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KEY MESSAGE
This proof-of-concept study shows that an artificial intelligence image analysis tool can drastically improve sperm search
times on testicular tissue samples, thus reducing physical strain and fatigue on embryologists and possibly improving the
chance of finding spermatozoa. This is a highly translatable clinical tool for the treatment of severe male factor infertility.

ABSTRACT
Research question: Can artificial intelligence (AI) improve the efficiency and efficacy of sperm searches in azoospermic samples?

Design: This two-phase proof-of-concept study began with a training phase using eight azoospermic patients (>10,000 sperm
images) to provide a variety of surgically collected samples for sperm morphology and debris variation to train a convolutional
neural network to identify spermatozoa. Second, side-by-side testing was undertaken on two cohorts of non-obstructive
azoospermia patient samples: an embryologist versus the AI identifying all the spermatozoa in the still images (cohort 1, n = 4),
and a side-by-side test with a simulated clinical deployment of the AI model with an intracytoplasmic sperm injection microscope
and the embryologist performing a search with and without the aid of the AI (cohort 2, n = 4).

Results: In cohort 1, the AI model showed an improvement in the time taken to identify all the spermatozoa per field of view
(0.02 § 0.30 £ 10�5s versus 36.10 § 1.18s, P < 0.0001) and improved recall (91.95 § 0.81% versus 86.52 § 1.34%, P < 0.001)
compared with an embryologist. From a total of 2660 spermatozoa to find in all the samples combined, 1937 were found by an
embryologist and 1997 were found by the AI in less than 1000th of the time. In cohort 2, the AI-aided embryologist took
significantly less time per droplet (98.90 § 3.19 s versus 168.7 § 7.84 s, P < 0.0001) and found 1396 spermatozoa, while 1274
were found without AI, although no significant difference was observed.

Conclusions: AI-powered image analysis has the potential for seamless integration into laboratory workflows, to reduce the time
to identify and isolate spermatozoa from surgical sperm samples from hours to minutes, thus increasing success rates from these
treatments.
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INTRODUCTION
ale infertility is increasing
worldwide at an alarming
rate, sperm counts having
declined by 50% over the

past 50 years (Levine et al., 2023). Around
30% of cases of human infertility are
caused solely by male infertility and 50% of
cases are attributed to having male
infertility as a contributing factor (Agarwal
et al., 2015). While assisted reproductive
technology has proved to be effective in
treating infertile couples, some forms of
male infertility remain difficult to treat.
Azoospermia, defined as the absence of
spermatozoa in centrifuged semen on at
least two occasions, is the most severe
form of male infertility, affecting 10�20%
of infertile men and 1% of the general male
population (Verheyen et al., 2017;
Wosnitzer et al., 2014).

Azoospermia can be classified as
obstructive and/or non-obstructive.
Obstructive azoospermia occurs due to
obstruction of the reproductive tract and
constitutes 40% of azoospermic cases,
while non-obstructive azoospermia (NOA)
results from primary, secondary or
incomplete/ambiguous testicular failure,
which compromises sperm production
and constitutes 60% of cases of
azoospermia (Jarow et al., 1989;
Wosnitzer, et al., 2014). Patients with
obstructive azoospermia can attempt
reconstruction (vasovasostomy,
vasoepididymostomy or transurethral
resection of the ejaculatory duct) when
possible, or surgical sperm collection can
be performed from the testis via testicular
sperm aspiration (TESA), testicular sperm
extraction (TESE) or microdissection TESE
(mTESE), or from the epididymis via
microsurgical epididymal sperm aspiration
or percutaneous epididymal sperm
aspiration (Flannigan et al., 2017;
Schrepferman et al., 2001). Patients with
NOA require sperm extraction from the
testis (TESA, TESE or mTESE), and the
surgically collected spermatozoa are then
used for intracytoplasmic sperm injection
(ICSI).

The gold-standard for treating patients
with NOA is mTESE, which has a high
sperm retrieval rate of up to 64% in
suitable patients (Deruyver et al., 2014;
Ramasamy et al., 2005; Schiff et al.,
2005). Although these rates seem
promising, the current manual
examination process to find spermatozoa
within tissue recovered from mTESE
operations is time-consuming and
inefficient, typically taking anywhere
between 1 and 6 h of laboratory time, and
in some cases even up to 14 h (Mangum
et al., 2020; Ramasamy et al., 2011). This
extended time is due to the requirement
for manual searching through prepared
suspensions of testicular tissue with a
microscope, before using isolated sperm
for ICSI.

The outcome of such searching is heavily
dependent upon the complexity and
contamination of the suspension provided
to the embryologists by the surgeon.
Viable sperm are easily overlooked due to
variables such as collateral cell density,
resulting in a process that is prone to
human error, combined with inexperience
and fatigue of laboratory staff (Ramasamy,
et al., 2011). For patients with NOA,
overlooking spermatozoa because of
human error could wrongly indicate
absolute infertility (Samuel et al., 2016).
Similarly, for extended sperm searches in
semen as a diagnostic test or as a last
check of the ejaculate before surgery,
failure to identify any spermatozoa present
could unnecessarily direct patients into
surgery. Furthermore, prolonged sample
examination procedures can have adverse
effects on the viability of the spermatozoa,
consequently affecting their potential for
fertilization and thus undermining the
efforts of sperm searches and the
considerable cost and physical strain
caused to patients during these
procedures (Ouitrakul et al., 2018). For
individuals with NOA, a more efficient and
higher throughput method capable of
locating and isolating spermatozoa from
the suspension would therefore greatly
benefit the clinical workflow of assisting
severe forms of male infertility.

Panning through surgically collected
sperm samples under a microscope is a
form of manual image analysis which
machine learning and artificial intelligence
(AI) have the potential to automate and
improve. Therefore, with preliminary
works showing promising results (Goss et
al., 2023), this study aims to
comprehensively assess the use of an
assistive convolutional neural network
(CNN) AI that was developed and trained
to identify spermatozoa in complex tissue
suspensions in real time (FIGURE 1). Using a
YOLOv8 model (Ultralytics, USA), an
open-source, high-speed, high-accuracy
object detection and image segmentation
model, this software works in tandem with
an embryologist to instantly identify and
alert embryologists to spermatozoa of
interest for their assessment from the
camera feed mounted into their
microscope. The objective of this study
was, for cohort 1, to compare the AI with
embryologists working without the aid of
the AI aid in terms of time, recall and
number of spermatozoa found using still
images, and then for cohort 2, to run a
simulated sperm search with the AI
integrated into an ICSI microscope kit, to
demonstrate its potential for clinical
implementation.
MATERIALS AND METHODS

Ethical approval
Ethical approval for healthy sperm samples
was received from the University of
Technology Sydney ethics review board
(ETH19-3677, approved 12 December
2019), and for the use of discarded
testicular tissue samples was received from
the IVFAustralia Human Research Ethics
Committee (DG01192, approved 2 August
2022) and University of Technology
Sydney ethics review board (ETH22-7189,
approved 30 September 2022).

Preparation of specifically prepared
samples
To generate images for the training
dataset prior to access to clinical testicular
tissue samples, specifically prepared
samples were used for the initial training of
the AI model (FIGURE 1A). These samples
consisted of donor spermatozoa,
fingerprick blood and cells from epithelial
cell culture lines.

Human semen samples were obtained
through ejaculation after 2�5 days of
sexual abstinence (WHO, 2021). Raw
semen samples were left at room
temperature for 20 min to allow for
liquefaction. Samples were centrifuged for
8 min at 500g to separate the sperm pellet
from the seminal plasma. Red blood cells
(RBC) were obtained from whole-blood
specimens within 3 days of collection. The
collected blood samples were also
resuspended in G-MOPS Plus (Vitrolife,
Sweden) medium. Mixed cell suspensions
were created to simulate testicular tissues
samples containing spermatozoa, RBC,
white blood cells (WBC), epithelial cells
and C2C12 and THP-1 cells (Sigma-Aldrich,
USA). All the cells were mixed in warmed
G-MOPS Plus (37°C). Raw semen samples
were diluted down to between 1 £ 107 and
1 £ 108 spermatozoa/ml, the RBC
concentration was in the range



FIGURE 1 Overview of the study phases. (A) The training phase begins with sample acquisition from 30% specifically prepared samples and 70%
testicular tissue samples, which are plated in dishes and imaged at a magnification of 200£ . The images are then annotated using the Computer Vision
Annotation Tool (CVAT), creating bounding boxes around all the spermatozoa in each image. Each image is processed and augmented to create a
training dataset, which is then used to train a model created using the YOLOv8 architecture and tools. Then 85% of these images are used to train the
model and 15% are used to validate the model performance before testing. (B) The testing phase begins with sample acquisition of excess testicular
tissue from patients with non-obstructive azoospermia (NOA) and testing of the model’s performance on still images (cohort 1, n = 4) versus an
embryologist, and side-by-side testing of an embryologist with and without the aid of the artificial intelligence (AI) in a simulated real-world sperm search
using an intracytoplasmic sperm injection (ICSI) microscope (cohort 2, n = 4).
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2�15 £ 106 cells/ml (approximated ranges
for an mTESE sample), WBC (10 £ 106

cells/ml; purchased from IQ Biosciences
USA) were diluted to a concentration
between 5 £ 105 and 1 £ 106 cells/ml,
and epithelial cells were diluted to a
concentration of between 7 £ 105 and
1 £ 106 cells/ml.
To add extra complexity, background cells
from sperm donors were isolated from
donors with high concentrations of
background cell populations and
cryopreserved until needed. These cells
helped to simulate the conditions of poor-
quality samples with high levels of collateral
cell contamination from surgery and for
infertile semen samples with high levels of
contamination in the ejaculate.

Testicular biopsy retrieval and
processing
Surgical sperm collection was performed
in accordance with the routine workflow
for each method of sperm collection
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(mTESE and TESA) from azoospermic
patients scheduled for surgical sperm
collection for obstructive azoospermia or
NOA. Surgical sperm collections were
performed under general anaesthesia, and
the samples were immediately placed in a
sterile conical tube containing 1 ml of G-
MOPS Plus (37°C) and transported to the
IVF laboratory.

During mTESE, embryologists search
through seminiferous tubules handed to
them by the surgeon, with simultaneous
further searching by the surgeon for
dilated seminiferous tubules. Further
samples are then sent to the IVF laboratory
for a further search before being placed in
1�2 ml of G-MOPS Plus in a sterile Petri
dish under a stereo-microscope to wash
off excess blood from the tissue, and then
moved to a new Petri dish with 300 ml of
G-MOPS Plus. The tissue was gently teased
apart using sterile syringes to release
potential spermatozoa from the tubules
into the surrounding G-MOPS Plus
medium. The macerated tissue and large
pieces were then removed and placed into
a separate tube, and the remaining
suspension was used for the sperm search
and treatment. In cases whereby imaging
and/or testing was not possible on the
same day or the following day, the samples
were fixed with 4% formalin to preserve
their morphological integrity and prevent
any microbial growth until use in the study.

To prepare samples for comparison
between an AI-enabled sperm search and
a sperm search by an embryologist in
cohort 1, samples that were recorded
having no spermatozoa found in clinical
searches were spiked with low
concentrations of spermatozoa from
semen donors (prepared as described in
‘Preparation of Specifically Prepared
Samples’). To help create a master count
of total spermatozoa in the plated samples,
spiked spermatozoa were stained with
propidium iodide and washed to remove
excess stain before spiking. This was done
to help identify the total number of
spermatozoa to be found in each sample
for comparison with the AI and
embryologist performance groups.
Samples that had spermatozoa present in
the clinics were not spiked with donor
semen and were preserved in their clinical
state for processing.

Image acquisition and processing
To train the model, specifically prepared
samples containing mixtures of
spermatozoa, RBC, WBC and epithelial
cells from cell culture media were
prepared and plated in a similar manner to
a clinical sperm search, using 10 long drops
of G-MOPS Plus of 2�3 mm in length
under OVOIL (Vitrolife, Sweden) in an ICSI
dish (Vitrolife, Sweden), and imaged at
200£magnification using cellSens
Imaging Software (Olympus Life Science,
Japan; FIGURE 1A). This approach was
chosen to initiate training, and once the
model’s ability to identify spermatozoa was
confirmed, clinically obtained testicular
tissue samples from eight azoospermic
patients (six with NOA and two with
obstructive azoospermia) were then used
to train the model with more
representative backgrounds.

The training dataset comprised 540
images (152 from specifically prepared
samples and 388 from testicular tissue
samples), containing 5624 unique sperm
instances, duplicated and augmented
generating at least one augmented copy
per image, which resulted in over 10,000
spermatozoa to train the identification
function (FIGURE 1A). Synthetic data
(duplication) during the model training was
used to create more unique images for the
model to learn from and is commonly
performed to improve dataset fidelity
(Chavez-Badiola et al., 2020; Cubuk et al.,
2018; Trembley et al., 2018). By creating
these flipped and augmented duplicate
images, these images can be used in the
training process as they may be considered
functionally unique to their original copy
(Supplementary Figure 1).

Images were annotated using the
Computer Vision Annotation Tool (CVAT;
Intel, USA) which is open-source software
with a web-based interface designed for
image and video annotation for computer
vision tasks. This software was chosen to
create the annotated dataset of images
whereby the spermatozoa in these images
were annotated with simple bounding
boxes (Supplementary Figure 2) that
enclose the entire visible spermatozoa
including the head and tail. If the
spermatozoon is partially occluded it is still
bound by a single bounding box
encompassing all the visible areas. CVAT
was chosen for this purpose due to
collaborative annotation from multiple
users (including the AI model) as well as
the user-friendly interface.

Dataset preparation
The training images were 2456 £ 1842px
JPG images with 95% compression.
Images were saved in JPG format to better
reflect real-world environments where
images may be sent over a network and
require rapid real-time feedback. These
were resized to 1664 £ 1664px with a
black fill. A total of 85% of the images were
used for training and 15% reserved for
validation of the model’s performance
after training. Augmentations were applied
to all images including duplicates from
both the specifically prepared samples and
the excess testicular tissue samples to
inflate the dataset and make the trained
model more robust to variations in
microscope camera images, such as
compression artefacts, changing focal
length or lighting and colour variations.

A vertical flip was applied to each duplicate
image, ensuring it was uniquely different
from its source, and then with various
probabilities a series of augmentation
techniques were employed using the
Python-based Albumentations library
(Buslaev et al., 2020). Initially, a blurring
effect with a kernel size of 2 £ 2 pixels was
applied to each image to simulate the
effect of slight defocusing. Thereafter, JPG
compression was implemented, adjusting
the compression quality to a range
between 60% and 80%, to mimic the
common lossy compression artefacts
(features identifiable with the human eye)
found in digital imaging. An example of
these augmentations is shown in
Supplementary Figure 1.

Training of the AI model
Once the dataset of images had been
compiled for training, an open-source
machine-learning model architecture,
YOLOv8 (Ultralytics, USA), was chosen,
which provided the framework and tools to
train the authors’ own model. YOLOv8 was
selected as it is a highly performant
architecture for real-time object detection
tasks, which suits the application of
identifying spermatozoa in highly complex
tissue samples. YOLOv8 was used with the
‘small’ size architecture configuration with
225 layers and 1,1166,560 parameters to
prioritize minimal inference time (i.e.
speed of identifying potential spermatozoa
during searching) over potentially greater
recall from more parameters (Jocher et
al., 2023). Further image augmentations
were applied by YOLOv8 during the
training process, including horizontal
flipping, scaling, translation and
augmentations to hue, saturation and
value. The training setup was restricted to
a modest video random access memory of
less than 8 GB, which limits the size of the
model and training image resolution. Thus,
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to maintain a high image resolution
required to differentiate fine detail and the
desired model size on this set-up, the study
used a small batch size of four images
being trained in parallel. The model was
trained for 300 training iterations or
epochs with a learning rate of 0.01. The
stochastic gradient descent optimizer was
used with 0.937 momentum and 0.005
weight decay.

The trained model was then used to make
inferences on unseen, unlabelled images
from the 15% of images allocated for
validation (FIGURE 1A). The performance of
the model was validated on images with a
ground truth sperm number showing 85%
precision and 78% accuracy after 300
epochs; the model was then considered
ready for side-by-side testing against an
embryologist as the training dataset is
purposely compiled to validate
performance on edge-cases and relatively
difficult to identify spermatozoa. This
approach has been proven to produce
robust and unbiased image detection
models (Vabalas et al., 2019).
Comparison of the AI model versus
embryologist performance
Side-by-side testing was split into two
cohorts both using immotile spermatozoa
for their ability to standardize sperm spatial
detection. The first cohort used fixed
samples at University of Technology
Sydney research laboratories and
consisted of comparing the time, recall
and precision of sperm detection on still
images between the AI model and an
embryologist (FIGURE 1B). The AI model was
loaded onto a desktop computer (Intel
Core i5-10600K CPU @ 4.10 GHz [6
cores] (Intel, USA), RTX 3070 graphics
card Zotac Gaming, Hong Kong) and
annotated spermatozoa in still images of
plated discarded testicular tissue samples
(n = 4 NOA patients, 512 images acquired
with a total of 2660 spermatozoa to be
found) in droplets at 200£magnification.
The embryologist used CVAT to annotate
the location of spermatozoa independently
in the same images while being timed.
Sperm annotations from both the AI
model and the embryologist (using the
annotation software, CVAT) were then
compared with a ground truth of verified
sperm labels for each image to attain
comparable metrics, i.e. precision, recall,
time per field of view (FOV) and total
spermatozoa found. Consensus for the
ground truth annotation for each image
was performed by two scientists
independent of the embryologist used to
test against the AI model.

Precision is a measure of how many sperm
detections are correct, i.e. the ratio of the
correctly predicted positive observations
to the total number of predictions made,
and recall (sensitivity or true positive rate)
is a measure of how many of the
spermatozoa in an FOV the model finds,
i.e. the ratio of correctly predicted positive
observations to the total of actual
spermatozoa in the FOV. Precision and
recall are defined by:

Precision ¼
P

TP
P

TP þ FPð Þ

Recall ¼
P

TP
P

TP þ FNð Þ
where TP is true positives, FP is false
positives and FN is false negatives.
Potential sperm detections (bounding
boxes) with significant overlap (>40%
intersection of union) with confirmed
spermatozoa were counted as positive
detections and those without as negatives.
Spermatozoa bordering the edge of an
image are often cut off and lack enough
information to distinguish them as either
positive or negative, so any potential
spermatozoa within 2px of the edge of the
image were omitted.

For the second cohort, to better simulate
real-time clinical deployment, a side-by-
side test of the AI comparing the
performance of an embryologist with and
without the AI was performed. Dishes were
plated and prepared testicular tissue
samples were added to the dishes in a
similar manner to a clinical sperm search,
with 10 long drops of G-MOPS Plus of
2�3 mm in length under OVOIL (Vitrolife,
Sweden) in an ICSI dish (Vitrolife, Sweden)
per patient sample. The embryologist
recorded and compared the number of
spermatozoa found per droplet for each
tissue sample (n = 4 NOA patients) that
they processed with (Supplementary
Videos 1 and 2) and without AI, as well as
the time taken to complete their
assessment (FIGURE 1B). No ground truth
total sperm number was acquired for each
drop or dish and therefore a direct
comparison of spermatozoa found per unit
time in each drop of medium was
compared between using the AI and not
using the AI. The embryologist was blinded
to the dishes and these were reordered to
prevent any memory of the sperm location
by the embryologist when performing each
search. Confidence of sperm identification
functionality was added to the AI whereby
the confidence range was indicated by a
green (>0.75) and orange (between 0.75
and 0.4) scale (Supplementary Video 1) or
a red (>0.75) and blue (between 0.75 and
0.4) scale (Supplementary Videos 2 and 3).

Statistical analysis
All statistical analyses were performed
using GraphPad Prism 9.0 (GraphPad
Software). Normal distribution was
assessed using the Shapiro�Wilk test. The
statistical significance of the differences
between the groups were tested using the
Mann�Whitney U-test as the data were
not normally distributed. Two-way analysis
of variance was performed to assess the
effects of the counting method and group.
A value of P < 0.05 was considered
statistically significant, and the means are
expressed with the standard error of the
mean (SEM) as a measure of the sample
mean estimates.
RESULTS

In the first cohort of this study (n = 4 NOA
patients), when assessing the performance
of sperm identification from the still
images, the AI model showed a dramatic
improvement in the time taken to identify
the spermatozoa in each FOV, improved
recall in identifying spermatozoa and
provided a high level of precision (TABLE 1).
The AI was able to identify all the
spermatozoa within each FOV in
significantly less time compared with the
trained embryologist, with durations of
0.02 § 0.3 £ 10�5 s versus 36.10 § 1.18 s,
respectively (P < 0.0001; TABLE 1). This
represents an approximate 99.95%
reduction in time per FOV. The AI model
demonstrated a significant difference in
recall compared with the trained
embryologist (91.95 § 0.81% versus
86.52 § 1.34%, P < 0.001; TABLE 1). The
model exhibited a precision of
89.58 § 0.87%, considering the correct
identification of spermatozoa and false
positives relative to the control count
(TABLE 1). In contrast, the embryologist had
a precision of 98.18 § 0.38% (P < 0.0001).
Out of a total of 2660 spermatozoa, the
embryologist identified 1937, while the AI
model detected 1997 (TABLE 1).

In the second cohort of this study (n = 4
NOA patients), a simulated deployment of
the AI was performed in a research
laboratory whereby the AI was used as an
assistive tool to guide the embryologists to
identify spermatozoa on an ICSI
microscope kit (see Supplementary Videos



TABLE 1 COMPARISON OF AI AND EMBRYOLOGIST SPERM SEARCH
PERFORMANCE METRICS

Parameter Embryologist AI P-value

Cohort 1 (still images)

Time per FOV (s) 36.10 § 1.18 0.02 § 0.3 £ 10�5
<0.0001a

Recall (%) 86.52 § 1.34 91.95 § 0.81 0.0006a

Precision (%) 98.18 § 0.38 89.58 § 0.87 <0.0001a

No. of sperm found (from 2660) 1937 1997 N/A

Cohort 2 (side-by-side deployment)

Time taken per drop (s) 168.7 § 7.84 98.9 § 3.19 <0.0001b

Total time taken (s) 6749.71 3955.89 N/A

Sperm found per drop 31.85 § 3.09 34.9 § 3.43 0.3843b

Total no. of sperm found 1274 1396 N/A

Data are presented as the mean § SEM or total. Between-group differences were tested using a Mann�Whitney U-

testa, and variance effects between groups were assessed using two-way analysis of variance.b

AI, artificial intelligence; FOV, field of view; N/A, not applicable.
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1 and 2). As for cohort 1, the AI-assisted
embryologist outperformed the individual
assessment of an embryologist across all
four samples. The embryologist using the
AI took significantly less time to find all the
spermatozoa per droplet (98.9 § 3.19s
versus 168.7 § 7.84s, P < 0.0001) and
found a total of 1396 spermatozoa, while
they found 1274 without the use of the AI
(TABLE 1). There was no significant difference
in the number of spermatozoa found per
droplet for the embryologist using AI
versus not using AI although a slight trend
of consistently more spermatozoa found
was observed (34.9 § 3.43 versus
31.85 § 3.09 spermatozoa, respectively).
DISCUSSION

AI image analysis can identify spermatozoa
faster and with better recall than an
embryologist in still images and significantly
faster in a simulated sperm search scenario
when integrated into an ICSI microscope.
This is the first known application of
machine learning AI for surgical sperm
searches for the clinical treatment of
azoospermia and results in a streamlining
of a historically laborious process.

Machine learning is an algorithmic method
of data analysis whereby a predictive model
is trained to recognize patterns and
associations from the input data (Bannach-
Brown et al., 2019). Supervised machine
learning models can be trained on labelled
images and/or videos to understand how
to predict the labels of unseen data. CNN
algorithms are a type of deep-learning
model that attempts, through iterative
training, to transform input data into the
desired output labels. There have been a
considerable number of studies on the
utility of machine learning and AI-based
image analysis on the selection of embryos
for the prediction of euploidy status,
implantation potential and incidence of
miscarriage (Barnes et al., 2023; Diakiw et
al., 2022; Duval et al., 2023; Hariharan et
al., 2019; Tran et al., 2018; VerMilyea et
al., 2020). Studies have also proven the
application of machine learning in the
selection and assessment of spermatozoa
for use in ICSI by tracking spermatozoa
correlated with better quality blastocysts
(Joshi et al., 2023;Mendizabal-Ruiz et al.,
2022). Furthermore, studies have used
images of spermatozoa that have been
labelled as normal or abnormally shaped
by a professional or stained for DNA
integrity; given a sufficient volume and
variety of these labelled images, machine
learning models have been trained to label
the morphology of predicted DNA
fragmentation of new, unseen, images of
spermatozoa (McCallum et al., 2019;
Wang et al., 2019). Whereas CNN,
commonly referred to as AI, have largely
looked at spermatozoa in a clear
environment, the current authors applied
a CNN to complex, processed tissues
from testicular sperm retrieval procedures
and implemented it in a live video feed for
the real-time identification of spermatozoa
for use in ICSI.

The application of a computer vision-based
machine learning model to identify
spermatozoa in real time during sperm
searches outperforms embryologists’
manual searching in simulated searches
using still images in terms of the time
taken, recall and sperm count. The biggest
noticeable difference is the time
reduction, where image analysis is almost
instant (0.02 s per FOV) but does not
consider clinical tasks such as dish set-up,
panning and magnification change, and the
collection of identified spermatozoa using
a micromanipulator needle. Recall and
precision were measured as metrics of
both the AI and the embryologists’
performance against a ground truth
number of spermatozoa per image. The
significantly lower time taken to identify
spermatozoa per FOV, higher recall and
increase in the total number of
spermatozoa found show the clear
superiority of AI image analysis compared
with the eyes and focus of trained
embryologists (TABLE 1). Although the AI had
a lower precision value than the
embryologists in the first cohort, it is worth
noting that this is a result of the annotation
approach taken when training the AI, and
precision values are particularly relevant in
applications when the cost of false-positive
results is high. For the application of this AI
model in sperm searching, the cost of false
negatives is much higher, whereby a
potential spermatozoon suitable for ICSI
could be missed, as opposed to an extra 2 s
of an embryologist’s attention potentially
being wasted in the case of a false-positive
result. Recall is, however, essential when
the cost of false negatives is high, as is in
sperm searches of samples from
individuals with NOA.

In the second cohort, testicular tissue
samples with supplemented spermatozoa
(for better quantification of efficacy) were
searched by an embryologist in plated ICSI
dishes to better simulate a clinical sperm
search on an ICSI kit with and without the
aid of the AI (see Supplementary Videos 1
and 2). It was determined that the AI
reduced the time taken to identify all the
spermatozoa in the droplet by around
50% (TABLE 1), with no drop in the number
of spermatozoa identified per drop and a
higher total number of spermatozoa
identified in total (TABLE 1).

Using an exhaustively trained image
analysis model to identify spermatozoa
based on tens of thousands of sperm
images has clinical utility in directing an
embryologist’s attention to what the AI
deems may be of interest and can thus
drastically reduce the time taken or
number of manual extended sperm
searches when integrated with a
micromanipulator microscope. The model
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trained in this study is designed to cater for
multiple clinics that may have different
microscopes, light environments, filters
and cameras. These environmental and
equipment factors may affect the
performance of the AI and have thus been
catered for. The image augmentations
such as blur, colour variations, focus
changes, image saturation and colour
balance changes and flipping of images
used to train the AI model follow a
common strategy in computer vision
image analysis whereby these
augmentations artificially replicate variant
circumstances that may appear in images
that were not necessarily widely
represented in the training data that
comes from a relative few, largely
homogenous samples (Chavez-Badiola et
al., 2020; Cubuk et al., 2018; Trembley et
al., 2018). It is common for microscope
images to be slightly blurry or have
different lighting conditions and this is
replicated in the training data through the
authors’ choice of augmentations, such
that the model is resilient to these
conditions. This is another area that with
further tuning could improve model
performance in the future. The model was
also trained using both epididymal and
testicular spermatozoa to broaden the
sample dataset empowering the AI to
broaden target sperm prompting.
Importantly, the model can also identify
spermatozoa with a broad range of
motility, from immotile to hyperactivated,
and adjusts and adapts to magnification
change and panning in real time
(Supplementary Video 3).

The role of this model is not to replace an
embryologist, but to be a guide towards
spermatozoa of interest, leaving the
embryologist to make the final
determination on the suitability of a
spermatozoon for ICSI. AI can negate the
biological limits of human error and
observation as well as the effects of fatigue,
which have long been a limiting factor to
extended sperm searches of heterogenous
samples obtained via surgical sperm
collection. It is important to remember,
however, that the AI is limited to detection
within the manually directed FOV, and
thus if the embryologist has overlooked an
area in the sample, the AI will not be able
to detect a spermatozoon without having it
within view.

This study was performed solely on
immotile spermatozoa for the most
accurate quantification for spatially
identifying and locating spermatozoa,
although the AI identifies motile
spermatozoa very well (see Supplementary
Video 3), and a true clinical deployment
will better prove the clinical utility of the
model. This proof-of-concept study
demonstrates the potential for AI-assisted
sperm searches, both in semen for
extended sperm searches and in testicular
tissue. While the results of this study are
promising, continuing to improve the core
dataset and image variety will make the
model more robust and adoptable for
clinics with significantly different
microscope arrangements, as well as
achieving a higher level of recall.

The limitation of a simulated sperm search
using an ICSI workstation with and without
the use of the AI, using samples spiked with
spermatozoa, is that it does not consider
the time spent confirming the locations of
the spermatozoa in the FOV during
panning (so as not to re-count or miss
spermatozoa). This is a disadvantage of the
testing method and might be contributing
to the lower difference in time taken per
method in cohort 2. Therefore, a robust
clinical deployment study has been
planned, involving consenting in-treatment
patients, whereby embryologists will be
able to perform sperm searches with the
aid of the AI model.

Furthermore, there is potential for the
expansion of this AI to include motility and
morphological assessments of identified
spermatozoa to help in the choice of
spermatozoa for insemination when the
spermatozoa outnumber the number of
oocytes suitable for injection. Another
useful addition to the AI would be a
sensitive measure of spermatozoan
‘twitching’ in these cases. ‘Twitching’
sperm movement in cases of severe NOA
confirms the vitality of the spermatozoa
without the need for other interventions to
prove sperm vitality such as the
hyperosmotic swelling test, which also
reduces the time taken when selecting the
spermatozoa found.

In conclusion, azoospermia affects 10% of
infertile men, with NOA, the most severe
form, constituting 60% of these cases
(Verheyen et al., 2017). The current
approaches to recover spermatozoa from
men who undergo surgery from this
condition are antiquated and potentially
detrimental to the quality of the
spermatozoa found. This study has
successfully demonstrated a proof-of-
concept application of an AI image analysis
model to drastically reduce the sperm
search time in testicular tissue samples in
simulated clinical sperm searches. When
applying the AI to a simulated real-time
search workflow, a 50% reduction in time
taken to identify the spermatozoa has been
demonstrated. This presents the potential
to avoid or at least reduce the negative
effect of the extended exposure of
spermatozoa to biopsied testicular tissue
containing a host of molecules capable of
reducing sperm viability. By applying this
approach with further development and
ergonomic optimization, the authors
believe it could result in a standardized and
more efficient workflow, greatly improving
the current processing procedure of all
surgically retrieved samples and
azoospermic ejaculates by increasing
access to treatment for azoospermia and
reducing staff time required, as well as
increasing sample coverage to ultimately
increase chances of finding spermatozoa.
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