Paper

Enhancing Human–robot
Collaboration by Exploring
Intuitive Augmented Reality
Design Representations

USA

Develop systematic design guidelines for AR
interfaces in Human–robot Interaction (HRI)
systems and evaluating these designs to
improve user understanding of the robot’s
intents, trust, and safety in the work
environment.

[60] 2023 Conference Paper

A Multimodal Approach to
Investigate the Role of
Cognitive Workload and User
Interfaces in Human–robot
Collaboration

USA

Refine interactions between humans, machines,
and robots by developing human-centered
design solutions to enhance HRC performance,
trust, and safety.
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[65] 2023 Journal Article

Comparing alternative
modalities in the context of
multimodal human–robot
interaction

India

Evaluate the impact of alternative input
modalities on user performance and perceived
cognitive workload in human–robot
interaction, using a fixed-base robot for object
picking and dropping in single-task scenarios,
and a mobile robot for driving in dual-task
scenarios.

[61] 2023 Conference Paper

Towards the modelling of
defect generation in
human–robot collaborative
assembly

Italy

Develop suitable defect generation models for
predicting defects in manufacturing processes
and planning effective quality controls,
specifically in a human–robot collaborative
environment, to compare quality performances
with purely manual assembly.

[80] 2023 Journal Article

The effect of cognitive
workload on decision
authority assignment in
human–robot collaboration

Switzerland

Investigate the effect of decision authority
schemes in HRC tasks on performance, overall
perceived workload, and subjective preference
criteria at different levels of induced cognitive
workload.

[62] 2023 Journal Article
A Haptic Shared Control
Architecture for Tracking of a
Moving Object

China
Propose a haptic shared control framework
that integrates human and robotic control to
track moving objects.
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