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Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a com-
mon prevalence among all types of cancer. The genetic interaction between
human eukaryotes and microbial cells plays a vital role in orchestrating every
physiological activity of the host. The dynamic crosstalk between gut and
lung microbiomes and the gut–lung axis communication network has been
widely accepted as promising factors influencing LC progression. The advent
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of the 16s rDNA sequencing technique has opened new horizons for elucidat-
ing the lung microbiome and its potential pathophysiological role in LC and
other infectious lung diseases using a molecular approach. Numerous studies
have reported the direct involvement of the host microbiome in lung tumori-
genesis processes and their impact on current treatment strategies such as
radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic
cross-interaction, microbiome-dependent host immune modulation, and the
close association between microbiota composition and treatment outcomes
strongly suggest that designing microbiome-based treatment strategies and
investigating newmolecules targeting the commonholobiome could offer poten-
tial alternatives to develop effective therapeutic principles for LC treatment. This
review aims to highlight the interaction between the host and microbiome in LC
progression and the possibility of manipulating altered microbiome ecology as
therapeutic targets.
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1 INTRODUCTION

Lung cancer (LC) has remained a global health challenge
for a long time and is the most commonly occurring can-
cer type. World health organization (WHO) data showed
that it had the highest prevalence rate among all can-
cer types, accounting for 12.4% of total newly diagnosed
cases, and was the leading cause of death, consisting
of 18.7% of all cancer deaths in the 2022 AD.1 LC has
been reported to have diverse patterns of clinical mani-
festations, malignant features, and epigenetic alterations.
Non-small cell lung cancer (NSCLC) is the most pre-
dominant LC that constitutes 85% of total LC, and the
remaining 15% of cases are categorized as small cell
lung cancer (SCLC).2 Several therapeutic approaches,
like radiotherapy, chemotherapy, surgery, targeted ther-
apy, and immunotherapy, are currently being used for the
treatments of LC, which are able to reduce its mortal-
ity rate.3,4 Conventional strategies like surgical removal
of tumor, radiation therapy (RT), and chemotherapy have
improved the overall survival rate of treated patients.5
Continuous advancement in molecular biology and gene-
specific therapeutic innovation further make it possible to
design personalized and disease-specific treatment strate-
gies like targeted therapy and immunotherapy that more
precisely target tumor cells.6–9 The research involving
engineered exosomes,10 advance formulation/drug deliv-
ery using nanotechnology,11–15 decoy oligonucleotides,16–19
microRNA inhibitors,20 and polyphenolic compounds21
are emerging as potential therapeutic targets for cancer,
including LC. Pin-point targeting of the key modulator in

LC like epidermal growth factor receptor (EGFR), anaplas-
tic lymphoma kinase, or ROS proto-oncogene-1 (ROS1)
are promising features of some tumor-specific therapeu-
tic agents. Some of these novel agents work by modulating
the immune response toward tumor cells and potentiat-
ing T cell’s capability to attack cancer cells.22–24 Despite
tremendous efforts and achievements in developing appro-
priate treatment of LC, it is still facing multiple obstacles
and challenges because of therapeutic resistance develop
by tumor cells.25 LC is highly vulnerable to epigenetic
modulation and somatic mutation that induces resis-
tance toward chemotherapeutic agents or immunother-
apy, reducing their effectiveness and worsening disease
prognosis.26–29 WHO also takes this disease as a serious
public health concern and has implemented dozens of pol-
icy initiatives with the hope of its early manifestations,
reduce prevalence, improve treatment quality, and pro-
mote a healthy lifestyle. Strict administrative regulations
related to tobacco trafficking, promotions and consump-
tion, health awareness on tobacco-based products, and
advocating cancer-free healthy society are some sym-
bolic campaigns and strategic initiatives for mitigating LC
prevalence.30,31
The human microbiome forms a multifaceted inter-

active ecosystem among the external environment,
microbiome, and host, especially with the host’s immune
system.32,33 It collectively forms an integral host phys-
iological system, and its transcription signal encodes
proteins much more than the human genome itself.34,35
Many human tissues and organs possess respective micro-
biomes and reveal specific features regarding population
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dynamics, species, and interspecies variability.36,37 There
are various structural and functional similarities and
difference between gut and lung (Figure S1). Genomic
interaction between host eukaryotic cells and micro-
biome prokaryotic cells revealed a dynamic and complex
“holobiomic” philosophy, and this holobiont regulates
all aspects of human physiology.38,39 Microbiota has
emerged as an essential component of the tumor microen-
vironment (TME) of most solid tumor.40 It is extensively
reported as a dynamic player in carcinogenesis process,
manipulating epigenetic sequence, DNA mutation, onco-
genic pathway stimulation, and host immune activity
modulation.41–43 The abundance of bacteria and com-
position of microbiome resides on specific tumor type
have been found to be cancer specific. Further analy-
sis revealed the close connotation between metabolic
pathways of intratumoral bacteria and clinical feature.44
Many microbes produced various metabolic products that
can cause DNA damage, alter cell cycle, and promotes
the genomic instabilities leads to establish cancer cells
more susceptible to mutagenicity.45,46 Vast differences
of bacterial taxa and microbiota composition between
smoker and nonsmoker highlighted their crucial role
in tumor modulation. Intracellular bacterial taxa from
smoker showed the abundance of bacterium enriched
with degradation pathway direct TME toward carcino-
genic favor.44 Numerous studies have been published and
reported that 1/5th of the total cancer cases globally are
found to be closely associated with microbial infections
like Helicobacter pylori, Human papillsake omavirus,
hepatitis-B virus, and Epstein–Barr virus.47 Several clin-
ical cohorts demonstrated the meaningful correlation
between compositional alteration of oral, lung, and gut
microbiome and risk of LC prevalence.48–50 The active
involvement of microbial secretions in inflammatory
reactions and immune modulation of host immunity,
along with their influence on enhancing the susceptibility
of tumor oncogene toward mutation, provide new insights
into microbiome engagement in carcinogenesis.51–53
Numerous cellular signaling pathways are actively

involved in the modulation of LC progression and
metastasis. RAS-dependent mitogen-activated pro-
tein kinase/extracellular signal-regulated kinase
(MAPK/ERK-1/2) signaling, phosphatidylinositol 3-kinase
(PI3K)–protein kinase B (Akt)-mediated cell proliferation
and EGFR-regulated ERK, and signal transducer and
activator of transcription 3 (STAT3) pathways are the key
regulating networks of NSCLC.54–57 Multifactorial and
heterogenic mutation of different genes that regulate and
transcriptionally control cellular homeostasis, tweaking
their cellular fate is the key factor of altered signaling
events and initiation of cancer.58,59 Inactivation of tumor
suppressive function or adopting oncogenic function by

p53 protein,60,61 activation of Wnt 1 and Wnt 2 via Kirsten
rat sarcoma viral oncogene homolog (KRAS) mutated
transcriptional activity,62–64 triggering of STAT3 and ERK
to stimulate their downstream signaling activation by
mutated EGFR gene,65–67 upregulation of antiapoptotic
Bcl-2 and Bcl-xL via constitutive overexpression of nuclear
factor kappa B (NF-κB) gene,68,69 the oncogenic trans-
formation of the normal cell by genetically altered Akt
regulators,70 and inhibition of apoptosis by defunction-
alization of Bad and MDM2 protein due to deregulated
Akt/PKB transcriptional activity are the various transcrip-
tional regulation abnormalities at the genetic level of LC
biology.71,72 Ras/ERK and PI3K/Akt/STAT3/NF-κB are
validated signaling cascades having promising therapeutic
targets for LC management.73 Modulating tumorigenesis
by specifically targeting single or multiple subsets of
these signal cascade can help to improve the disease
progression.73 Since phosphorylation and activation of
various signal-transducing intermediate substrates play
crucial roles in cell proliferation and metastasis, kinase-
specific therapeutic agents are highly effective anticancer
drugs.73–75 However, acquired resistance due to mutations
at multiple targets of the EGFR sequence lowers their
efficacy.76,77 Considering all these obstacles, there is an
urgent need for developing new therapeutic options that
will have potency to correct the genetic manipulation in
LC.7,78

2 GUTMICROBIOME

It may be surprising that the cumulative population of
microorganisms throughout our body system exceeds the
total count of human cells. After the findings of the
humanmicrobiome project, the knowledge of normal flora
has been extended dramatically and is advancing as an
inevitable biological regulator of the normal human phys-
iological system.79 The birth of any new human baby
has been considered sterile in this world. But the pres-
ence of a hollow gastrointestinal tract (GIT) inside our
body with two barrierless openings, that is, mouth and
anus, into the external environment provide easy access
for microorganisms from the microorganism-dominated
external world.80 Multiple organs and cellular sites of
the human body are reported to have different types of
microbiomes.81 Among all, the gut is the main reser-
voir of the human microbial ecosystem, providing the
complete nutritional environment to survive and inter-
species signaling among various kinds of microorganisms
(Figure 1).82 The sterile gestational gut becomes colonized
by diversemicroorganisms and develops an individualized
gut microbial composition that depends on the childbirth
environment, feeding, and maternal genetic factors.83,84
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F IGURE 1 Gut microbiome species and impact of gut dysbiosis on human health. Gut constitutes well controlled and highly regulated
microbial strain on healthy condition. Gut microbiota, either by their direct involvement or via metabolic products, dynamically regulate
various organs of host. Dysbiosis of gut has been reported for their direct impact on health and functionality of most of the vital organs of
human body. The bidirectional network that promises gut microbiome interaction to distant organs of body are gut–brain axis, gut–brain
endocrine axis, gut–heart axis, gut–pancreas axis, gut–lung axis, gut–liver axis, gut–bone axis, gut–muscle axis, gut–skin axis,
gut–reproductive axis, gut–kidney axis, and gut–bladder axis. The figure was reproduced with permission and slight modification (in
BioRender) from Afzaal et al.354

Human gut microbiota mainly comprises several bacte-
rial phenotypes,85 predominantly Firmicutes, Bacteroides,
Proteobacteria, and Actinobacteria.86 Additionally, several
viral species, fungi, and archaea are also an essential com-
ponents of gut microbiome,87,88 and their phenotype is
highly associated with an individual’s diet pattern and
gut bacteriophage composition.89,90 Due to the anaerobic
nature of the majority gut microorganisms, it is difficult to
obtain them by in vitro culture technology. Only 1/3rd of

the total discovered microorganisms was obtained in vitro
using the different human serum-based culture media.
It needs to develop new microorganism-specific culture
conditioned technology to further explore the detailed
molecular scope of gut microbiome.91
A strong anatomical, pathophysiological, and immuno-

logical cross-talk exists between human host and gut
microbiome.92 The gut microbiome, including all intesti-
nalmicroorganisms, theirmetabolite, signalingmolecules,
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cofactor, gene protein, and transcription factors plays a
crucial role in the host’s physiology.93 The gut micro-
biome can communicate with the host’s body physiology
mainly via the binding of pathogen-associated molecu-
lar patterns with pattern recognition receptors primarily
present in innate immune cell surfaces.94 The compact-
ness of the outer layer of intestinal mucus largely depends
on the type of microbiome present in the gut and the
different proteases secreted by them. Commensal bacte-
ria reside in the loose outer mucus layer and can easily
utilize the glycan-enriched mucin for their survival.95 Cat-
alytic proteases produced by bacteria can metabolize the
indigestible polysaccharides and glycan present in our
intestinal mucin and generate energy. During this energy
generation process, bacteria also produce different kinds
of vitamins and short-chain fatty acids (SCFAs) from car-
bon sources, which play a pivotal role in the maturation
of the host immune system and intestinal epithelium.96
SCFA-mediated activation of G-protein coupled receptor
(GPCR) present in gut epithelium surface and regulatory
T-cell (Treg) can induce the local and systemic effect of
microbiota on the host.97–99 They can modulate the tolero-
genic effect of dendritic cells and Treg, which ultimately
inhibits the induction of allergic responses.97 A random-
ized controlled in vivo study highlighted the critical role of
gut microbial homeostasis in immune cell regulation and
chronic obstructive pulmonary disease (COPD) manifes-
tations. Their investigation demonstrated that transferring
fecal microbiota from healthymice to a group of mice with
cigarette smoke-inducedCOPD rebuild the population of B
cells, Ly6Cmonocytes, and CD8+ dendritic cells, resulting
in improved disease prognosis.100 It is worth mention-
ing that absence of a gut microbiome leads to insufficient
structural growth and immature gut lymphoid tissue,
resulting in a weak gut immune system.101 Metabolic
micromolecular byproducts and secondary metabolites of
the gut microbiome have a positive affinity toward dif-
ferent epithelial cell surface receptors and exert their
effect in the regulation of gut homeostasis and modu-
late different biological activities.102 Butyrate, the prin-
cipal metabolic secretion of gut Firmicutes, is the major
source of nutrition for continuously regerminating colon
epithelium and enterocytes,103 while major metabolites of
Bacteroides, i.e., propionate and acetate, are primarily uti-
lized by hepatocyte and peripheral tissue, respectively.104
These SCFAs also exhibit immunomodulatory activity by
generating different anti-inflammatory signaling mecha-
nisms like downregulation ofNF-κBpathway or promoting
the chemotactic effect of neutrophils.105 SCFAs increase
the expression of GPCR41 and GPCR43, which are asso-
ciated with enhanced chemokines and cytokines release
via MAPK signaling pathway inducing inflammatory and
immune response in mice.106 Butyrate is well known for

the downregulation of proinflammatory mediators IL-12
and tumor necrosis factor (TNF)-α. However, it upregu-
lates the expression of various heat shock protein (HSP)
like HSP 25 and HSP 72 in the intestinal epithelium.107,108
This unique and complex gut ecosystem has a major
impact on maintaining the host’s immune homeostasis,
and its functional role is not limited to only GIT. Rather, it
acts as one of the important organ systems of the host.109,110
Various microbiome population within gut and it influ-
ence on gut–other organ axis for disease progression is
shown in Figure 1.

2.1 Gut dysbiosis and LC progression

Evidence of a strong correlation between gut microbiome
composition and cancer progression has been well docu-
mented by many publications.111,112 Circulation of soluble
microbial content between gut and lung, increased plasma
level of gut-specific bacterial metabolites in pulmonary
infection, significant alteration in gut microbiome com-
position in most of the pulmonary tuberculosis patients
suggest that there should be an important physiolog-
ical linkage between gut microbiome and respiratory
pathophysiology.113–119 In fact, gut microbiota does not
directly appear in the lungs. However, dynamic inter-
action between gut and lungs via a bidirectional GLA
(gut–lung axis) allows the movement of different metabo-
lites, hormones, endotoxins, and inflammatory mediators
from gut microbiota. It is considered an important factor
for different pathophysiological conditions of the lungs,
including cancer.120 Evolutionarily, gut and lung share
common embryonic origin and dynamic GLA pull these
two distant organ systems into a closely linked and
highly controlled microbial ecosystem to establish a com-
mon immunological cascade between them. Comparable
mucosal coverage between gastric epithelium and alveo-
lar tissue and other organ that constitutes the mucosal
immune system foster the potential immune physiological
dynamics between immune system and associated gut–
lung microbiota via GLA.121 Existence of well-controlled
regulatory system between these organs through mesen-
teric lymphatic system and circulatory system attributes
antigen-specific systemic immunological responses; how-
ever extent of these responses primarily depends on site of
antigen presentation.122 Exchange of nutrition and micro-
bial metabolite’s cross communication via GLA determine
the overall status of microbiota, while high abundance of
Firmicutes and Bacteroides attributes the major microbial
population of healthy individuals. Though relationship
between microbial population of lung and gut and their
impact on different organ and health context is vague and
needs to extensive investigation, it is obvious that antigen
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presenting dendritic cells, T cells, B cells, and intesti-
nal epithelial cells are the commonly stimulated cells by
GLA microbial communities.85,123,124 The dynamic physi-
ology of GLA and its essence on human physiology can
be further validated by understanding the impact of sys-
temic sepsis on lung microbiome and gut microbiome.
Acute lung injury (ALI) and acute respiratory distress
syndrome (ARDS) are the common pulmonary complica-
tions associated with systemic sepsis.125 Sepsis mediated
ALI and ARDS has been associated with disruption of
alveolar bactericidal epithelial layer, exemplified the exu-
dation of alveolar contents, induce oxygen gradients and
upsurge the inflammatory cytokines that finally impaired
the local immune responses. It can build a positive feed-
back loop of chronic inflammation and further advance
dysbiosis.126 Similarly, it has been reported that sepsis
can disbalance the homeostasis of claudin protein, a pro-
tein family responsible for intestinal mucosal integrity
and maintenance of paracellular tight junction, led to
hyperpermeability of intestinal barrier. This gut barrier
interruptions make access of gut flora and their metabo-
lite to systemic circulation and respiratory microvilli via
blood and mesenteric lymph circulation.127,128 The bioma-
terial basis of GLA now days advanced to secretion and
regulation of 5-hydroxytryptamine (5HT). Serotonin pro-
duction by enterochromaffin cells of gut has been found to
be controlled by transcriptional regulation of tryptamine
hydroxylase 1, a major isoenzyme that limits the 5HT
synthesis process from tryptamine. Secondary bile acid
deoxycholate in response to spore-forming microbiota and
some Clostridium species shown the positive association
with 5HT. Though exactmechanistic interplay between gut
microbiome and 5HT is still yet to be elucidated, poten-
tial of microbial genome to synthesize 5HT has given a
considerable insight to further explore the GLA scope on
physiological basis.129 Emerging GLA concept and other
microbiome research justify that gut–lung microbiome
interaction conserves the major aspect of inflammatory
reaction andmucosal immune response of the host’s respi-
ratory system.130 The essential material basis in the GLA is
briefly summarized in Figure 2. This includes interaction
of gut and lung microbiome with various cell in gut, lung,
and immune cells in healthy state (lung and gut symbiosis)
and various chemical (cytokines/chemokines) mediators
released by these cells during damaged state (lung and gut
dysbiosis).
Altered gutmicrobiome composition, commonly known

as gut dysbiosis, is associated with dysregulated micro-
bial metabolism and can alter the ideal biological com-
position of bacterial metabolites.131 Reduced abundance
of beneficial microbiome and increased abundance of
pathogenic microbiome has been commonly observed in
various diseased condition. Dysbiosis has been identi-

fied with a different aspect of carcinogenesis, either in
favoring tumor growth and diminishing anticancer treat-
ment efficacy or assisting the antitumor response in some
cases.132 LC patients without cachexia and othermetabolic
syndrome were enriched with commensal gut microbial
species like Eubacterium, Anaerostipes, Blautia, and so on,
as compared with patients with dysregulated metabolic
syndrome.131 Skewedmetabolic composition may progress
with reduced production of butyrate and propionate that
can be positively linked with DNA damage and cell
cycle disruption, upregulate the carcinogens and poten-
tially develop different types of genetically altered tumor
cells.133,134 Butyrate has been reported to induce apop-
tosis by inhibiting histone deacetylase and causes cell
cycle arrest on G2/M phase, while propionate suppress the
NSCLC aggressiveness by inducing chromatin remodula-
tion via H3K27 acetylation and negative shift of epithelial
to mesenchymal transitions.135,136
Numerous gut microbiota and metabolites have been

associated with systemic inflammatory cytokines recruit-
ment and causes chronic pulmonary inflammation, a
major cause of LC tumorigenesis.137–139 In particular,
Enterobacter and Escherichia shigella have been found
to be positively associated with systemic neutrophil-to-
lymphocyte ratio, while Dialister demonstrated negative
connection with neutrophile-to-lymphocyte or platelets-
to-lymphocyte ratio, which are the potential predictive
systemic inflammatory marker of LC.140 Similarly, Enter-
obacteriaceae cause the activation of intestinal Toll-like
receptor (TLR), upregulate IL-1β expression in peripheral
circulation, and encode inflammation to the lungs which
ultimately stimulate NF-κB activity and accelerate the
pulmonary inflammations.141 Moreover,Helicobacterwere
strongly associated with IL-6 production,142 while Lach-
nospiraceae and Luminococcaceae upregulated pulmonary
TNF-α and IL-17.143 12,13-Dihydroxy-9-octadecenoic acid,
metabolic byproduct of gut microbiota, has been indicated
to stimulate lungs inflammations, repress the pulmonary
Treg density, alter PARP-γ-regulated gene transcription
in dendritic cells and inhibition of anti-inflammatory
cytokines secretions.137 Level of microbiota originated bile
acid established the considerable association to numer-
ous inflammatory markers like IL-1β, IL-6, and IL-8.144
The progression rate of Lewis LC has been dramatically
increased after antibiotic-mediated induction of gut
dysbiosis in mice model. Investigation at molecular level
unveiled the reduced TNF-α level on systemic circulation,
suppression of intracellular adhesion molecule-1, and
diminish leukocyte movement toward tumor mass. The
density of activated CD8+T cells was markedly reduced
and Treg level was altered, which ultimately led to
the altered immune environment on tumor region.145
Beside this, Dessein et al.146 clearly explained that gut
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F IGURE 2 Outline of GLA and its material basis. Under symbiotic conditions, gut and lung’s epithelial system comprises intact
physiological barrier and maintain site-specific microbial composition. Alveolar macrophages safeguard the lung tissue, while Treg and
intestinal macrophages protect lumen lamina propia, together regulate the GLA homeostasis. Dieting habit, antimicrobial agents, various
diseased conditions, lifestyle, and numerous environmental factors may lead to gut microbiota dysbiosis. Dysbiotic gut provokes the
inflammation causing epithelial cell death, disrupts the compact epithelial barrier, and enhances intestinal permeability. Loose epithelial
barrier provides easy access for normal flora, secondary metabolites, inflammatory cytokines such as TNF-α, TGF-β, IL-1β, IL-5, IL-6, IL-13,
IL-17, IL-18, 1L-10, and 1L-30, other chemokines to systemic circulation. Also, various proinflammatory immune cells such as neutrophils and
T-cells can be recruited and induce lymphoid aggregation at gut mucosa, which subsequently get into systemic circulation and infiltered into
distant organs including lung parenchyma. Additionally, mesenteric lymphatic system serves as significant way to translocate gut-derived
proinflammatory mediator to respiratory channel and stimulate alveolar macrophages and establish inflamed alveolar milieu. This imbalance
causes alveolar epithelial cells apoptosis and alters alveolar barrier. Further, microbiome-derived metabolites when reached the circulatory
system, they can alter lung epithelial functions along with innate/adoptive immune response. This way inflammatory pathogenesis can
mediate via GLA and alter lung physiology. Image was reproduced with permission (License no 5857010930891, dated August 27, 2024) from
Eladham et al.354

dysbiosis extensively induces immunocompromised
lungs and persistent suppression of cellular immunity
in vivo. Authors demonstrated reduced hematopoietic
cytokine Fms-related tyrosine kinase 3 ligand, suppressed
dendritic cell bone marrow progenitors, declined pul-
monary macrophages, natural killer cells, neutrophils,
and inflammatory monocytes.146 Clinical evaluation of
enterotoxigenic Bacteroides fragilis and Fusobacterium
nucleatum showed a noticeable increment in IL-17, IL-23,
neutrophil levels, and potentially induced tumorigenic
inflammatory tumor environment.147 Gut dysbiosis
is associated with reduced responses toward several
chemotherapy and immunotherapy-based treatment reg-

imens. Restoration of healthier microbiome composition
after fecal transplantation from patients responding well
to nonresponding patients became well responsive to anti-
PD1, CD8+ T cell activation.148 Abovementioned evidence
strongly signifies the crucial association of gut dysbiosis
in LC progression at host–microbiome cellular level.

3 LUNGMICROBIOME

The contribution of the advanced research technique
and emerging molecular approaches to understanding
lung disease led modern health science to know its
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F IGURE 3 Composition of lung microbiome in health and diseased condition. Eubiotic lung comprises the higher abundance of
Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Actinobacteria family. They polarize naïve T cells, stimulate the maturation and
differentiation of alveolar macrophages and Treg, sustain Th1/Th2 balance, and promote the local immune system homeostasis. However,
when lung suffers with infectious disease, there is remarkable disruption on microbiome homeostasis; pathogenic and harmful
microorganism oversite the lung tissue and cause lung dysbiosis. Then, translocation of immune cells to infected tissue promotes the
secretion of pro-inflammatory cytokines, activates inflammasome and DC, and induces inflammatory immune response. Altered cytokines
mileu can promote lung tissue modeling and apoptosis.356

unsterile environment, which was considered sterile
organs before.149 DNA-based molecular sequence inves-
tigations played a vital role in exploring the compositions
of existing microbial community inside the respiratory
system. Instead of the conventional culture method that
requires full nutritional media for microbial growth, this
DNA-based analysis utilizes the genetic quantification of
16s rDNA sequencing of bacterial DNA extract for exten-
sive microbial elucidation.150 Various studies using this
culture-independent pyrosequencing technique proved
the existence of a complex microbial ecosystem primarily
dominated by Prevotella, Veillonella, and Streptococcus
within the lower respiratory tract, including alveoli.151–154
Though the primary source of microbiota for both the
gut and lung microbiome is the oral microbiome, the
micro-anatomical characteristic of the respiratory system
is quite different than GI system, irrespective of their same
embryological origin.80,155 Microbiome load in disease-free
lungs is 2–3 times lesser as compared with microbiome
load of lower GI tract.104,154 The food and microbial flow
are unidirectional in normal gut physiology, while the
movement of air, mucus, and microbes is bidirectional
in the respiratory tract.155,156 Also, the respiratory epithe-
lium surface possesses a gradient environment from the

ambient cool temperature at the air entrance zone to
core body temperature at the alveolar level.157 Microbes
entering the GIT from the oral cavity should be capable
enough to cope up with both the acidic environment of the
stomach and the basic environment of the small and large
intestines.80,156 The presence of abundant oxygen favors
themore aerobicmicroorganism in the lungs. Fatty surface
molecules that protect the alveoli have been reported to
inhibit the growth andmultiplication of some specific bac-
terial species like E. coli, K. pneumoniae, and E. aerogenes
in the lungs.158 Moreover, the gut and lungs show different
intraluminal and extraluminal macrophage responses
toward inflammatory agents and thus have different host–
microbe interactions.159 Regular air inhalation–exhalation
phenomena allow several transient microorganisms in
the respiratory tract, which also determine the compo-
sition of the lung microbiome.160 These factors makes
respiration physiology much more complicated, and
extensive dynamics resulting in complex lung microbiome
composition. The composition of lungmicrobiome in both
healthy and diseased condition is shown in Figure 3.
Microbial inhalation, excretion, and environmental

growth conditions govern the microbial ecosystem and
microbiome composition of the respiratory system.
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Significant alteration has been observed among these
factors in most of the lung-associated illness.80,161 Res-
piratory environment with few microbial species is
more prone to infections and other chronic disease as
compared with diversified microbial species dominated
environment.162,163 Lung microbiota could behave as an
oncogenic factor by promoting mucosal inflammation and
immune imbalance.164
Overall, the healthy lung microbiome plays a crucial for

regulating the lung environment and modulating immune
responses tomaintain homeostasis. It supports both innate
and adaptive immunity by influencing the expression of
immune-related genes and promoting antimicrobial
activities. Specifically, the lung microbiome supports
both innate and adaptive immunity by upregulating PD-1
expression while downregulating IL-1α. Notably, it may
enhance antimicrobial activity by activating macrophages
through reactive oxygen species (ROS) production, induc-
ing immune cells to produce cytokines like TNF-α, IL-6,
IL-10, and IL-17, or by inhibiting TLR4 signaling. The
adaptive immune response in the lungs plays a crucial
role in disease progression, influencing the ecological
balance of the microbiome.165 A number of studies have
suggested that lung microbiome and lung dysbiosis can be
a good target for focusing new research to develop better
strategies to treat LC.

3.1 Lung dysbiosis and LC progression

Though only a few evidence have been known in ear-
lier days, a recent study proved the existence of a strong
association between the clinical pathophysiology of LC
and lung microbiome (Figure S2).166,167 Differences in
microbiome composition between healthy and cancer-
ous lung confirmed the role of lung dysbiosis in LC
development. Existence of different microbial species
in different LC conditions clarifies the role of specific
microbiome in the progression of LC. Alpha diversity
is significantly higher in nonmalignant lung tissue and
lower in tumoral lung tissue, whereas beta diversity is
almost similar in both tissues.168,169 Critical risk fac-
tors for LC, such as continuous exposure to chemical
carcinogens, cigarette smoke, environmental toxins, indus-
trial/synthetic pollutants, toxic air particulates, chronic
lung inflammatory diseases, lung fibrosis, and so on, can
change lung microbiome composition, causing severe res-
piratory dysbiosis.170 Tobacco and cigarette smoking, the
major causative factors of most LC,171 has been reported
for its potential effect on the lung microbiome architec-
ture, which then manifests to cause oral and respiratory
dysbiosis.152,172,173 So that this mutated microbiome status
is highly susceptible to further inflammatory process and

take active participation in subsequent tumor progression
to severe LC fatalism.167 This is also relevant to the type
of coal used for cooking. Sputum from those who used
smoky coal cooking and heating was present with lower
alpha diversity.174 Huang et al.175 also established a valid
correlation between lung microbiome composition with
histopathology and the severity of tumorigenesis. They
demonstrated that amuch higher viable load of Streptococ-
cus species was present in nonmetastatic lung adenocar-
cinoma (AC) compared with metastatic one.175 Similarly,
Veillonella and Rothia were lower in nonmetastatic squa-
mous cell carcinoma (SCC) as compared with metastatic
SCC.166,175,176 Clinical investigation of samples from 216
LC patients demonstrated a significant increment of
gram-negative bacterial colon enriched withHaemophilus
influenza, Enterobacter, and Escherichia coli.177 Moreover,
remarkable changes in Capnocytophaga, Selenomonas,
Veillonella, and Neisseria have been observed in salivary
samples from AC and SCC patient compared with control
patients.178 The proportion of Firmicutes to the Bacteroides
is greater in smokers than in nonsmoker individuals, and
the first group has a higher risk of LC occurrence.50
Comorbidity of the Mycobacterium tuberculosis (TB)

infection and LC has been reported for a long time.179 Inci-
dence of severe inflammation in most of the LC provide
the new insight to investigate the presence of epidemi-
ological linkage between these two deadly diseases.180
Chronic TB infection stimulates respiratory macrophages
to produce TNF, which causes severe pulmonary inflam-
mation and lung fibrosis. Extracellular matrix produced
by fibrotic lungs play active role in initiation and pro-
gression of tumor. In another site, different tumor
antigen, overexpressed oncoproteins, chemotherapy-
induced immunocompromised condition, and some
radiotherapy cause the granulomas microenvironment
deregulation, which favors the rapid multiplication of the
Mycobacterium tuberculosis bacteria.181,182 Two different
meta-analysis have suggested that LC incidence risk
was increased in cases with previous chronic respiratory
infection caused by bacteria, including tuberculosis,
pneumonia, and Chlamydia pneumonia.183,184 Prominent
increment in Saccharibacteria (TM7) has been observed
in COPD as well as cancer. These data might indicate that
TM7 actively contributing to the development of cancer in
most COPD patients.50 Yu et al.168 reported that only SCC
was observed with more diverseness of bacterial phyloge-
nesis along with elevated relative abundances of Thermus
and decreased relative abundances of Ralstonia but AC did
not. These data suggest that different microbiota might
have different pathophysiological connections with pro-
liferating cells in cancer histology. Additionally, high level
of Legionella in metastatic cancer suggests that they could
have an effective role in carcinogenesis process through
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different pathways.168 Observation of Mycoplasma, a key
member of lung microbiota, in surgically removed LC
tissue signify their active role in LC TME and indicates
the strong association between mycoplasma infection
and lung tumorigenesis.185 Similarly, Streptococcus are
highly abundant in cancer cases, whereas Staphylococcus
are highly abundant in normal cases,186 which is also
supported by the study done by Lee et al.50 and Cameron
et al.,187 indicating that changes in microbial composition
of TME might be correlated with cancer development.
Any defects in symbiotic interaction between host

immune sensing system and microbiome homeostasis
generate a neural stress in their composition and initiate
the translocation of various bacterial species, which ulti-
mately leads host immunity to activate the antipathogenic
response.188,189 Persistent alteration in this phenomenon
may exaggerate the microbiome dysbiosis and immune
hyperreactivity. Other conditions such as inflammation
at the respiratory site, pathogenic bacterial infection,
individuals’ food and living attitude, disruption in circa-
dian rhythm, and nutritional deficiency also may have a
pivotal role in dysbiosis.190–192 Dysbiosis of microbiome
reduces the commensal microbial load and shrinks
their phylogenetic diversity but favors the accumulation
of more pathogenic species inside host tissue.193 High
incidence of pulmonary infection and postobstructive
pneumonia and resultant poor LC prognosis indicates
the existence of a potential link between microbiome
and cancer progression.194,195 Demonstration of tumor
tissue with least abundance of Staphylococcus and Dial-
ister compared with normal tissue and noncancerous
tissue from LC patients suggests that lung dysbiosis is
highly susceptible for progression of LC and its poor
prognosis.186 A study done by Patnaik et al.196 reported
that the reoccurrence of tumors after surgery can also
be predicted based on the microbiota composition of the
lower respiratory region. They reported the differential
microbial richness at specific context of sample. Presurgi-
cal salivary sample of reoccurred group had double Delftio
load and half Bifidobacterium density compared with the
nonreoccurred group. Cancer biopsy showed significantly
higher abundance of Streptococcus and reduced Bacillus
or Anerobacillus level, while normal tissue were observed
with consistent in both groups. Further, 16s RNA sequence
analysis of BAL demonstrated increased density of Sph-
ingomonas, Psychromonas, and Serratia and decreased
Calcibacterium, Geobacillus, and Brevibacterium in tumor
relapse group.196 Additionally, long-term administration
of antibiotics can also affect the normal microbiome
composition and make patient more susceptible to cancer
and another chronic disease. It was observed that the
relative risk of LC was two to three folds more in subjects
receiving more than 10 antibiotics as compared with the

control population.197 A number of studies have been
conducted to elucidate the exact mechanism of LC pro-
gression in lung dysbiosis. Bacterial metabolites or toxins
mediated infection induced host inflammatory cellular
signaling and host defense responses whichmay involve in
tumorigenesis.198
As it has been evident that bacterial metabolite has

direct impact on host cell metabolic processes and
other signaling mechanisms,199 presence of metabolites
from dysregulated microbiome in TME might affect
cancer cell’s metabolic pathway and other tumorigenic
signaling.200 Suppression of KEGG module metabolism
with elevated metabolism of amino acid, lipid, and
xenobiotics has been dominated in lung microbiota of
LC patients.168 This metabolic shift can further affect
respiratory epithelium and alter their gene expression
phenomena. Lung AC cell line treated with bacterial
metabolite isolated from LC patient showed upregu-
lated expression PI3K (an early event in cancer devel-
opment) and ERK1/2 signal-specific transcriptional gene,
which follow the mutated transcriptional pattern sim-
ilar to that observed in LC patient.201,202 Additionally,
manipulation of the alveolar airway by upper respira-
tory tract microbiota species like Prevotella, Veillonella,
and Streptococcus resulted in the hypermetabolic activity
of bacteria and upregulated the host mucosal immu-
nity. Contrast to increased Th17/neutrophilic immune
response, such hypermetabolic activity suppresses the
innate immunity and potentially promotes the tumorigen-
esis via Th17/neutrophilic-mediated immune modulatory
mechanism.203,204 In advanced knowledge, several evi-
dence suggests that the local immune network of the
respiratory axis is also influenced by microbiota resid-
ing in the lungs. Respiratory immune cells preserve the
lung tissue homeostasis and induces the defense mech-
anism against pathogenic bacterial attack.205 Chronic
inflammation is the key regulating mechanism of tumori-
genesis and angiogenesis events of LC. Microbiome–host
immune communication in dysbiosis causes infiltration
of inflammatory cells that induces different proinflamma-
tory factors such as cytokines, chemokines, and inflam-
matory prostaglandins, which provoke cell proliferation,
angiogenesis, tissue remodeling, and metastasis.206 Dys-
regulated microbiota is associated with exaggeration of
TLR-dependent MyD88 signaling. TLR–myD88 coupling
stimulates myeloid cells to release different kinds of
interleukins like IL-1β, IL-17, IL-22, and IL-23 and pro-
motes infiltration of neutrophils in TME. Phosphorylation
of IL-1 receptor-associated kinases by MyD88 leads to
upregulation of NF-κB, MAPK, and activator protein-1
signaling pathway that induces inflammation and pro-
motes cell proliferation.207,208 Enhanced Th17 lymphocyte
level, inflammatory cytokines expression, and alveolar
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TABLE 1 Effect of common microbiota in lung cancer progression.

Microbiota
types

Association
with LC Mechanism References

Streptococcus
pneumoniae

Positive Stimulates cell proliferation by activating PI3K/AKT and NF-κB signaling pathway
via platelets activating factor receptor (PAFR)

215

Veillonella parvula Positive Reduce tumor-associated T lymphocyte infiltration and activate Nod2/CCN4/NF-κB
signaling pathway

216

Streptococcus
and
Veillonella

Positive Stimulate the activation of ERK and PI3K signaling pathway 201

Cyanobacteria Positive Microcystin from cyanobacterium reduced the CD36 and upregulates the PARP1
activity

217

Acidovorex Positive Promotes the transformed cell survival and helps in subsequent development of
cancer; it causes TP53 mutation and DNA damage of pulmonary epithelia by its
metabolic ROS/RNS.

218,219

Haemophilus Positive Stimulate cell proliferation by upregulating IL-17 and neutrophil infiltration; it can
also increase the risk of metastasis in cigarette smokers.

220

Lactobacillus
rhamnosus GG

Negative Downregulates the expression of SNHG17 gene and control cell proliferations,
differentiation, and tumor metastasis by inhibiting SNHG17/PTBP1/Nothch1 axis

221,222

Mycobacterium
Tuberculosis

Positive Modulates host’s immune responses as it strongly activates PD-1 signaling pathway
by stimulating expression of PD-1, PD-L1, and PD-L2 on both CD4 and CD8 T-cells

223

Nocardiopsis
exhalans

Negative It produces n-(2-hydroxyphenyl)-2-phenazonamine, which induces cytochrome C
and Apaf-1-mediated caspase activation. Additionally, it also suppresses oncogene
like IL-8, TNFα, antiapoptotic protein Bcl2 and stimulates tumor suppressor gene
P53 and P21.

224

Stenotrophomonas
maltophilia

Positive Enhanced A549 cells proliferation and migration by stimulating the histone
deacetylase five gene expression

225

macrophages TLR4 responses during increased bacterial
load of oral taxa in lower respiratory region indicate
that respiratory microbiome composition play very crucial
role in maintaining proper local immune homeostasis.203
Increased PDL-1 expression in dendritic cells and T cell
responses to adopt the TME when microbiome compo-
sition shifts from Firmicutes dominated to Bacteroides
also supports the hypothesis of the essential role of lung
microbiome in LC progression.209
Metabolites and toxins from pathogenic bacteria and

their complementary cytokines released by immune cells
can play an extensive role in LC progression by altering
different cellular homeostatic mechanisms and another
immune/inflammatory signaling pathway.176,210,211 Bacte-
rial lipopolysaccharides (LPS) and lipoteichoic acid (LTA)
can trigger host immune cells to produce proinflamma-
tory mediators such as TNF-α, IL-1, and IL-6 promot-
ing chronic lung disease and induces LC.212,213 LPS and
LTA demonstrated integrin β3-stimulated upregulation of
PI3K–AKT–ERK1/2 pathway and promoted tumorigenesis
progress in PC9 and H1299 LC cell line along with simi-
lar result in PC9 transfected nude tumoroidmicemodel.214
The effect of common microbiota in LC progression has
been summarized in Table 1.

4 MODULATINGMICROBIOME AS
THERAPY FOR LC

The potentiality of microorganism-based cancer treatment
has a long history back, since the 19th century when a
popular bone sarcoma surgeon, Dr William B. Coley,
developed and applied different live and heat-killed
bacteria-derived coley toxins and injected into patients
with different types of cancer.226,227 Despite the good effi-
cacy of these coley toxins and prominent improvements
in cancer treatment, his boss forced him to cancel all these
projects by taking into consideration a few fatal cases that
occurred at that time.227–229 But number of symbionts
drew attention of researcher for their potential supportive
role in cancer therapy especially in immunotherapy-based
treatment regimen. The biologically dynamic behavior of
the host’s microbiome with exogenous cytotoxic agents
and immune modulators marked the human microbiome
component as a core target of cancer therapy.230 For
instance, reduced microbial diversity and enhanced
Bacteroides due to broad-spectrum antibiotics can lower
the anticancer efficacy of oxaliplatin and cyclophos-
phamide by decreasing tumor infiltrating myeloid cell’s
reactivity with CpG-oligonucleotides or by abolishing
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ROS generating ability of oxaliplatin.231,232 Intriguingly, an
interesting observation has been reported with irinotecan,
a topoisomerase-I inhibitor. Hepatic carboxylesterase-
mediated activation of irinotecan led to DNA breakage
and cell cycle arrest, which ultimately directed cells
toward apoptotic programming.233,234 Hepatic uridine
diphosphate–glucuronosyltransferase system catabolizes
this active metabolite to produce inactive glucuronide
form and secretes it on gut lumen for excretion.235 Unfor-
tunately, bacterial β-glucuronidase reactivate it again
into active metabolic form thus exerting number of gut
toxicities in later phase.236 Also, biological interaction
established between the microbiome and host TME can
directly inhibit tumor proliferation or produces immune-
mediated anticancer effects.237,238 Polysaccharide-rich
ginseng has been found to increase antitumor response
of αPD-1 monoclonal antibody therapy by increasing
abundance of Parabacteroides distanosis and Bacteroides
vulgatus and then altering microbial metabolic processes.
It increases valeric acid but decreases l-kynurenine as well
as kynurenine–tryptophan ratio which suppresses Treg
and induces Teff cell after combined administration.239
Another study performed by Grenda et al.,240 found evi-
dence that Akkermansiaceae bacteria, specifically Akker-
mansia mucinphila, were found to be highly supportive
of improving the cancer therapy with immune checkpoint
inhibitors (ICIs). Individuals with a higher abundance of
Akkermansiaceae came out with better prognosis showing
disease stabilization and partial immunotherapy response,
but in contrast, a lower abundance of Akkermansiaceae in
patients presented with continuous cancer progression.240
According to data frommulticenter retrospective analysis,
co-administration of probiotics or postbiotics that helps
to restore the gut microbiome homeostasis with different
ICIs resulted in better clinical outcomes ofNSCLC suggest-
ing that probiotics can be a better choice for ICI treatment
regimen.241 Routy et al.242 revealed that dysbiosis is one
of the major hallmarks of the resistant of ICI to cancer
cell. Their finding proved that fecal microbiota trans-
plantation (FMT) from patients who are well responding
toward PD-1 blocking agent to germ-free tumoroid mice
model significantly ameliorated the antitumor effect of
PD-1 blockade whereas FMT from PD-1 nonrespond-
ing patients failed to do so. Restoration of a balanced
microbial ecosystem after the 30-day administration of
sodium butyrate that has been altered by chemother-
apy done with paclitaxel extends the relationship
between intestinal microbial ecology and cancer therapy
regimen.242,243
Catabolic metabolisms of major microbial metabolites

are not only related to energy production but also regu-
late several signaling mechanism and immune responses
that have a direct influence on the tumor cells. Xiao

et al. showed that sodium butyrate significantly reduces
A549 cell proliferation and arrests its metastasis by upreg-
ulating the TNF receptor-associated factor-6 (TRAF-6)–
thioredoxine interacting protein suggesting that sodium
butyrate has potential antitumor effect in lung AC.244 A
study independently done by Chen and Kim also pro-
posed the potent role of butyrate and sodium propionate
produced by microbiota in LC treatment in both in vitro
and in vivo cancer models. These microbial metabolites
were capable of modulating tumorigenesis by inhibit-
ing cell proliferation and promoting apoptosis along with
interruption of tumor cell metastasis. It decreases the cel-
lular expression of antiapoptotic transcription factor KI67,
CDK1, CDK2, survivin, andBcl-2 but upregulates apoptotic
protein expression like Cyclin-A, p21, Bax, and cleaved-
caspase3. Sodium propionate inhibited cell proliferation
also by inducing cell cycle arrest specifically in G2/M
phase of cell division.245–247 Similarly, a study conducted
on clinical cohort of LC patients has found that patients
having higher concentration of microbiota-derived acetate
on their body responded significantly better than patients
having low acetate level.248 The host-linked factors such
as ageing, population, or gene susceptibility and environ-
mental factors associated with tumorigenesis are shown in
Figure 4.
The lung microbiome presents a promising target for

further investigation, offering potential in areas ranging
from disease prevention and treatment to disease predic-
tion, prognosis, and even LC therapy. The exact picture
in the relationship between lung microbiota, immune sys-
tem, and TMEwill be helping to develop the diagnostic LC
biomarkers and new therapeutic strategies (Figure 5). The
targeting specific bacterial species could enable the mod-
ulation of inflammatory responses, potentially creating a
more antitumorigenic microenvironment. LC tumorige-
nesis is marked by an immune microenvironment that
is rich in Th17 cell responses and characterized by the
expression of IL-17 and other cytokines. Additionally, lung
commensal microbiota dominated by upper respiratory
tract microbes contributes to a Th17/neutrophilic pheno-
type within the lung microenvironment. Consequently, it
can be inferred that lung microbiota enriched with URT
microbes promotes a protumorigenic microenvironment
by inducing Th17 responses. BPs could be engineered to
target specific lung microbiota, potentially altering the
tumor and immune microenvironment in LC patients to
promote a more antitumorigenic environment. Modulat-
ing the lung microbiota in LC patients could significantly
impact tumor growth and progression by reshaping the
immune microenvironment. The clinical development of
various targeted drugs can impact the local TME. For
instance, these drugs can directly target themicrobes, their
metabolites, phages, or induced cytokines (e.g., IL-17) to
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F IGURE 4 Ageing, population, or gene susceptibility are associated with tumorigenesis. As extrinsic factors, the microbiota produced
the cytotoxicity-related components, inducing the DNA damage of host cells. The microbiota and its metabolites (e.g., short-chain fatty acids
[SCFAs]) trigger downstream immune and metabolic signaling pathways, which further promote or suppress the malignant behaviors of host
cells. Environmental factors (ultraviolet rays, cigarettes, and particles) can cause altered community of microbiota and gene mutations to
promote the occurrence of lung cancer.

reshape the microbiome, thereby reducing tumorigenesis
or slowing tumor progression.165,249

4.1 Natural compound exhibit
microbiome mediated anticancer activity

Many biologically active natural compounds like alkaloids,
flavonoids, saponins, polysaccharides, and other herbal
molecule have emerged nowadays as the best targets for
anticancer therapy development due to their better safety
profile and potential cytotoxic effect.250 So many tradi-
tional medicinal compounds isolated from natural sources
exert cancer protective and healing properties by regula-
tion of gut microbiome and thus regulate the host immune
system, inflammatory responses, angiogenesis, and
tumorigenesis.251–255 Several studies have been conducted
to revealed the effect of Polygonatum sibiricum polysac-
charides (PSP), water-insoluble polysaccharides (WIPs),
Astragalus polysaccharides, Astragalus mongholicus
polysaccharides, cordyceps sinensis polysaccharides, and

turmeric polysaccharides in reconstruction of gut micro-
biota composition and to discover cellular signaling mech-
anism to exert physiological function in host physiological
system.256–261 Luo et al.256 demonstrated that PSP reduced
Helicobacter abundance and enhanced intestinal abun-
dance of Akkermansia and proposed that PSP can improve
the inflammatory environment by reducing amyloid-β
accumulation. WIPs obtained from Poria cocosmushroom
markedly stimulates the colonization of butyrate produc-
ing Lachnospiraceae and Clostridium bacteria and upregu-
lates PPARγ signaling pathway to regulate cellular prolifer-
ation and differentiation.257 Gong et al.252 introduced evi-
dence that saponins from Astragalus have antitumor, anti-
hypertensive, antidiabetic, and lipid-lowering properties
and human-immunity improving effects. When injected
via the IV route, it reconstructs gut flora and regulates
AMPK/SIRT1 or PI3K/AKT pathway, thus can be a poten-
tial target of antitumor therapy. A triterpenoid saponin
glycoside from the root of liquorice, namely, glycyrrhizic
acid (GA), has been known for its magical antitumor and
antimetastatic properties. Glycyrrhizin disrupts the lung
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14 of 30 THAPA et al.

F IGURE 5 Impact of the gut microbiota on antitumor immunity. Crosstalk between host microbiome and immune cells may regulate
cancer either in positive or negative way. Under properly maintained good gut microbiota and high fiber-rich dietary condition, SCFAs
obtained from beneficial flora translocate to systemic circulation and subsequently regulate T-cell mediated response. SCFAs specifically
facilitate the CD4+, ICOS+, CD8+ T cells accumulation, promote granzyme B, IFN-γ, and TNF-α expression, and strengthen the response
toward immunotherapies like anti-PD1/PD-L1, anti-CTLA4 antibodies, and CAR T cell therapy. SCFAs further stimulate IFN-γ producing
T-cells on TME, collectively generate antitumor immunity. In contrast, gut dysbiosis enriched with harmful microbiome potentially
upregulates BA production, which when enters to blood, triggers COX2 activation, enhances PGE2 synthesis, suppresses hepatic CXCL16, and
diminishes NKT cells recruitments. These all contribute to tumor progression. Inhibition of CD103+ DC, accumulation of IFN-γ, TNF-α, and
higher Treg presentation at TME help cancer cells tumor evasion. Overexpression of CD8+ T cells and severe chronic inflammation by
dysbiotic flora cause T-cells exhaustion and neutrophils recruitments that subsequently block antitumor immunity. This way, dysbiosis
contributes to the cancer development. Image reproduced with permission from Mohseni et al.357

tumor invasion and migration by downregulating high
mobility group box-1 transcription factor. GA regulates gut
microbiome and modulate its effect on host cell immune
responses by suppressing M1-like colonic macrophages,
and it inhibits the formation of tumor and premetastatic
niches via downregulation of LPS/HMGB1/NF-κB sig-
naling. The gut microbiome regulation has been easily
determined as marked reduction in Clostridiales order and
Desulfovibrio genus that ultimately reflected as reduced
Firmicutes to Bacteroidetes ratio.262,263 Similarly, Lu
et al.256 demonstrated that a polysaccharide derived from
Spirulina significantly reduces lung tumor volume and
arrest cancer progression in tumoroidmicemodel by regu-
lating arachidonic acid metabolism. After gut microbiome
sequence analysis, it has been revealed that it restored
gut flora homeostasis by increasing Lactobacillus, Allo-
prevotella, Allobaculum, and Olsenella abundance with
decreased Bacteroides and Actinobacteria.256 All these
evidences reveal the direct impact of the herbal-based
compounds and other natural formulations on a different
points of LC pathogenesis via microbiome-modulated cell
death signaling and immunomodulatory ability, attributes
a new horizon for anticancer research and finding of
better integrative treatment strategies for LC.

4.2 RT and microbiome

RT emerged as a highly effective therapeutic strategy for
most of the LC types, and it has been observed that every
patient should go for RT at least once during the total
course of disease.264–266 High prevalence of respiratory
pneumonia and pulmonary fibrosis remains the most
common and challenging RT-induced complications
in patients suffering from chest cancer, especially LC
and breast cancer.267 In the beginning, RT utilized the
precise and specifically optimized ionizing radiation (IR)
from different sources that have been directly applied to
cancer cells.268 To minimize IR-associated adverse event,
rigorous research and technological approaches translated
the conventional radiation protocol and advanced to
development of internal delivery of IR like brachytherapy,
local implantation of specific radioactive materials to
tumor site, systemic delivery of tumor-specific radiation,
and receptor-specific radioactive pharmaceuticals.269,270
Prevalence and severity of RT adverse event mainly
depends on the dose of IR and targeted cell/organ’s
sensitivity toward RT.271 The human gut is reported to be
comparatively more susceptible to IR than others.272,273
Interestingly, gut microbiome has been found to be highly
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radiosensitive and their composition determined the
radiosensitivity of host’s cell also.274,275 The low survival
rate of normalmice when exposed to the same dose of total
body irradiation applied to GF mice further validates this
hypothesis.276 Gut microbiota possesses different extents
of sensitivity toward IR, and it is inevitable to protect them
from IR exposure during RT treatment. Depends on dose
and exposure time, IR directly alters the qualitative and
quantitative characteristics of gut microbiome ecosystem,
which are emerging as important novel biomarker of
radiation exposure and IR dose adjustment. This dynamic
interaction is always functions in bidirectional way as RT
disrupts the microbiome population and disrupted status
of microbiome greatly influence the effectiveness of RT
treatments. Gut dysbiosis and microbiota translocation
are the two major mechanistic interplay to measure the
RT effectiveness and potential side effect.275,277,278 Relative
reduction of the commensal microbiome and increased
harmful species in a correspondent way establishes tran-
sitional gut dysbiosis and ultimately reduces commensal
flora synthesized SCFAs in host biology.278 Decreased
Firmicutes microbial load, increased Bacteroidetes counts,
decrease in alpha diversity, and increase in beta diversity
are common findings associated with IR therapy.279,280 16S
rRNA sequence analysis of sample from irradiated large
intestine has been observed with increase in Verrucomi-
crobia phyla in contrast to decreased level of Prevotella
and Mucispirillum.281 Consequences of altered Firmicutes
to Bacteroidetes ratio after RT not only confined to unde-
sirable outcomes of irradiation therapy. Rather, it can also
weaken the intestinal epithelial barrier, allow microbiota
to be translocated into deeper tissue lesions, and assist
microorganism and their metabolites to reach the sys-
temic circulation.271,282 Observation of different systemic
inflammatory markers such as interleukin-1β, IL-6, and
TNFα in both clinical samples and animal models after
irradiation therapy further proved this systemic effect
of RT.283,284
It is noteworthy to mention that optimum microbiome

composition greatly improved RT efficacy in LC. Fecal
microbiota transplantation (FMT) attenuates radiation
pneumonia, valeric acid (microbiota-derived SCFA)
prolongs the survival rate, promotes hematopoietic func-
tion, and improves gut’s epithelial integrity of irradiated
mice.285,286 Lung tissue protective functions of FMT funda-
mentally based on its gut microbiota restructuring ability
that directly influence the cellular inflammatory response
and oxidative stress. Intervention of FMT after local chest
irradiations on mice model attenuated the lung coeffi-
cients, increased respiratory quotient value, reduced the
volume of oxygen inhalations while preserving the volume
of carbon dioxide exhalation constant. More importantly
FMT suppressed the lung inflammation by downregulat-

ing the expression of IL-18 and potentiate the oxidative
stress scavenging system.287 Upon investigation of four
most targetable metabolites obtained from gut microbiota
metabolome, that is, trimethylamine-N-oxide, histidine
hydrochloride hydrate, micronomicin, and prostaglandin
F2α (PGF2α), PGF2α has been found to be profoundly
effective to protect healthy lung cells.288 Dynamic GLA
attributes butyrate, different gut-derived inflammatory
macrophage precursor molecules and immune cells
into respiratory circulation and improve hematopoietic
function.289,290 A study done by Xiao et al.291 and team
revealed the bone marrow and GI tract protective effect of
indole 3-propionic acid in either gender of irradiated mice
along with lower incidence of systemic inflammatory reac-
tion, which also supports the strong connection between
phenotypic composition of host’smicrobiota andRT. Addi-
tionally, intestinal microbiome-derived PGF2α exhibits
good protective behavior to normal pulmonary cells and
patients having increased level of PGF2α expression par-
allel to their transcription genes led to improved survival
rates. Also, PGF2α-treated irradiated mice were observed
with better pulmonary ventilation and alveolar integrin
where FMT-administered mice showed less IR-induced
chest toxicity, improved lung’s inflammatory status,
and lower oxidative stress.285 Gut flora-derived PGF2α
further defends the radiation-induced apoptotic cells
deaths of normal LC by upregulating the FP/MAPK/NF-
κB signaling axis.285 The mechanisms of microbiota
impacting efficacy of cancer treatment are shown in
Figure 6.

4.3 Chemotherapy and microbiome

Among all the available therapeutic approaches,
chemotherapy still holds the ultimate treatment option
for all cancers. Started with modest clinical outcomes in
LC treatments, history of chemotherapy discovered thou-
sands of chemotherapeutic agents and keep itself being
progressive with significantly improved overall survival
rate of cancer patients. More recently, chemotherapy-
based combinational strategies with other anticancer
therapy, such as TKIs or ICIs, have been reported with
better clinical prognosis.292 Emesis, alopecia, infertil-
ity, and high risk of cardiac toxicity are the obvious
and well-documented adverse events associated with
chemotherapeutic agents.293
Beside these well reported and commonly observed

adverse effect, long-term administration of chemother-
apeutic agents is also reported to have host’s microbiota
influencing potentials which can alter the epithelial bar-
rier integrity and mucosal homeostasis.294 Chemotherapy
not only witnessed microbial dysbiosis, but microbial
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F IGURE 6 The mechanisms of microbiota impacting efficacy of cancer treatment. (A) Specifically, administration
of Enterococcus and Barnesiella can restore the antitumor efficacy of cyclophosphamide-based chemotherapy through stimulating
tumor-specific T cells and producing IFN-γ, and butyrate, a product of dietary fiber fermented by gut microbes, can increase the anticancer
effects of oxaliplatin-based chemotherapy by regulating the function of CD8+T cells in the TME through IL-12 signaling. (B) Lactobacillus
rhamnosus was illustrated to stimulate the antitumor activity of PD-1 immunotherapy through cGAS–STING signal pathway, activating
IFN-α, β signaling, and activating cytotoxic CD8+T cells; SCFAs limit the antitumor effects of CTLA-4 blockade via alleviating Treg cells, and
higher concentration of butyrate could decrease the anticancer activity of ipilimumab by inhibiting the accumulation of related CD4+T
cells. (C) Probiotics can protect gut mucosa from radiation injury through a TLR-2/COX-2-dependent manner, stimulating mesenchymal stem
cells to the crypt. FMT, fecal microbiota transplantation; SCFAs, short-chain fatty acids; IL, interleukin; IFN- γ, interferon γ; CTLA-4,
cytotoxic T lymphocyte-associated antigen 4; Treg, cell regulatory T-cell; TLR, Toll-like receptor; COX-2, cyclo-oxygenase-2. Figure
reproduced with permission and with slight modification from Ref. 357.

status is equally responsible for patient’s responsive-
ness toward drugs and adverse events prevalence.
Co-administration of probiotics with chemotherapeu-
tic agents to maintain microbiome homeostasis has
been assumed to mitigate their unwanted ADR and to
enhance the therapeutic efficacy.295 Low incidence of
chemotherapy-induced intestinal dyspepsia by Bacillus
subtilis, inhibition of chemotherapeutics-induced diar-
rhea, and systemic inflammation byClostridiumbutyricum
are some evidences supporting this hypothesis.296,297 A
study done by administering combined cisplatin and
Akkermansia muciniphila in LC mice group resulted
in small tumor volume, decreased Treg ratio, reduced
Fas ligand protein expression level, and upregulated
antitumor IFN-γ, IL-6, and TNFα compared with cisplatin
only administered mice group.298 Co-administration of
bioengineered Bacillus subtilis strain designed to produce
pyridoxine that stimulate the proapoptotic effect of cis-
platin has been considered as one of the promising clinical
approaches.299 Similarly, co-administration of Enterococ-
cus hirae and Barnesiella intestinihominis was found to
be highly beneficial in advanced LC cases as it greatly

empowers the immunomodulatory potency of cyclophos-
phamide, originally an alkylating agent. Stimulation of
INF-γ secretions from Th1 cells established a protective
hallmark to the cohort under cyclophosphamide applied
chemotherapy intervention.232 The impact of inhabited
microbial species on an individual’s sensitivity toward
chemotherapeutic agents attracts the new researcher’s
concern to develop more reliable and personalized
therapeutic regimens.300 For instance, patients with abun-
dant Streptococcus mutans respond excellently toward
chemotherapeutic drugs, whereas Leuconostoc lactis and
Eubacterium siraeum abundant patients did not have
satisfying sensitivity.301 Similarly, gastrointestinal reaction
sensitivities induced by platinum-based chemotherapeutic
agents are highly dependable on an individual’s gut micro-
biota phylogeny. An enteric systems with a higher relative
abundance of Bacteroides, Proteobacteria, or Chlamydiae
were found to be more prone toward platinum-based
chemotherapeutics-induced gastric reaction, whereas
Firmicutes, Actinobacteria, Euryachaeota, or Fusobacteria
abundant cases were observed with lower chances of
gastric reactions.302
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4.4 Immunotherapy and microbiome

Extensive investigations on principles of immune
responses in cancer broaden the understanding of
the physiological involvement of the immune system
in tumorigenesis and discover new horizons to develop
immunotherapy for cancer treatment.6,24 Tumor-specific
peptide or DNA vaccination, adoptive cell therapy,
genetically engineered CAR T therapy, T cell receptor
modifications, application of oncolytic virus to stimulate
host’s immunity, tumor antigen targeting antibodies,
inhibition of immune checkpoint, and so on are some of
the effective approaches of immune-based therapeutic
strategies.7 A wide range of cancer cells has different
inhibitory immunoreceptors, namely, PD-1, CTLA-4,
LAG3, TIM3, TIGIT, BTLA, and so on, which are named
as “immune checkpoint” and understanding of their
dynamic role in cancer physiology subsequently brought
to the discovery of new ICIs that radically revolutionize
therapeutic battel of LC, especially NSCLC.303,304 Since
immunotherapy was found to produce durable thera-
peutic responses as they reflect the body’s endogenous
immunity, newer research approaches are highly focused
on developing advanced immunotherapy-based treatment
alternatives. However, with the involvement of complex
cellular reactions, differences in an individual’s immune
status and lack of absolute biomarkers, it is difficult to
measure therapeutic outcomes of immunotherapy.305
Emerging evidence signifies the close association

between the microbiota composition of the gut and
ICI therapy. Common genomic characteristics of gut
microbiome readily influences the ICI efficacy and
number of studies indicate that complete gut microbial
composition is an essential component in improving
NSCLC prognosis and treatments. Blood samples from
peripheral sites of patients having optimum gut micro-
biota have been found to have enhanced memory T cell
and NK cell signature.306,307 Similarly LC patients with
higher β-diversity responded well to PD-1 antagonist
and Parabacteroides and Methanobrevibacter have been
predicted for better LC control.308 Use of antibiotics
attributable to cause host microbiome dysbiosis and
dramatic reduction in beneficial flora subpopulations
in patients under immunotherapy has been shown to
impair the therapeutic efficacy.306,309 Contrast to this,
co-administration of probiotics favored the improved clin-
ical outcomes in advance and recurrent NSCLC receiving
anti-PD1 monotherapy. Similarly, a combination of ICIs
and probiotics in NSCLC patients has been observed
with the dramatic extension of the overall survival period
and a significantly longer progression-free survival
rate.241,310 Several studies suggest that diverse species
of gram-positive and gram-negative bacterial phyla like

Bifidobacteria, Lactobacillus sp, Akkermansia muciniphila,
Firmicutes, and Actinomyces were closely associated
with immuno-therapeutic effectiveness.311 The complex
mechanistic interplay between tumor suppressor Bifi-
dobacterium and ICI efficacy rejects the hypothesis of the
direct involvement of these bacteria in tumor suppression.
Instead, it should generate specific immune cell mediated
immune modulations to improve the functions of tumor-
specific CD8+ T cells. For instance, a study including the
administration of Bifidobacterium and anti-PD-L1 to the
CD8+ T cell knockout mice model reported that there
were no synergistic effects of combination therapy in
reducing the tumor volume.312 It has been suggested that
Bifidobacterium breve may be considered as a potential
biomarker to predict the clinical outcomes of anti-PD-1
treatment combinedwith chemotherapy as its gut richness
significantly increased the progression-free survival period
of NSCLC patients. Moreover, Bifidobacterium breve-rich
group showed dramatically better clinical responses than
the less abundant group.313 Interestingly, Lactobacillus
rhamnosuswas not directly involved itself, but it promotes
other beneficial intestinal bacteria, which ultimately
enhances the efficacy of anti-PD-1 therapy.314 It is also
capable to enhance the efficient delivery of CRISPR/Cas9
via probiotic-based self-driven nano-carrier system to the
hypoxic region of cancer cell and induce ROS generation
leading to immunogenic cell death.315

4.5 Probiotics potentially improve the
immune response via gut–lung axis

Probiotics are the viable microorganisms, which when
administered in adequate dose confer the health benefits
of the host and have long beenwell known formicrobiome
and immune modulatory properties.316 Regulation of pul-
monary homeostasis by probiotic supplements underlies
the hypothesis of lung immunomodulatory regulation by
inducing beneficial flora via GLA cross-talk. Though GLA
modulation by probiotics is gut–lung microbial context
dependent and applied strain specific, colonization and
maintenance of integrity of respiratory intestinal mucosa,
SCFA and antipathogenic peptide production, stimula-
tion of innate and adoptive immunity are the common
hallmarks.317,318 As previously mentioned, probiotics have
been found to be highly beneficial when used in combi-
nation with various conventional LC therapies. However,
since the direct effects of the probiotics on LC suppression
remain unclear, more comprehensive and strain-specific
investigations are needed to elucidate the exact mecha-
nism. Their potential to effectively modulate both local
and systemic mucosal immunity in host is considered
to enhance the therapeutic outcomes of the alkylating
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agents and immune-modulating therapies in LC.319 Lac-
tobacillus rhamnosus, Clostridium butyricum, Bifidibac-
terium longum, Saccharomyces cerevisae, Akkermansia
muciniphila, and so on are some recombinant probiotics
that have been well elucidated for their immune home-
ostasis regulatory properties in lung.320–326 Following the
oral administration of commercially available Bacillus sub-
tilis to piglet, its immune boosting potential has not been
only limited to the increments of IgA secreting cells and
CD3+ T cells count at intestinal mucosa but also at respira-
tory tract. It upregulated the expression of IL-1β, IL-5, IL-6,
TNFα, B cell activating factor and IgA promoter protein
at transcriptional level throughout the lungs and res-
piratory tract.327 Similarly, administration of aerosolized
Lactobacillus rhamnosus has been reported for its anti-
tumor potential via maturation of alveolar macrophages.
When instilled to the B12 tumor cell-induced mice model,
it amplified the maturation rate of alveolar macrophages
specifically CD103+ DC and CD11b+ DC that dived to
migration toward lymph nodes causing tumor-derived
antigen presentation.328 This macrophage maturations is
not confined to tumorigenic model and antigen present-
ing cell specificity as same trend has been also observed in
tumor-free C57B/L mice model.207
Commensal bacterial supplements regulate the immune

system in either way among T cell-mediated immune
response, regulation of pattern recognition receptor
induced anti-inflammatory immune cross-reaction
and secondary metabolites triggered systemic immune
regulation.329330 They can also interact with pattern recog-
nition receptor of innate immune cells and exposed DC to
promote potent antitumor Th1 and CD8+ T cell responses.
Lactobacillus-stimulated human myeloid dendritic cells
demonstrated the upregulation of activation and matu-
ration markers like MHC-II, CD-83, CD-80, CD-40, and
CD-86 on their surface. Further, bacteria-triggered DC
secreted IL-12, IL-18, and IFN-γ, while skewed CD4+ and
CD8+ T cells to Th1 and Tc1 polarization. Th1 secretes
cytokines like IFN-γ and attributes strong anticancer effect
by inducing cytotoxicity to cancer cells, inhibit angiogen-
esis and antigen presentation.331 E. coli-derived LPS has
been reported to be directly involved in priming of CD8+
cytotoxic T cells, promotes the IL-12, and represses the IL-
10 expression.332 Hua et al. stimulated DCs with combined
mixture of probiotics (Bacillus mesentericus, Clostridium
butyricum, and Enterococcus faecalis) and detected upreg-
ulated antigen presentation and activation marker and
increased IL-12 production and IFN-γ accumulation.333
In summary, when taking these evidence, it is obvi-
ous that certain beneficial probiotics are capable of
eliciting the anticancer effect via microbiota-mediated
immune modulation at least on in vitro set-up. Further
clinical and in vivo investigation can bring their exact

mechanism in human immune system and explore the
potential therapeutic applications. The influence of micro-
biome in the treatment of LC has been summarized in
Table 2.

5 CHALLENGES ASSOCIATEDWITH
RESEARCH EXPLORING THE
INFLUENCE OF GUT AND LUNG
DYSBIOSIS ON LC PROGRESSION

Despite of evolution of selective kinase inhibitor and anti-
PD1 immune check point inhibitor along with increased
5-year survival rate, LC still hit themajor cause of all cancer
death.340 Microbiome–host immunogenic interaction, the
influence of microbial metabolomics on host physiolog-
ical processes and environmental factors determines the
host lung homeostasis. As microbiota are actively involved
in the host immune modulation and their remarkable
potential to improve conventional LC treatment, they
can be considered the perfect target for fostering new
therapeutic approaches.101,197,290,341 Instead of much evi-
dence explaining the direct involvement of microbiome
in the inception and progression of numerous lung ail-
ments, their host-dependent variable composition and
dynamic signaling phenotypes make it difficult to reveal
the exact mechanisms.342,343 Interpersonal arbitrariness in
terms of alpha and beta diversity and microbiome-specific
immune responses make their analysis more sensitive,
thus making difficulty in establishing causality pose sig-
nificant challenges.344 Since, a biological load of the
human microbiome can be extensively affected by geo-
graphical location and their biomass is highly site specific
in the host body system, obtaining an accurate clini-
cal result is quite invasive and challenging. Additionally,
standardizing methods for sample collection, storage, and
analysis is crucial but can be difficult to achieve across
different research studies.345–347 Similarly, numerous con-
founding variables, such as diet, lifestyle, medication use,
and comorbidities, can influence both the microbiome
and cancer progression.348,349 Controlling for these fac-
tors or conducting adequately powered studies to account
for them is essential but can be challenging. Ethical
considerations also set strict regulations in clinical set-
tings. Conducting interventional studies tomanipulate the
microbiome raises ethical concerns, particularly regarding
potential risks to participants and the unknown long-term
consequences of such interventions.350 Though animal
models offer a controlled environment to study the GLA,
there may be numerous limitations to fully recapitulate
the complexity of human physiology and disease progres-
sion. Translating findings from animal studies to human
clinical applications requires careful consideration and
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TABLE 2 Influence of microbiome in the treatment of lung cancer.

Treatment intervention
Microorganism
source

Experiment
model Result References

Cisplatin Lactobacillus
acidophilus

Antibiotics
cocktail induced
dysbiosis mice.

1. Decreased tumor volume
2. Longer survival times
3. Upregulation of CD8+ T cells gene expression

295

Nivolumab,
pembrolizumab
and
atezolizumab

Clostridium butyricum Retrospective
clinical
evaluation

1. Increased overall survival periods
2. Decreased GI motility related adverse events

334

Platinum-based doublet
chemotherapy

Bifidobacterium lactis,
Lactobacillus
acidophilus, and
Lactobacillus
rhamnosus

Randomized
double blind
placebo control
clinical trial

1. Improved overall quality of life
2. Decreased chemo-induced pain
3. Decreased prevalence of GI-related complications

335

Recombinant sFlt-1 gene
therapy

Bifidobacterium
infantis

Lewis’s LC mice
model

1. Enhances the targeted delivery of sFlt-1 gene to
specific tumor site

2. Reduced tumor size
3. Prolonged overall survival period

336

Virus infected
erythrocytes

Plasmodium falcifarum Lewis’s LC mice
model

1. Suppressed tumor growth
2. Reduced rate of distant metastasis

337

Bacteria-associated
antigen gene sHSP

Lactobacillus
plantarum

Lewis’s LC mice
model

1. Reduced tumor growth rate and tumor volume
2. Enhanced NC8-sHSP colonization and invasion

into intestinal epithelium
3. Promote plasmid delivery and induces

endogenous plasmid expression
4. Promote cellular immunity

338

Bacteria-derived
lipopolysaccharides

Bacteroides vulgatus A549 LC cell
line and male
C57BL/6 mice

1. Abolished EC-LPS induced A549 cells elongation
2. Suppressed EC-LPS upregulated IL-B, IL-6, and

TNFα gene expression
3. Reduced EC-LPS induced lung index in vivo
4. Prevent in vivo lung injury and inflammations

339

validation.351,352 Validated cohort-based controlled lon-
gitudinal studies should be designed to overcome the
above-mentioned limitations. Long-term follow-up stud-
ies are necessary to understand how changes in the gut
and lung microbiomes over time relate to LC progression.
However, such studies can be resource-intensive and chal-
lenging, particularly in human populations. Addressing
these limitations will require interdisciplinary collabora-
tion, innovative research methodologies, and advances in
technology for microbiome analysis and manipulation.
Despite these challenges, investigating the role of gut
and lung dysbiosis in LC progression holds promise for
identifying novel diagnostic and therapeutic strategies.

6 CONCLUSIONS

The involvement of the gut and lung microbiomes in LC
progression is supported by extensive clinical and exper-
imental evidence. Dysbiosis in these microbiomes, the
presence of specific microbial species within the LC TME,

and the influence of microbial metabolites on inflamma-
tion and immune responses underscore the significance
of the GLA in LC. Microbiome alterations during LC
may exacerbate inflammation and promote carcinogene-
sis. Probiotic co-therapy could help restore microbiome
balance and improve prognosis. To validate the gut–lung
microbiome as a potential LC biomarker, comprehensive,
large-scale studies are needed to explore the underlying
molecular mechanisms.
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