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Abstract 23 

Eleven clinical class 1 integron-containing Pseudomonas aeruginosa isolates from Australia 24 

and Uruguay were investigated for the genomic location of these elements. Several novel 25 

class 1 integron/transposons were found in at least four distinct locations in the chromosome 26 

including genomic islands. These elements seem to be undergoing successful dispersal by 27 

lateral gene transfer since integrons were identified across several lineages and more than one 28 

clonal line.  29 

30 
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TEXT 31 

Clinically, Pseudomonas aeruginosa is one of the most important nosocomial and 32 

opportunistic pathogens (4, 13). The acquisition of virulence factors and antibiotic resistance 33 

genes in recent years by this species has seen the evolution of pathogenic strains that are 34 

difficult to treat with antibiotics (2, 17). This acquired accessory genome, includes integrons 35 

carrying a variety of gene cassettes, transposons, and genomic islands (GIs). Class 1 36 

integrons are commonly highly mobilized being found in plasmids and conjugation is a major 37 

mechanism by which resistance genes are spread between cells and across Genera. However, 38 

class 1 resistance integrons can also be found in chromosomes, frequently in GIs of 39 

pathogenic bacteria. Probably the best example of this is Salmonella genomic island 1 (SGI1) 40 

found in multiple serovars of Salmonella enterica (11). Although the association between 41 

class 1 integrons and GIs has been reported in other bacteria (5), including P. aeruginosa (8), 42 

the extent of the association in the latter is less clear.  Recently we identified a two class 1 43 

integron-containing transposon, Tn6060 (Fig 1), in a genomic island (here referred to as GI1) 44 

of the  P. aeruginosa clinical isolate 37308 (21). The cassette arrays in Tn6060 have been 45 

commonly reported elsewhere although the genetic context is, in most cases, not known (19, 46 

20, 24). To investigate whether Tn6060 or relatives are dispersed in P. aeruginosa, intI1-47 

positive clinical isolates derived from Australia and Uruguay were examined. We identified 48 

novel class 1 integrons/transposons in multiple chromosomal locations in several distinct 49 

clonal lines suggesting that non-plasmid lateral exchange of resistance regions may be 50 

common in P. aeruginosa.  51 

 52 

P. aeruginosa isolates were recovered from three hospitals, two in Sydney, Australia (2010) 53 

and one in Montevideo, Uruguay (2008).  Eleven intI1 positive isolates (nine from Sydney 54 

and two from Montevideo) known to carry class 1 integrons were screened for the presence 55 
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of the transposition module of Tn6060 and for the insertion of it in GI1 as reported 56 

previously (21). Two isolates positive from this screen, C79 from Sydney and U09 from 57 

Montevideo, were selected to investigate the context of class 1 integrons via the construction 58 

of fosmid genomic libraries (21). These two isolates were epidemiologically unrelated and 59 

comprised two different genetic clones based on PFGE analysis (Table 1). Both clonal types 60 

were different to the strain 37308 in which Tn6060 was identified. Sequencing revealed that 61 

both C79 and U09 possessed two class 1 integrons and all were contained within mercury 62 

resistance transposons. A class 1 integron was present in both strains that, like Tn6060, are 63 

linked to a Tn1403 transposition module (Fig 1). The sequence of the class 1 64 

integron/transposons in each of C79 and U09 were identical despite their geographical and 65 

clonal origins thus implying lateral transfer. This transposon was designated Tn6162 (Fig 1).  66 

Also, Tn6162 in both C79 and U09 were inserted into GI1 at the same location as Tn6060 in 67 

37308 from Sydney (21). In both C79 and U09, PCR with appropriate primers (Table S1) and 68 

sequencing confirmed that the GI in these strains is located in the same position in the 69 

chromosome as reported in the cystic fibrosis strain PACS171b in which this GI (without an 70 

integron) was first found (7) and in the Tn6060-containing strain 37308. The cassette array 71 

common to Tn6162 in C79 and U09, aadA6-gcuD (formerly orfD), is different to either of 72 

the two cassette arrays in Tn6060 (21) (Fig 1).  This array has been recovered in a P. 73 

aeruginosa isolate from France in 1998 (17) although the sequence context in which the array 74 

was found was not reported.    75 

 76 

Based on the information obtained from C79 and U09, the remaining nine isolates were 77 

examined for the presence of Tn6162 by sequencing or PCR analysis (Table 1).   All nine 78 

possessed Tn6162 in GI1. The second Uruguay isolate was the same PFGE clonal type as 79 

U09. Seven of the eight remaining Sydney isolates were the same PFGE clonal type as C79 80 
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with one comprising another distinct grouping based on PFGE, again implying lateral 81 

movement of this GI and associated resistance region between strains. 82 

 83 

The second class 1 integron and surrounding sequence in each of the strains C79 and U09 84 

were recovered from appropriate fosmid clones and sequenced.  In C79, this second integron 85 

was not in GI1 but, rather, a second GI, here designated GI2. A GI closely related to GI2, 86 

LESGI-3, has previously been reported in LESB58, an epidemic strain in United Kingdom 87 

and is located in the chromosome (26). The second integron in C79 (Fig 2 and Table 1) 88 

contained a four cassette array that included blaGES-5. The integron had acquired a number of 89 

IS elements including a variant of the attC targeting ISPa21 (23), here named ISPa21e, as 90 

well as IS6100 and an IS4-like element (18).  This integron was embedded in a mercury 91 

resistance transposon Tn4380. This transposon, without an integron, has a small number of 92 

precedents in the databases, including in the plasmid pMOL30, present in the environmental 93 

soil bacterium Cupriavidus metallidurans strain CH34 (Accession number CP000354.2). 94 

This implied mobility is consistent with a report (9), that showed that GIs in P. aeruginosa 95 

can move between unrelated Genera.  In C79 the transposon, here designated Tn6163 (Fig 2), 96 

was flanked by direct repeats implying insertion into GI2 by transposition.  Tn6163 was not 97 

present in the two Uruguay isolates but was present in six of the remaining eight Sydney 98 

isolates. All isolates with Tn6163 had indistinguishable PFGE profiles and may thus 99 

represent clonal spread within the Sydney region. The two Sydney isolates lacking Tn6163 100 

also lacked GI2 based on PCR analysis. 101 

 102 

In U09, the insertion point of the second class 1 integron/transposon was within the 103 

chromosomal gene oprD (Fig 3A).  Insertion into oprD is noteworthy since loss of this gene 104 

is associated with increased levels of resistance to carbapenems (6, 12, 25). Sequence beyond 105 
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IRt revealed a Tn21-like mer operon beyond which was sequence of a GI similar to PAGI-2C 106 

(10). The integron in U09 possessed a five cassette array that included the blaOXA-129 gene 107 

cassette. This cassette has only been seen once previously in a Salmonella enterica serovar 108 

Bredeney isolate from a pig in Brazil (14).  PCR analysis revealed that U61, even though it 109 

has an indistinguishable PFGE profile to U09, has a complete and uninterrupted oprD gene.  110 

Extensive sequencing revealed that the second integron in U61 (Fig 3B) was identical to that 111 

of U09 with respect to IS26 and IS26-linked sequence (that is, sequence to the left of IS26 as 112 

shown in Fig 3). In U61 the sequence immediately beyond IS26 consisted of about 4kb that 113 

was identical to sequence from another GI that is located in the chromosome of the 114 

betaproteobacterium Herminiimonas arsenicoxydans (16). H. arsenicoxydans is a recently 115 

characterized bacterium associated with arsenic contaminated water and sediments. In U61 116 

this 4kb region is followed by a tRNAgly gene located in the P. aeruginosa chromosome (Fig 117 

3B). The integrons associated with IS26 in strains U09 and U61 are likely to be moving in a 118 

way that is mediated by this IS since the insertion point in each of the two strains is different. 119 

This IS26-associated mobilized region includes the integron, associated mer region and 120 

adjacent PAGI-2c like GI. It has been hypothesized that IS26 can initiate non standard 121 

transposition that results in only a single copy appearing in the transposed product (3) and it 122 

is possible such an event is responsible for the mobilization seen here. 123 

 124 

We have identified several multi drug resistant class 1 integron/transposons within the 125 

chromosomes of P. aeruginosa pathogenic isolates.  Class 1 integron/transposons were found 126 

in at least four chromosomal locations and in different clonal lines based on PFGE analysis 127 

(Table 1).  This locus variability is partly region specific. It is also noteworthy that lateral 128 

gene transfer is probably occurring between clinical isolates and bacteria from food 129 

production animals and the general environment given that a blaOXA-129 containing IS26- 130 
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linked element is present in the former (14) and U61 has sequence identical to that found in 131 

the latter (16).  132 

 133 

The chromosome may be an important platform in the dispersal of complex resistance 134 

regions in P. aeruginosa.  All 20 integrons across the 11 isolates examined were linked, 135 

based on sequencing or PCR analysis, to either a core region of the P. aeruginosa 136 

chromosome or to a GI that is only known to be present in the chromosome. U09 is also 137 

noteworthy in that the insertion of the integron into the oprD gene is in itself extending the 138 

antibiotic resistance profile of this strain despite the fact that inactivation of this gene is likely 139 

to reduce fitness outside an infection context (1). In contrast, in a clinical context insertion at 140 

oprD may be selected for and we note that recently, a P. aeruginosa isolate from Japan was 141 

found to have a class 1 integron linked to IS26 inserted at oprD (15). In this strain, the 142 

insertion point was different to that seen in U09 as was the cassette array. We predict that the 143 

chromosomal spread of diverse complex multidrug resistant regions is likely to be a common 144 

theme globally in P. aeruginosa pathogenic isolates.  145 

 146 

Nucleotide sequence Accession numbers. 147 

The sequence for Tn6162, Tn6163 and the IS26 linked regions in U09 and U61 have been 148 

submitted to GenBank under accession numbers. JF826498, JF826499, JF826500 and 149 

JN559393 respectively. 150 
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 257 
Table 1. Features of class 1 integron-containing P. aeruginosa isolates 258 
 259 
 260 
Isolate Source  Date    Origin   Element/Location  Element/Location PFGEa  oprDb                  MIC (µg/ml) 261 
                                                                                    IPM  MEM  ATM  CAZ  FEP   GEN 262 
C79       S    04/2010  Urine       Tn6162/GI1         Tn6163/GI2     B      +      128  256  <8    64  <8   >256 263 
S491      S    03/2010  Wound       Tn6162/GI1         Tn6163/GI2     B      +       32  128  <8    32  <8   >256 264 
n=5       S      2010               Tn6162/GI1        Tn6163/GI2      B      + 265 
n=2       S      2010               Tn6162/GI1           NSI          B,D    +  266 
U09       M    05/2008  Catheter    Tn6162/GI1        IS26-like/oprD  C      -        8   16  <8     4  <8   >256 267 
U61       M    07/2008  Urine       Tn6162/GI1       IS26-like/tRNAgly C      +      <0.5   2  <8     8  <8   >256 268 
 269 

aLetters define different PFGE profiles (>7 band differences) as defined by Tenover et. al. (22) Profile in strain 37308 (21) is defined as ”A”. 270 

Multiple letters indicate examples of more than one profile in the group.  271 

bIndicates a functional (+) or interrupted (-) oprD gene. 272 

Abbreviations. S:Sydney, M:Montevideo, NSI: No second integron, IPM: imipenem, MEM: Meropenem, ATM: Aztreonam, CAZ: Ceftazidime, 273 

FEP: Cefepime, GEN: Gentamicin274 
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Figure Legends 275 

Figure 1. Structure of Tn6162 in comparison to Tn6060. 276 

Numbered horizontal lines indicate regions common to Tn6060 and Tn6162. A. Tn6060. This is 277 

a modified version of Figure 1 from Roy Chowdhury et. al. (21).  See also Accession number 278 

GQ161847. Top line depicts the transposon backbone in which the integron (bottom line) is 279 

inserted. Vertical arrow indicates the point of insertion. The filled vertical rectangles indicate 280 

inverted repeats (IRs) as shown. Filled horizontal arrows represent genes or operons and 281 

direction of transcription. Filled diamond is the attI1 site and the filled ovals attC sites. Gene 282 

designations are as described in the text. B. Tn6162. The general organization is as for Tn6060  283 

 284 

Figure 2. Structure of Tn6163 and its genetic context. 285 

The general organization and symbols are as for Figure 1.  Tn6163: IS4-like defines an element 286 

with 62% protein to identity to accession number NC_007336.1. aacA4-like gene cassette with 287 

25 nucleotides replacing nucleotides 1-24 of the standard cassette. GI2 refers to genomic island 288 

2. PAO2583 is a gene located in the core P. aeruginosa genome (Accession number AE004091) 289 

and is the inferred position of GI2 based on the known location of LESGI-3 (26) to which GI2 is 290 

highly similar. 291 

 292 

Figure 3. Structure and location of IS26-associated integrons. 293 

The general organization and symbols are as for Figure 1.  A. Strain U09. oprDΔ is an 294 

insertionally inactiveated oprD gene. PAO958 is a gene located in the core P. aeruginosa 295 

genome (Accession number AE004091)  B. HEAR2053 refers to a conserved hypothetical 296 

protein (Accession number CAL62196.1) and HEAR2054 refers to a DNA integrase (non-297 
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integron) protein (CAL62197.1) located in the genome of a Herminiimonas arsenicoxydans 298 

strain. The corresponding encoded proteins found here match most closely to these. PAO 2820 is 299 

a gene located in the core P. aeruginosa genome (Accession number AE004091)   300 

 301 

 302 
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