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A B S T R A C T

Green bonds allocate proceeds towards environmentally beneficial projects and sustainable development goals,
distinguishing themselves from traditional bonds primarily in the use of proceeds determination. However,
investors often find it challenging to assess the carbon reduction potential of these bonds because of the lack
of standardised environmental impact reporting. In response to this, our research constructs a unique set of
indicators derived from financial and environmental datasets, using multivariate analysis techniques that can
accommodate the detection of both linear and non-linear relationships. A novel method combining kernel
Principal Component Analysis (kPCA) and Canonical Correlation Analysis (CCA) is applied to detect spatial–
temporal cross-correlation in multivariate datasets. This approach handles variable comparability issues and the
differential treatment of categorical and numerical variables. A significant finding of this study emerges when
this methodology is applied to financial attributes obtained from green bonds issued by municipal agencies
(muni bonds), pollution data and environmental (climate) data from nine California counties.

The results of the detailed analysis indicate that there is measurable evidence to indicate relationships
between green bond issuance and their use of proceeds for pollution reduction efforts. In particular, the results
show a clear and interpretable correlation directly linked to the amount of green bond issuance and the effect
this is having on pollution reduction, underscoring the tangible impact these financial instruments have on
pollution reduction efforts in California.

Conversely, when it comes to detecting spatial–temporal relationships between the use of proceeds from
green bond issuance and positive climate change effects, this is inconclusive from the current studies’ analysis.
It was found that there were weaker cross-correlation relationships observed between climate and green bond
financial data set attributes which is perhaps indicative of the fact that climate change effects take a much
longer time frame to occur. As such the findings of the analysis in this regard may not indicate that positive
climate change effects are not occurring from green bond initiatives, but rather that the ability to measure
detectable improvements to climate with regard to the issuance of green bonds is currently limited and will take
longer for such effects to manifest in a statistically detectable fashion from the given data. This is particularly
likely to be the case given green bonds are only in their infancy as a financial market, having had the earliest
issuance only occurring in the last 15-20 years and only substantial growth in the market over the last 10
years. Therefore, this aspect of the research investigating longer-term climate effects with regard to green
bond issuance will take longer to develop.
1. Introduction

The discourse surrounding global warming and climate change has
taken centre stage in the decision-making processes of multiple sectors
due to their pervasive impacts. The Paris Agreement, established at
the 21st Conference of the Parties (COP21) in 2015, underscored the
imperative need for a global carbon market and carbon transitions
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throughout society [1–6]. Despite the multifaceted nature of these chal-
lenges, financial markets have emerged as instrumental mechanisms
in steering the transition towards low-carbon economies [7–14]. A
notable constituent of this financial response is the realm of green
finance, wherein green bonds have been particularly well-suited for
providing specific financing capacities to companies at a reduced cost,
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thus ameliorating the economic impact and risk associated with such
transitions.

The European Investment Bank (EIB) marked the beginning of
this development with the issuance of the first labelled green bond
in 2007, called the Climate Awareness Bond [15]. The green bond
market has since experienced steady growth, with a plethora of agen-
cies following suit. The unique selling proposition of a green bond,
unlike a conventional bond, is its commitment to channel the pro-
ceeds from the issuance towards financing green projects, assets, or
business activities [16]. Green bonds represent fixed-income financial
instruments introduced to raise capital for environmental initiatives
through the debt capital market, see a detailed description of green
bond instruments, their market dynamics and participants in [17].

The evolution of the green bond market was further shaped by
the initiative of a Swedish pension fund consortium in late 2007,
which sought to invest in climate change mitigation projects. This
led to the World Bank’s issuance of the first institutional green bond
in November 2008, opening the doors for fixed-income investors to
support lending for climate-focused projects. Subsequently, to provide
greater structure to this growing market, a consortium of investment
banks, including Bank of America Merrill Lynch, Citi, Credit Agricole
CIB and JPMorgan Chase & Co., proposed a set of guidelines in January
2014. These guidelines, known as the Green Bond Principles (GBP),
provide guidance on the key components of issuing a credible green
bond and promote integrity in the green bond market through self-
regulation [18]. The GBP was last updated in June 2021, with an
additional appendix added in June 2022.

Two challenges arise with current versions of green bond instru-
ments. The first is the often lack of detailed specificity regarding the
specific environmental initiatives being targeted or the development
goals addressed when it comes to the bond prospectuses outline of the
green use of proceeds. A large proportion of green bond prospectus
documents refrain from clearly specifying the anticipated environ-
mental impact of the projects to be financed, simply stating that the
proceeds will be used for general categories such as wind or solar
energy projects. This can culminate in investments that fail to yield
the effective environmental impact one would associate with a ‘‘green’’
label. Secondly, there is a scant discussion or description of how such
efforts derived from spending the proceeds raised by the bond issuance
will be monitored or reported upon with regards to success from
the perspective of the environmental impact, pollution reduction or
sustainable development goals they seek to provide funding towards.
We seek to provide methods to help automatically monitor this sec-
tor’s success through the development of spatial–temporal multivariate
analysis methods.

Nevertheless, green bonds have seen a substantial surge in pop-
ularity, solidifying their position as a significant asset class within
the global fixed-income market. With the increasing demand for sus-
tainable investment options and the growing urgency to address en-
vironmental challenges, the green bond market is poised for further
expansion. However, to ensure that green bonds actually deliver their
promised environmental benefits, it is crucial to develop robust re-
porting frameworks and verification standards that allow investors,
stakeholders and regulators to make informed decisions and effectively
monitor this market with regard to both financial risk and disclosure
requirements as well as the environmental performance monitoring and
reporting disclosures.

Recent developments within the market, such as the Climate Bonds
Initiative’s certification for green bonds meeting specific criteria and
the European Union’s introduction of the EU Green Bond Standard, are
commendable strides towards enhanced transparency. However, it is
essential to refine these assessment methodologies further to provide
comprehensive and accurate assessments of environmental impacts.
This includes tracking green bonds throughout their life cycle and
2

addressing potential greenwashing concerns.
The GBP, developed by the International Capital Market Associa-
tion, and the Climate Bonds Standard, formulated by the Climate Bonds
Initiative, have played vital roles in bringing a degree of standardisa-
tion to the market by outlining broad project categories contributing
to environmental objectives. However, these guidelines are voluntary,
leaving issuers to self-label their bonds as green based on guidance
from regulators, stock exchanges, and market associations. Regional
initiatives, such as the EU’s sustainability taxonomy and China’s green
bond standards, provide further structure to this landscape.

While the global warming and climate change discourse has spurred
financial markets towards green finance solutions, several research en-
deavours have sought to illuminate various facets of this emerging field.
One study delves into the spatio-temporal trends of green financing and
carbon emissions in the Pearl River Delta, emphasising an increase in
green finance alongside a decrease in carbon emissions, with spatial
variations indicating higher finance levels in the northeast and higher
emissions in the southwest [19]. Additionally, a study explores the
dynamic co-movement and risk spillover effects between green bonds
and various markets, offering insights for investors and policymakers
interested in environmental protection and green investment [20]. Fur-
thermore, a quantitative assessment of ecological vulnerability in the
Jianghan Plain sheds light on the determinants of green bond issuance
in European Union countries, identifying significant impacts of rating,
ESG index, fiscal balance, inflation rate, and population on the volume
of green bond issuances [21]. Other research endeavours investigate
the coupling relationships between green finance development and in-
dustrial transformation [22], analyse the ecological and environmental
quality in central China [23], evaluate green bond efficiency in Central
and Eastern European countries [24], explore the impact of green bonds
on carbon emission intensity in China [25], and assess the efficiency of
green bonds in Central and Eastern European countries, highlighting
varying yields, durations, and sizes among bonds and examining their
comparability [26]. These recent studies collectively contribute to the
evolving landscape of green finance, providing valuable insights into its
drivers, impacts, and potential for fostering sustainable development.

In this manuscript, we provide a methodological framework that
can be adopted to analyse spatial–temporal leading relationships be-
tween green bond attributes and pollution reduction or climate change
patterns. We believe such a framework and initial analysis is sorely
needed in this industry to provide a means to monitor, track and report
green bond market pollution or climate mitigation effects at a macro
scale. We recognise this is just the starting point for such analysis and
acknowledge that many confounding factors may be challenging to re-
solve, however, we have developed a rigorous first framework that can
be built upon over time to refine the monitoring progressively. Whilst
this is an early stage of such a monitoring framework, the multivariate
methods we developed are far from naive or trivial, they are based upon
leading interpretable statistical machine learning methods that are
capable to resolve linear and non-linear spatial–temporal relationships
between multiple data modalities. This is a very challenging problem
to address, and herein lies the statistical novelty of the contributions in
this manuscript.

Our research comprehensively examines the evolution, attributes,
and impacts of green bonds. We intend to identify the limitations
of current methodologies while advancing the development of com-
prehensive and reliable impact assessment tools. This progression is
vital for enhancing the standardisation and transparency of the green
bond market. These concerted efforts will be crucial to addressing the
growing demand for sustainable investments and promoting improved
environmental outcomes.

2. Statistical frameworks methodological context and Green bond
case study motivation

A significant gap exists in both the academic literature as well as

in industry analysis with regard to monitoring and reporting on the
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success of green bond use of proceeds disbursement outcomes with
regard to pollution reduction and climate mitigation results. The lack
of quantitative environmental impact assessment tools for sovereign,
sub-sovereign (including municipal), and state bonds is now a key issue
to be addressed as this nascent market grows and eventually matures
over the next 10 to 20 years. Therefore, an essential aspect of our
research sought to address this absence and contribute to developing
methodologies designed explicitly for the quantitative assessment of
the environmental impact of these bonds. We intend to substantially
improve the evaluation process and effectiveness of the green bond
market, promoting greater transparency and environmental benefits.

While significant strides have been made in understanding the
multifaceted dynamics of green finance and its intersection with en-
vironmental concerns, notable gaps persist, as evidenced by various
recent studies (see [19–26]). These works encompass diverse aspects
of green finance, ranging from the spatio-temporal evolution of green
financing and carbon emissions [19], to the determinants of green
bond issuance in European Union countries [21]. While each work
sheds light on different facets of green finance, [20,22], and [24] focus
on exploring relationships between green finance and various market
dynamics, such as stock, crude oil, and gold markets, and the ecological
vulnerability of specific regions. Zhao et al. [23], Czech et al. [25] delve
into the coupling relationships between green finance and industrial
transformation, offering insights into regional development strategies
and sustainability initiatives. Moreover, Lee et al. [26] examines the
impact of green bonds on carbon emission intensity in China, providing
valuable insights into the effectiveness of green investment mecha-
nisms. Although the focus of these studies varies, they collectively
underscore the growing importance of green finance in addressing envi-
ronmental challenges and transitioning towards sustainable economies.
In contrast, our research aims to develop a novel methodological
framework specifically tailored for assessing the environmental impact
of green bond use of proceeds, filling a crucial gap in quantitative
assessment tools for evaluating the success of green bond initiatives in
pollution reduction and climate mitigation.

Our decision to focus this research on the U.S. municipal green
bond market is informed by two primary factors: the substantial car-
bon footprint of the U.S. and the size, financial disclosure reporting
transparency and potential of its municipal green bond market. As one
of the leading global contributors to greenhouse gas emissions, the U.S.
is crucial in mitigating climate change. Deepening our understanding
of the U.S. municipal green bond market could illuminate strategies to
lower carbon emissions and expedite the shift towards a low-carbon
economy.

In terms of market size, the U.S. municipal green bond market
comprises a significant fraction of the global green bond market, with a
total value exceeding hundreds of billion dollars. This market provides
crucial funding for numerous public projects with significant environ-
mental implications. States and municipalities have used Green bonds
extensively to finance projects to improve sustainability and counter
climate change. For example, California, the largest state issuer of
municipal bonds, has used green bonds to fund various projects, from
renewable energy generation to improvements in water infrastructure
and sustainable transportation systems. Other states, including New
York and Massachusetts, have similarly leveraged green bonds for
climate change mitigation initiatives.

Researching this market can provide valuable insight into how
green bonds can effectively promote environmental sustainability. We
can better understand the market’s function and impact by examining
specific cases from different states. This localised approach is critical
to developing tailored strategies and policies considering various U.S.
regions’ unique circumstances and needs.

The scope of our study narrows to focus further on the state of
California for several reasons. Firstly, California has issued many green
bonds, resulting in a wealth of data for analysis. These data sets are
3

also publicly available, facilitating access and replication of results. g
Furthermore, evidence indicates that pollution and climate change
impacts are particularly severe in California. The state leads the na-
tion in levels of ozone pollution, with several of its cities ranking
among the most polluted in the American Lung Association’s ‘‘State
of the Air’’ report [27]. California also faces severe climate change-
related challenges, such as frequent wildfires, persistent droughts, and
rising sea levels [28]. This context underscores the pressing need for
environmental risk monitoring in the state. Furthermore, the number
of monitors for climate and pollution variables is much higher in
California than in the rest of the United States. We provide further
information about this in the Supplementary Information.

This work aims to reveal, identify and measure the environmental
impact of green project disbursements in areas that are highly polluted
and highly populated through the use of three datasets: green bonds,
pollution, and climate data. The achievement of this research required
two main contributions.

First, we collected relevant variables for the three types of data
information and engineered appropriate statistical features from avail-
able reported spatial–temporal attributes. This task required advanced
data processing, data cleaning, and data wrangling, leading to the con-
struction of three data sets available at https://github.com/mcampi111
that can be reused for further research purposes. The three data
sets have been compiled as follows, based on reputable leading data
providers:

1. Pollution data has been constructed by downloading information
from the US Environmental Protection Agency website1;

2. Climate data set has been constructed by extracting variables
from one of the National Oceanic and Atmospheric Administra-
tion (NOAA) data sets, specifically the Global Surface Summary
of the Day (GSOD) data set2;

3. Green bonds dataset has been collected through the Bloomberg
Terminal and provides information on municipal green bonds
issued within the US State of California.

The second element of our work involved developing a method-
ology to study potential relationships between green bond issuance
and these financial instruments’ multifaceted attributes and the change
in pollution and climate over space and time in areas where the
green bond use of proceeds is being deployed for potential sustainable
development goals. In doing so, we observe that numerous aspects must
be considered. First, the procedure has to deal with the non-stationary
and non-linear nature of the relationships that may be present in data
over space and time. Second, one must treat a multi-modal data source.
This involves determining appropriate attributes to record in space and
time and to integrate these into non-linear factor extractions that can
be studied for associations in space and time and will be informative
on statistical associations and dependence relationships between each
data modality.

Thirdly, the results should be interpretable in terms of each modal-
ity’s measure attributes. As this will ensure that one can attempt to
measure the environmental impact of green bond issuance. In this
regard, we first look for robust data feature extraction methods applied
over individual data sets (modalities). Then subsequently, we study
statistical associations between each modality based on the leading
extracted features from each modality. This allows us to quantify the
statistical association between the computed modes of variation across
the data sets. In this way, accurate spatio-temporal correlations of
green bonds and pollution/climate variations can be robustly detected.
Fourth, the correlation might depend on time or spatial features, and
the implemented method must be able to capture such information.
Fifth, the statistical interpretation of the method must be provided so

1 https://www.epa.gov/
2 https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=

ov.noaa.ncdc:C00516
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that practitioners can benefit and conduct more efficient data decision-
making processes. Such tasks are attained by combining two methods
known as Kernel Principal Component Analysis (kPCA, see [29]) and
Canonical Correlation Analysis (CCA, [30–32]).

kPCA is a widely used machine learning technique corresponding
to the non-linear version of standard Principal Component Analysis
(PCA, see [33]) that converts a certain number of potentially corre-
lated variables into a set of uncorrelated Principal Components (PCs),
capturing the variability of the underlying data set. If the PCs are
non-linearly related to the input variables, this technique fails and
provides a misleading explanation of the data variability. When this is
the case, kPCA can be used instead. kPCA belongs to the class of kernel
methods [29,34] whose idea is to map the existing data set into a new
space, called the feature space which can be a function space, where
linear algorithms are applied again. The advantage of this approach is
that one does not have to know explicitly the feature map functions
explicitly as they can be obtained implicitly via the specification of a
kernel and application of the so-called ‘‘kernel trick’’. The advantage
of this technique is the robustness of the kernel PCs (kPCs), identifying
the variability of the original data by handling its non-linearity and
non-stationarity.

In this work, the kPC functions from each data modality are the
input of the CCA multivariate spatial–temporal dependence analysis.
CCA is a statistical method that models the association among two
multivariate data sets by providing a set of canonical variates cor-
responding to orthogonal linear combinations of the variables within
each data set that exhibit maximum correlation. Hence, CCA identifies
new variables that maximise the interrelationships between two data
set modalities, in contrast to the new variables of PCA describing the
internal variability within one data set modality. The application of
the CCA method in the manner we propose is designed specifically
to capture the intra-data set modalities’ statistical relationships. The
novelty of this work from a statistical perspective will be to use the
CCA to identify cross-correlation over the robust kPCs extracted by the
different data set modalities.

We note that our proposed method of first applying kPCA to each
data modality and then CCA between each resultant data modalities
kPC functions is distinct from other works who seek to develop kernel
CCA methods, see [35–43]. Unlike these methods, in our approach
we maintain greater interpretability of all discovered spatial–temporal
relationships between data modalities through our proposed two-stage
approach of inter-modality kPCA followed by intra-modality CCA. In
application of this method we can consider several multivariate input
data sets carrying spatial information, for example, data sets collecting
pollution variables in each Californian county over time, data sets for
climate variables in each county of California over time and data sets
of green bond financial variables of the same California counties over
time. Hence, one will have one multivariate triple of data modalities per
county over time. We will then transform each modality into a set of
non-linear spatial–temporal explanatory factors via kPCA per modality.
The choice of kernels we consider allow us to treat multiple types
of data including time series, ordinal and categorical data that may
arise in each data modality. Having extracted the factor representations
for each data modality, as kPC’s for instance the first kernel principal
component extracted by the pollution data of all the counties and
the first kernel principal component extracted by the financial data
set of all the counties, we then apply CCA methods to study their
spatial–temporal relationships between each data sets modality.

There are several advantages to our proposed methodology. The
first is that data attributes from each coordinate dimension can be
irregularly sampled in time and space and still be incorporated into this
analysis since the kPCA will provide an output function approximation
of the kPC’s that can be then evaluated on a common mesh of space
and time points. In this way, the CCA applied across modalities of data
sets when applied to the kPC’s will be on a common space–time grid.
4

We claim that if there is an association between green bond vari-
ables and pollution variables (for example), we can interpret such
an association as evidence that the green initiatives funded by green
bond proceeds are associated with climate mitigation impacts. The
constructed methodology deals with variables whose processes are
observed over time and will average this information by providing
an instantaneous spatial correlation. As a result, we will be able to
observe the time relationship between the green bond variables and
the pollution variables, as a delay in the impact of the green project
is expected. The methodology will first extract the kernel principal
components (kPCs) for every data set to identify leading factors that ef-
ficiently select the spectral content of the original data in an automated
fashion based on the size of the eigenvalues. The kPCs will then be fed
to the CCA to observe cross-correlation between the leading variations
of the original data to robustly define the environmental impact of
green projects in the different counties of California. Arguments for
combining these two techniques are as follows. If one applies the CCA
directly to the raw data, the captured information is nothing more
than the cross-correlation between the data sets. The critical issue with
such a standard approach is the complex structural information of
the underlying data, which is non-linear and non-stationary. Hence,
the CCA would detect a great deal of noise and erratic association,
which pollutes final decision-making processes. The role of kPCA in this
instance is to effectively detect the variability of the underlying data
and discard irrelevant information. Furthermore, such a technique will
provide the relevant spectral components of the data in an automated
fashion according to the most dominant eigenvalues, i.e. eigenmodes.
This practise could be done by applying, for example, spectral trunca-
tion, which is, however, highly difficult since identifying which spectral
components to retain for an efficient final representation is challenging
in practise. The role of the CCA is now finalised to the task of interest,
i.e. it will then focus on the cross-correlation between the dominant
marginal eigenmodes.

2.1. Contributions, notation and organisation of the paper

The contributions of this work can be split into notional, method-
ological and data applied and are given as follows:

• The first contribution is given by a quantitative definition of
the environmental impact of a green bond. Such a concept is,
in general, highly debated within the green finance community
and, therefore, particularly needed. In this respect, the second
relevant point is to provide reliable statistical indicators capturing
variability with leading factors to measure such impact, which
practitioners strongly require of the financial markets in general.
The kPCs will act as such, and we will show that diversified
information will be detected depending on the dataset and the
KPC number.

• The second contribution of this work is the combination of the
kPCA and the CCA to detect cross-correlation amongst datasets
in non-stationary settings, which is a required tool for any ap-
plication dealing with such an issue. We show that this approach
strongly empowers the desired findings with respect to traditional
linear PCA combined with CCA or with CCA applied to the data
only. Hence, this will be a robust version of CCA over non-linear
and non-stationary datasets.

• The considered datasets contain multiple types of input variables,
i.e. numerical, categorical, etc. Therefore, the treatment of differ-
ent sources of data is an issue that often affects kernel methods
in general. We overcome such an issue by employing the Jaccard
Distance and embedding the contribution of the categorical data
through the Jaccard kernel allowing for multi-modality kPCA,
which is highly needed in the analysis of environmental and
financial data.
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• Another relevant contribution is the engineering of ad hoc vari-
ables and features required to identify the environmental impact
over time and space accurately. This is necessary since the consid-
ered data differs regarding observational timestamps and spatial
recording monitors. Hence, feature engineering is required to
identify relevant information carrying the variability, which is
informative to reveal the behaviour of the underlying data.

We will denote the three constructed datasets, each of different
odality, by 𝐗1

𝑁1×𝐷1
, 𝐗2

𝑁2×𝐷2
and 𝐗3

𝑁3×𝐷3
, where the first one repre-

sents the pollution dataset, the second one the climate dataset and the
third one the financial green bond dataset respectively. The first two
datasets collect attributes related to pollution or climate (accurately de-
scribed in Section 5) from different pollution or climate stations which
are selected according to their distance from the counties of interest in
California. We will adopt the notation for each data set where 𝐗𝑖𝑁𝑖×𝐷𝑖
for all 𝑖 ∈ {1, 2, 3}, for the first two data sets the index 𝑁𝑖 = 𝑇𝑖 × 𝑆,
where 𝑇𝑖 corresponds to the number of time samples collected at 𝑠
locations and 𝑆 the total number of locations, i.e. the counties studied
in California and for the third data set 𝑁𝑖 will correspond to the number
of green bonds issued by each county over the time period of interest.
We denote by 𝐷𝑖 the attribute signals that have been observed for the
𝑖th data modality. For instance if 𝑖 = 1 then the attributes are pollution
related variables being measured such as carbon dioxide, air quality
(see details in Section 5); if 𝑖 = 2 then the attributes are observed
climate signals such as total precipitation, temperature, (see details in
Section 5); and if 𝑖 = 3 then the attributes are observed financial green
bond attributes such as coupon rates, maturities, industry of the green
bond, use of proceeds green initiatives label (see details in Section 5).

Feature extraction is performed using linear and non-linear pro-
jection methods. The set of such projection bases i.e. PCs and kPCs
will be extracted by splitting the dataset according to each considered
county in California, hence we will have for the 𝑖th data modality
𝐗𝑖𝑁𝑖×𝐷𝑖 = [𝐱𝑖,1𝑇𝑖×𝐷𝑖 , 𝐱

𝑖,2
𝑇𝑖×𝐷𝑖

,… , 𝐱𝑖,𝑆𝑇𝑖×𝐷𝑖 ], where subscript remain as explained
previously and the upper subscripts denote the data modality index 𝑖
followed by the county index 𝑠 ∈ {1,… , 𝑆}.

The paper is organised as follows: first, a section reviewing the
statistical methods of PCA, kPCA and the CCA is provided. This includes
a review of the out-of-sample and pre-image problems for the kPCA
method and the introduction of the required notations for each method.
Second, a methodology section is presented, with the introduction
of the novel method proposed in this manuscript termed kPCA-CCA
used for analysis of several multi-attribute (i.e. multivariate) spatial–
temporal data sets to analysis associations between attributes from
each each data modality in space and time. This is followed by a
detailed comparison between the reference method for linear methods
based on PCA-CCA methodology and the extended method to treat
non-linearity and non-stationarity achieved by the kPCA-CCA frame-
work. Subsequently, the results for the data and the experiments, are
presented. Finally, the paper discussion along with the conclusions
are provided. Supplementary Information accompany the manuscript
which provide detailed explanations of a practical nature regrading
data processing and kernel preparation. All code and data is provided
for reproducibility in the github repository with paper name under
https://github.com/mcampi111.

3. Spatial-temporal methods to assess Green bond disbursements:
PCA, kPCA and CCA

This section briefly reviews the concept of PCA and the kPCA by
showing the steps required to extract the PCs and the kPCs, respec-
tively. For the kPCA, we distinguish between the cases of knowing
the feature mapping 𝜙 and not knowing it. Then, the out-of-sample
and the pre-image problems are reviewed. The last part of the section
is dedicated to the presentation of the CCA, its proposed model and
the constrained maximisation problem that must be solved. Remark
5

that, while the PCA and the kPCA look for the internal variability of
a given set of variables in a linear and non-linear fashion, the CCA is a
procedure searching for cross-correlation or interrelationships between
two sets of data.

The methodologies introduced in Section 4 extract PCs and kPCs
on the three datasets split by counties, and this will be presented and
explained within Section 4. For simplicity and without any loss of
generality, we review the following methods by referring to a general
input matrix 𝐗𝑁×𝐷.

3.1. PCA for intra data modality to capture linear variability

We present the PCA framework, which will be extended to its
non-linear version in the following subsection. Consider 𝑁 samples
𝐱1, 𝐱2,… , 𝐱𝑁 ∈  ⊂ R1×𝐷 the set of data observed in the input
pace. When stacked by row, the data matrix is denoted 𝐗𝑁×𝐷 with
ach observation a row 𝐱𝑛 = [𝑥𝑛,1,… , 𝑥𝑛,𝐷]1×𝐷. We recall in this section
he concept of PCA which searches for basis vectors of unit length
nd orthogonal to each other, hence orthonormal bases, to re-express
given dataset 𝐗 under projection as follows:

𝑁×𝐷𝐖𝐷×𝐷 = 𝐋𝑁×𝐷 (1)

here 𝐖 is a 𝐷 × 𝐷 matrix and denotes a linear projection. The
olumns of 𝐖 are the new basis vectors which, by construction, provide
⊺𝐖 = I𝐷, and express rows of 𝐋. Such a re-expression makes the

CA a method for lowering the redundancy in the 𝐗 data set. It can be
ormally written for 𝑖, 𝑗 columns of 𝐋 as

𝐋]⊺⋅,𝑖 [𝐋]⋅,𝑖 = [𝐖]⊺⋅,𝑖 𝐒𝑋 [𝐖]⋅,𝑖 and [𝐋]⊺⋅,𝑖 [𝐋]⋅,𝑗 = [𝐖]⊺⋅,𝑖 𝐒𝑋 [𝐖]⋅,𝑗 = 0

here 𝐒𝑋 = 𝐗⊺𝐗 represents the sample estimate of the population
ovariance. PCA extracts its basis functions through a procedure which
irectly acts on 𝐒𝑋 . In practice, it seeks a linear combination of Eq. (1)
hat maximises the overall variance of 𝐋 given by 𝐒𝐿 = 𝐋⊺𝐋. The
olution to the problem is found by a maximiser with the following
agrangian expression given by

(𝐖) = 𝐖⊺𝐒𝑋𝐖 −𝜦
(

𝐖⊺𝐖 − I𝐷
)

or 𝜦𝐷×𝐷 being a diagonal 𝐷 ×𝐷 matrix with Lagrangian coefficients.
ne can then solve the optimisation problem by differentiating and

inding the turning points to solve for the roots of the quadratic form
f this objective function as follows
𝜕𝑄
𝜕𝐖

= 2𝐒𝑋𝐖 − 2𝜦𝐖 = 0 ⟹ 𝐒𝑋𝐖 = 𝜦𝐖

It is possible to observe that 𝐖 is a matrix in which columns are
eigenvectors of 𝐒𝑋 , whereas 𝜦 is a matrix of corresponding eigenvalues

ith the number of the non-zero elements equal to the rank of 𝐒𝑋 . The
columns of 𝐋 are indeed orthogonal since

𝐋]⊺⋅,𝑖 [𝐋]⋅,𝑗 = [𝐖]⊺⋅,𝑖 𝐒𝑋 [𝐖]⋅,𝑗 = [𝐖]⊺⋅,𝑖 𝜆𝑗 [𝐖]⋅,𝑗 = 𝜆𝑗 [𝐖]⊺⋅,𝑖 [𝐖]⋅,𝑗 = 0

t can be easily proven that 𝐋, defined by 𝐖, the eigenvectors of 𝐒𝑋 ,
maximises the total trace of 𝐒𝐿, its determinant and maximises the
Euclidean distance between the columns of 𝐋. Furthermore, the rep-
resentation minimises the mean square error between the observations
and its projection.

3.2. Kernel kPCA for non-linear variability of intra data modality

This subsection presents the non-linear kernel version of PCA known
as kPCA, showing the steps required for its derivation, in both cases
when the feature mapping is known and unknown. Afterwards, the
out-of-sample problem is discussed. This corresponds to the case in
which a new sample data point 𝐱⋆ is considered and must be mapped
onto the kernel space identified through the kPCA. Such a procedure
is highly relevant for the development of our methodology proposed

in the following section and lends importantly to the interpretation of

https://github.com/mcampi111
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results obtained. The last part presented in this subsection is the pre-
image problem, meaning the exercise of projecting the obtained feature
points back into the original input space. We will rely on this element
of kPCA for the hyperparameters grid search performed to identify the
optimal kPCs in our experiments.

3.2.1. Background and main objectives of the kPCA
kPCA is utilised when one seeks to detect non-linear and non-

stationary features characterising each of the data sets considered.
Assume in the context of kernel kPCA that 𝝓 ∶  →  , represents a
mapping from the observed input space to the feature space  ⊂ R𝑃

that is typically non-linear, such that

𝜱𝑁×𝑃 =
⎡

⎢

⎢

⎣

𝝓(𝐱1)
⋮

𝝓(𝐱𝑁 )

⎤

⎥

⎥

⎦𝑁×𝑃

=
⎡

⎢

⎢

⎣

𝜙1(𝐱1) … 𝜙𝑃 (𝐱1)
⋮ ⋱ ⋮

𝜙1(𝐱𝑁 ) … 𝜙𝑃 (𝐱𝑁 )

⎤

⎥

⎥

⎦𝑁×𝑃

.

Denote 𝐂 = 𝜱⊺𝜱 the 𝑃 × 𝑃 positive definite matrix representing the
sample estimate of the covariance matrix of 𝜱𝑁×𝑃 in the feature space.
One cell of the matrix 𝐂 at the 𝑖th row and the 𝑗th column is given as

𝐶𝑖,𝑗 = [𝜙𝑖(𝐱1),… , 𝜙𝑖(𝐱𝑁 )]
⎡

⎢

⎢

⎣

𝜙𝑗 (𝐱1)
⋮

𝜙𝑗 (𝐱𝑁 )

⎤

⎥

⎥

⎦

=
𝑁
∑

𝑛=1
𝜙𝑖(𝐱𝑛)𝜙𝑗 (𝐱𝑛)

and represents the covariance between the 𝑖th feature function 𝜙𝑖 and
𝑗th feature function 𝜙𝑗 within the feature space  for 𝑖, 𝑗 = 1,… , 𝑃
across all available samples of data.

Furthermore, we also consider the Gram Matrix which is charac-
terised by a Mercer kernel covariance operator denoted 𝑘 ∶  × → R,
known as the kernel function that defines the inner product in the
feature space  that is given as

𝑘(𝐱𝑛, 𝐱𝑚) = 𝝓(𝐱𝑛)𝝓(𝐱𝑚)⊺ = [𝜙1(𝐱𝑛),… , 𝜙𝑃 (𝐱𝑛)]
⎡

⎢

⎢

⎣

𝜙1(𝐱𝑚)
⋮

𝜙𝑃 (𝐱𝑚)

⎤

⎥

⎥

⎦

=
𝑃
∑

𝑝=1
𝜙𝑝(𝐱𝑛)𝜙𝑝(𝐱𝑚)

(2)

for 𝑛, 𝑚 ∈ {1,… , 𝑁}. Then we define 𝐊 the 𝑁 ×𝑁 Gram Matrix such
that 𝐊𝑁×𝑁 = 𝜱𝜱⊺.

The kPCA projects 𝜱𝑁×𝑃 onto uncorrelated components, possibly
of smaller dimensionality. This is achieved by expressing each point
𝝓𝑛 ∈  as a linear combination of 𝑄 ≤ 𝑃 orthogonal basis vectors
{𝐯1,… , 𝐯𝑄} of dimension P, where 𝐯𝑞 ∈ R𝑃 , and uncorrelated weight
coefficient scores {𝒂1,… ,𝒂𝑄}, where 𝒂𝑞 ∈ R𝑁 , such that the following
representation holds

𝝓𝑛 = 𝝓(𝐱𝑛) =
𝑄
∑

𝑞=1
𝑎𝑛,𝑞𝐯𝑞

If one considers the matrix 𝐀𝑁×𝑄 and 𝐕𝑄×𝑃 such that

𝐀𝑁×𝑄 = [𝒂1,… ,𝒂𝑄] =
⎡

⎢

⎢

⎣

𝑎1,1 … 𝑎1,𝑄
⋮ ⋱ ⋮

𝑎𝑁,1 … 𝑎𝑁,𝑄

⎤

⎥

⎥

⎦𝑁×𝑄

and

𝐕𝑄,𝑃 =
⎡

⎢

⎢

⎣

𝐯1
⋮
𝐯𝑄

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑣1,1 … 𝑣1,𝑃
⋮ ⋱ ⋮

𝑣𝑄,1 … 𝑣𝑄,𝑃

⎤

⎥

⎥

⎦𝑄×𝑃

given the assumptions of uncorrelated columns of 𝐀𝑁×𝑄 and orthonor-
mality of rows in 𝐕𝑄×𝑃 , we obtain

𝐀⊺𝐀 = 𝜦𝑄×𝑄 and 𝐕𝐕⊺ = I𝑄

The representation that we are trying to find is then defined in matrix
form as
6

𝜱𝑁×𝑃 = 𝐀𝑁×𝑄𝐕𝑄×𝑃
3.2.2. kPCA when the feature mapping 𝜙 is known
If the mapping 𝜙 is known, the covariance matrix can be defined

and, therefore, standard eigenvalue decomposition on 𝐂 can be applied
to obtain 𝐕 since

𝐂 = 𝜱⊺𝜱 = 𝐕⊺𝐀⊺𝐀𝐕 = 𝐕⊺𝜦𝐕

and by multiplying 𝐕 on the left of both sides, one obtains the eigen-
equation given as

𝐕𝐂 = 𝜦𝐕

The rows of 𝐕 are 𝑄 eigenvectors of 𝐂 and 𝜦𝑄×𝑄 is the matrix with
corresponding eigenvalues. Then, since 𝐕𝐕⊺ = I𝑄, we have

𝜱𝐕⊺ = 𝐀𝐕𝐕⊺ ⟹ 𝜱𝐕⊺ = 𝐀 (3)

and 𝐀 is the new representation of 𝜱 that could be of lower dimension
and represents the matrix of the Principal Components computed in the
feature space.

3.2.3. Unknown feature mapping 𝜙
The feature mapping 𝜙 is usually unknown and must be learnt or

specified in the kernel modelling exercise. Therefore, the covariance
matrix 𝐂 cannot be computed or might require a high computational
cost given that 𝐂 is, in general,highly dimensional. As a result, the
projection 𝐕 is not explicitly known. One way to solve this problem
is given by utilisation of a kernel function 𝑘(⋅, ⋅), as given in Eq. (2).
Next, we show that the principal components 𝐀 in the feature space,
i.e. the kPCs, and their corresponding variances stored on the diagonal
of 𝜦 can be obtained by using only the Gram Matrix 𝐊𝑁×𝑁 defined
through the inner product of the kernel. We can substitute 𝐂 with 𝜱⊺𝜱
and multiply on the left by 𝐕, we obtain

𝐂 = 𝐕⊺𝜦𝐕
𝐕𝜱⊺𝜱 = 𝐕𝐕⊺

⏟⏟⏟
=I𝑄

𝜦𝐕

Then, by multiplying both sides times 𝜱⊺ and considering 𝐊𝑁×𝑁 =
𝜱𝜱⊺, one can then derive

𝐕𝜱⊺ 𝜱𝜱⊺
⏟⏟⏟
=𝐊𝑁×𝑁

= 𝜦𝐕𝜱⊺

𝐀⊺𝐊 = 𝜦𝐀⊺

as 𝜱𝐕⊺ = 𝐀. The matrix 𝐀𝑁×𝑄 are almost eigenvectors of the gram
matrix 𝐊 as they are not orthonormal yet (only orthogonal so far) since

𝐀⊺𝐀 = 𝐕𝜱⊺𝜱𝐕⊺ = 𝐕𝐂𝐕 = 𝜦

By rescaling both sides of the equation by the square root of 𝜦 we
obtain

𝜦− 1
2 𝐀⊺𝐊 = 𝜦− 1

2 𝜦𝐀⊺

𝐙⊺𝐊 = 𝜦𝐙⊺

We have obtained orthonormal eigenvectors 𝐙𝑁×𝑄 = 𝐀𝜦− 1
2 = 𝜱𝐕⊺𝜦− 1

2

since 𝐙⊺
𝑄×𝑁𝐙𝑁×𝑄 = 𝜦− 1

2 𝜦𝜦− 1
2 = I𝑄. Therefore, by taking the eigen-

decomposition of the gram matrix 𝐊 we obtain the matrices 𝐙𝑁×𝑄
nd 𝜦 and we will need to rescale them to obtain the matrix 𝐀𝑁×𝑄,

which is the matrix with the principal components (corresponding
to the representation of sample points from  in the new feature
space projected by 𝐕𝑄×𝑃 ). These are usually referred to as the kernel
Principal Components, kPCs, since extracted through the use of the
kernel function only and defined within the feature space.



Franklin Open 7 (2024) 100113M. Campi et al.

i
m
W
h

p

𝐱

i
l

𝜞

w

𝛤

𝑘
e
i
a
s
c
p

𝜞

w
o

𝐁

w
l

𝑙

a

𝑅

H
t
t
s
s
s
k
f

𝐁

3.2.4. The out-of-sample problem with unknown 𝜙
This section aims to show how to evaluate the unknown feature

map 𝜙 at any point 𝐱⋆ which is not in the training set, i.e. 𝐱⋆ ∉
{𝐱1, 𝐱2,… , 𝐱𝑁}. This is achieved by defining a new sample 𝜙(𝐱⋆)
through the decomposition of the gram matrix 𝐊, which is based on
the samples {𝜙(𝐱1),… , 𝜙(𝐱𝑁 )} ∈  , and is evaluated through the learnt
kernel map 𝑘. Recall that 𝜱 = 𝐀𝐕, so multiplying both sides by 𝐀⊺ and
rearranging produces

𝐕𝑄×𝑃 = 𝜦−1𝐀⊺𝜱.

Then by setting 𝐖𝑁×𝑄 = 𝐀𝑁×𝑄𝜦−1
𝑄×𝑄, we achieve the formulation of

the eigenvectors 𝐕 as an expression of the feature samples 𝜱 given as
𝐕𝑄×𝑃 = 𝐖⊺

𝑄×𝑁𝜱𝑁×𝑃 , which, for an individual vector 𝐯𝑞 , corresponds
to

𝐯𝑞 =
𝑁
∑

𝑛=1
𝑤𝑛,𝑞𝝓(𝐱𝑛) =

𝑁
∑

𝑛=1

⟨𝐯𝑞 ,𝝓(𝐱𝑛)⟩
⟨𝝓(𝐱𝑛),𝝓(𝐱𝑛)⟩

𝝓(𝐱𝑛)

On the other hand, given 𝜱 = 𝐀𝐕, we can write an individual vector
𝝓(𝐱𝑛) as

𝝓(𝐱𝑛) =
𝑁
∑

𝑛=1
𝑎𝑛,𝑞𝐯𝑞 =

𝑁
∑

𝑛=1
⟨𝐯𝑞 ,𝝓(𝐱𝑛)⟩𝐯𝑞

By using these last two considerations, we observe that the projection
of 𝝓(𝐱𝑚) is

𝑎𝑚,𝑞 = 𝝓(𝐱𝑚)𝐯
⊺
𝑞 = 𝝓(𝐱𝑚)

𝑁
∑

𝑛=1
𝑤𝑛,𝑞𝝓(𝐱𝑛)⊺ =

𝑁
∑

𝑛=1
𝑤𝑛,𝑞𝝓(𝐱𝑚)𝝓(𝐱𝑛)⊺

=
𝑁
∑

𝑛=1
𝑤𝑛,𝑞𝑘(𝐱𝑚, 𝐱𝑛)

Given the above, by multiplying times 𝐯𝑞 both sides, this will simplify to
an expression that will hold for any 𝝓(𝐱⋆) ∈  allowing for its definition
only through the kernel function and the eigendecomposition of 𝐊, that
is

𝜙(𝐱⋆) =
𝑁
∑

𝑛=1
𝑤𝑛,𝑞𝑘(𝐱⋆, 𝐱𝑛)𝐯𝑞 (4)

3.2.5. The pre-image problem
In this section, we provide a brief review of the pre-image problem

and the solution that we adopted in this work. Once the sample points
are mapped into the feature space  , then it is often the case that
one wants to map them back to the input space  . This exercise is
dentified in the literature as the pre-image problem and affects kernel
ethods in general, and, in this case, our interest in the Kpca version.
e review this concept since we will be using such a method for the

yperparameter learning procedure.
The pre-image problem consists in finding the counterpart of 𝜙(𝐱)

back in the input space  , i.e a point �̃� such that 𝜙(�̃�) = 𝜙(𝐱). However,
the map 𝜙 is usually non-linear and, therefore, might not be invertible
uniquely. This is indeed an ill-posed problem where one seeks an
approximate solution denoted as �̂� ∈  whose map 𝜙(�̂�) is as close
as possible to 𝜙(𝐱).

The pre-image problem then can be reformulated and interpreted as
finding the approximation �̂� through solving the following optimisation
problem

�̂� = argmin𝐱∈‖𝜙(𝐱) − 𝜙(�̂�)‖2

Several solutions have been proposed in the literature, see [44] and
summary in the Supplementary Information. In this work we adopt the
solution from Bakır et al. [45]. Since the function 𝜙(⋅) is defined on a
vector space it can be represented vector-wise through any orthonormal
basis spanning the subspace where it lies (the feature space ). The
orthonormal basis considered in this work is the kPCA. We have
7

introduced the notation for the projection of any input 𝐱 in previous
section and recall it here as 𝑎𝑞 = 𝜙(𝐱)𝐯⊺𝑞 . If we consider the projection
on every q-th axes we obtain

𝑃𝑘𝜙(𝐱) = 𝜙(𝐱)𝐕⊺ = [𝜙(𝐱)𝐯⊺1,… , 𝜙(𝐱)𝐯⊺𝑄]1×𝑄

where the operator 𝑃𝑘 highlights that such a projection is induced
through the kernel 𝑘(⋅, ⋅). If the considered kernel is universal and
characteristic, as the sample size increases, and therefore the number of
obtained kPCA eigenvectors increases, then one would expect that this
pointwise projection representation of 𝜙 will become more accurate,
i.e. that 𝜙(𝐱) ≈ 𝑃𝑘𝜙(𝐱). Hence, we look for an approximation �̂� in the
input space whose image 𝜙(�̂�) is as close as possible to 𝑃𝑘𝜙(𝐱). The
re-image problem above introduced thus becomes

̂ = argmin𝐱∈‖𝑃𝑘𝜙(𝐱) − 𝜙(�̂�)‖2 .

In practice, the pre-image problem searches for a map 𝛤 with the
property that 𝛤 (𝜙(𝐱𝑖)) = 𝐱𝑖 for 𝑖 = 1,… , 𝑁 . We also require the pre-
image map 𝛤 to be decomposed into 𝐷 (corresponding to the dimension
of the input space, i.e. dim()) functions so that each component of �̂�
s independently estimated. As a result, the proposed method aims to
earn a pre-image map constructed as

(𝑃𝑘𝜙(𝐱)) =
[

𝛤1(𝑃𝑘𝜙(𝐱)),… , 𝛤𝐷(𝑃𝑘𝜙(𝐱))
]

1×𝐷

here the expression for one 𝛤𝑗 (𝑗 = 1,… , 𝐷) is

𝑗 (𝑃𝑘𝜙(𝐱)) =
𝑁
∑

𝑖=1
𝛽𝑗𝑖 �̌�

(

𝑃𝑘𝜙(𝐱), 𝑃𝑘𝜙(𝐱𝑖)
)

and �̌�(⋅, ⋅) is a new kernel function which in general may differ from
(⋅, ⋅). The pre-image problem is therefore reformulated again since
ach of the 𝐷 components of �̂� is independently estimated within the
nput space by employing a new kernel �̌�(⋅, ⋅) that projects back the
pproximated image given by 𝑃𝑘𝜙(𝐱). The employed technique to solve
uch a problem is kernel ridge regression (see for details [46]) which
onsists of minimising the following function in its dual form below
resented:

̂ = argmin𝜞

𝑁
∑

𝑖=1
𝑙
(

𝐱𝑖 − 𝜞 (𝑃𝑘𝜙(𝐱𝑖))
)

+ 𝜆𝑅(𝜞 )

here 𝜆 ≥ 0, 𝑅(𝜞 ) is a regularisation term and 𝑙 is a loss function. To
btain the solution in its dual form let us first define

=
[

𝜷1,… , 𝜷𝐷
]

=
⎡

⎢

⎢

⎣

𝛽11 … 𝛽𝐷1
⋮ ⋱ ⋮
𝛽1𝑁 … 𝛽𝐷𝑁

⎤

⎥

⎥

⎦𝑁×𝐷

ith 𝜷𝑗 = (𝛽𝑗1 ,… , 𝛽𝑗𝑁 )⊺ for 𝑗 = 1,… , 𝐷. By considering the following
oss function
(

𝐱𝑖 − 𝜞 (𝑃𝑘𝜙(𝐱𝑖))
)

= ‖𝐱𝑖 − 𝜞 (𝑃𝑘𝜙(𝐱𝑖))‖2

nd the next regularisation form

(𝜞 ) =
𝑁
∑

𝑗=1
‖𝜷𝑗‖2

ere we only consider a penalty term on the estimated parameters of
he ridge regression, a generalisation would consider a penalisation
erm also on the hyperparameters of the kernel �̌�(⋅), known as the
moothing penalisation term. We consider this more restrictive case
ince we consider the hyperparameters as known and perform a grid-
earch introduced in the following section. The criterion exploiting
ernel ridge regression can be reformulated in its dual form (see [46]
or derivation and details) and the solution is given as

̂
𝑁×𝐷 = argmin𝐁 tr

(

[𝐗 − �̌�𝐁][𝐘 − �̌�𝐁]⊺
)

+ 𝜆tr(𝐁𝐁⊺)

=
(

�̌�⊺�̌� + 𝜆 𝐈
)−1

�̌�⊺𝐗
𝑁
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t

𝐊

̌

where, through the kernel function �̌� ∶ R𝑄×R𝑄 → R, we have employed
he new Gram Matrix �̌� whose entry (i,j) is defined as

̌
𝑖,𝑗 = �̌�(𝑃𝑘𝜙(𝐱𝑖), 𝑃𝑘𝜙(𝐱𝑗 )) = �̌�(𝑃𝑘𝜙(𝐱𝑖)) �̌�(𝑃𝑘𝜙(𝐱𝑗 ))⊺

Note that, to introduce the notation for the entire matrix �̌�, we firstly
define 𝜙(𝐱𝑖)𝐯

⊺
𝑞 = 𝑎𝑖,𝑞 , which add the information of both the 𝑖th vector

𝐲𝑖 and the q eigenvector 𝐯𝑞 . Hence, the above then becomes

�̌�𝑖,𝑗 = �̌�(𝑎𝑖,𝑞 , 𝑎𝑗,𝑞) = �̌�(𝑎𝑖,𝑞) �̌�(𝑎𝑗,𝑞)⊺

and hence we have

𝑏𝑓�̌� =
⎡

⎢

⎢

⎣

�̌�1(𝑎1) … �̌�𝑄(𝑎1)
⋮ ⋱ ⋮

�̌�1(𝑎𝑁 ) … �̌�𝑄(𝑎𝑁 )

⎤

⎥

⎥

⎦𝑁×𝑄

⎡

⎢

⎢

⎣

�̌�1(𝑎1) … �̌�1(𝑎𝑁 )
⋮ ⋱ ⋮

�̌�𝑄(𝑎1) … �̌�𝑄(𝑎𝑁 )

⎤

⎥

⎥

⎦𝑄×𝑁

Define now the following vector

𝐤𝐱 = [�̌�(𝑃𝑘𝜙(𝐲), 𝑃𝑘𝜙(𝐱1)),… , �̌�(𝑃𝑘𝜙(𝐱), 𝑃𝑘𝜙(𝐱𝑁 ))]1×𝑁

The pre-image map learns the pre-image �̂� by

�̂� = 𝜞 (𝑃𝑘𝜙(𝐱)) = (�̌�𝐱�̂�) 1×𝐷

3.3. CCA for inter data modality cross-correlations

In this section, we review Canonical Correlation Analysis (CCA), its
derivation and interpretation, see further details in [47,48]. One of the
main advantages in CCA as a multivariate method is that it minimises
the risk of committing Type I error, which refers to finding statistically
significant results when they do not exist in the population. By allowing
for simultaneous comparisons among variables, CCA reduces the need
for multiple statistical tests, thereby reducing the experiment-wise error
rate. Furthermore, CCA can be used as a comprehensive alternative to
other parametric tests commonly used in financial or environmental
analysis settings, such as ANOVA, MANOVA, multiple regression, and
correlation analysis.

The main appeal of this multivariate method comes from the in-
terest in finding an association between two data sets. If the classical
sample correlation matrix is considered, one will obtain the associations
between all pairs of variables without having information that allows
one to further analyse a decomposition of the within-set associations
and the between-set associations (cross-correlations). The objective,
when CCA is considered, is to employ a technique that removes the
within-set associations to assess the between-set ones and reveal in-
sightful relationships between the two data sets that are hidden and
affected by the within-set. Since the objective of CCA is to identify
how variations in the data sets can be related, the idea is that each
pair of linear combinations must provide distinct pieces of information,
achieved by imposing constraints so that each pair of linear combi-
nations of each data set considered are mutually uncorrelated with
the other pairs. The correlations between the obtained pairs of linear
combinations will be ordered in a decreasing fashion, i.e. the first will
carry maximum correlation and the last minimum correlation. The pairs
of linear combinations are referred to as canonical functions, where
each component of the pairs is referred to as canonical variates. The
correlations between the canonical variates are called the canonical
correlations. To derive such representations, what is needed is to derive
the coefficients of such pairs of linear combinations.

Formally, consider two sets of variables 𝐗 ∈ R𝑑′ and 𝐘 ∈ R𝑑 , where
we assume w.l.o.g. that 𝑑′ ≤ 𝑑 and we then have

𝐗 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑋1
𝑋2
⋮
𝑋𝑑′

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐘 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑌1
𝑌2
⋮
𝑌𝑑

⎞

⎟

⎟

⎟

⎟

⎠

then it is possible to write the full sample correlation matrix as

𝜮 =
(

𝜮𝑋𝑋 𝜮𝑋𝑌
)

8

𝜮𝑌 𝑋 𝜮𝑌 𝑌
where 𝜮𝑋𝑋 is the 𝑑′ × 𝑑′ sample correlation matrix of the first sets of
variables, 𝜮𝑌 𝑌 is the 𝑑 ×𝑑 sample correlation matrix of the second sets
of variables, 𝜮𝑋𝑌 is the 𝑑′ × 𝑑 sample matrix of correlations between
the variables of 𝐗 and 𝐘, where w.l.o.g. we will assume 𝑑′ < 𝑑. 𝜮𝑌 𝑋
corresponds to the transpose of 𝜮𝑋𝑌 . CCA corresponds to a parallel
method to the PCA applied to the two multivariate data sets (rather
than one), looking at linear combinations of paired data. The model
proposed by CCA considers two sets of linear combinations, 𝐔 ∈ R𝑑′

and 𝐕 ∈ R𝑑′ respectively, where 𝐔 represents the linear combinations
of 𝑿 and 𝐕 the linear combinations of 𝒀 . Each element of 𝑈𝑖 is paired
with an element of 𝑉𝑖, and these are given as

𝑈1 = 𝑎11𝑋1 + 𝑎12𝑋2 +⋯ + 𝑎1𝑑′𝑋𝑑′

⋮

𝑈𝑑′ = 𝑎𝑑′1𝑋1 + 𝑎𝑑′2𝑋2 +⋯ + 𝑎𝑑′𝑑′𝑋𝑑′

𝑉1 = 𝑏11𝑌1 + 𝑏12𝑌2 +⋯ + 𝑏1𝑑𝑌𝑑
⋮

𝑉𝑑′ = 𝑏𝑑′1𝑌1 + 𝑏𝑑′2𝑌2 +⋯ + 𝑏𝑑′𝑑𝑌𝑑

where, each 𝑖th pair (𝑈𝑖, 𝑉𝑖) corresponds to the canonical variate.
The extraction of the canonical variables proceeds as a sequence of
increasingly constrained optimisations which can be formally expressed
as follows. Given column random vectors 𝐗𝑖 ∈ R𝑑′ and 𝐘𝑖 ∈ R𝑑 with
finite second moments, with min

{

𝑑′, 𝑑
}

variates extracted, CCA seeks
vectors 𝒂 ∈ R𝑑′ and 𝒃 ∈ R𝑑 such that the random variables 𝒂𝑇𝑿𝑖 and
𝒃𝑇 𝒀 𝑖 maximise correlation

𝒂𝑖, 𝒃𝑖 = argmax
𝒂,𝒃

𝐶𝑜𝑟𝑟
(

𝑈𝑖, 𝑉𝑖
)

= argmax
𝒂,𝒃

𝐶𝑜𝑣
(

𝒂𝑇𝑿𝑖, 𝒃𝑇 𝒀 𝑖
)

√

𝑉 𝑎𝑟
(

𝒂𝑇𝑿𝑖
)

𝑉 𝑎𝑟
(

𝒃𝑇 𝒀 𝑖
)

(5)

subject to constraint set

𝑉 𝑎𝑟
(

𝑈𝑖
)

= 𝑉 𝑎𝑟
(

𝑉𝑖
)

= 1
{

𝐶𝑜𝑟𝑟
(

𝑈𝑗 , 𝑈𝑖
)

= 𝐶𝑜𝑟𝑟
(

𝑉𝑗 , 𝑉𝑖
)

= 0
}𝑖−1
𝑗=1

{

𝐶𝑜𝑟𝑟
(

𝑈𝑗 , 𝑉𝑖
)

= 𝐶𝑜𝑟𝑟
(

𝑈𝑖, 𝑉𝑗
)

= 0
}𝑖−1
𝑗=1

The solution to this sequence of constrained optimisations can then be
expressed in a matrix form where the optimal coefficients

{

𝐚𝑖
}𝑑′

𝑖=1 can
be show to be the eigenvectors of the matrix

𝜮−1
𝑋𝑋𝜮𝑋𝑌𝜮−1

𝑌 𝑌𝜮𝑌 𝑋

and
{

𝐛𝑖
}𝑑′

𝑖=1 are the eigenvectors of the matrix

𝜮−1
𝑌 𝑌𝜮𝑌 𝑋𝜮−1

𝑋𝑋𝜮𝑋𝑌

Furthermore, the canonical correlation will correspond to the square
roots of the non-zero eigenvalues of the above matrices.

From this discussion it is clear that CCA examines the correlation
between synthetic variables (canonical variates) weighted according to
the relationships between the original variables. It can be seen as a
simple bivariate correlation between the two artificially constructed
variables, i.e. (𝑈𝑖, 𝑉𝑖). The information captured by the canonical cor-
relation 𝜌⋆1 , 𝜌

⋆
2 ,… , 𝜌⋆𝑑′ (since the maximum number of canonical cor-

relations is the minimum number of variables of the two data sets
considered) represents the associations between the set of 𝐗 and the
set of 𝐘 after the within-set correlations have been removed.

Having extracted the optimal canonical correlations denoted by
{

𝜌∗𝑖
}𝑑′

𝑖=1 that seek to estimate the true population values denoted
{

𝜌𝑖
}𝑑′

𝑖=1, one may wish to assess the statistical significance of the canon-
ical correlations under a hypothesis test in which the null hypothesis is
stated as follows:
𝐻0 ∶ 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑑′ = 0
𝐻1 ∶ At least one canonical correlation significantly differs from zero
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A test of this hypotheses can be applied, given the null, using a test
statistic known as Wilks’ lambda: 𝛬 =

∏𝑑′
𝑖=1(1 − 𝜌∗𝑖

2), where 𝜌∗𝑖 is the
estimated optimal canonical correlation for the 𝑖th pair (𝑢𝑖, 𝑣𝑖) [49].
Bartlett showed that under the null hypothesis, a particular function
of 𝛬 would be distributed approximately as a chi-squared variate [49].
Therefore the statistical significance of Wilk’s 𝛬 requires the calculation
of the following statistic:

𝜒2 = −[𝑁 − 0.5(𝑑 + 𝑑′ + 1)] log𝛬

where 𝑁 is the number of samples and 𝑑 and 𝑑′ are the number of
variables in 𝑋 and 𝑌 respectively. For this test, if 𝐻0 is rejected, then
Bartlett proposed [49] a sequence of procedures that test whether the
second-largest canonical correlation significantly differs from zero, then
the third largest, etc. Of the methods proposed by Bartlett in this con-
text, the most used in practice, given its robustness to smaller sample
sizes than the 𝜒2 test, is the one following Rao’s F-approximation [50].
This employs a likelihood ratio test approach, see details in [51]. This
test proceeds as follows, starting with 𝑖 = 0, the null hypothesis tests

𝐻0 ∶ 𝑑 = 𝑖

𝐻1 ∶ 𝑑 > 𝑖

where 𝑑 is related to the order spline basis model representation
used for each dataset when constructing the CCA (see [51], Eq. (8)
and following discussion for further details). If 𝐻0 is rejected, 𝑖 is
incremented and a new test is conducted. This proceeds while 𝐻0 is
not rejected or 𝑖 reaches 𝑀 = 𝑚𝑖𝑛(𝑑, 𝑑′). We can see the relationship
between Wilk’s 𝛬 test statistic and Rao’s F-approximation test statistic
as follows for a given number of 𝑚 canonical variates:

𝐹df1 ,df2 =
df2
df1

(

1 − 𝛬𝑚
𝛬𝑚

)1∕𝜈

here 𝜈 =
√

(df21 − 4)∕((𝑑′ − 𝑚)2 + (𝑑 − 𝑚)2 − 5), df1 = (𝑑′ − 𝑚)(𝑑 − 𝑚),
f2 = (𝑁 − 1.5 − (𝑑′ + 𝑑)∕2)𝜈 − df1∕2 + 1 (where 𝑁 is the number of

samples) and Wilk’s test statistics is given by

𝛬𝑚 =
𝑑′
∏

𝑖=𝑚+1
(1 − 𝜌∗𝑖

2)

This Rao’s F-approximation test is employed in the results analysis.
What remains is to discuss how to interpret the canonical variates

that are found to be statistically significant. A summary of relevant
quantities one can obtain from CCA analysis is provided in Table 1
and described further below. Firstly, the canonical correlation coefficient
quantifies the strength of the association between the two sets of
variables. It represents the maximum correlation achievable between
linear combinations of variables from the two sets. It ranges from 0 to
1, with 0 indicating no relationship and 1 indicating a perfect linear
relationship. It is similar to the multiple R value used in regression
analysis. Secondly, the squared canonical correlations represent the pro-
portion of shared variance between the synthetic variables in each
canonical function. They indicate how much of the variance in one
set of variables can be explained by the other set. Thirdly, another
quantity often examined is the redundancy index which corresponds
to a measure of the total amount of variance explained in a set of
variables by all the combined canonical functions. It represents the
cumulative proportion of variance taken into account in the original
set of variables. In other words, it quantifies the overall redundancy
or overlap between the two sets of variables. One could compare
this index to the factor loadings in factor analysis which represent
the proportion of variance in each observed variable accounted for
by the underlying latent factors. Alternatively, in structural equation
modelling, the squared multiple correlations (𝑅2) indicate the amount
of variance in an observed variable explained by its associated latent
variable. Although squared canonical correlations focus on the specific
relationship between individual canonical functions and their asso-
9

ciated synthetic variables, the redundancy index provides a broader
summary of the overall explanatory power of all combined canonical
functions. High redundancy suggests a high ability to predict. Fourthly,
the canonical function can be thought of as a derived synthetic variable
that represents the relationship or association between the two sets of
original variables. Each function is orthogonal to every other function,
properties that make them analogous to components in a principal com-
ponent analysis. Furthermore, this orthogonality allows one to interpret
each function separately. A single function can be comparable to the
set of standardised weights found in multiple regression (albeit only
for the predictor variables). Standardised canonical function coefficients
refer to coefficients that have been standardised and are used in linear
combinations to merge observed variables into two synthetic variables.
These weights are applied to the observed scores in Z-score form to
generate the synthetic scores, which are then correlated to determine
the canonical correlation. These coefficients are derived to maximise
this canonical correlation and can be directly compared to beta weights
in regression analysis. A structure coefficient is the bivariate correlation
between an observed variable and a synthetic variable. Since these
coefficients are Pearson 𝑅 statistics, they may range from −1 to +1. In
practice, they provide information about which of the original variables
are useful in defining the synthetic ones, i.e. the canonical variate,
within the CCA model. Such coefficients are analogous to the structure
coefficients of the matrix of factor analysis structure or in a multiple
regression as the correlation between a predictor and the predicted Y’
scores [52,53]. Lastly, the Squared canonical structure coefficients are the
square of the structure coefficients. This statistic is analogous to any
other 𝑅2-type effect size and indicates the proportion of variance an
observed variable linearly shares with the synthetic variable generated
from the observed variable’s set.

Robust alternatives to CCA has been proposed in the literature [54].
Such robust methods are designed to handle non-normal or non-linear
data. In this vain, the idea of this work is to propose a method combines
non-linear feature extraction per data set, achieved by first applying
the kPCA and extracting a set of kPCs and then to apply the CCA to
these factors to capture the cross-correlation of these basis functions. To
better understand this point, we derive a worked comparison between
a linear method based on PCA-CCA combination versus how the kPCA-
CCA method proposed differs, see Section 4.1. The purpose of this
worked explicit derivation is to explicitly show the mathematical steps
involved in such an approach in the case of a linear kernel which
corresponds to a PCA-CCA method then we show what is modified in
this example when a more general non-linear kernel is considered.

In the following discussion in Section 4 the core of the method-
ological contributions are presented which combine the ideas of kPCA
feature extraction per data set with the utilisation of CCA methods to
assess associations of relevance between features from each data set.

4. Analysis of multi-modal spatial-temporal factors from multiple
data sets via kPCA-CCA

We develop a novel solution to detect cross-correlation between
spatial–temporal multivariate data sets, which will accommodate to the
presence of non-stationary and non-linear spatial–temporal data gener-
ating processes as well as the presence of different types of structured
data, i.e. numerical or categorical or different timestamps observation
frequencies and spatial locations. The procedure is a two stage process:
firstly exploiting the previously presented ideas of kPCA to extract non-
stationary and non-linear basis components for each of the data sets
considered. Secondly, we then apply CCA methods to study relevant
statistical associations between the factors extracted from the datasets
via the kPCA method. Several spatial–temporal multivariate data sets
will be analysed, each describing pollution (or climate) conditions
for every county in California, along with another data set detailing
municipal green bonds for each county of California. The primary
goal is to comprehensively characterise the variations present in these

multi-multivariate data sets simultaneously, treating the fluctuations of
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Table 1
Quantities required for assessing the CCA model.

CCA Model Assessment

Quantity Notation Interpretation Relation with other models

Canonical Correlation Coeff. 𝜌∗𝑖 Association between 𝐗 and 𝐘 Similar to the multiple R value in regression

Squared Canonical Correlation 𝜌∗2𝑖
Proportion of shared variance between the Analogous to the 𝑅2 effect in multiple regressionsynthetic variables in each canonical function

Redundancy Index (
∑𝑑′
𝑗=1 𝐶𝑜𝑟𝑟

2 (𝑌𝑗 , 𝑉𝑖
)

∕𝑑′)𝜌∗2𝑗
Cumulative proportion of variance accounted Analogous to the factor loadings in factor analysisfor in the original variable set

Canonical Variates 𝑈𝑖 , 𝑉𝑖 Individual variable of the synthetic pairs Analogous to PCA bases or factor scores in factor analysis
Canonical Function (𝑈𝑖 , 𝑉𝑖) Synthetic variable pair for the association between 𝐗 and 𝐘 Analogous to PCA bases or factor scores in factor analysis
Canonical Coefficients 𝐚𝑖 ,𝐛𝑖 Coeffs.maximising the canonical correlation Equivalent to beta weights in regression
Structure Coeff. 𝐶𝑜𝑟𝑟

(

𝑋𝑖 , 𝑈𝑗
)

, Bivariate correlation between an observed variable Analogous to the correlation between a predictor
(Canonical Loadings) 𝐶𝑜𝑟𝑟

(

𝑌𝑖 , 𝑉𝑗
)

and a synthetic one and the predicted Y’ scores in a multiple regression

Squared Canonical Structure Coeff. 𝐶𝑜𝑟𝑟2
(

𝑋𝑖 , 𝑈𝑗
)

Proportion of variance an observed variable linearly Analogous to any other 𝑅2-type effect size
𝐶𝑜𝑟𝑟2

(

𝑌𝑖 , 𝑉𝑗
)

shares with the synthetic variable
municipal green bonds in the financial market as a collective entity, and
the variations in pollution (and climate) across California as a global
change. By adopting this methodology, cross-correlations of these data,
between different counties, will be quantified, providing insights into
the inter-dependencies and relationships across the counties. The proce-
dure will therefore apply kPCA to each data set of every county and will
obtain a set of kPCs for financial data for Alameda, Los Angeles, Napa,
etc., and a set of kPCs for pollution and climate data at a county level.
Once the most significant kPCs are retained, they will be fed to the CCA
to observe cross-correlation between the modes carrying maximum
variation across counties. This will be done one kPC per time, i.e. the
kPC1 of the first data set for all the counties vs the kPC1 of the second
data set for all the corresponding counties, etc. In such a way, every
variation mode will be related to the ones of other data sets, and the
presence of correlation as well as its direction will be interpreted. The
method will be known as kPCA-CCA. Its benchmark comparison will be
its linear version, i.e. PCA-CCA, which will be constructed equivalently,
but PCs will be used instead, analogous to the simplest kPCA using a
linear kernel.

In developing kPCA-CCA, we note that whilst the individual three
data sets each have a variety of different multivariate spatial–temporal
time series features included in each of the pollution, climate and
green bond data sets, they do not need to be reported at the same
time intervals or on a regular set of time intervals. This is one of
the additional advantages of using the kPCA methodology to extract
features from each data set, since after feature extraction under kPCA
the resulting kPCs can all then be evaluated out-of-sample at a new
fixed common set of feature points, i.e. on a new mesh, common across
the counties, as per Eq. (4). By exploiting the out-of-sample problem
presented in Section 3.2.4, we will obtain a new set of kPCs which are
comparable on a common spatial–temporal grid. Fig. 1 summarises this
implemented methodology.

Remark that a parametric kernel function incorporates one or more
hyperparameters, which partly control the underlying feature samples
similarity structure. One of the main issues when using kernel methods
is indeed the learning of such hyperparameters. Our procedure exploits
a grid search over a set of pre-chosen hyperparameters and then
projects back the mapped data points through the pre-image method.
The set providing the minimum euclidean distance to the original
data points will be the selected set of hyperparameters. We offered a
detailed explanation of such a procedure in Section 3.2.5. Furthermore,
the considered financial data set contains multiple sources of data,
i.e. categorical, numerical, etc. and this will cause issues for the kPCs
extraction since a unique kernel function must be computed. We offer
a method that is able to deal with such different data sources and relies
on the Jaccard distance and Jaccard kernel below introduced.

Key details regarding practical implementation features of the
method described relating to the selection and construction of the
common spatial–temporal mesh used to standardise the representations
of the kPCA across the different data sets, the details of the hyper
10
parameter learning method developed for the kernel parameters opti-
mal selection are provided in detail in the Supplementary Information
accompanying this manuscript.

4.1. Comparing CCA, PCA-CCA and kPCA-CCA

In this subsection we explicitly compare the benchmark reference
linear projection method of PCA-CCA versus the proposed more gen-
eral non-linear method of kPCA-CCA. The idea is to mathematically
explain the framework proposed in Fig. 1. In so doing, we seek to
provide a straightforward interpretation of why we combine the CCA
in conjunction with the method of kPCA.

To illustrate the advantages of using kPCA-CCA over CCA or PCA-
CCA, we consider an example involving two datasets. By applying
each of these methodologies, we observe how the yielded canonical
correlation coefficients measure different quantities. We begin by exam-
ining the standard CCA approach without prior projections, where the
derived canonical correlation coefficients detect correlation between
linear combinations of the original data sets.

This two-stage process leads to distinctive formulations for CCA,
with key insights derived from the eigen decomposition of covariance
matrices. Notably, PCA-CCA provides canonical correlations that are
weighted by the inverse of the eigenvalues of the covariance matrices
of the PCA-transformed data sets. These eigenvalues represent the vari-
ance of the data along the principal component axes, emphasising the
contributions of the principal components with higher variances. This
weighting scheme helps in identifying the most significant relationships
between the two data sets, reflected in the canonical correlations.

Following the PCA-CCA exposition, we transition to the kPCA-CCA
methodology, which integrates non-linear kernel PCA into the CCA
framework. Here, each dataset undergoes non-linear transformation
via kernel PCA before being subjected to CCA. Crucially, kPCA-CCA
enables capturing non-linear relationships between variables, offering
enhanced flexibility over traditional linear methods. The derivation
shows that canonical correlations in kPCA-CCA are weighted by the
inverse of the eigenvalues of the kernel matrices, which represent
similarities or distances between data points in the kernel-induced
feature space.

In this section we derive the differences in canonical correlation co-
efficients among the three methods, which stem from the different ways
the data are transformed When applying CCA. CCA directly assesses
correlations between original variables, PCA-CCA focuses on linear
transformations capturing linearly maximum variance and kPCA-CCA
captures non-linear maximum variance relationships. Each method’s
choice impacts how the relationships between variables are modelled
and, consequently, the resulting canonical correlation coefficients.
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Fig. 1. Stages of kPCA-CCA methodology. The analysis will be performed by running kPCA-CCA (and PCA-CCA benchmark comparison) on pollution vs financial kPCs and climate
s financial kPCs. Given the two data sets, say pollution and financial data set, we split them by county and perform a pre-cleaning and pre-processing procedures as required to
emove data issues such as NA’s and misreporting. Since each data set has multiple attributes observed at multiple monitoring sites in each county, some work is first performed
o combine and clean the data in the Pre-processing stage (details are available in the associated github repository and the tools description for these stages, see ....). Next, linear
CA and the non-linear kPCA are applied per dataset and, for each decomposition method, the first three bases (PC1, PC2, PC3) or (kPC1, kPC2, kPC3) are retained. The next
tep consists of analysis of which extracted features better capture the variability of the given data set via the method of centered kernel target alignment (cKTA), which will be
ntroduced in subsections below. Finally, the PCA-CCA and the kPCA-CCA will be computed between pollution and financial PCs and kPCs, respectively, to measure the impact of
reen bonds on pollution attributes within different counties in California. Note that the CCA is run by considering all counties for individual group of bases, i.e. kPC1 financial
s kPC1 pollution, kPC2 financial vs kPC2 pollution, etc. and PC1 financial vs PC1 pollution, PC2 financial vs PC2 pollution, and so on.
N

𝜌

T
s

s

.1.1. Comparative analysis between different projection methods with
CA: Illustrative closed form example

Consider two multivariate data sets 𝐗𝑁×𝑑′ and 𝐘𝑁×𝑑 , where each
ata point 𝐗𝑖 and 𝐘𝑖 is assumed to be normally distributed. Specifically,
he joint distribution of 𝐗𝑖 and 𝐘𝑖 is given by a multivariate normal

distribution  given as
(

𝐗𝑖
𝐘𝑖

)

∼ 
((

𝝁
𝝂

)

,
(

𝜮𝑋𝑋 𝜮𝑋𝑌
𝜮𝑌 𝑋 𝜮𝑌 𝑌

))

where 𝝁 and 𝝂 represent the mean vectors of 𝐗𝑖 and 𝐘𝑖 respectively,
while 𝜮𝑋𝑋 , 𝜮𝑌 𝑌 , and 𝜮𝑋𝑌 = 𝜮⊤

𝑌𝑋 denote the covariance matrices of
𝐗𝑖, 𝐘𝑖, and the cross-covariance matrix between 𝐗𝑖 and 𝐘𝑖 and can be
formally introduced as

V𝑎𝑟(𝐗𝑖) = 𝜮𝑋𝑋(𝑑′×𝑑′)

V𝑎𝑟(𝐘𝑖) = 𝜮𝑌 𝑌 (𝑑×𝑑)

C𝑜𝑣(𝐗𝑖,𝐘𝑖) = 𝜮𝑋𝑌 (𝑑′×𝑃 )
= 𝜮𝑌 𝑋(𝑑′×𝑑)

The objective is to detect the spatio-temporal cross-correlation between
𝐗𝑁×𝑑′ and 𝐘𝑁×𝑑 , capturing the statistical association between the two
data sets over time and space. This analysis involves identifying the
relationships between variables in 𝐗𝑁×𝑑′ and 𝐘𝑁×𝑑 , quantified by
canonical correlation coefficients, providing valuable insights into the
underlying relationships and dynamics of the data sets. By integrat-
ing kPCA and CCA, our approach can effectively model the intricate
spatio-temporal dependencies present in 𝐗𝑁×𝑑′ and 𝐘𝑁×𝑑 . In an ideal
scenario with independent and identically distributed (i.i.d.) multivari-
ate Gaussian observations, the relationships between CCA, PCA-CCA
and kPCA-CCA are straightforward to discern. These methods perform
similar tasks in this ideal setting, albeit with different approaches.
CCA seeks linear projections maximising the correlation between two
datasets, PCA-CCA first conducts PCA for dimensionality reduction
before CCA, and kPCA-CCA utilises kernel PCA to handle nonlinearity
before CCA. However, the distinctions between these methods become
more pronounced in real-world settings characterised by complexity,
such as non-Gaussian distributions, nonlinear relationships, and various
noise sources. In such contexts, kPCA-CCA is particularly valuable
11
due to its ability to capture nonlinear relationships through the ker-
nel trick. This enables it to uncover latent patterns and structures
that might elude linear methods like PCA-CCA and CCA. Therefore,
while the direct relationships between these methods are evident in
ideal scenarios, kPCA-CCA’s differentiation becomes more pronounced
and advantageous in navigating the complexities of real-world data
analysis. In the following subsections, we derive CCA, PCA-CCA and
kPCA-CCA solutions for this example and show how the obtained
correlation coefficients differ from each case and the ones computed
over the kPCA incorporate non-linear solutions.

4.1.2. Only applying CCA method
If one first applied the CCA method, explained in Section 3.3,

directly to the two data sets without any prior projections. Then the
correlation between any linear projections of the two data sets is given
by

𝜌(𝐚,𝐛) =
𝐚⊺𝛴𝑋𝑌 𝐛

(𝐚⊺𝛴𝑋𝑋𝐚)1∕2(𝐛⊺𝛴𝑌 𝑌 𝐛)1∕2

ote that the property of scale invariance applies as follows

(𝑐 𝐚,𝐛) = 𝑐 𝜌(𝐚,𝐛)

herefore, in this case, the CCA problem can be expressed as the
olution to the optimisation given by

max
𝐚,𝐛

𝐚⊺𝜮𝑋𝑌 𝐛

.t. 𝐚⊺𝜮𝑋𝑋𝐚 = 1

𝐛⊺𝜮𝑌 𝑌 𝐛 = 1.

In the following, one can show how to solve this CCA optimisation
objective by first defining the matrix

𝜞 = 𝜮−1∕2
𝑋𝑋 𝜮𝑋𝑌 𝜮−1∕2

𝑌 𝑌

and then applying the Singular Value Decomposition (SVD) to obtain

𝜞 = 𝐖 𝐃 𝐕⊺
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where
𝐖 = (𝐰1,𝐰2,… ,𝐰𝑘)

𝐃 = diag(
√

𝜆1,
√

𝜆2,… ,
√

𝜆𝑘)

𝐕 = (𝝂1, 𝝂2,… , 𝝂𝑘)

where

𝑘 = rank(𝜞 ) = rank(𝜮𝑋𝑌 ) = rank(𝜮𝑌 𝑋 )

with 𝜆1 > 𝜆2 > 𝜆3 > ⋯ > 𝜆𝑘 are non-zero eigenvalues of the
matrix 𝜞𝜞 ⊺

(𝑑′×𝑑′) or 𝜞 ⊺𝜞 (𝑑×𝑑). Note that 𝐰𝑖 and 𝝂𝑖 are the standardised
eigenvectors of 𝜞𝜞 ⊺

(𝑑′×𝑑′) and 𝜞 ⊺𝜞 (𝑑×𝑑) respectively.
From these matrices, one can then find the canonical coefficients

for 𝑖 ∈ 1,… , 𝑘 as follows

𝐚𝑖 = 𝜮−1∕2
𝑋𝑋 𝐰𝑖

𝐛𝑖 = 𝜮−1∕2
𝑌 𝑌 𝝂𝑖

Applying these canonical coefficients to project columns of each data
set, one obtains the canonical correlation variables (𝑈𝑖, 𝑉𝑖)

𝜂𝑖 = 𝐚⊺𝑖𝐗𝑖
𝜓𝑖 = 𝐛⊺𝑖𝐘𝑖
From these we can conclude that the canonical correlation coefficients
measure correlation between linear combinations in each group of
original variables 𝐗𝑁×𝑑′ and 𝐘𝑁×𝑑 . Note that the squared coefficients
correspond to the eigenvalues or canonical roots of the square matrices

𝜞𝜞 ⊺
⏟⏟⏟
𝑑′×𝑑′

= (𝐗⊺𝐗)−1
⏟⏞⏟⏞⏟

𝜮−1
𝑋𝑋

𝐗⊺𝐘
⏟⏟⏟
𝜮𝑋𝑌

(𝐘⊺𝐘)−1
⏟⏞⏟⏞⏟

𝜮−1
𝑌 𝑌

𝐘⊺𝐗
⏟⏟⏟
𝜮𝑌 𝑋

𝜞 ⊺𝜞
⏟⏟⏟
𝑑×𝑑

= (𝐘⊺𝐘)−1𝐘⊺𝐗(𝐗⊺𝐗)−1𝐗⊺𝐘

The first eigenvalue accounts for the highest correlation between the
pairs of canonical variates and the rest of the eigenvalues are obtained
in descending order of correlation. Furthermore, the coefficients defin-
ing the canonical variates are obtained as eigenvectors associated to the
highest canonical roots in the square matrices, i.e. the first eigenvalue.
The coefficients for vector 𝐚 are in 𝜞𝜞 ⊺ while the coefficients for vector
𝐛 are in 𝜞 ⊺𝜞 .

4.1.3. Applying PCA followed by CCA method (PCA-CCA)
Next, consider what happens if we first take the PCA projection

for each data set 𝐗𝑁×𝑑′ and 𝐘𝑁×𝑑 individually and then repeat the
application of CCA on the transformed PCA projected data sets that
will be denoted generically by �̃�𝑁×𝑝′ = �̃�𝑁×𝑑′𝐖𝟏𝑑′×𝑝′ and �̃�𝑁×𝑝 =
�̃�𝑁×𝑑𝐖𝟐𝑑×𝑝 for 𝑝 ≤ 𝑑 and 𝑝′ ≤ 𝑑′. Under this two stage process, in
the second stage of the CCA, of the PCA transformed variables, we will
have a formulation given as follows

�̃� = 𝐗𝐖1 for 𝐖1 PCs s.t.
𝐖⊺

1𝐖1 = I𝑑′
𝜮𝑋𝑋𝐖1 = 𝜦1𝐖1

�̃�𝑖, �̃�𝑗 are independent

and
�̃� = 𝐘𝐖2 for 𝐖2 PCs s.t.
𝐖⊺

2𝐖2 = I𝑃
𝜮𝑌 𝑌𝐖2 = 𝜦2𝐖2

�̃�𝑖, �̃�𝑗 are independent

Suppose we retain all the PCs for both 𝐗 and 𝐘 i.e. 𝑝′ = 𝑑′ and 𝑝 = 𝑑.
Then according to the formulation in Section 4.1.2 the CCA is obtained
from the matrices
�̃� �̃� ⊺ = (�̃�⊺�̃�)−1�̃�⊺�̃�(�̃�⊺�̃�)−1�̃�⊺�̃�

⊺ ̃ ⊺ ̃ −1 ̃ ⊺ ̃ ̃ ⊺ ̃ −1 ̃ ⊺ ̃
12

�̃� �̃� = (𝐘 𝐘) 𝐘 𝐗(𝐗 𝐗) 𝐗 𝐘 d
Note that the columns of �̃� and �̃� are orthonormal after the PCA pro-
jections. Substituting the transformation and rearranging the algebra
gives

�̃� �̃� ⊺

⏟⏟⏟
𝑑′×𝑑′

= ((𝐗𝐖1)⊺(𝐗𝐖1))−1(𝐗𝐖1)⊺(𝐘𝐖2)((𝐘𝐖2)⊺(𝐘𝐖2))−1(𝐘𝐖2)⊺(𝐗𝐖1)

�̃� ⊺�̃�
⏟⏟⏟
𝑑×𝑑

= ((𝐘𝐖2)⊺(𝐘𝐖2))−1(𝐘𝐖2)⊺(𝐗𝐖1)((𝐗𝐖1)⊺(𝐗𝐖1))−1(𝐗𝐖1)⊺(𝐘𝐖2)

Then, using the fact that 𝐖1 and 𝐖2 correspond to the PCA projections
for the two data set respectively, one obtains

�̃� �̃� ⊺

⏟⏟
𝑑′×𝑑′

= 𝜦−1
1

⏟⏟⏟
𝑑′×𝑑′

(𝐗𝐖1)⊺
⏟⏟⏟
𝑑′×𝑁

(𝐘𝐖2)
⏟⏟⏟
𝑁×𝑑

𝜦−1
2

⏟⏟⏟
𝑑×𝑑

(𝐘𝐖2)⊺
⏟⏟⏟
𝑑×𝑁

𝐗𝐖1
⏟⏟⏟
𝑁×𝑑′

�̃� ⊺�̃�
⏟⏟
𝑑×𝑑

= 𝜦−1
2

⏟⏟⏟
𝑑×𝑑

(𝐘𝐖2)⊺
⏟⏟⏟
𝑑×𝑁

(𝐗𝐖1)
⏟⏟⏟
𝑁×𝑑′

𝜦−1
1

⏟⏟⏟
𝑑′×𝑑′

(𝐗𝐖1)⊺
⏟⏟⏟
𝑑′×𝑁

(𝐘𝐖2)
⏟⏟⏟
𝑁×𝑑

f 𝑑 = 𝑑′, then

̃ �̃� ⊺ = 𝜦−1
1 𝜦−1

2 (𝐗𝐖1)⊺(𝐘𝐖2)(𝐖
⊺
2𝐘

⊺)(𝐗𝐖1)

= 𝜦−1
1 𝜦−1

2 (𝐗𝐖1)⊺(𝐘𝐘⊺)(𝐗𝐖1)

= 𝜦−1
1 𝜦−1

2 (𝐘𝐘⊺)(𝐖⊺
1𝐗

⊺)(𝐗𝐖1)

= 𝜦−1
1 𝜦−1

2 (𝐘𝐘⊺)𝜦1

= 𝜦−1
2 (𝐘𝐘⊺)

nd
̃ ⊺�̃� = 𝜦−1

2 𝜦−1
1 (𝐘𝐖2)⊺(𝐗𝐖1)(𝐖

⊺
1𝐗

⊺)(𝐘𝐖2)

= 𝜦−1
2 𝜦−1

1 (𝐘𝐖2)⊺(𝐗𝐗⊺)(𝐘𝐖2)

= 𝜦−1
2 𝜦−1

1 (𝐗𝐗⊺)(𝐖⊺
2𝐘

⊺)(𝐘𝐖2)

= 𝜦−1
2 𝜦−1

1 (𝐗𝐗⊺)𝜦2

= 𝜦−1
1 (𝐗𝐗⊺)

Hence, in the case of the PCA-CCA, the coefficients 𝐚𝑖 and 𝐛𝑖 will
e the eigenvectors associated to the highest canonical roots in the
atrices 𝜦−1

2 (𝐘𝐘⊺) and 𝜦−1
1 (𝐗𝐗⊺) respectively. Next we see what differs

rom the PCA-CCA linear method when compared to the non-linear
unctional kPCA version of this two stage procedure, that we call
PCA-CCA.

.1.4. Applying kPCA followed by CCA method (kPCA-CCA)
In the kernel version of this hybrid method, denoted by kPCA-CCA,

s before we first transform each data set, this time using non-linear
ernel kPCA method for each data set, giving

𝐀1
⏟⏟
𝑁×𝑝′

= 𝐊1
⏟⏟⏟
𝑁×𝑁

𝐖1
⏟⏟⏟
𝑁×𝑝′

for 𝐖1 kPCs s.t.

𝐖⊺
1𝐖1 = I𝑝′

𝐖⊺
1𝐊1 = 𝜦1𝐖

⊺
1

�̃�1,𝑖, �̃�1,𝑗 are independent
𝐊1 = 𝜱𝜱⊺

𝐀2
⏟⏟
𝑁×𝑝

= 𝐊2
⏟⏟⏟
𝑁×𝑁

𝐖2
⏟⏟⏟
𝑁×𝑝

for 𝐖2 kPCs s.t.

𝐖⊺
2𝐖2 = I𝑝

𝐖⊺
2𝐊2 = 𝜦2𝐖

⊺
2

�̃�2,𝑖, �̃�2,𝑗 are independent
𝐊2 = 𝜳𝜳 ⊺

here 𝜱 and 𝜳 represent the non-linear maps applied to data sets
𝑁×𝑑′ and 𝐘𝑁×𝑑 , respectively. The matrices of 𝐀1𝑁×𝑝′

and 𝐀2𝑁×𝑝
are

he matrices of the kPCA obtained from the kernel matrices eigen

ecomposition. Hence, this time in the second stage the CCA will be
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obtained via matrices

�̂� �̂� ⊺

⏟⏟⏟
𝑝′×𝑝′

= (𝐀⊺
1𝐀1)−1𝐀

⊺
1𝐀2(𝐀

⊺
2𝐀2)−1𝐀

⊺
2𝐀1

�̂� ⊺�̂�
⏟⏟⏟
𝑝×𝑝

= (𝐀⊺
2𝐀2)−1𝐀

⊺
2𝐀1(𝐀

⊺
1𝐀1)−1𝐀

⊺
1𝐀𝟐

Note that the columns of 𝐀1 and 𝐀2 are orthonormal. If now one
considers the transformation introduced and rewrites the above then
�̂� �̂� ⊺

⏟⏟⏟
𝑝′×𝑝′

= ((𝐊1𝐖1)⊺(𝐊1𝐖1))−1(𝐊1𝐖1)⊺(𝐊2𝐖2)((𝐊2𝐖2)⊺(𝐊2𝐖2))−1(𝐊2𝐖2)⊺(𝐊1𝐖1)

�̂� ⊺�̂�
⏟⏟⏟
𝑝×𝑝

= ((𝐊2𝐖2)⊺(𝐊2𝐖2))−1(𝐊2𝐖2)⊺(𝐊1𝐖1)((𝐊1𝐖1)⊺(𝐊1𝐖1))−1(𝐊1𝐖1)⊺(𝐊2𝐖2)

Then, remark that 𝐖1 and 𝐖2 correspond to the kPCA projections for
the two data set respectively, then

�̂� �̂� ⊺

⏟⏟⏟
𝑝′×𝑝′

= 𝜦−1
1 (𝐊1𝐖1)⊺(𝐊2𝐖2)𝜦−1

2 (𝐊2𝐖2)⊺(𝐊1𝐖1)

�̂� ⊺�̂�
⏟⏟⏟
𝑝×𝑝

= 𝜦−1
2 (𝐊2𝐖2)⊺(𝐊1𝐖1)𝜦−1

1 (𝐊1𝐖1)⊺(𝐊2𝐖2)

If 𝑝 = 𝑝′, then

�̂� �̂� ⊺

⏟⏟⏟
𝑝′×𝑝′

= 𝜦−1
1 𝜦−1

2 𝜦1(𝐊2𝐊
⊺
2)

= 𝜦−1
2 (𝐊2𝐊

⊺
2)

�̂� ⊺�̂�
⏟⏟⏟
𝑝×𝑝

= 𝜦−1
2 𝜦−1

1 𝜦2(𝐊1𝐊
⊺
1)

= 𝜦−1
1 (𝐊1𝐊

⊺
1)

Hence, in the case of the kPCA-CCA, the coefficients 𝐚𝑖 and 𝐛𝑖 will be the
eigenvectors associated to the highest canonical roots in the matrices
𝜦−1

2 (𝐊2𝐊
⊺
2) and 𝜦−1

1 (𝐊1𝐊
⊺
1) respectively. This concludes a detailed com-

parison between classical CCA and the novel framework proposed of
reference method linear PCA-CCA and the non-linear version of kPCA-
CCA. Clearly indicating the relationships between each method and
the choice of projection basis and the kernel’s influence on the CCA
outputs.

5. Data and experiments

In our experimental studies, we focused on the U.S. state of Cal-
ifornia and utilised three distinct data sets. We engaged in extensive
data sourcing to initiate the process, collecting relevant variables in
these data sets. A crucial aspect of this work involved the engineering
of unique features that require a high level of proficiency in advanced
data processing, cleaning, and wrangling techniques.3

The veracity of the data sets utilised is outlined below:

1. Pollution Air Quality Data: (𝐗1
𝑁1×𝐷1

) Sourced from the U.S.
Environmental Protection Agency website (https://www.epa.
gov/4), this data set provides a comprehensive view of environ-
mental pollutants in multiple parameters and is sourced from
the leading data agency for this data in the U.S.A.. The 𝐷1
observed signals corresponding to carbon dioxide (Co2), nitrous
oxide (No2), air quality (AQI), and particular matter 2.5 (PM2.5)
observed daily between 2010–2020. The monitoring stations
considered are selected within a maximum distance radius of
50 km from the main cities in Table 2. Fig. 5 shows four

3 The result of this extensive operation was the creation of three accessible
ata sets, available at https://github.com/mcampi111, which are invaluable
ssets for future research endeavours and reproducibility of results contained.

4 Air Quality Data AQI https://aqs.epa.gov/aqsweb/airdata/download_files.
tml#Meta.
13
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panels where purple reflects the selected cities and green shows
the pollution monitoring station sites selected. Note that the
top panels refer to No2 and Co2 (left and right, respectively),
while the bottom panels refer to PM2.5 and AQI (left and right,
respectively). Fig. 6 presents four barplots, showing how many
stations are within each county. The top panels refer to No2
(left) and Co2 (right), while the bottom panels refer to PM2.5
(left) and AQI (right), respectively. Fig. 3 presents the feature
extraction procedure for the S counties in the study, a daily
time series per county is obtained by averaging the available
monitoring station data for each pollution variable spatially each
day, after removing monitoring stations with missing data. Fig. 7
demonstrates spatial heatmaps of the resulting pollution features
averaged across 10 years by county. In the top panels, there are
averaged No2 and Co2 (left and right respectively), while the
bottom panels show averaged PM2.5 and AQI (left and right
respectively) and Fig. 8 shows the boxplots of quarterly averages
by county.

2. Climate Data:(𝐗2
𝑁2×𝐷2

) Sourced from the Global Surface Sum-
mary of the Day (GSOD) data set from the National Oceanic and
Atmospheric Administration (NOAA) (https://www.ncei.noaa
.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:
C00516).5 This data set offers a daily overview of global climatic
conditions and is sourced from the leading data agency for this
data in the U.S.A.. The 𝐷2 observed signals corresponding to the
mean temperature (in Fahrenheit) denoted MT, the maximum
and minimum temperatures (in Fahrenheit) denoted 𝐻𝑡 and 𝐿𝑡
respectively and the total amount of precipitation (in inches), all
variables are observed daily between 2010–2020. The monitor-
ing stations considered are selected within a maximum distance
radius of 50 km from the main cities in Table 2. Fig. 9 shows
in the left panel a map of the selected weather stations in
the State of California and in purple the selected counties are
indicated and in green the weather stations around the counties
are indicated and in the right panel the number of stations
per county is displayed. In designing features for the climate
variables, for every station in each county, first a cubic spline is
used to interpolate any missing data. Then four spatial summary
statistics time series are constructed per county. The first a
bivariate time series of daily average high and low temperatures,
each spatially averaged across all sensors in a given county.
This produces a total of 𝑆 bivariate daily average high and
daily average low temperature time series between 2010–2020,
i.e. one bivariate daily time series per county associate with
selected cities in Table 2. The second set of feature time series
extracted for the temperature data again uses the daily high and
low temperature records, but transforms them into a volatility
estimator based on Parkinson range based volatility (see [55])
which captures variation in temperature over time per sensor
location. The volatility on day 𝑡 for county 𝑠 and monitoring
sensor location 𝑙 is given by

𝜎𝑡,𝑠,𝑙 =

√

√

√

√

1
4𝑛 × log 2

𝑛
∑

𝑡=1

(

log
𝐻𝑡(𝑠)
𝐿𝑡(𝑠)

)2
(6)

Once the Parkinson volatility is obtained for every location, an
average spatial volatility is calculated per day for each county.
For the precipitation variable, a daily time series is obtained per
county based on the total precipitation from a spatial aggrega-
tion of rainfall recorded within each station in a given county
each day. Fig. 4 summarises the data preprocessing and feature

5 Data is derived from the integrated surface hourly (ISH) data set. More
nformation about such a dataset is provided at https://www.ncei.noaa.gov/
ccess/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516.
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extraction framework for the climate data. A summary of the
features extracted is provided in Fig. 11 which demonstrates
boxplots of the averaged features quarterly. In Fig. 10 spatial
heatmaps of each climate feature averaged over 10 years for the
mean temperature (left), averaged total precipitation (middle)
and averaged volatility (right).

3. Green Investment in Sustainable Development Goals via
Municipal Green Bonds Data:(𝐗3

𝑁3×𝐷3
) This data set was col-

lected through a Bloomberg Terminal, providing comprehensive
information on municipal green bonds issued within the state of
California in the United States. This data was sourced from the
leading commercial data service for financial data globally.
As the green bond market evolves and expands, it is well-
positioned to provide the necessary funding for green projects,
stimulating participation from various stakeholders in the tran-
sition towards a more sustainable economy. Therefore, the right
selection of bonds and their attributes can provide insight into
the current utilisation and potential for environmental impact
that the overall green bond market may have in funding green
initiatives that can reduce pollution and influence climate
change in the longer term. Note that in order to solely focus
on the highest quality issuers and credit ratings as well as the
least potential for green washing we have selected the municipal
green bonds, those issued by Californian state governmental
authorities or public sector entities in California. As noted pre-
viously, California has the highest issuance of green bonds from
any state in the USA and so is the ideal candidate for this case
study. In this financial data set, 𝑁3 corresponds to the number
of green bonds issued across each county of California. The
considered time span for issuance from 2015 to 2020, since
the Green bond market is a nascent market that is growing
exponentially during this time span.
The first challenge is to identify and then screen for the appro-
priate selection of financial municipal green bonds. To identify
eligible municipal green bonds we used Bloomberg’s search
function ‘SRCH’ to screen for green bonds. This market screening
function allows users to create customised lists of loans, govern-
ment and corporate bonds, structured notes, municipal bonds,
and preferred securities from the Bloomberg database. The bond
selection criteria for Municipal green bonds (as of October 19,
2020) were carefully chosen to ensure a comprehensive dataset.
Asset classes had additional options such as including private se-
curities (all asset classes), consolidating duplicate bonds (REGS,
144 A, and STRIPs), including non-Bloomberg-verified bonds,
and including strips (loans). The screening criteria utilised are
presented in Tables 3, 4, and 5. A total of 1,425 municipal green
bonds were issued between January 1st, 2015, and October 15th,
2020, within the US. Notably, we further filtered the 208 bonds
related to California. We excluded bonds with adjustable and
floating coupon rates to prevent estimation distortions. Each
table presents selected bonds and additional statistical infor-
mation from Bloomberg, including offer type (Negotiated or
Competitive), underwriters, yield at issue, credit ratings and
outstanding amount. Table 5 displays the selection criteria for
Municipal green bonds (as of October 19, 2020) without option-
ality, resulting in 3,436 matches. This was then reduced to 167
Californian Greend Bonds.
Having identified the relevant green bond instruments in Califor-
nia, we then extracted the attributes recorded for these bonds.
We applied filters using Bloomberg search fields, such as as-
set class, security status, environmental, social, and governance
(ESG) green instrument indicator, issue date, maturity type,
outstanding amount, and Bloomberg composite rating. The ESG
criteria specified that the net proceeds of the fixed-income in-
strument should be applied towards green projects or activities
14

d

promoting climate change mitigation or adaptation or other
environmental sustainability purposes. While this ESG criterion
applies to various types of bonds, including corporate bonds,
preferred securities, and loans, the focus of the selection was on
municipal bonds. For municipal bonds, the ‘Y’ (Yes) designation
is returned if the bond has been classified as a green bond in
either the municipal purpose (DS066, MUNIPURPOSE2) or the
Municipal Purpose 3 (DS076, MUNIPURPOSE3) categories. It
is important to note that the ’composite rating’ criterion was
not applied during the bond selection process. The collected
financial variables offer valuable information about issued green
bonds, aiming to describe each bond with relevant attributes
that characterise it individually and convey information about
the impact of its disbursements. In particular for each munic-
ipal green bond some of the key attributes collected included:
issuance size, maturity, amount issued, yield at issue, coupon,
spread, credit risk amongst other variables, see Table 6 which
shows information about the collected variables, i.e. the name,
a brief description and the data type.
Fig. 12 shows the number of issued green bonds per county
within California. Alameda, San Francisco, Santa Clara, Santa
Cruz and San Diego have significantly high numbers. Fig. 13
plots the feature embeddings for the green bonds after hot
encoding is applied to the data from bonds in each county
considered.
It should be noted that since the collected variables describing
the green bonds were a combination of numerical, categorical
and dates, cleaning procedures and hot encoding were employed
to treat such differences when developing a feature represen-
tation. After cleaning and retention of the bond data that was
complete, a total of 167 green bonds were retained across the
counties of interest. Furthermore, since municipal green bonds
tend to focus on expenditure of their use of proceeds within
locations associated with the municipal issuer, it is relevant to
group these instruments and their financial attributes according
to the spatial location of the issuer, using this as a proxy for the
location of the disbursement of funds to green projects. As such,
the green bonds issued were categorised according to the geo-
graphical area associated with the county of issuance. We plot
the location of the issuer for each retained green bond in Fig. 12.
With regard to encoding the non-numeric variables into a nu-
meric feature space, several procedures could be followed for hot
encoding. These include classical and contrast encoders, such as
ordinal, one-hot, binary, hashing, Helmert, backward difference,
polynomial, etc. Alternatively, one could consider Bayesian en-
coders such as target, leave-one-out, weight of evidence, James
Stein method, M estimator, etc. The reader might refer to Cerda
et al. [56] for a review of different hot encoding methodologies.
In this work, for the categorical attributes, we use the most
used in practise, corresponding to the one-hot encoding, which
creates a new column for each unique value of the categorical
variable. If, for example, a categorical variable has categories
{red,blue, yellow}, the one-hot encoding will produce a three-
dimensional feature vector defined as {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.
In the resulting vector space, each category is orthogonal and
equidistant to the others. This property agrees with classical
intuitions about nominal categorical variables in statistics. We
perform a different solution for this encoding in the case of
date variables. In practice, we take the minimum date across
the entire data set and then count the number of days from
that minimum date to the rest of the data. In such a way,
the encoding is representative of the given data set and, thus,
data-driven.

Each dataset is subject to a carefully designed data cleaning proce-

ure and feature extraction process before being input to the methods
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Table 2
Table providing the major cities in the US state of California with a
population greater than 250,000 inhabitants.

Major cities California for monitor selection

City Population Latitude Longitude

Anaheim 334,909 33.84 −117.87
Bakersfield 301,775 35.36 −119.00
Fresno 472,517 36.78 −119.79
Long Beach 486,571 33.79 −118.16
Los Angeles 3,911,500 34.11 −118.41
Oakland 393,632 37.77 −122.22
Riverside 306,351 33.94 −117.40
Sacramento 480,392 38.57 −121.47
San Diego 1,299,352 32.81 −117.14
San Francisco 723,724 37.77 −122.45
San Jose 897,883 37.30 −121.85
Santa Ana 344,086 33.74 −117.88
Stockton 299,188 37.97 −121.31

explored for PCA-CCA and kPCA-CCA. A summary of the key aspects
of data pre-processing and extraction of relevant features via the PCA
and kPCA methods per data set is outlined in Fig. 2.

5.1. Data preparation and feature constructions

The following tables demonstrate the screening criteria and results
obtained from Bloomberg when extracting municipal green bonds.

5.2. Pollution air quality spatial-temporal data features empirical analysis

Empirical spatial–temporal summaries of the Air Quality pollution
data collected.

5.3. Climate spatial-temporal data features empirical analysis

5.4. Green bond spatial-temporal data features empirical analysis

An outline of the green bond instrument attributes collected that
were transformed into features in the analysis.

5.5. Training of kernel hyperparameters in kPCA via pre-image methods

In order to compute the kPCA for each data set, one must first
estimate optimal kernel hyper parameters, i.e., the 𝛾 length-scale pa-
ameter of the radial basis kernel function used in this analysis for real
alues attributes, generically given by

(𝑅𝐵𝐹 ) (𝒙𝑖,𝒙𝑗
)

= 𝜎2 exp
⎛

⎜

⎜

⎝

(

𝒙𝑖 − 𝒙𝑗
)2

2𝛾2

⎞

⎟

⎟

⎠

. (7)

ote, throughout we set 𝜎2 = 1 as we pre-whitened feature vectors prior
o kernel mapping. For the categorical and ordinal data attributes in the
inancial data set a Jaccard index kernel is used which for two discrete
inite sample sets, the Jaccard index is the size of the intersection
ivided by the size of the union of the sample sets of features, such
hat for 𝒙𝑖 ∈ 𝐴 ⊆ 𝛺 and 𝒙𝑗 ∈ 𝐵 ⊆ 𝛺

(𝐽 ) (𝐴,𝐵) = 𝐽 (𝐴,𝐵) ∶=
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

ith Jaccard index 𝐽 (𝐴,𝐵) = 1 when both |𝐴| = |𝐵| = ∅. Note, for the
accard kernel there are no hyperparameters to be learnt.

Therefore, for the RBK kernel, the 𝛾 length-scale hyperparameter for
ach data set is estimated via the method of pre-images combined with
hyperparameter learning algorithm. This involved considering a grid
15
f values for the hyperparmeters 𝛾 and then computing the distances
between the obtained pre-image for every tested hyperparameter and
every data set and minimising the Euclidean distance between the
obtained pre-image and the original data (per data set, per county). Ta-
ble 7 shows the final set of hyperparameters minimising the Euclidean
distance for every data set. Note that the columns represent the three
data sets and the considered counties’ rows.

5.6. Extraction of kPCA eigen functions for financial mixed attribute data

Since the financial data set is comprised of mixed type feature
attributes - real valued numerical, categorical, dates and ordinal data,
it was important to carefully consider the encoding and to examine
the best approach to kernel construction on this combined feature
space. The approach we adopted was to focus one kernel on sub-
space associated with one portion of encoded attributes and a second
kernel on the remaining feature sub-space and to combine them in an
additive manner. Conceptually, this is equivalent to taking a feature
space with feature vector 𝑖 and splitting it into two sub-spaces as follows
𝒙𝑖 =

[

𝒙1,𝑖,𝒙2,𝑖
]

∈ R𝑑 where 𝒙1,𝑖 ∈ R𝑑′ and 𝒙2,𝑖 ∈ R𝑑−𝑑′ and then using
this sub-space decomposition to form an additive combined kernel, one
specifically for each sub-space, as follows:

𝑘
(

𝒙𝑖,𝒙𝑗
)

= 𝑘(𝑅𝐵𝐹 )
(

𝒙1,𝑖,𝒙1,𝑗
)

+ 𝑘𝐽
(

𝒙2,𝑖,𝒙2,𝑗
)

.

Of course this can be done for any number of sub-spaces of sub-space
projections, and in this work the choice has been made to opt for
two specific sub-spaces associated with the two different categories of
features in the financial data, so that a specific kernel can be considered
for the categorical and ordinal encoded features, distinct from the real
values quantities.

Hence, once the encoding of all the non-numerical variables is
performed, we can construct a kernel matrix from which we can extract
the eigen functions via kPCA. To perform this we utilise an additive
kernel in which the first component kernel is applied to the feature sub-
space associated with numerical and encoded date variables and the
second additive component kernel is applied to the encoded categorical
variables. For the first kernel, we use the radial basis function with
euclidean distance; for the second kernel, we will use the Jaccard
index kernel. This allows us to produce a combined kernel matrix. A
summary of this process is presented in the heatmaps in Fig. 14, where
the columns of the plot show matrix heatmaps corresponding to the
first kernel component presented in column one, the second kernel
component presented in the middle column and the combined kernel
matrix presented in the third column on the right. Kernel matrices
computed on the numerical and date attributes are in left panels and the
kernels on the encoded categorical attributes are in the middle panels
with combined additive kernel results for both in the right column. The
rows of this plot of heat maps of kernel matrices correspond to different
counties (spatial analysis) for the counties of Alameda, San Francisco,
Los Angeles, Santa Cruz, San Diego. Afterwards, we summed the two
Gram matrices and obtained the final matrix carrying the information
of all the financial variables for one county.

5.7. Analysis of the PCA and kPCA indexes

The approach adopted to assessing the information content captured
by each of the extracted indexes, we term PCs (eigen vectors) or kPCs
(eigen functions), is to assess the information captured by the rank
reduced representations of the kernel matrices versus the complete
data covariance matrix as measured by the ‘‘Empirical Centered Kernel
Alignment’’ (CKTA) [57]. To perform this CKTA measure, considers two
Gram Matrices 𝐊1 and 𝐊2 and define the CKTA as

̂
(

𝐊1,𝐊2
)

=
⟨𝐊𝑐

1,𝐊
𝑐
2⟩

√

⟨𝐊𝑐 ,𝐊𝑐
⟩ ⟨𝐊𝑐 ,𝐊𝑐

⟩

∈ [−1, 1] (8)

1 1  2 2 
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Fig. 2. The figure presents the steps performed on the different datasets. We have three data sets: climate, pollution, and financial ones. For each set, we performed data cleaning
and pre-processing, a feature extraction procedure, model calibration for the kPCA with a grid search and the evaluation of a new set of coordinates by exploiting the out-of-sample
problem. These steps have been introduced in Section 4.1 and will be further presented in this Section. The procedures are consistent across the data sets, but in the case of the
financial data, in the feature extraction step, we consider two kernel functions: the radial basis function for the numerical variables and the Jaccard function for the categorical.
More information about this will be given in the subsections below.
Table 3
Bond selection criteria for Municipal conventional bonds (as at 19-Oct-2020) without optionality.

Field Boundaries Selected criteria Matches

Asset Classes Include Municiples 5,209,602
Security Status Include Active Municiples 947,379
Maturity Type Exclude Callable, putable, sinkable, make

whole call, anticipated sinking fund
352,760

Issue date In the range 01/01/2015–19/15/2020 273,824
Amount outstanding ≫ 10 million 272,047
Composite rating In between AAA - BBB XX
Table 4
Bond selection criteria for Municipal green bonds (as at 19-Oct-2020) with optionality.

Field Boundaries Selected criteria Matches

Asset Classes Include Municiples 5,209,602
Security Status Include Active Municiples 947,379
Environmental, social & governance:
green instrument indicator

Include 9,637

Issue date In the range 01/01/2015–19/15/2020 8,839
Amount outstanding ≫ 10 million 8,766
Composite ratinga In between AAA - BBB XX

a Criteria ‘composite rating’ is not applied.
where
𝑐 1 ⊺ 1 ⊺ 1 ( ⊺ ) ⊺
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𝐊 = 𝐊 −
𝑁

𝟏𝟏 𝐊 −
𝑁

𝐊𝟏𝟏 +
𝑁2

𝟏 𝐊𝟏 𝟏𝟏
corresponds to the centered kernel Gram Matrix, and 𝟏 is the vector of
ones with the appropriate dimension concerning the Gram Matrix 𝐊.
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Fig. 3. Data cleaning and pre-processing of the pollution dataset. For each of the four variables and the 𝑆 locations, we perform the following steps: (1) align the data at each
monitor/station by day; (2) if data are missing, fit a cubic spline; (3) compute a time series spatial average across monitors by location. Full details of this procedure are provided
in the initial part of this Section, under the pollution Air Quality Data description.
Fig. 4. Data cleaning and pre-processing of the climate dataset. For each of the four variables and the 𝑆 locations, we perform the following steps: (1) align the data at each
monitor/station by day; (2) if data are missing, fit a cubic spline; (3) compute a time series spatial average for different features. Full details of this procedure are provided in
the initial part of this Section, under the climate Data description.
Furthermore, the operator ⟨⋅, ⋅⟩ represents the matrix Frobenius inner
product. Such an operator is computed on two real matrices 𝐀 ∈ R𝑛×𝑚
and 𝐁 ∈ R𝑛×𝑚 as follows

⟨𝐀,𝐁⟩ = 𝐴 ⋅ 𝐵 =
𝑛
∑

𝑚
∑

𝐀𝑖𝑗𝐁𝑖𝑗 = tr
(

𝐀⊺𝐁
)
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𝑖=1 𝑗=1
In the case of the PCA reduced rank approximations, the CKTA is
utilised to compute the distance between the empirical covariance
matrix and the kernel Matrices computed with one basis (PC1), with
two bases (PC1 and PC2), and with three bases (PC1, PC2 and PC3).
In the case of the kPCA reduced rank approximations, the CKTA is
utilised to compute the distance between the empirical linear kernel
data covariance matrix and the rank reduced kernel Matrices computed
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Table 5
Bond selection criteria for Municipal green bonds (as at 19-Oct-2020) without optionality.

Field Boundaries Selected criteria Matches

Asset Classes Include Municiples 5,209,602
Security Status Include Active Municiples 947,379
Environmental, social & governance:
green instrument indicator

Include 9,637

Maturity Type Exclude Callable, putable, sinkable, make
whole call, anticipated sinking fund

3,720

Issue date In the range 01/01/2015–19/15/2020 3,474
Amount outstanding ≫ 10 million 3,436
Composite rating In between AAA - BBB XX
Fig. 5. Selected pollution monitors for collecting No2, Co2, PM2.5 and AQI. In purple major cities of California given in Table 2. In green the selected monitors which fall within
a radius of 50 km around such cities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
with one basis (kPC1), with two bases (kPC1 and kPC2), and with three
bases (kPC1, kPC2 and kPC3). The results of this analysis allow us to
order the rank reduced approximations, either linear PCA methods or
non-linear kPCA methods according to their approximation accuracy as
measured by the CKTA. This analysis is performed at a county level for
every considered data set. In this way, we can assess which extracted
basis functions best capture the structural variability of the proposed
data features. Furthermore, by contrasting results for both PCs and
18
kPCs, we can evaluate whether this variability is best represented by
linear (PCA) or non-linear (kPCA) methods.

The CKTA results are summarised in Tables 8 and 9 for pollution and
climate data sets, respectively. Optimal representations are highlighted
based on the achieved CKTA scores that were superior to 70% as, in
practice, a 70% level of alignment represents high variability captured.
It is clear from this analysis that there is a definite advantage to using
the extracted representations based on the kPCA eigen functions when
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Fig. 6. Barplots showing the number of selected stations within each county of interest. Note that the top panels refer to No2 and Co2 (left and right, respectively), while the
bottom panels refer to PM2.5 and AQI (left and right, respectively). The 𝑥-axis shows the different California Counties (ordered alphabetically from left to right), and the 𝑦-axis
represents the number of stations considered for that variable. In the final experiments, only a subset of all these counties will be used. Further explanation is given in the following
Subsections.
contrast with the PCA eigen vector bases. This is most pronounced on
the Pollution Air Quality Data sets analysis, where PCA representations
were significantly inferior to the kPCA representations across all spatial
regions. In the case of the Climate data the effect was significantly less
pronounced difference, though it is still the case that the kPCA was
optimal across all counties.

The results for the financial data are presented in Table 10. In
this case, the PCs and the kPCs are applied to the given data after
performing hot encoding and ad hoc transformations for the kPCS
described above but without engineering new specific financial fea-
tures. The results show that PC alignments with the empirical covari-
ance matrices do not achieve 70% in any of the counties, suggesting
that the underlying data carries highly non-linear and non-stationary
variability.

This indicates that indeed the modes of variation in each data set are
best captured by the non-linear kernel basis representations. Validating
the need to proceed to construct the kPCA-CCA method between pairs
of data sets:

• Pollution Air Quality Data (𝐗1
𝑁1×𝐷1

) and Green Investment in
Sustainable Development Goals via Municipal Green Bonds Data
(𝐗3

𝑁3×𝐷3
); and

• Climate Data:(𝐗2
𝑁2×𝐷2

) and Green Investment in Sustainable De-
velopment Goals via Municipal Green Bonds Data:(𝐗3 ).
19

𝑁3×𝐷3
Note, that whilst the PCA basis representations are sub-optimal in these
findings compared to the kPCA representations, we will still develop
solutions based also on PCA-CCA which will act as a baseline reference
to compare performance to when assessing the preferred method of
kPCA-CCA. A toy example describing the procedure of how to compute
these CKTAs is provided in the Supplementary Information.

5.8. PCA-CCA and kPCA-CCA inter data analysis

This section focuses on the analysis of the PCA-CCA and kPCA-
CCA results. Statistical tests, discussed in Section 3.3, that allow one
to study the statistical evidence for the relationships extracted by the
CCA component of the framework will be performed in order to assess
the results of the canonical correlation for PCA-CCA and kPCA-CCA
method results when applied to the pairs of data (Pollution Air Quality,
Green Bonds Financial) and (Climate, Greend Bonds Financial) data.
Subsequently, we will look at the canonical correlation by considering
the structure coefficients or canonical loadings.

Furthermore, in the case of the kPCA features, in order to assess
the correlation between green bonds’ financial variables and pollution
or climate and provide support to more efficient decision-making pro-
cesses in how the use of proceeds is employed and, possibly, how this
should be used in the future, we require a description of the contribu-
tion of the original financial variables to understand which one drives
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Fig. 7. Heatmaps of the engineered pollution features averaged across 10 years by county. In the top panels, there are averaged No2 and Co2 (left and right respectively), while
the bottom panels show averaged PM2.5 and AQI (left and right respectively). We can observe the spatial distribution of the averaged features by monitors further averaged by
10 years.
the obtained results. This is achieved by considering a reconstruction
error for the numerical financial variable, i.e. by taking the pre-image
of the kPCs. We then computed the difference between the original
and reconstructed data through the kPCs. For the categorical variables,
instead, we employ the cKTA and observe, variable by variable, the
alignment with the original categorical data. In other words, we se-
lect one county and one categorical variable, construct an empirical
covariance matrix of that individual variable through the Jaccard dis-
tance, and, afterwards, compute the empirical covariance matrix of all
categorical variables of that county (again with the Jaccard distance)
and calculate the distance between the two matrices. As a result, we
have an alignment per variable with that county’s whole categorical
data set and can interpret how much each variable contributes to the
variation. All the analysis is done by considering the first two bases
of each decomposition method, i.e. PC1 and PC2 and kPC1 and kPC2,
since these two presented significant canonical correlations, while the
third bases did not carry any. Further, note that the Supplementary
Information presents one section with the analysis of the correlation
matrices for the PCA-CCA and kPCA-CCA.

Results are provided in Tables 11(a) to 11(d) for the PCA-CCA,
while in Tables 12(a) to 12(d) for the kPCA-CCA. Each table shows the
20
main results with the canonical coefficients per canonical variates, the
squared canonical correlation and the F-test for canonical correlation
following Rao’s approximation, for which we provide the F-statistic,
the two degrees of freedom required for the computation of the test and
the 𝑝-value. If one focuses on the first set of Tables, i.e. Tables 11(a)
to 11(d), the top table refers to the CCA conducted with PC1 and the
bottom tables with the CCA carried with PC2. Further, the left tables
are for the financial/pollution CCAs, while the right tables are for the
financial/climate CCAs.

5.8.1. Linear benchmark PCA-CCA inter data strength of spatial-temporal
associations analysis in PCA factor space

The results in Tables 11(a) to 11(d) of application of the PCA-
CCA analysis demonstrated that no canonical correlation is strong
enough to be statistically significant. This was found to be true for any
selected PCs according to the F-test. This demonstrates that the linear
method for the feature extraction via PCA failed to capture significantly
any evidence of associations between the changes in the green bond
financial data variables and the pollution air quality both spatially and
temporally. Likewise this was also found to be the case for the result
seeking associations between the changes in the green bond financial
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Fig. 8. Boxplots of the pollution-engineered features, further averaged by yearly quarters and county. Hence, each boxplot is representative of 10 points, where that variable has
been averaged across the quarter and the county.
Fig. 9. Left panel: map of the selected weather stations in the State of California. In purple major cities of California given in Table 2. In green the selected monitors which fall
within a radius of 50 km around such cities. Right panel: number of stations per counties. The 𝑥-axis shows the different California Counties (ordered alphabetically from left
to right), and the 𝑦-axis represents the number of weather stations. In the final experiments, only a subset of all these counties will be used. Further explanation is given in the
following Subsections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
data variables and the climate data, spatially and temporally. It is
conjectured that this lack of statistical evidence for such relationships
arises from the fact that the variation in both the pollution air quality
spatial–temporal process and the climate spatial temporal processes are
best capture by non-linear features that can only be obtained via the
kPCA method. Further evidence of this, as it pertains to assessment of
21
the PCA-CCA method, is confirmed in Section 7 of the Supplementary
Information.

5.8.2. Non-linear kPCA-CCA inter data strength of spatial-temporal associ-
ations analysis in kPCA factor space

Results for the non-linear kPCA-CCA methods application using
kPCs instead of PCs are provided in Tables 12(a) to 12(d). Analogously
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Fig. 10. Heatmaps of the engineered weather features averaged across ten years by county. From left to right, the panels show averaged temperature, averaged total precipitation
and averaged volatility. We use the term averaged for each feature, meaning that the plotted value for every county is an average across the ten years.
Fig. 11. Boxplots of the climate-engineered features, further averaged by yearly quarters and county. Hence, each boxplot is representative of 10 points, where that variable has
been averaged across the quarter and the county.
to the PCA-CCA method, the results are presented for both kPC1 and
kPC2, respectively. In the results for kPC1, the first two canonical
functions display a canonical correlation of 1.000 and 0.790, which
are high levels of correlation (note that we will consider across the
entire set of results correlations that are superior to 0.700). Further-
more, the correspondent squared canonical correlations, representing
the shared variance in each canonical function by the individual canon-
ical variates, are 0.999 and 0.724, respectively. This suggests that
these two canonical functions detect most of the underlying cross-
correlation between the kPC1 extracted by these two data sets. All
the canonical functions are significant according to the F-test, with the
only two exceptions for the eighth and ninth. However, the first two
will be considered in the analysis since they carry the highest level of
correlations.
22
If one now considers the result of kPC2 given in Table 12, it is
apparent that in this case also the canonical correlations of the first
two canonical functions are strong and correspond to 1.000 and 0.881,
respectively, with squared canonical correlations of 0.999 and 0.776.
This demonstrates that high levels of variance are explained by both the
canonical variates of each canonical function. Again, all the canonical
functions except for the ninth one are significant according to the F-
test. However, only the first two will be retained and considered in the
analysis.

In Tables 12(c) and 12(d), equivalent results of the kPCA-CCA
method are presented for kPC1 and kPC2 of the climate and green bond
financial data. Unlike the case for the pollution air quality data versus
green bond financial data, in this pair of data (climate and green bond
financial data), the only canonical correlation higher than 0.700 is one
of the first canonical functions of kPC1 with a canonical correlation
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Table 6
This table lists the financial characteristics collected for each green bond, including a description of the attribute and its type, which may be categorical, numerical, or date type

Financial data

Variable Description Categorical/Numerical/Date

CUSIP Committee on Uniform Security Identification Procedures CategoricalSecurity identification number for the U.S. and Canada
County of Issuance County where the green bond is issued (in California) Categorical
Issuer Name Name of the issuing entity of the security. Categorical

Muni Maturity Size
Dollar amount of bonds issued under this maturity.

NumericalFor Zero Coupon Bonds, the dollar amount represents
the initial principal value.

Amount Out The total or principal amount of the green bond Numericalthat has been disbursed or provided to the borrower or issuer

Coupon

Current interest rate of the security. For bonds with

Numericalreset compounding structures, this will return the estimated annualised
daily reset compounding structures, this will return the estimated annualised rate
for coupon cash flow calculations for the corresponding settlement date

Issue Date Date the security is issued Date
Dated Date Date when interests start to accrue Date
Maturity Date, the principle of a security, is due and payable Date
Bid OAS (option adjusted spread) Number of basis points the spot curve Numerical
Spread (bps) would have to shift for the present value of the cash flows

to equal the security’s price, using the bid price
Mid-Macaulay Duration Macaulay’s Duration based on the mid-price of the security is returned Numerical
Issue Price Price of the security at issue Numerical

Yield at Issue
Occurring on the coupon strip’s maturity date.

NumericalTherefore, the amount outstanding/issued is not populated.
Municipals - Returns the amount of the given maturity.

Spread at Issuance to Worst
Spread for tax-exempt bonds is calculated from AAA Callable.

NumericalFor taxable bonds, the spread is calculated from US Treasury Actives curve.
Spread is calculated to the appropriate interpolated point on the curve.

Muni Issue Type Describes the security structure of the bonds and the security type Categorical
Issuer Industry The industry classification of the issuer of the security Categorical
Muni Source The source of funds that will be the primary source of debt service on the bonds Categorical

Muni Offering Type

Specifies how a bond was sold in the market. Bond sale

Categorical
methods can be competitive or negotiated. Short-term deals are typically 18 months
or less in maturity. Limited sales are to a specific set of investors, while private
placements are sold directly to investors with certain restrictions.
Remarketed bonds are resold after they have been tendered

Muni Issue Type Describes the security structure of the bonds and the security type Categorical

Bloomberg Issuer 5-Year Credit Risk
Risk class assigned to the issuer based on the

Categoricalon the Bloomberg Issuer Default Risk model generated probability of
default over the next five years
of 0.815 and a squared canonical correlation of 0.712. All the others,
for both kPC1 and kPC2, are below this target 0.7 threshold, hence
suggesting a low level of correlations between these two modes of
variations extracted on financial data and climate data. Furthermore,
by focusing on the F-test results, less canonical functions appear to be
significant compared to the pollution/green bond data analysis case.
The result section will therefore focus on pollution more than the
climate but still show the obtained results for both cases to support
our findings further.

Furthermore, it is interesting to observe how the rate of the canon-
ical correlation decreases across the variates at a much slower pace
compared to the one of the squared canonical correlation, hence sug-
gesting that a researcher should be carefully paying attention to both
these indices since even if the correlation is maximised, and the F-test
appears to be significant, if the variance shared between the different
23
synthetic canonical variates is low, then the correspondent pair or
canonical function will not carry enough information of the underlying
data.

At this stage of the analysis, a common practice is to consider
the redundancy index. The redundancy index provides an indicator
summary of the overall explanatory power of the canonical functions.
In practice, it is to determine how much of the variance is accounted
for in one set of variables by the other set of variables. We provide
a redundancy analysis in the Supplementary Information, for kPC1-
CCA and kPC2-CCA for the case of pollution and financial data. The
redundancy plots show that the total variance of the financial kPCs
explained by the corresponding pollution kPCs is approximately 60%,
while the total variance of the pollution kPCs explained by the cor-
responding financial kPCs is about 80%. High redundancy suggests
a strong predictive ability, indicating that green bond financial kPCs
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Fig. 12. Number of green bonds issued in California. Note that the total corresponds
to 208. However, in the analysis, due to some data cleaning criteria the final number
will be 167.

Table 7
Table describing the optimal 𝛾 parameters of the RBF kernel as given
in Eq. (7). The procedure to identify these final hyperparameters is
summarised Subsection 3.1.1 of the Supplementary Information. As
explained, the kPCA is conducted at a county level, hence the first
column presents the set of counties considered in California taken
into account according to data availability of the three datasets and
population number of the considered counties (note that this selection
criterion information is explained in details in Section 5). The columns
represents the three different data sets, i.e. financial data set, pollution
data set and climate data set.

Optimal 𝛾 hyperparameter for the datasets

County Financial Pollution Climate

Alameda 0.5 0.5 5
Los Angeles 0.5 0.5 1
Napa 1.0 1.0 1
San Diego 0.5 0.5 5
San Francisco 0.5 0.5 5
San Joaquin 0.5 0.5 1
San Luis Obispo 0.5 0.5 5
Santa Clara 0.5 0.5 5
Santa Cruz 0.5 0.5 1

efficiently explain pollution kPCs. This suggests that increasing growth
in green bond industry as measured by increased attributes such as
issuance of greenbonds, increases issuance sizes that lead to greater
funding for green initiatives is directly able to predict changes in
pollution air quality. An equivalent analysis was performed for the case
of financial and climate data, but no significant results were obtained.

In principle, the weak associations between the climate and green
bond financial data sets, we believe is a result of the fact that the
time-scale taken for green finance expenditures and funded projects
to materially impact the climate in the regions in which significant
funding is provided to green initiatives will be of a much longer time
resolution to the time window studied in this work. Note, the time
utilised in this project reflects the longest time possible as the green
bond market is still in its infancy and so bonds have not been issued yet
for multiple decades in this nascent market. As this market continues
to grow and mature, we suspect that a re-assessment of this pair of data
will yield stronger relationships from the kPCA-CCA methodology.
24

i

This analysis shows that whilst the emerging green bond mar-
ket expenditure on green initiatives is having strong spatial–temporal
associations with changes in pollution as a result of efforts to un-
dertake green finance funded mitigation, this is detectable at shorter
time-scales. However, the influence such green bond expenditures will
ultimately have on climate variables will be a much longer process of
assessment and will require multiple decades of green bond financing
data to be definitive as to how effectively one can find associations
between measurable changes in climate and green bond financing of
projects to attempt to implement climate change mitigation strategies.

Next the results of the kPCA-CCA methods application is assessed
in more spatial detail, which is achieved by focusing on the structured
coefficients and the squared structure coefficients of the first and
second canonical functions for the case of kPC1 and kPC2 for each
pair of data sets analysed. These results are given in Tables 13(a) and
13(b), where the left tables refer to pollution air quality and green bond
financial while the right tables refer to climate and green bond financial
data, respectively. Further, the top tables refer to the results of kPC1
and the bottom tables to the results of kPC2. To further understand the
output of these tables, we provide plots of the structured coefficients in
Fig. 15 and Fig. 16, for pollution air quality and green bond financial;
and climate and green bond financial, respectively. Each table shows
the data set of interest, the kPC on which the CCA has been performed,
the county for which we collected the structured coefficient of the first
and second canonical functions and the squared structured coefficient
of the first and second canonical functions.

It is known that a structured coefficient represents the equivalent
interpretation of a loading in PCA and the bivariate correlation between
an observed variable and a computed canonical variate. They range
between −1 to 1 and provide information about which of the original
ariables, the kPCs, must define the canonical variate to maximise
he correlation across these. Hence, how much the original quantities
ontribute or load the constructed canonical variate. Furthermore, the
quared structure coefficient represents the proportion of variance an
bserved variable, hence a kPC, shares with the canonical variate gen-
rated from the CCA. The structured coefficient can be considered if this
uantity is high enough. We will consider a structure coefficient higher
han 0.700 or lower than −0.700 with a squared structure coefficient in
n equivalent range. To analyse these tables, the analysis first considers
he relationship between structure coefficients (and related squared
tructure coefficients) related to kPCs of the same data set and, after,
cross the different data sets. Consequently, a relationship between the
ifferent counties through the modes of variations given by the kPCs
an be considered. The significant results and the ones discussed in the
ables are highlighted in bold.

If one focuses on the top panel of Table 13, then the results for
he CCA applied to the first kPC of financial and pollution data sets
f the nine considered California counties are shown. Note that there
re significant results only for the first canonical variate. A visual
epresentation of these findings is also provided in a heliogram plot in
ig. 12 which shows the results per county. It is possible to observe how
an Diego, San Francisco, Santa Cruz and Santa Clara have many issued
reen bonds compared to San Luis Obispo, so a different behaviour is
xpected. This can be found in kPC2.

We now move to the analysis of CCA on kPC2 for pollution and
inancial data sets. One observes that while the kPCA-CCA analysis
sing kPC1 appears to capture a multivariate relationship most strongly
n spatial regions Alameda, Napa, San Joaquin and San Luis Obispo, in
ontrast, the application of kPCA-CCA using the second kPC instead
resents a relationship also across other counties including San Diego
nd San Francisco, suggesting that these two modes of variations
apture different underlying information. If one then looks at the
reen bond issuance data in these various counties this distinction is

ndicative of the difference in rate and size of issuance between these
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Fig. 13. Boxplots of the numerical variables used for the financial data set. The 𝑥-axis shows the considered Counties while the 𝑦-axis the range of the values for every variable.
Table 8
cKTA results for the pollution data set. Each row shows a considered county, while, in the columns, we have the different approximation
matrices used for the cKTAs. The first column presents the cKTAs calculated using the covariance matrices of the engineered features for
the pollution data and the rank-one approximation covariance matrices using PC1 as a column vector. The second column presents the cKTA
calculated using the covariance matrices of the engineered features for the pollution data and the rank-two approximation covariance matrices
using PC1 and PC2 as column vectors. Equivalent reasoning applies to the rest of the columns.

Results of centered kernel target alignment - pollution dataset

County PC1 PC1 & PC2 PC1 & PC2 & PC3 kPC1 kPC1 & kPC2 kPC1 & kPC2 & kPC3

Alameda 0.160 0.476 0.536 0.276 0.479 0.709
Los Angeles 0.370 0.452 0.465 0.324 0.740 0.808
Napa 0.015 0.141 0.143 0.440 0.651 0.803
San Diego 0.280 0.530 0.551 0.262 0.730 0.849
San Francisco 0.656 0.624 0.695 0.568 0.553 0.511
San Joaquin 0.670 0.499 0.544 0.555 0.681 0.719
San Luis Obispo 0.072 0.411 0.459 0.660 0.751 0.810
Santa Clara 0.766 0.799 0.806 0.681 0.714 0.886
Santa Cruz 0.313 0.313 0.515 0.444 0.601 0.705
counties. Further results are provided in the Supplementary Informa-
tion which show additional plots of structured coefficients for more
canonical variates (the second one and the third one).

Table 13 shows results for the structured coefficients and squared
structured coefficients of the first and second canonical variates of
kPC1 and kPC2 for studying climate and green bond financial data.
Results found here are consistent with the conjecture posed earlier that
pertains to the inability to detect strong associations between green
bond financing of climate mitigation strategies over the relatively short
time frame studied, when compared to the time scale it will likely take
25
for measurable associations between such green project expenditure
and measurable climate mitigation to manifest. We simply include these
results here for completeness of the analysis.

5.8.3. Interpretation of non-linear kPCA-CCA results in original data fea-
ture space

In this section, building on the results that identified strong asso-
ciations in space and time between green bond financial data when
projected into non-linear kPCA factor space vs pollution air quality
data when also projected into non-linear kPCA factor space, it becomes
interesting to re-assess these relationships identified in the original data
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Fig. 14. Heatmaps of the Gram matrices computed with the Jaccard distance on the financial variables of the counties Alameda, San Francisco, Los Angeles, Santa Cruz, San Diego,
from top to bottom. Note that within each individual panel, the top bar represents the colour key or legend. It represents the mapping between the colours used in the heatmap
and the corresponding numeric values. The line within the colour key represents the range of values present in the heatmap, with the colours on the heatmap corresponding to
different ranges of values.
feature space. This is instrumental in both direct interpretation as well
as development of actionable decision making outcomes based on the
findings.

In this work, what must be considered at this point is that we should
evaluate the information captured by the kPCs extracted on the finan-
cial data to achieve such a goal. To do so, since the kPCs incorporate
information of both numerical and categorical data, we decided to
observe the cKTA of the kPCs with the original variables, one by one.
In so doing, one may identify what the detected associations mean with
regard to the original data features. This can be achieved by considering
a reconstruction mean square error (MSE), where, by considering the
pre-images of kPC1 and kPC2, we computed the euclidean distances of
26
the reconstructed data and the original ones and utilised them in the
cKTA measures evaluation. Figs. 17 and 18 display the cKTA measures
by variable and by kPC, per county.

Fig. 17 shows the analysis for the categorical green bond financial
variables. It demonstrates that strongest results were obtained for the
counties of San Diego, Santa Clara, and Santa Cruz. In San Diego,
the best represented variable corresponds to Muni Source (the issuer
of the municipal green bond) for both kPCs, while, in Santa Clara
the best categorical variable is Muni Issue Type (the structuring of
the green bond). For Santa Cruz, the variables that were most influ-
ential were Muni Source, Muni Offering Type, and Issuer Industry.
For Alameda, it seems that kPC1 is better capturing the categorical
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Table 9
cKTA results for the climate data set. Each row shows a considered county, while, in the columns, we have the different approximation matrices
used for the cKTAs. The first column presents the cKTA calculated using the covariance matrices of the engineered features for the climate data
and the rank-one approximation covariance matrices using PC1 as a column vector. The second column presents the cKTA calculated using the
covariance matrices of the engineered features for the climate data and the rank-two approximation covariance matrices using PC1 and PC2 as
column vectors. Equivalent reasoning applies to the rest of the columns.

Results of centered kernel target alignment - climate dataset

County PC1 PC1 & PC2 PC1 & PC2 & PC3 kPC1 kPC1 & kPC2 kPC1 & kPC2 & kPC3

Alameda 0.434 0.764 0.767 0.515 0.794 0.823
Los Angeles 0.250 0.591 0.582 0.425 0.733 0.842
Napa 0.511 0.818 0.841 0.361 0.819 0.920
San Diego 0.245 0.617 0.606 0.230 0.525 0.628
San Francisco 0.657 0.741 0.741 0.456 0.601 0.806
San Joaquin 0.740 0.756 0.800 0.676 0.780 0.885
San Luis Obispo 0.528 0.804 0.817 0.654 0.821 0.951
Santa Clara 0.483 0.768 0.773 0.522 0.898 0.925
Santa Cruz 0.390 0.745 0.736 0.258 0.653 0.773
Table 10
cKTA results for the financial data set. Each row shows a considered county, while, in the columns, we have the different approximation
matrices used for the cKTAs. The first column presents the cKTAs calculated using the covariance matrices of the financial data and the rank-
one approximation covariance matrices using PC1 as a column vector. The second column presents the cKTAs calculated using the covariance
matrices of the financial data set and the rank-two approximation covariance matrices using PC1 and PC2 as column vectors. Equivalent
reasoning applies to the rest of the columns.

Results of centered kernel target alignment - financial dataset

County PC1 PC1 & PC2 PC1 & PC2 & PC3 kPC1 kPC1 & kPC2 kPC1 & kPC2 & kPC3

Alameda 0.159 0.345 0.567 0.115 0.395 0.788
Los Angeles 0.372 0.443 0.458 0.493 0.585 0.730
Napa 0.255 0.501 0.611 0.804 0.707 0.707
San Diego 0.136 0.435 0.443 0.765 0.845 0.837
San Francisco 0.345 0.377 0.489 0.224 0.428 0.680
San Joaquin 0.476 0.457 0.566 0.867 0.866 0.823
San Luis Obispo 0.345 0.467 0.557 0.958 0.867 0.856
Santa Clara 0.387 0.427 0.655 0.234 0.531 0.649
Santa Cruz 0.329 0.346 0.453 0.135 0.494 0.782
variables, while, for Los Angeles and San Francisco is instead kPC2.
However, the level of alignments achieved is around 0.4, suggesting
a 40% alignment on average. Napa, given the low number of samples,
show zero levels of alignments, suggesting the need for a future analysis
once more municipal green bonds have been issued in this county. This
result is interesting as it suggests that the issuer is influential in the
association detected with pollution air quality variation. This can be
directly understood as follows, if a municipal issuer of green bonds is
responsible for say road and transportation development in the county,
they are likely making the green bond issuance and then utilising the
raised proceeds for expenditures on items that reduce pollution arising
from transportation and road networks, a significant factor in reducing
air pollution. A second example as to why such an association may
be expected is for muni issuers who may be responsible for energy
production, their issuance of green bonds may lead to changes in the
manner in which energy production is performed, by incorporating less
coal and more solar and wind energy in the counties electricity grid,
funded by issuance of green bonds for this purpose. As such, it is rather
natural to expect that the issuer category may play an instrumental role
in such an association between green bond variables and pollution air
quality data.

Regarding, the other leading features, the Muni Issue Type and
Muni Offering Type is also important as the appropriate structuring
may be influential in the successful issuance of the green bonds and
when issuers get this right for the market they are seeking to raise
capital, they may make the issuance over subscribed and successful,
which will naturally lead to further issuance’s and increased funding
27
for the green initiatives for which the raised capital will be deployed,
leading to further reductions in air pollution. Lastly, the significance
of the issuer industry is clear, since the study focuses directly on
pollution as measured via air quality, the issuer industries should be
influential factors in the detection of the associations discovered since,
the industries particularly related to pollution reduction in airborne
particulate matter and gas emissions will most influence the results in
this study.

Fig. 18 shows the equivalent analysis for the numerical green bond
financial variables. In this plot, compared to the CKTAs of the categori-
cal variable, the direction of the interpretation is reversed, i.e. the more
minor the MSE, the better the kPC has captured underlying variations.
Overall, it appears that the MSEs of kPC1 are more significant than the
ones of kPC2. Napa has a meagre sample size and, therefore, requires
more research for a more reliable interpretation. By focusing on kPC1
only, San Luis Obispo, Los Angeles, San Diego, Santa Clara and Santa
Cruz appear to have low MSE overall, particularly San Luis Obispo.
Alameda, instead, shows higher MSE levels. The variables showing the
least MSE for kPC1 across all counties are the amount out, the maturity
size, the Bid OAS and the dated date. All financial variables are defined
in Table 6. Interestingly, if one refers to Fig. 13 and focuses on the three
variables available in the boxplots (amount out, maturity size and Bid
OAS), one can observe many variations across the counties, within each
variable. kPC1 best captures such variations.

Regarding the kPC2, much smaller MSEs are identified for every
county, except for San Joaquin, presenting MSEs of kPC2 much bigger
than the first one. This further suggests that kPC1 and kPC2 capture
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Table 11
In these tables the results for the PCA-CCA are provided. The left tables refer to the PCA-CCA for the financial and the pollution data, while, the right tables to the
financial and climate data instead. The top tables refer to the PC1-CCA model assessments, while, the bottom ones refer to the PCA2-CCA. Each table presents the canonical
variate of interest (from 1 to 9), the canonical correlation coefficient 𝜌∗, the squared canonical correlation 𝜌∗2 , the F-statistic with the Rao’s F-approximation test, the two
sets of degrees of freedom and the 𝑝-value. More details about this statistical part are given in Section 3.3 and Table 1.

Canonical correlation summary financial data set vs pollution data set

PC1

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ 𝜌∗2 F df2 df1 Pr(>X)

1 0.012 0.109 0.001 81 538.90 1.000
2 0.002 0.044 0.001 64 485.22 1.000
3 0.001 0.031 0.001 49 430.88 1.000
4 0.001 0.031 0.001 36 376.02 0.998
5 0.000 0.000 0.001 25 320.98 0.987
6 0.000 0.000 0.001 16 266.43 0.999
7 0.000 0.000 0.000 9 214.32 1.000
8 0.000 0.000 0.000 4 178.00 1.000
9 0.000 0.000 0.000 1 90.00 0.999

(a) PC1-CCA Model Assessment.

Canonical correlation summary financial data set vs climate data set

PC1

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ 𝜌∗2 F df2 df1 Pr(>X)

1 0.009 0.094 0.002 81 538.90 1.000
2 0.005 0.070 0.002 64 485.22 1.000
3 0.003 0.054 0.001 49 430.88 1.000
4 0.001 0.031 0.001 36 376.02 1.000
5 0.000 0.000 0.001 25 320.98 1.000
6 0.000 0.000 0.000 16 266.43 1.000
7 0.000 0.000 0.000 9 214.32 1.000
8 0.000 0.000 0.000 4 178.00 1.000
9 0.000 0.000 0.000 1 90.00 1.000

(c) PC1-CCA Model Assessment.

PC2

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ 𝜌∗2 F df2 df1 Pr(>X)

1 0.006 0.077 0.012 81 538.90 1.000
2 0.005 0.070 0.011 64 485.22 1.000
3 0.002 0.044 0.001 49 430.88 1.000
4 0.002 0.044 0.001 36 376.02 1.000
5 0.001 0.031 0.001 25 320.98 1.000
6 0.000 0.000 0.000 16 266.43 1.000
7 0.000 0.000 0.000 9 214.32 1.000
8 0.000 0.000 0.000 4 178.00 1.000
9 0.000 0.000 0.000 1 90.00 1.000

(b) PC2-CCA Model Assessment.

PC2

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ F 𝜌∗2 df2 df1 Pr(>X)

1 0.007 0.083 0.002 81 538.90 1.000
2 0.001 0.031 0.002 64 485.22 1.000
3 0.001 0.031 0.016 49 430.88 1.000
4 0.001 0.031 0.001 36 376.02 1.000
5 0.000 0.000 0.000 25 320.98 1.000
6 0.000 0.000 0.000 16 266.43 1.000
7 0.000 0.000 0.000 9 214.32 1.000
8 0.000 0.000 0.000 4 178.00 1.000
9 0.000 0.000 0.000 1 90.00 1.000

(d) PC2-CCA Model Assessment.
Fig. 15. Structured coefficients of financial/pollution kPC1 (left) and kPC2 (right) for the first canonical variate. These are presented in Table 13, in the fourth column.
any different underlying variations of the data, leading to differ-
nt levels of MSEs. Moreover, the highest levels of kPC1 might also
28
be related to a greater captured variation than kPC2, yielding more
significant errors.
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Table 12
In these tables the results for the kPCA-CCA are provided. The left tables refer to the kPCA-CCA for the financial and the pollution data, while, the right tables to the
financial and climate data instead. The top tables refer to the kPC1-CCA model assessments, while, the bottom ones refer to the kPCA2-CCA. Each table presents the
canonical variate of interest (from 1 to 9), the canonical correlation coefficient 𝜌∗, the squared canonical correlation 𝜌∗2 , the F-statistic with the Rao’s F-approximation
test, the two sets of degrees of freedom and the 𝑝-value. More details about this statistical part are given in Section 3.3 and Table 1.

Canonical correlation summary financial data set vs pollution data set

kPC1

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ 𝜌∗2 F df2 df1 Pr(>X)

1 1.000 0.999 853.793 81 6355.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
2 0.790 0.724 36.309 64 5676.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
3 0.547 0.299 22.203 49 5000.0 < 𝟐.𝟐𝐞 − 𝟏𝟔
4 0.488 0.238 18.984 36 4328.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
5 0.422 0.178 15.388 25 3664.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
6 0.315 0.099 11.039 16 3016.0 < 𝟐.𝟐𝐞 − 𝟏𝟔
7 0.230 0.052 7.697 9 2404.7 𝟑.𝟏𝟑𝟒𝐞 − 𝟏𝟏
8 0.111 0.012 3.660 4 1978.0 𝟎.𝟎𝟎𝟓
9 0.047 0.002 2.225 1 990.0 0.136

(a) kPC1-CCA Model Assessment.

Canonical correlation summary financial data set vs climate data set

kPC1

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ 𝜌∗2 F df2 df1 Pr(>X)

1 0.815 0.712 27.601 81 6355.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
2 0.673 0.453 21.085 64 5676.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
3 0.491 0.241 13.377 49 5000.0 < 𝟐.𝟐𝐞 − 𝟏𝟔
4 0.423 0.179 9.939 36 4328.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
5 0.259 0.067 6.074 25 3664.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
6 0.215 0.046 5.067 16 3016.0 𝟏.𝟓𝟑𝐞 − 𝟏𝟎
7 0.165 0.027 3.686 9 2404.7 𝟎.𝟎𝟎𝟏
8 0.073 0.005 1.397 4 1978.0 0.232
9 0.014 0.000 0.202 1 990.0 0.652

(c) kPC1-CCA Model Assessment.

kPC2

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ 𝜌∗2 F df2 df1 Pr(>X)

1 1.000 0.999 1082.3 81 6355.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
2 0.881 0.776 51.524 64 5676.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
3 0.638 0.407 25.810 49 5000.0 < 𝟐.𝟐𝐞 − 𝟏𝟔
4 0.459 0.211 18.292 36 4328.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
5 0.388 0.151 15.998 25 3664.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
6 0.358 0.128 14.149 16 3016.0 < 𝟐.𝟐𝐞 − 𝟏𝟔
7 0.212 0.045 9.369 9 2404.7 𝟒.𝟎𝟗𝟕𝐞 − 𝟏𝟒
8 0.179 0.032 9.390 4 1978.0 𝟏.𝟔𝟏𝟔𝐞 − 𝟎𝟕
9 0.069 0.004 4.780 1 990.0 0.029

(b) kPC2-CCA Model Assessment.

kPC2

Main results F test for canonical correlations
(Rao’s F approximation)

CV 𝜌∗ F 𝜌∗2 df2 df1 Pr(>X)

1 0.664 0.441 22.827 81 6355.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
2 0.572 0.327 18.038 64 5676.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
3 0.515 0.265 14.406 49 5000.0 < 𝟐.𝟐𝐞 − 𝟏𝟔
4 0.374 0.140 10.309 36 4328.2 < 𝟐.𝟐𝐞 − 𝟏𝟔
5 0.347 0.120 8.523 25 3664.3 < 𝟐.𝟐𝐞 − 𝟏𝟔
6 0.242 0.058 5.093 16 3016.0 𝟏.𝟐𝟗𝟒𝐞 − 𝟏𝟎
7 0.120 0.014 2.288 9 2404.7 0.014
8 0.069 0.004 1.496 4 1978.0 0.200
9 0.001 0.001 1.353 1 990.0 0.244

(d) kPC2-CCA Model Assessment.
Fig. 16. Structured coefficients of financial/climate kPC1 (left) and kPC2 (right) for the first canonical variate. These are presented in Table 13, in the fourth column.
. Discussion and conclusion

Green bonds are distinctive financial instruments that direct funds
owards environmentally advantageous initiatives, setting them apart
29
from their conventional bond counterparts. However, assessing the
potential for environmental and climate mitigations of this nascent
green bond market presents a considerable challenge for investors
due to the lack of standardised reporting on environmental impact.
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Fig. 17. cKTAs of kPC1 and kPC2 by county in capturing each individual categorical variable. The alignments are computed between the empirical covariance matrix of a vector
kPC and the empirical covariance matrix of a vector categorical variable. In the 𝑦-axis the categorical variables are given and the 𝑥-axis represents the cKTA. The cKTA is comprised
in a range between −1 and 1.

Fig. 18. MSEs of kPC1 and kPC2 by county in capturing each individual numerical variable. The MSE is computed through the reconstructed pre-images obtained kPC1 and kPC1
and kPC2 and then the euclidean distances between the reconstructed data and the original data are computed. In the 𝑦-axis the numerical variables are given and the 𝑥-axis
represents the MSEs..
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Table 13
In these tables the results for the Canonical Correlation Analysis are provided. The left table refer to the kPCA-CCA for the financial and pollution data sets, while, the right
table to the financial and climate data sets. Further, each table is split with the top panel for the results of kPC1 and the bottom panel for kPC2. In columns there are
the structured coefficients and the squared structured coefficients for the first and the second canonical variates, respectively. Note that Figs. 15 and 16 show results of the
structured coefficients using helio plots.

kPCA-CCA - Financial data set vs pollution data set

Structured Coef. Squared Structured Coef.

Data set kPC County CV 1 CV 2 CV 1 CV 2

Financial 1 Alameda 0.717 0.122 0.514 0.015
Financial 1 Los Angeles −0.442 0.075 0.195 0.006
Financial 1 Napa −0.999 −0.013 0.999 0.000
Financial 1 San Diego 0.117 0.231 0.014 0.053
Financial 1 San Francisco 0.200 0.168 0.040 0.028
Financial 1 San Joaquin 1.000 0.000 1.000 0.000
Financial 1 San Luis Obispo −1.000 0.000 1.000 0.000
Financial 1 Santa Clara −0.380 −0.646 0.145 0.418
Financial 1 Santa Cruz −0.521 −0.410 0.271 0.168
Pollution 1 Alameda −0.924 0.138 0.854 0.019
Pollution 1 Los Angeles 0.651 0.337 0.423 0.113
Pollution 1 Napa 0.766 0.222 0.587 0.049
Pollution 1 San Diego 0.941 −0.151 0.885 0.023
Pollution 1 San Francisco 0.770 0.209 0.593 0.044
Pollution 1 San Joaquin −0.913 0.073 0.834 0.005
Pollution 1 San Luis Obispo 0.930 −0.175 0.865 0.031
Pollution 1 Santa Clara 0.917 −0.146 0.841 0.021
Pollution 1 Santa Cruz 0.912 −0.150 0.831 0.023

Financial 2 Alameda 0.861 −0.113 0.742 0.013
Financial 2 Los Angeles −0.348 −0.019 0.121 0.000
Financial 2 Napa 0.999 0.014 0.999 0.000
Financial 2 San Diego 0.848 0.041 0.022 0.002
Financial 2 San Francisco 0.849 0.010 0.062 0.000
Financial 2 San Joaquin 1.000 0.000 1.000 0.000
Financial 2 San Luis Obispo −1.000 0.001 1.000 0.000
Financial 2 Santa Clara −0.342 0.427 0.117 0.183
Financial 2 Santa Cruz 0.508 0.344 0.258 0.118
Pollution 2 Alameda −0.695 −0.629 0.483 0.395
Pollution 2 Los Angeles −0.907 0.156 0.823 0.024
Pollution 2 Napa 0.883 −0.290 0.779 0.084
Pollution 2 San Diego −0.881 0.319 0.776 0.102
Pollution 2 San Francisco −0.788 0.513 0.621 0.263
Pollution 2 San Joaquin −0.915 0.154 0.837 0.024
Pollution 2 San Luis Obispo 0.365 0.838 0.133 0.703
Pollution 2 Santa Clara −0.401 −0.682 0.161 0.466
Pollution 2 Santa Cruz −0.307 0.869 0.094 0.755

(a) Canonical Correlation Analysis

kPCA-CCA - Financial data set vs climate data set

Structured Coef. Squared Structured Coef.

Data set kPC County CV 1 CV 2 CV 1 CV 2

Financial 1 Alameda −0.081 −0.552 0.007 0.305
Financial 1 Los Angeles 0.307 0.368 0.094 0.135
Financial 1 Napa 0.556 0.310 0.309 0.096
Financial 1 San Diego −0.135 −0.558 0.018 0.311
Financial 1 San Francisco 0.130 −0.308 0.017 0.095
Financial 1 San Joaquin −0.543 −0.338 0.295 0.114
Financial 1 San Luis Obispo 0.543 0.338 0.295 0.114
Financial 1 Santa Clara −0.040 0.412 0.002 0.170
Financial 1 Santa Cruz 0.009 0.358 0.000 0.128
Climate 1 Alameda −0.323 0.175 0.105 0.031
Climate 1 Los Angeles −0.294 0.382 0.087 0.146
Climate 1 Napa 0.708 −0.103 0.502 0.011
Climate 1 San Diego 0.832 −0.172 0.692 0.030
Climate 1 San Francisco −0.042 −0.145 0.002 0.021
Climate 1 San Joaquin 0.733 0.314 0.537 0.099
Climate 1 San Luis Obispo 0.571 −0.453 0.326 0.206
Climate 1 Santa Clara 0.473 0.229 0.224 0.053
Climate 1 Santa Cruz 0.363 0.082 0.131 0.007

Financial 2 Alameda 0.401 −0.535 0.161 0.286
Financial 2 Los Angeles −0.082 −0.347 0.007 0.121
Financial 2 Napa −0.113 0.780 0.013 0.608
Financial 2 San Diego −0.462 0.490 0.213 0.240
Financial 2 San Francisco −0.222 0.109 0.049 0.012
Financial 2 San Joaquin −0.139 0.773 0.019 0.598
Financial 2 San Luis Obispo −0.137 0.773 0.019 0.597
Financial 2 Santa Clara −0.258 −0.385 0.067 0.148
Financial 2 Santa Cruz −0.318 0.414 0.101 0.172
Climate 2 Alameda 0.274 0.258 0.075 0.066
Climate 2 Los Angeles 0.420 0.079 0.177 0.006
Climate 2 Napa 0.303 0.684 0.092 0.468
Climate 2 San Diego −0.430 −0.769 0.185 0.591
Climate 2 San Francisco 0.188 −0.264 0.036 0.070
Climate 2 San Joaquin 0.101 −0.782 0.010 0.612
Climate 2 San Luis Obispo −0.579 −0.418 0.335 0.175
Climate 2 Santa Clara −0.103 0.434 0.011 0.188
Climate 2 Santa Cruz 0.044 0.435 0.002 0.190

(b) Canonical Correlation Analysis
Our research initiative designed a unique set of indicators as a first
stage of an ongoing process designed to monitor and address this
gap, leveraging financial and environmental data sets and employing
sophisticated statistical techniques.

The methodology and experimental design applied in this study
facilitated an in-depth and multifaceted exploration of the influence
of green bonds on environmental and climate-associated parameters
in Californian counties. California, chosen for its abundant data avail-
ability and numerous environmental monitoring stations, offered an
ideal backdrop for our investigation. Although the positioning of these
stations introduced certain complexities, they did not detract from the
overall viability of the study. The research focused on key cities in
California, incorporating areas within a 50 km radius. This decision
imbued the study with a layer of practical realism, as these zones fre-
quently serve as the nucleus for dynamic economic and environmental
operations, making them prime areas for the likely tangible effects of
green bond issuance.

Integrating three different data sets, pollution, climate, and green
bonds, into our research approach, we achieved a multifaceted view
of the complex interplay between fiscal incentives and environmental
31
improvement. This multidimensional perspective, together with our rig-
orous methodology, underscores the potential and importance of green
bonds in instigating significant positive environmental change, provid-
ing a valuable reference for investors interested in environmentally
responsible investment opportunities.

Our study compared Principal Component Analysis-Canonical Cor-
relation Analysis (PCA-CCA) and kernel Principal Component Analysis-
Canonical Correlation Analysis (kPCA-CCA). The focus of this com-
parison was to evaluate the ability of each methodology to capture
cross-correlation variability within spatial–temporal multivariate data,
evaluating the impact of municipal green bonds as a whole within Cal-
ifornia by considering pollution and climate as attributes of the desired
impact. Central to our research was applying kPCA and CCA to iden-
tify cross-correlation within spatial–temporal multivariate data sets.
This novel approach allows for the combination of spatial–temporal
multivariate data sources, with several recording frequencies, different
structure data types, and different recording spatial observation collec-
tions. In particular, it offers a unique solution to handling issues related
to variable comparability and managing the differential treatment of
categorical and numerical variables. This method adopts a progressive
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strategy to address the challenges associated with disparate variable
types in multivariate data sets. Using kPCA and CCA in conjunction, we
could uncover nuanced relationships within the data that would other-
wise have been difficult to discern with more conventional analytical
techniques.

The kPCA method, an extension of the traditional PCA, effectively
deals with non-linearity in the data set by mapping the input into
a higher-dimensional feature space. In this high-dimensional space,
we can perform CCA, to tease out the complex structures of cross-
correlations in the data set that are not immediately apparent. In
essence, by harnessing the combined power of kPCA and CCA, our
research could innovatively tackle the intricacies of multivariate data
sets, provide more reliable results, and offer a more nuanced un-
derstanding of the potential impacts of green bonds. Thus, this ap-
proach significantly contributes to developing advanced data analysis
in sustainable finance and environmental impact assessment.

Although the first PC represented more than 50% of the variance
within the pollution and climate data sets, the first three PCs could
only detect less than 30% of the data variability in the financial data
set. These findings underscore the relative strengths and limitations of
PCA, particularly its struggle to effectively capture the non-stationarity
nature of these data. In contrast, kPCA-CCA demonstrated more uni-
form explanatory power across the three kPCs, particularly in high
non-stationarity levels. This finding further reinforced the decision
to adopt the kPCA-CCA approach in this study. Centred Empirical
Kernel Alignment (cKTA) results corroborated the superiority of kPCs
in capturing the underlying engineered pollution features compared to
PCs.

When analysing climate data, both PCs and kPCs exhibited high
cKTAs, indicating efficient capture of variability in climate charac-
teristics across different counties. It is particularly noteworthy that
kPCs achieved over 90% alignment in some counties, demonstrating
the utility of kPCA-CCA in managing the non-stationarity in the data.
kPCs strongly outperformed PCs in the case of the financial data set,
with higher levels of alignment achieved for all counties except San
Francisco and Santa Clara.

Applying CCA to the PCA results, it was discovered that the canon-
ical correlation was neither high nor statistically significant for any
of the selected PCs. This suggests that PCs did not capture the global
presence of non-stationarity in the data, pointing out the limitations
of using traditional PCA in such a context. In stark contrast, kPCA-
CCA revealed high levels of correlation for the first two canonical
functions of kPC1 and kPC2, especially in the pollution versus financial
data set, revealing the potential power of kPCA in uncovering the
relationships between complex data sets. Another critical observation
made during the research was the lower correlation between modes
of variations extracted from financial data and climate data compared
to financial data and pollution data. It may imply that the impacts of
green bonds on climate variables are less immediate and more long-
term, making them less observable in the immediate term. Notably, the
study also emphasised the importance of squared canonical correlation.
Despite the rate of canonical correlation decreasing slower than that
of squared canonical correlation, the study highlighted the possibility
of a low shared variance between synthetic canonical variates, even if
the correlation is maximised. This indicates that if the variance shared
between synthetic canonical variates is low, the corresponding pair of
canonical functions will not carry significant information.

This research unravels the intricate relationships between the is-
suance of green bonds and their environmental and climatic impacts,
focusing on California. Our approach employed multidimensional data
analysis, rigorous data preparation procedures, and advanced analytical
methodologies, such as kPCA and CCA, enhanced by hyperparame-
ter learning. This comprehensive analytical approach yielded signifi-
cant insights into the complex dynamics interconnecting green bond
32

issuance and environmental impacts.
Our research unearthed some notable findings when we applied
the innovative kPCA-CCA methodology to analyse municipal financial
data associated with green bonds and pollution data from nine Cal-
ifornia counties. A clear and interpretable correlation emerged from
the analysis, directly related to green bond issuance. This correlation
provides tangible evidence of these financial instruments’ impact on
promoting environmental improvements. Furthermore, our study high-
lighted specific patterns at the county level, revealing, for example,
a negative correlation between financial and pollution variables in
counties such as Alameda and San Joaquin. These results stress the
nuanced locality-specific dynamics interweaving green bond issuance
with environmental outcomes, highlighting the importance of localised
in-depth analyses. Such a negative correlation, also found in San Fran-
cisco, San Diego and Napa, can be interpreted when it is put in the
context of CCA structured coefficients analysis. The results show a
positive impact within these counties, directly interpretable from the
developed methodology. Furthermore, different kPCs captured different
variation frequencies, suggesting that this methodology is the right road
for such a big purpose.

The outcome of such research would improve the transparency
of the green bond market and reinforce investor confidence in green
bonds. This is particularly important given green bonds’ critical role
in facilitating the economic transition required to achieve the targets
established in the Paris Agreement.

The insights from this research have substantial implications for
decision-making processes related to green bonds. With the robust
kPCA-CCA methodology, stakeholders can obtain detailed and nuanced
insights into the relationships between the financial aspects of green
bonds and pollution or climate variables. These insights can then guide
the creation and implementation of green bond strategies that truly
advance environmental sustainability.

Our research emphasises the central role of green bonds in driv-
ing environmental progress and minimising climate change. Advanced
methodologies like kPCA-CCA can lead to more informed decision-
making and strategic development, reinforcing the role of green bonds
as integral financial tools for promoting a sustainable future. Nonethe-
less, these relationships’ complexity and multiple facets necessitate on-
going research, especially over extended timescales, to fully understand
the long-term impacts of green bonds on our climate.

Lastly, this research reveals essential insights into the complex
relationships between the financial variables of green bonds and pollu-
tion/climate data. Our novel analytical approach, involving PCA, kPCA,
and CCA, enabled us to dissect these relationships in-depth, revealing
both the strengths and limitations of each methodology and thus con-
tributing to a more comprehensive understanding of the impacts and
potential of green bonds.
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