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ABSTRACT
Cohesive subgraph mining is a fundamental problem in bipartite

graph analysis. In reality, relationships between two types of enti-

ties often occur at some specific timestamps, which can be modeled

as a temporal bipartite graph. However, the temporal information is

widely neglected by previous studies. Moreover, directly extending

the existing models may fail to find some critical groups in temporal

bipartite graphs, which appear in a unilateral (i.e., one-layer) form.

To fill the gap, in this paper, we propose a novel model, called max-

imal 𝜆-frequency group (MFG). Given a temporal bipartite graph

G = (𝑈 ,𝑉 , E), a vertex set 𝑉𝑆 ⊆ 𝑉 is an MFG if 𝑖) there are no less

than 𝜆 timestamps, at each of which𝑉𝑆 can form a (𝜏𝑈 , 𝜏𝑉 )-biclique
with some vertices in 𝑈 at the corresponding snapshot, and 𝑖𝑖) it
is maximal. To solve the problem, a filter-and-verification (FilterV)
method is proposed based on the Bron-Kerbosch framework, incor-

porating novel filtering techniques to reduce the search space and

array-based strategy to accelerate the frequency and maximality

verification. Nevertheless, the cost of frequency verification in each

valid candidate set computation and maximality check could limit

the scalability of FilterV to larger graphs. Therefore, we further

develop a novel verification-free (VFree) approach by leveraging

the advanced dynamic counting structure proposed. Theoretically,

we prove that VFree can reduce the cost of each valid candidate set

computation in FilterV by a factor of O(|𝑉 |). Furthermore, VFree
can avoid the explicit maximality verification because of the devel-

oped search paradigm. Finally, comprehensive experiments on 15

real-world graphs are conducted to demonstrate the efficiency and

effectiveness of the proposed techniques and model.
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Figure 1: Customer-product temporal bipartite graph (dotted
lines denote the edges at 𝑡 = 5 for presentation simplicity)
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1 INTRODUCTION
Bipartite graphs are widely used to model the complex relationships

between two types of entities, e.g., author-paper networks [9, 40],

customer-product networks [8, 20, 29, 45, 51], and patient-disease

networks [6, 21, 50]. As a fundamental problem in graph analysis,

cohesive subgraph mining is broadly investigated. To analyze the

properties of bipartite graphs, many cohesive subgraphmodels have

been proposed, such as (𝛼, 𝛽)-core [24], bitruss [40] and biclique [29,
36, 47]. Among these models, biclique, which requires every pair

of vertices from different vertex sets to be mutually connected,

has gained widespread popularity due to its unique features and

diverse applications. However, existing models on bipartite graphs

primarily focus on static graphs, disregarding the temporal aspect

of relationships in real-world applications. For instance, Figure 1

shows a customer-product network. The timestamps on an edge

between two vertices indicate when a customer purchased the

corresponding product. In a patient-disease network, patients and

diseases can be represented by two disjoint vertex sets, and the

timestamps on an edge represent when the patient suffered from

the disease. The above cases can be modeled as a temporal bipartite

graph G = (𝑈 ,𝑉 , E), where each edge 𝑒 ∈ E can be represented

as a tuple (𝑢, 𝑣, 𝑡), indicating that the interaction between vertex

𝑢 ∈ 𝑈 and vertex 𝑣 ∈ 𝑉 occurs at timestamp 𝑡 (e.g., [6, 12]). The

bipartite graph with all the edges at timestamp 𝑡 is called a snapshot

of G, denoted by 𝐺𝑡 .
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Analyzing the properties of temporal bipartite graphs is essential

to reveal more sophisticated semantics. In the literature, many sub-

graph models are defined for unipartite scenarios. For instance, Li et

al. [23] propose a 𝑘-core based model to capture the persistence

of a community within the time interval. Qin et al. [32] design a

clique based model to find the subgraphs periodically occurring

in the temporal graphs. Qin et al. [33] propose the (𝑙, 𝛿)-maximal

bursting core, where each vertex has an average degree no less

than 𝛿 during a period of length no less than 𝑙 . Although temporal

subgraph search and enumeration problems have been extensively

studied on temporal unipartite graphs, the temporal bipartite graph

case is still under-explored. Due to the involvement of two distinct

types of entities, existing models on temporal unipartite graphs

are not suitable for capturing important patterns in temporal bipar-

tite graphs. Only a few recent works consider temporal bipartite

graphs, such as (𝛼, 𝛽)-core based persistent community search [22]

and temporal butterfly counting and enumeration [9]. Unfortu-

nately, the aforementioned temporal models are mainly established

on interval-based or periodic-based constraints, which fail to cap-

ture the real scenarios occurring irregularly at non-consecutive

timestamps. Additionally, there is no existing work considering

the unilateral (i.e., one-layer) frequency of the occurred group in

temporal bipartite graphs, which is an important factor in identify-

ing practical groups. For example, in a temporal customer-product

bipartite graph, a group of users who frequently act together (e.g.,

purchase the same items at different timestamps) may show strong

connections. Existing works about temporal subgraph mining are

inadequate for the above scenario, highlighting the need to define

the exclusive model tailored for temporal bipartite graphs.

To fill the gap, in this paper, we propose a novel model, called

Maximal 𝜆-Frequency Group (MFG), to characterize the unilateral

patterns in temporal bipartite graphs. In our model, we leverage

biclique to measure the cohesiveness of bipartite subgraphs, due

to its diverse applications such as social recommendation [25] and

anomaly detection [29]. Specifically, given two size constraints 𝜏𝑈 ,

𝜏𝑉 and a frequency constraint 𝜆, a vertex set 𝑉𝑆 ⊆ 𝑉 in a temporal

bipartite graphG = (𝑈 ,𝑉 , E) is anMFG if 𝑖) there are no less than 𝜆
timestamps, at each of which 𝑉𝑆 can form a (𝜏𝑈 , 𝜏𝑉 )-biclique with
some vertices in 𝑈 in the corresponding snapshot graph, and 𝑖𝑖)
it is maximal. A (𝜏𝑈 , 𝜏𝑉 )-biclique 𝑆 = (𝑈𝑆 , 𝑉𝑆 , 𝐸𝑆 ) is a biclique

with |𝑈𝑆 | ≥ 𝜏𝑈 and |𝑉𝑆 | ≥ 𝜏𝑉 . Note that, anMFG 𝑉𝑆 is unilateral,

i.e., only consists of vertices from 𝑉 . In addition, the vertices in𝑈

that form (𝜏𝑈 , 𝜏𝑉 )-bicliques with 𝑉𝑆 can be different for different

timestamps.

Example 1.1. Reconsider the temporal customer-product bipartite
graph in Figure 1 with 𝜏𝑈 = 2, 𝜏𝑉 = 2 and 𝜆 = 2. Suppose a company
plans to promote a new product to a group of customers with similar
interests. Directly extending the static graph model (i.e., biclique) to
temporal bipartite graphs may fail to retrieve useful patterns. For
instance, if we treat it as a static graph, i.e., ignore the timestamp
information, the whole graph itself is a biclique. All five customers will
be grouped together and treated equally since they all purchased all the
products. If we consider it as a temporal bipartite graph, we still cannot
find practical results by applying the frequent (𝜏𝑈 , 𝜏𝑉 )-biclique model,
which is the (𝜏𝑈 , 𝜏𝑉 )-biclique occurring in at least 𝜆 snapshots. For the
MFG model, {𝑣2, 𝑣3, 𝑣4} is the returned result, since these customers

frequently act together, i.e., it exists in biclique {𝑢1, 𝑢2, 𝑣2, 𝑣3, 𝑣4} at
timestamp 𝑡 = 1 and in biclique {𝑢4, 𝑢5, 𝑣2, 𝑣3, 𝑣4} at timestamp 𝑡 = 4.
As discussed before, customers within a group, who frequently act
together, are more likely to share similar preferences or behavioral
patterns. Identifying these customer-specified communities is crucial
to improve the performance of downstream tasks such as product
recommendation and enhance customer engagement.

Besides biclique, many other cohesive subgraph models are pro-

posed in the literature for bipartite graph analysis, such as degree-

based model (𝛼, 𝛽)-core and butterfly-based model bitruss. All these

models have various applications in different domains [24, 40]. In

this paper, we focus more on the strong connections among entities

(e.g., co-purchase) in the target layer. Thus, we choose biclique,

which is the most cohesive model. Recall the example in Figure 1,

if we directly replace the biclique constraint with (2,2)-core in our

model, all users {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}will be returned as a group. In this
paper, we employ the frequency constraint (i.e., 𝜆), since frequently

appearing patterns are usually worthy of attention and may repre-

sent the important concept in the environment [5, 43, 44, 46, 48],

such as frequent co-purchasing behavior discussed above. Besides,

compared with the existing temporal models that mainly focus on

interval-based or periodic-based timestamp constraints, our model

can better capture the real-world patterns occurring frequently.

Moreover, we employ the maximality constraint, since any subset

of an MFG with size no less than 𝜏𝑉 is also a 𝜆-frequency group.

Without the maximality constraint, it may generate many redun-

dant results. In this paper, we aim to enumerate allMFGs from a

temporal bipartite graph.

In addition to the application of customer analysis mentioned

above, MFG can find many other applications in different domains.

For instance, a temporal bipartite graph is a suitable data structure

to model the data of patients’ diagnostic records, where the vertices

correspond to patients (i.e.,𝑈 ) and health conditions (i.e., 𝑉 ), and

the links indicate the presence of a diagnosis at the corresponding

timestamp [6, 21, 50]. By mining MFGs from the patient-condition

temporal bipartite graph, we can find the combinations of health

conditions that frequently and simultaneously appear in multiple

patients. The results can provide data support for the study of

multimorbidity, facilitating diagnosis and prevention [34, 39]. In

Section 5, we present two case studies on real-world datasets to

illustrate the effectiveness of our model.

Challenges and our approaches. To the best of our knowledge,

we are the first to propose and investigate the maximal 𝜆-frequency

group (MFG) enumeration problem in temporal bipartite graphs.

We prove the hardness of counting MFGs. In the literature, max-

imal biclique enumeration is the most relevant problem to ours

(e.g., [3, 11, 47, 49]). However, the introduction of temporal and

unilateral aspects significantly complicates the problem. Naively,

we can enumerate all bicliques over each snapshot and post-process

the intermediate results. Due to the hardness of the biclique enu-

meration problem in static bipartite graphs, treating each times-

tamp separately is time-consuming. Moreover, since the correlation

among vertices varies over time, considering temporal and cohe-

sive aspects simultaneously in algorithm design is nontrivial. In

previous studies, the Bron-Kerbosch (BK) framework is widely used

for biclique enumeration (e.g., [3, 11]). It iteratively adds vertices
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from the candidate set to expand the current result in a DFS manner

for biclique enumeration. By extending the BK framework, in our

problem, we need to further check the frequency and maximality

constraints for each candidate group. Since MFG focuses on the

unilateral vertex set and the number of bicliques in each timestamp

is large, it means numerous candidate groups will be generated

while only very few of them will belong to the final results. Thus,

the huge time cost to apply the naive frequency verification on each

candidate group and eliminate the non-maximal results presents a

unique challenge for our problem.

To address the challenges, in this paper, we first propose a filter-

and-verification (FilterV) approach by leveraging the BK framework.

Generally, FilterVmaintains a recursive search tree and traverses in

a depth-first manner. In each iteration, FilterV iterates over all the

candidate vertices (i.e., vertex-oriented search paradigm), verifies

the frequency constraint and obtains the valid candidate set. Note
that, for each vertex in the valid candidate set, the group composed

of it and the current processing set still meets the frequency require-

ment. If no more vertices can be added to the current processing

set to form a new frequent group, FilterV terminates the current

search branch and checks the maximality of the vertex set. Since

there could be many vertices that cannot be involved in any MFGs,
a novel structure (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core is first designed to reduce the

search space. Then, a filter strategy is proposed to first efficiently

prune the candidate set before the examination, which can reduce

the unnecessary call of frequency verification. To further acceler-

ate the frequency verification of a given vertex set, we present an

elaborate array-based verification strategy. The frequency check

method is also employed to accelerate the maximality verification

by avoiding the numerous set comparisons.

Even though FilterV can remarkably accelerate the MFG enu-

meration procedure, we need to compute the valid candidate set for

each current processing result during the search. The overall cost

significantly increases with the size of candidate set and the work-

load of maximality verification, which may hinder its scalability to

larger graphs. As shown in Table 1, whose details can be found in

Section 4, the components of the valid candidate set computation

and maximality verification take up a majority of the overall exe-

cution time. Therefore, if we can reduce or even avoid the cost of

frequency and maximality verification to some extent, the overall

performance can be significantly improved. Motivated by this, we

further develop a novel verification-free (VFree) approach. Instead
of iterating over vertices during the candidate set computation and

maximality verification, we develop a timestamp-oriented search

paradigm. That is, VFree iterates through the timestamps to obtain

the valid candidate set using the advanced dynamic counting struc-

tures proposed, where the unpromising timestamp can be skipped

and common neighbor information can be carried forward in the

subsequent search process. Theoretically, we prove that VFree can
significantly reduce each valid candidate set computation cost in

FilterV by a factor of O(|𝑉 |). Additionally, by integrating the de-

veloped search paradigm and dynamic counting techniques, VFree
can avoid explicit maximality verification.

Contributions. The main contributions of the paper are summa-

rized as follows.

• To capture the properties of temporal bipartite graphs, we con-

duct the first research to propose and investigate the maximal

𝜆-frequency group enumeration problem. (Section 2)

• To solve the problem,we introduce a filter-and-verification frame-

work. Novel (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core structure and candidate filtering

rule are developed to shrink the search space. Advanced array-

based method is proposed to accelerate the computation of valid

candidate set and maximality verification. (Section 3)

• To overcome the frequency verification cost and scale for larger

networks, we further develop a verification-free framework by

leveraging the dynamic counting structure proposed. The frame-

work can also avoid the explicit verification of maximality based

on the propounded search paradigm. (Section 4)

• Extensive experiments are conducted on 15 real-world graphs to

demonstrate the performance of proposed techniques and model.

Compared with the baseline, the optimized method can achieve

up to three orders of magnitude speedup. (Section 5)

Note that, due to the limited space, all the proofs, detailed exper-
iment setup and partial experiment results can be found in the full
version [42].

2 PRELIMINARY AND PROBLEM DEFINITION
2.1 Preliminary
Let G = (𝑈 ,𝑉 , E) denote an undirected temporal bipartite graph,

where𝑈 and𝑉 are two disjoint vertex sets, i.e.,𝑈 ∩𝑉 = ∅, and E is

the set of temporal edges. (𝑢, 𝑣, 𝑡) denotes a temporal edge between

𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , where 𝑡 is the interaction timestamp between 𝑢

and 𝑣 . Without loss of generality, we use T = {𝑡1, 𝑡2, . . . , 𝑡 | T | } to
represent the set of timestamps, i.e., T = {𝑡 | (𝑢, 𝑣, 𝑡) ∈ E}1. Given a

temporal bipartite graph G, its corresponding static bipartite graph,
i.e., by ignoring all the timestamps on edges, is denoted by 𝐺 =

(𝑈 ,𝑉 , 𝐸), where 𝐸 = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E}. We can extract a series

of snapshots {𝐺1,𝐺2, . . . ,𝐺 | T | } from G based on the timestamps.

Specifically, given a timestamp 𝑡 ∈ T , its corresponding snapshot
is a bipartite graph 𝐺𝑡 = (𝑈𝑡 ,𝑉𝑡 , 𝐸𝑡 ), where 𝑈𝑡 = {𝑢 | (𝑢, 𝑣, 𝑡) ∈ E},
𝑉𝑡 = {𝑣 | (𝑢, 𝑣, 𝑡) ∈ E}, and 𝐸𝑡 = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E}.

Definition 2.1 (Structural neighbor (s-neighbor)). Given a
vertex 𝑢 ∈ G, the s-neighbor set of 𝑢 is the set of vertices connected
to 𝑢 in𝐺 , denoted by 𝑁 (𝑢,𝐺), i.e., 𝑁 (𝑢,𝐺) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸}. 𝑑 (𝑢,𝐺)
denotes its structural degree (s-degree), i.e., 𝑑 (𝑢,𝐺) = |𝑁 (𝑢,𝐺) |.

Definition 2.2 (Momentary neighbor (m-neighbor)). Given
a vertex 𝑢 ∈ G and a timestamp 𝑡 ∈ T , the m-neighbor set of 𝑢 at
𝑡 is the set of vertices connected to 𝑢 in 𝐺𝑡 , denoted by Γ(𝑢, 𝑡), i.e.,
Γ(𝑢, 𝑡) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸𝑡 }. We use 𝛿 (𝑢, 𝑡) to denote its momentary
degree (m-degree) at 𝑡 , i.e., 𝛿 (𝑢, 𝑡) = |Γ(𝑢, 𝑡) |.

Example 2.1. Figure 2 shows a temporal bipartite graph with six
snapshots 𝐺1 to 𝐺6. The s-neighbors of 𝑢1 are {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and
the s-degree 𝑑 (𝑢1,𝐺) is 5. The m-neighbor of 𝑢1 at 𝑡 = 1 is {𝑣3} and
the corresponding m-degree 𝛿 (𝑢1, 1) is 1.

Given a static bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), a biclique 𝑆 =

(𝑈𝑆 ,𝑉𝑆 , 𝐸𝑆 ) is a complete subgraph of 𝐺 , where 𝑈𝑆 ⊆ 𝑈 , 𝑉𝑆 ⊆ 𝑉 ,

and for each pair of vertices𝑢 ∈ 𝑈𝑆 and 𝑣 ∈ 𝑉𝑆 , we have (𝑢, 𝑣) ∈ 𝐸𝑆 .
1
We use the same setting as the previous studies for the timestamp, which is the integer,

since the UNIX timestamps are integers in practice [33, 48].
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Figure 2: A temporal bipartite graph G with six timestamps
(𝐺1-𝐺6 are the corresponding snapshots and solid lines denote
the edges in each snapshot)

Definition 2.3 ((𝜏𝑈 , 𝜏𝑉 )-bicliqe). Given a static bipartite
graph 𝐺 and two positive integers 𝜏𝑈 and 𝜏𝑉 , a (𝜏𝑈 , 𝜏𝑉 )-biclique
𝑆 = (𝑈𝑆 , 𝑉𝑆 , 𝐸𝑆 ) is a biclique of 𝐺 with |𝑈𝑆 | ≥ 𝜏𝑈 and |𝑉𝑆 | ≥ 𝜏𝑉 .

2.2 Problem Definition
In this paper, we aim to retrieve the frequent vertex set in uni-

lateral layer, e.g., the customer set in Figure 1. For presentation
simplicity, we assume the frequent vertex set is from 𝑉 . Be-
fore introducing the 𝜆-frequency group, we first define the support

timestamp for the unilateral vertex set below.

Definition 2.4 (Support timestamp). Given a temporal bi-
partite graph G = (𝑈 ,𝑉 , E), a subset 𝑉𝑆 ⊆ 𝑉 , a snapshot 𝐺𝑡 =

(𝑈𝑡 ,𝑉𝑡 , 𝐸𝑡 ) of the timestamp 𝑡 ∈ T , and two positive integers 𝜏𝑈 ,
𝜏𝑉 , we say 𝑡 is a support timestamp of 𝑉𝑆 , if 𝑖) 𝑉𝑆 ⊆ 𝑉𝑡 , and 𝑖𝑖) 𝑉𝑆
can form a (𝜏𝑈 , 𝜏𝑉 )-biclique with a subset of vertices in𝑈𝑡 , i.e., 𝑉𝑆 is
included in a (𝜏𝑈 , 𝜏𝑉 )-biclique of 𝐺𝑡 .

Definition 2.5 (𝜆-freqency group). Given a temporal bipar-
tite graph G = (𝑈 ,𝑉 , E), and three positive integers 𝜏𝑈 , 𝜏𝑉 and 𝜆, a
𝜆-frequency group is a subset of vertices 𝑉𝑆 ⊆ 𝑉 where there are at
least 𝜆 support timestamps in T for 𝑉𝑆 .

Definition 2.6 (Maximal 𝜆-freqency group (MFG)). Given
a temporal bipartite graph G = (𝑈 ,𝑉 , E) and three positive integers
𝜏𝑈 , 𝜏𝑉 and 𝜆, a 𝜆-frequency group 𝑉𝑆 is maximal if there is no other
𝜆-frequency group 𝑉 ′

𝑆
that is a superset of 𝑉𝑆 .

Problem definition. Given a temporal bipartite graph G and three

positive integers 𝜏𝑈 , 𝜏𝑉 and 𝜆, in this paper, we aim to find all the

maximal 𝜆-frequency groups (MFGs) in G.

Example 2.2. Considering the temporal bipartite graph shown in
Figure 2, suppose 𝜏𝑈 = 𝜏𝑉 = 2 and 𝜆 = 3. There are three MFGs
in the graph, i.e., 𝑉𝑆1 = {𝑣1, 𝑣2, 𝑣3, 𝑣5} with 3 support timestamps
{𝑡1, 𝑡3, 𝑡4}, 𝑉𝑆2 = {𝑣2, 𝑣3, 𝑣4} with 3 support timestamps {𝑡3, 𝑡5, 𝑡6}
and 𝑉𝑆3 = {𝑣3, 𝑣4, 𝑣5} with 4 support timestamps {𝑡2, 𝑡3, 𝑡5, 𝑡6}.

Problem properties. Based on the definition of MFG, Lemmas 2.1

and 2.2 can be immediately obtained. The proofs are omitted. Then,

we show the hardness of our problem in Theorem 2.1.

Lemma 2.1 (Structural property). Given a temporal bipartite
graph G = (𝑈 ,𝑉 , E) and three positive integers 𝜏𝑈 , 𝜏𝑉 and 𝜆, any
MFG 𝑉𝑆 ⊆ 𝑉 must be contained in a maximal (𝜏𝑈 , 𝜏𝑉 )-biclique of
the static bipartite graph 𝐺 of G.

Lemma 2.2 (Antimonotone property). Given a vertex set 𝑉𝑆 ⊆
𝑉 , 𝑖) if 𝑉𝑆 satisfies the frequency constraint, any subset of 𝑉𝑆 also

satisfies the constraint; 𝑖𝑖) if𝑉𝑆 does not meet the frequency constraint,
any superset of 𝑉𝑆 is not frequent.

Theorem 2.1. The problem of counting all MFGs is #P-complete.

Due to the space limitation, the detailed proof for Theorem 2.1

and other omitted proofs can be found in the full version [42].

3 FILTER-AND-VERIFICATION APPROACH
In the literature, the closest problem to ours is the maximal biclique

enumeration problem (e.g., [3, 11, 49]), where most studies are based

on the Bron-Kerbosch (BK) framework. It maintains a recursion

search tree and traverses in a depth-first manner.

Baseline method. Motivated by Lemmas 2.1 and 2.2, a reasonable

approach for our problem is to employ the BK framework by jointly

considering the frequency and maximality constraints. Specifically,

we operate on three dynamically changing vertex sets (𝑈𝑆 ,𝑉𝑆 ,𝐶𝑉 ).
𝑉𝑆 is the current result. 𝑈𝑆 is the common s-neighbors of all the

vertices in 𝑉𝑆 . 𝐶𝑉 is the candidate set. In each iteration, we se-

lect a vertex from the candidate set 𝐶𝑉 to expand 𝑉𝑆 , and update

the corresponding 𝑈𝑆 . If 𝑉𝑆 satisfies the frequency constraint, we

continue to expand it. If no other vertex can be added into 𝑉𝑆 to

form a new frequent group, we terminate the current search branch

and check the maximality of 𝑉𝑆 by comparing it with the existing

found results. After enumerating through each search branch, all

the MFGs are returned. This algorithm is referred to as BK-ALG.

Limitations. Although BK-ALG can correctly return all the MFGs
for a given temporal bipartite graph, we find that directly extending

the BK framework is inefficient due to the following two drawbacks.

The first drawback is the huge search space. The search space of

BK-ALG is the whole graph G, and it needs to iterate through

all the vertices in 𝐶𝑉 in each branch, which may involve many

unpromising vertices that cannot exist in any MFG. The second
drawback is the cumbersome frequency constraint check. Similar to

biclique enumeration in static graphs, in BK-ALG,𝐶𝑉 maintains the

candidate vertices and we need to ensure the frequency constraint

during the search, which is computationally expensive.

To address these limitations, in this section, we propose a novel

filter-and-verification (FilterV) algorithm. In the following, we first

introduce the search framework of FilterV (Section 3.1). For draw-
back 1, we develop novel graph and candidate set filtering tech-

niques to dramatically shrink search space (Section 3.2). For draw-
back 2, an advanced array-based algorithm is presented to facilitate

the frequency (Section 3.3) and maximality (Section 3.4) verification.

3.1 Framework Overview
Hereafter we present an overview of our filter-and-verification

(FilterV) framework. We call each search branch that fails to find

anMFG an invalid branch. Recall the search branch (𝑈𝑆 ,𝑉𝑆 ,𝐶𝑉 ).
To reduce even avoid the search cost on invalid search branches,

instead of directly adding each candidate vertex from𝐶𝑉 into𝑉𝑆 , we

first perform a verification procedure on 𝐶𝑉 to generate the valid
candidate set 𝐶∗

𝑉
⊆ 𝐶𝑉 for 𝑉𝑆 . That is, in subsequent branches,

the new set obtained by adding any candidate vertex from𝐶∗
𝑉
to the

current processing set 𝑉𝑆 still can meet the frequency requirement.

FilterV framework. Motivated by the above idea, the pseudocode

of FilterV framework is presented in Algorithm 1. It first applies the
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Algorithm 1: Filter-and-Verification (FilterV)
Input : G = (𝑈 ,𝑉 , E) : a temporal bipartite graph,

𝜏𝑈 , 𝜏𝑉 : size constraints, 𝜆: frequency constraint

Output : R: all theMFGs
G ← GFCore(G, 𝜏𝑈 , 𝜏𝑉 , 𝜆) ; /* graph filter: Algorithm 2 */1
R ← ∅;2
EnumMFG(𝑈 , ∅,𝑉 ) ;3

Procedure EnumMFG(𝑈𝑆 ,𝑉𝑆 ,𝐶𝑉 )4
𝐶𝑉 ← filter candidate set𝐶𝑉 ; /* candidate filter: Lemma 3.2 */5
𝐶∗
𝑉
← ∅; /* compute valid candidate set */6

for each 𝑣 ∈ 𝐶𝑉 do7
if CheckFRE(𝑈𝑆 ∩ 𝑁 (𝑣,𝐺 ),𝑉𝑆 ∪ {𝑣}, 𝜆) then /* Algorithm 3 */8

𝐶∗
𝑉
← 𝐶∗

𝑉
∪ {𝑣};9

if |𝑈𝑆 | < 𝜏𝑈 ∨ |𝑉𝑆 | + |𝐶∗𝑉 | < 𝜏𝑉 then10
return;11

if 𝐶∗
𝑉

= ∅ then12
Check the maximality for𝑉𝑆 ; /* Section 3.4 */13
if 𝑉𝑆 is maximal then14
R ← R ∪ {𝑉𝑆 };15

for each 𝑣 ∈ 𝐶∗
𝑉

do16
𝐶∗
𝑉
← 𝐶∗

𝑉
\{𝑣};17

EnumMFG(𝑈𝑆 ∩ 𝑁 (𝑣,𝐺 ),𝑉𝑆 ∪ {𝑣},𝐶∗𝑉 ) ;18

graph filtering technique (Algorithm 2 in Section 3.2) to shrink the

given temporal bipartite graph. In the following, FilterV invokes

the procedure EnumMFG to enumerate all theMFGs. Similar as the

BK method, EnumMFG maintains three sets𝑈𝑆 , 𝑉𝑆 and 𝐶𝑉 , which

are initialized as 𝑈 , ∅ and 𝑉 . In EnumMFG, we first try to filter

the candidate set 𝐶𝑉 (line 5) and then compute the valid candidate

set 𝐶∗
𝑉
for 𝑉𝑆 (lines 7-9). The branch is terminated if it violates the

(𝜏𝑈 , 𝜏𝑉 )-biclique size constraints. We check the maximality of 𝑉𝑆
when the valid candidate set is empty (lines 12-15). If 𝐶∗

𝑉
is not

empty, we process each vertex 𝑣 ∈ 𝐶∗
𝑉
to expand 𝑉𝑆 , and continue

search on the updated 𝑉𝑆 and𝑈𝑆 (lines 16-18).

Discussion. To compute the valid candidate set 𝐶∗
𝑉
for 𝑉𝑆 in lines

7-9, we need to check the frequency of each vertex set 𝑉𝑆 ∪ {𝑣} for
𝑣 ∈ 𝐶𝑉 . Given the vertex set 𝑉𝑆 and the checking vertex 𝑣 ∈ 𝐶𝑉 , a
naive method to check the frequency of 𝑉𝑆 ∪ {𝑣} is to compute the

commonm-neighbors of𝑉𝑆∪{𝑣} at each timestamp. Specifically, for

each timestamp 𝑡 ∈ T , we check whether there exists no less than

𝜏𝑈 common m-neighbors of all the vertices in𝑉𝑆 ∪{𝑣}. If it satisfies
the constraint, 𝑡 can contribute to the frequency for 𝑉𝑆 ∪ {𝑣}. If
the number of such timestamps for 𝑉𝑆 ∪ {𝑣} is no less than 𝜆, 𝑣 is

the valid candidate vertex for𝑉𝑆 and it can be added into𝐶∗
𝑉
. After

checking all vertices in𝐶𝑉 , we can return𝐶∗
𝑉
. Due to the large scale

of candidate vertices and the inefficiency of the naive frequency

checking method, the above process is very time-consuming. To

speed up the computation of the valid candidate set, we designed

novel filtering strategies and efficient verification techniques.

3.2 Filtering Rules
Graph filter. Given a temporal bipartite graph G, many unpromis-

ing vertices cannot exist in any MFGs. Therefore, we propose a
novel graph structure to filter the search space. Before presenting

the details, we first introduce the concept of (𝛼, 𝛽)-core [24].

Definition 3.1 ((𝛼, 𝛽)-core). Given a static bipartite graph 𝐺

and two positive integers 𝛼 and 𝛽 , the subgraph 𝑆 = (𝑈𝑆 ,𝑉𝑆 , 𝐸𝑆 ) is
the (𝛼, 𝛽)-core of 𝐺 , denoted by Core(𝐺), if it satisfies: 𝑖) the degree

of each vertex in 𝑈𝑆 is at least 𝛼 and the degree of each vertex in 𝑉𝑆
is at least 𝛽 in 𝑆 , and 𝑖𝑖) any supergraph of 𝑆 cannot satisfy 𝑖).

To compute the (𝛼, 𝛽)-core, we can iteratively remove the ver-

tices that violate the degree constraint with time complexity O(|𝐸 |).
Based on the definition and properties of MFG, we can obtain that

every vertex of MFG must be contained in the temporal bipartite

graph {Core(𝐺1),Core(𝐺2), . . . ,Core(𝐺 | T | )}. To further model the

frequency property of the vertex, we present a new frequent cohe-

sive subgraph model, called (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core, which will be applied

to prune unpromising vertices before enumerating all theMFGs.

Definition 3.2 ((𝜏𝑉 , 𝜏𝑈 , 𝜆)-core). Given a temporal bipartite
graph G and three positive integers 𝜏𝑈 , 𝜏𝑉 and 𝜆, the induced sub-
graph (𝑈𝑆 ,𝑉𝑆 , E𝑆 ) of G is the (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core if it meets the following
conditions: 𝑖) each vertex 𝑢 ∈ 𝑈𝑆 can be included in the (𝜏𝑉 , 𝜏𝑈 )-core
of at least one snapshot, 𝑖𝑖) each vertex 𝑣 ∈ 𝑉𝑆 can be included in the
(𝜏𝑉 , 𝜏𝑈 )-core of at least 𝜆 snapshots, and 𝑖𝑖𝑖) there is no supergraph
of (𝑈𝑆 ,𝑉𝑆 , E𝑆 ) that satisfies 𝑖) and 𝑖𝑖).

Note that, in (𝜏𝑈 , 𝜏𝑉 )-biclique, 𝜏𝑈 and 𝜏𝑉 restrict the number of

vertices in𝑈 and𝑉 . But, in Definition 3.2, the parameters restrict the

number of neighbors, so the order is changed. Based on the analysis,

we can directly obtain the connection between the (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core
and the proposedMFG model, whose details can be found in the

following lemma.

Lemma 3.1. Given a temporal bipartite graph G = (𝑈 ,𝑉 , E) and
three positive integers 𝜏𝑈 , 𝜏𝑉 and 𝜆, if a subset 𝑉𝑆 ⊆ 𝑉 is an MFG,
then 𝑉𝑆 must be contained in the (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core of G.

To derive the (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core, we can iteratively delete the vertex
that violates the degree constraint or the frequency constraint. Since

the deletion of one vertex may cause its neighbors to violate the

constraints in cascade, we can iteratively prune the graph until

all the remaining vertices in G meet the constraints. Details of

computing (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core are shown in Algorithm 2. At first, we

use 𝑠 [𝑤] to count the number of timestamps when the vertex𝑤 has

enough m-neighbors (lines 1-5). Then we process all the vertices at

each timestamp in lines 6-11. Specifically, for each vertex𝑤 , if 𝑠 [𝑤]
violates the frequency constraint or the m-degree constraint at 𝑡 ,

we remove this vertex at 𝑡 and invoke the procedure CorePrune to
update the graph. Details of CorePrune are shown in lines 16-29.

For the processing vertex𝑤 at timestamp 𝑡 in line 16, we set 𝛿 (𝑤, 𝑡)
as 0 and traverse all m-neighbors of 𝑤 at 𝑡 , i.e., Γ(𝑤, 𝑡). For each
vertex 𝑥 ∈ Γ(𝑤, 𝑡), we first check its m-degree. If it is larger than

0, we reduce its m-degree by 1 (lines 19-20). Then, if 𝑥 violates

the m-neighbor constraint at 𝑡 , we invoke CorePrune for (𝑥, 𝑡) in
lines 21-22. For the vertex 𝑤 with 𝑠 [𝑤] > 0, we need to update

𝑠 [𝑤] for it in lines 23-29. We first reduce 𝑠 [𝑤] by 1. If 𝑠 [𝑤] violates
the constraint, we set 𝑠 [𝑤] as 0 and invoke CorePrune for 𝑤 at

all timestamps (lines 25-29). After updating the graph, we remove

all unsatisfied vertices at each snapshot (lines 12-14). Finally, we

return all the updated snapshots as the reduced graph in line 15.

Similar as (𝛼, 𝛽)-core, the time complexity is bounded by O(|E|).
Candidate set filter. Recall the search branch with processed

vertex sets (𝑈𝑆 ,𝑉𝑆 ,𝐶𝑉 ), where we iteratively add one vertex from

𝐶𝑉 into𝑉𝑆 and check its frequency. If we can efficiently skip a batch

of vertices in𝐶𝑉 without compromising any results, we can reduce
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Algorithm 2: GFCore(G, 𝜏𝑈 , 𝜏𝑉 , 𝜆)
Input : G = (𝑈 ,𝑉 , E) : a temporal bipartite graph,

𝜏𝑈 , 𝜏𝑉 : size constraints, 𝜆: frequency constraint

Output : (𝜏𝑉 , 𝜏𝑈 , 𝜆)-core of G
for each 𝑤 ∈ G do 𝑠 [𝑤 ] = 0;1
for each 𝑡 ∈ T do2

for each 𝑤 ∈ G do3
if 𝑤 ∈ 𝑈 ∧ 𝛿 (𝑤, 𝑡 ) > 0 then 𝑠 [𝑤 ] + +;4
if 𝑤 ∈ 𝑉 ∧ 𝛿 (𝑤, 𝑡 ) > 0 then 𝑠 [𝑤 ] + +;5

for each 𝑡 ∈ T do6
for each 𝑤 ∈ G do7

if 𝑤 ∈ 𝑈 ∧ 0 < 𝛿 (𝑤, 𝑡 ) < 𝜏𝑉 then8
CorePrune(𝑤, 𝑡 ) ;9

if 𝑤 ∈ 𝑉 ∧ (0 < 𝛿 (𝑤, 𝑡 ) < 𝜏𝑈 ∨ 0 < 𝑠 [𝑤 ] < 𝜆) then10
CorePrune(𝑤, 𝑡 ) ;11

for each 𝑡 ∈ T do12
for each 𝑤 ∈ G do13

if 𝛿 (𝑤, 𝑡 ) = 0 then𝐺𝑡 ← 𝐺𝑡 \{𝑤};14

return {𝐺1,𝐺2, . . . ,𝐺 |T | };15

Procedure CorePrune(𝑤, 𝑡 )16
𝛿 (𝑤, 𝑡 ) = 0;17
for each 𝑥 ∈ Γ (𝑤, 𝑡 ) do18

if 𝛿 (𝑥, 𝑡 ) > 0 then19
𝛿 (𝑥, 𝑡 ) = 𝛿 (𝑥, 𝑡 ) − 1;20
if (𝑥 ∈ 𝑈 ∧ 𝛿 (𝑥, 𝑡 ) < 𝜏𝑉 ) ∨ (𝑥 ∈ 𝑉 ∧ 𝛿 (𝑥, 𝑡 ) < 𝜏𝑈 ) then21

CorePrune(𝑥, 𝑡 ) ;22

if 𝑠 [𝑤 ] > 0 then23
𝑠 [𝑤 ] = 𝑠 [𝑤 ] − 1;24
if (𝑤 ∈ 𝑈 ∧ 𝑠 [𝑤 ] < 1) ∨ (𝑤 ∈ 𝑉 ∧ 𝑠 [𝑤 ] < 𝜆) then25

𝑠 [𝑤 ] = 0;26
for each 𝑡 ∈ T do27

if 𝛿 (𝑤, 𝑡 ) > 0 then28
CorePrune(𝑤, 𝑡 ) ;29

many unnecessary calls of frequency check. To achieve this, we

propose the following rule to quickly filter the candidate vertex set.

Lemma 3.2 (Candidate set filtering rule). Given a temporal
bipartite graph G = (𝑈 ,𝑉 , E) and 𝑣 ∈ 𝑉 , we use 𝑇 (𝑣) to denote the
set of timestamps when 𝑣 has more than 𝜏𝑈 m-neighbors, i.e., 𝑇 (𝑣) =
{𝑡 |𝑡 ∈ T ∧ 𝛿 (𝑣, 𝑡) ≥ 𝜏𝑈 }. Then, for the current processing vertex sets
𝑉𝑆 , we can skip a candidate vertex 𝑣 ′ ∈ 𝐶𝑉 , if | ∩𝑣∈𝑉𝑆∪{𝑣′ }𝑇 (𝑣) | < 𝜆.

3.3 Frequency Verification
Recall the computation of the valid candidate set 𝐶∗

𝑉
for 𝑉𝑆 , whose

main cost is the frequency verification for all the vertex sets 𝑉𝑆 ∪
{𝑣}, where 𝑣 ∈ 𝐶𝑉 . In addition, as discussed before, the naive

frequency verification method is very time-consuming. Therefore,

reducing the cost of frequency verification is crucial for optimizing

the performance of algorithm. Motivated by this, in this section,

we design a novel array-based structure to speed up the processing.

The detailed method is presented in Algorithm 3.

CheckFRE algorithm. Algorithm 3 has three input parameters,

i.e., 𝑈𝑆 , 𝑉𝑆 and 𝜆, which corresponds to line 8 in Algorithm 1. It

returns true if 𝑉𝑆 satisfies the frequency constraint. Otherwise,

it returns false. The algorithm employs two array structures, i.e.,

Reborn Array (RA) and Update Array (UA), both of which have

a length of |T |. Initialization (lines 1-2). We initialize 𝜆′ as 0 to

Algorithm 3: CheckFRE(𝑈𝑆 ,𝑉𝑆 , 𝜆)
Input :𝑈𝑆 : the common s-neighbors of all the vertices in𝑉𝑆 ,

𝑉𝑆 : the checking vertex set, 𝜆: frequency constraint

Output : frequency verification result true/false
𝜆′ = 0;1
for each 𝑡 ∈ T do UA[𝑡 ] = 0; /* Update Array */2
for each 𝑢 ∈ 𝑈𝑆 do3

for each 𝑡 ∈ T do RA[𝑡 ] = 0; /* Reborn Array */4
for each 𝑣 ∈ 𝑁 (𝑢,𝐺 ) ∧ 𝑣 ∈ 𝑉𝑆 do5

for each 𝑡 ∈ T(𝑢,𝑣) do6
RA[𝑡 ] + +; /* count 𝑢’s m-neighbors in 𝑉𝑆 at 𝑡 */7

for each 𝑡 ∈ T do8
if RA[𝑡 ]= |𝑉𝑆 | then9

UA[𝑡 ] + +; /* count common m-neighbors of 𝑉𝑆 at 𝑡 */10

for each 𝑡 ∈ T do11
if UA[𝑡 ] ≥ 𝜏𝑈 then12

𝜆′ + +; /* count support timestamp for 𝑉𝑆 */13

if 𝜆′ = 𝜆 then return true;14

return false;15

count the frequency for the checking vertex set and all the ele-

ments in UA as 0. Then, we process each vertex 𝑢 ∈ 𝑈𝑆 itera-

tively (lines 3-10). Count 𝑢’s m-neighbors in 𝑉𝑆 at 𝑡 (lines 5-7). For
each processed vertex 𝑢, we use RA to count its m-neighbors in 𝑉𝑆
at each timestamp, whose elements are initialized as 0 (line 4).

T(𝑢,𝑣) is the set of timestamps associated with edge (𝑢, 𝑣). Af-
ter processing all m-neighbors of 𝑢, the RA for 𝑢 is constructed.

Count common m-neighbors of 𝑉𝑆 at 𝑡 (lines 8-10). Then, for each

element RA[𝑡] in RA, we check whether RA[𝑡] equals |𝑉𝑆 |. If
RA[𝑡] = |𝑉𝑆 |, it means 𝑢 connects all vertices in 𝑉𝑆 at 𝑡 , and we

increase the corresponding element UA[𝑡] in Update Array by 1.

UA[𝑡] represents the number of the commonm-neighbors of all ver-

tices in𝑉𝑆 at 𝑡 . After processing all vertices in𝑈𝑆 , we obtain the final

UA. Count support timestamp for 𝑉𝑆 (lines 11-14). Then, we check

the value of each element in UA. If there is an element that is no

less than 𝜏𝑈 , we add the number of frequency 𝜆′ by 1. We return

true if 𝜆′ equals 𝜆, which means that 𝑉𝑆 is frequent. Otherwise, we

return false (line 15).

Example 3.1. Reconsider the graph in Figure 2 with 𝜏𝑈 = 𝜏𝑉 = 2

and 𝜆 = 3. Figure 3 displays the checking process for the vertex set𝑉𝑆 =

{𝑣1, 𝑣2, 𝑣3, 𝑣5}, and 𝑈𝑆 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Based on Algorithm 3,
we traverse each vertex in𝑈𝑆 and record its m-degree in 𝑉𝑆 at each
timestamp. Specifically, when traversing 𝑢1, we record its m-degree in
𝑉𝑆 at each timestamp as “1, 3, 0, 4, 0, 3” in the Reborn Array. Among
these m-degrees, only one is equal to |𝑉𝑆 | = 4 (the fourth element of the
Reborn Array), so we add 1 in the fourth element of the Update Array,
i.e., UA[4] = 1, indicating that there is one vertex connecting all
vertices in𝑉𝑆 at 𝑡 = 4. After traversing 𝑢1, we clear Reborn Array and
maintain Update Array. Similarly, we traverse all the vertices in𝑈𝑆

and check all the elements of final Update Array. We find that there
are three elements of the final Update Array that are no less than
𝜏𝑈 = 2, i.e., UA[1] = 2, UA[3] = 2, UA[4] = 2, which correspond to
the timestamp 𝑡 = 1, 𝑡 = 3 and 𝑡 = 4, respectively. This means that
there are three timestamps at which the vertices in 𝑉𝑆 have no less
than two common m-neighbors, i.e., the frequency of {𝑣1, 𝑣2, 𝑣3, 𝑣5}
is 3. Therefore, this vertex set satisfies the frequency constraint.

Discussion. To compute the valid candidate set, we can iteratively

invoke Algorithm 3 to examine the frequency of the newly obtained
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Figure 3: Frequency verification example for vertex set
{𝑣1, 𝑣2, 𝑣3, 𝑣5} with 𝜏𝑈 = 𝜏𝑉 = 2 and 𝜆 = 3

vertex set, i.e., line 8 in Algorithm 1. After checking all the vertices

in 𝐶𝑉 , we obtain the valid candidate set 𝐶∗
𝑉
. The corresponding

time complexity is shown in Theorem 3.1.

Theorem 3.1. Based on Algorithm 3, the time complexity of com-
puting the valid candidate set𝐶∗

𝑉
is O(|𝑉 | ·𝑑𝑚𝑎𝑥 (𝑢) ·𝑑𝑚𝑎𝑥 (𝑣) · |T |),

where 𝑑𝑚𝑎𝑥 (𝑢) and 𝑑𝑚𝑎𝑥 (𝑣) are the largest s-degree of the vertices
in𝑈 and 𝑉 , respectively.

3.4 Maximality Verification
Due to the properties of MFG, the traditional maximality checking

technique for the maximal biclique enumeration [3, 11, 49] cannot

be used in our problem. To check the maximality of obtained vertex

set𝑉𝑆 , a naive method is to compare it with all the obtained results.

If 𝑉𝑆 is the subset of an existing result, i.e., not maximal, we can

skip it. Otherwise, for these vertex sets that are the subset of𝑉𝑆 , we

remove them from the currently found result set and add 𝑉𝑆 into

the result set. However, this method requires extensive computa-

tion, since it involves numerous set comparisons. In this section,

we introduce a new maximality checking technique. Specifically,

we use the vertex set 𝑋𝑉 to store the vertices that are previously

processed and can be included in at least one 𝜆-frequency group in

the current branch, i.e., adding 𝑣 into 𝑋𝑉 after line 17 in Algorithm

1. Based on 𝑋𝑉 , we present the details of checking method below.

Lemma 3.3 (Maximality verification). Given the current pro-
cessing tuple (𝑈𝑆 ,𝑉𝑆 ,𝐶𝑉 , 𝑋𝑉 ), 𝑉𝑆 is a 𝜆-frequency group. 𝑉𝑆 is an
MFG iff 𝑖) 𝐶∗

𝑉
= ∅ and 𝑖𝑖) any 𝑣 ∈ 𝑋𝑉 cannot form a 𝜆-frequency

group with 𝑉𝑆 , i.e., ∄ 𝑣 ∈ 𝑋𝑉 𝑠 .𝑡 . 𝑉𝑆 ∪ {𝑣} is a 𝜆-frequency group.

By applying Lemma 3.3, we can eliminate the enormous com-

parisons to determine the containment relationship between two

Table 1: Comparison of FilterV and VFree in computing valid
candidate set and checking maximality on D14

(𝜏𝑈 , 𝜏𝑉 , 𝜆) (8,4,8) (9,5,8) (10,6,6) (10,6,10)

FilterV-CM (%) 88.26% 88.52% 85.05% 86.68%

FilterV-CM (s) 899.30s 702.27s 617.14s 248.64s

VFree-CM (s) 63.80s 28.78s 26.65s 9.04s

vertex sets. The remaining issue is how to efficiently check whether

there exists a vertex 𝑣 ∈ 𝑋𝑉 such that 𝑉𝑆 ∪ {𝑣} is a 𝜆-frequency
group. To achieve this, we first apply the filtering rule (Lemma 3.2)

to efficiently shrink 𝑋𝑉 . Then we apply the verification method

(Algorithm 3) to check the frequency of the vertex set obtained by

adding each remaining vertex of 𝑋𝑉 separately into 𝑉𝑆 .

4 VERIFICATION-FREE APPROACH
FilterV is significantly faster than BK-ALG, even if we equip BK-
ALG with graph filtering technique (i.e., BK-ALG+ in the experi-

ment). However, FilterV still suffers from some limitations, due to

its search philosophy. When computing the valid candidate set 𝐶∗
𝑉

and checking maximality, FilterV needs to iterate over each vertex

in 𝐶𝑉 and 𝑋𝑉 separately for frequency verification, which could

be time-consuming. In addition, due to the vertex-oriented search

paradigm, FilterV cannot effectively utilize the shared information

among different computations. For instance, the invalid timestamp

information cannot be inherited by the subsequent computations.

In Table 1, we report the execution time of computing valid candi-

date set and checking maximality within FilterV (i.e., FilterV-CM
(s)), and the percentage FilterV-CM (%) of overall execution time on

a network D14 with more than 60 million edges (the dataset details

can be found in the full version [42]). As we can observe, the two

components, i.e., compute the valid candidate set and maximality

verification, take up a majority of the overall performance. There-

fore, if we can reduce the frequency and maximality verification

cost or even avoid such cost to some extent, the overall performance

can be significantly improved.

This motivates us to develop a strategy without verification,

i.e., derive the valid candidate set directly. Specifically, in this sec-

tion, we develop a timestamp-oriented search paradigm. It iterates

through the timestamps to obtain the valid candidate set 𝐶∗
𝑉
using

the dynamic counting structures proposed (Section 4.1), where the

unpromising timestamp can be skipped and common neighbor in-

formation can be carried forward. Then, we present the verification-

free algorithm (VFree) in Section 4.2. Theoretically, VFree can signif-
icantly reduce each valid candidate set computation cost in FilterV
by a factor of O(|𝑉 |) (details are shown in Theorem 4.2). Besides,

based on the search paradigm proposed in VFree, we can avoid ex-

plicit maximality verification. In Table 1, VFree-CM (s) denotes the
execution time of computing the valid candidate set and verifying

maximality in VFree, which is much faster than that in FilterV.

4.1 Valid Candidate Set Computation
General idea. In the verification-free framework, we process times-

tamps sequentially to compute the valid candidate set 𝐶∗
𝑉
. The pro-

cedure on one timestamp 𝑡 consists of four steps, where 𝑉𝑆 is the

current processing vertex set.
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• Step 1: ascertain from𝑈 . Obtain the common m-neighbors of 𝑉𝑆
in snapshot 𝐺𝑡 and store them into 𝑐𝑎𝑛𝑑𝑈 .

• Step 2: termination check. If |𝑐𝑎𝑛𝑑𝑈 | < 𝜏𝑈 , stop processing 𝑡 and

move to the next timestamp, since 𝑉𝑆 cannot form a (𝜏𝑈 , 𝜏𝑉 )-

biclique in 𝐺𝑡 . Otherwise, 𝑡 is a survived timestamp.
• Step 3: reverse-ascertain from𝑉 . Find all the vertices in𝑉𝑡\𝑉𝑆 that

connect at least 𝜏𝑈 vertices in 𝑐𝑎𝑛𝑑𝑈 and store them into 𝑐𝑎𝑛𝑑𝑉 .

• Step 4: survived timestamp update. Increase the survived times-

tamp count of 𝑉𝑆 ∪ {𝑣} by 1 for 𝑣 ∈ 𝑐𝑎𝑛𝑑𝑉 .
Example 4.1. Reconsider the graph in Figure 2 with 𝜏𝑈 = 𝜏𝑉 = 2.

Suppose 𝑉𝑆 = {𝑣1, 𝑣2} and 𝑡 = 1. Step 1) We store the common
m-neighbors of 𝑉𝑆 in 𝐺1 to 𝑐𝑎𝑛𝑑𝑈 , i.e., 𝑐𝑎𝑛𝑑𝑈 = {𝑢3, 𝑢4}. Step 2)
Since |𝑐𝑎𝑛𝑑𝑈 | ≥ 𝜏𝑈 = 2, 𝑡 = 1 is a survived timestamp for 𝑉𝑆 .
Step 3) We proceed to examine the common m-neighbors of 𝑐𝑎𝑛𝑑𝑈 .
Besides 𝑉𝑆 , both 𝑣3 and 𝑣5 connect 𝜏𝑈 = 2 vertices in 𝑐𝑎𝑛𝑑𝑈 . Thus,
𝑐𝑎𝑛𝑑𝑉 = {𝑣3, 𝑣5}, and we increase the survived timestamp count of
𝑉𝑆 ∪ {𝑣3} and 𝑉𝑆 ∪ {𝑣5} by 1, respectively in Step 4.

Based on the above procedure, we iterate through all the times-

tamps. It is easy to verify that, after processing all the timestamps,

𝐶∗
𝑉

is the subset of 𝑐𝑎𝑛𝑑𝑉 , where for each 𝑣 ∈ 𝐶∗
𝑉
, its survived

timestamp count is no less than 𝜆. In the following, we present the

details about how to 𝑖) enable the inheritance of invalid timestamp

information and 𝑖𝑖) accelerate the neighbor computation.

Timestamp inheritance. To enable the inheritance of timestamps,

we further maintain a timestamp set𝐶𝑇 for𝑉𝑆 , which stores all the

survived timestamps when computing 𝐶∗
𝑉
of 𝑉𝑆 . Then, according

to Lemma 4.1, we only need to check the timestamps in 𝐶𝑇 when

processing the subsequent branches of 𝑉𝑆 .

Lemma 4.1 (Timestamp skipping rule). Given the processing
vertex set 𝑉𝑆 and computed 𝐶𝑇 , if 𝑡 ∉ 𝐶𝑇 , we can skip the processing
at the timestamp 𝑡 in the subsequent search branches of 𝑉𝑆 , i.e., the
branch by adding any vertex into 𝑉𝑆 .

Neighbor computation acceleration. To compute and maintain

the neighbor information, we design three dynamic counting data

structures as follows.

• A two-dimensional array, denoted by 𝑐𝑛𝑡𝑈 [𝑡] [𝑢], to count the

number of m-neighbors of 𝑢 ∈ 𝑈 in 𝑉𝑆 at 𝑡 ∈ 𝐶𝑇 .
• A two-dimensional array, denoted by 𝑐𝑛𝑡𝑉 [𝑡] [𝑣], to count the

number of m-neighbors of 𝑣 ∈ 𝑉 \𝑉𝑆 in 𝑐𝑎𝑛𝑑𝑈 at 𝑡 ∈ 𝐶𝑇 .
• An one-dimensional array, denoted by 𝑐𝑛𝑡𝑇 [𝑣], used to record

the number of survived timestamps for 𝑉𝑆 ∪ {𝑣}, where 𝑣 ∈ 𝐶𝑉 .
For a given timestamp 𝑡 ∈ 𝐶𝑇 and the current processing vertex

set𝑉𝑆 , if 𝑐𝑛𝑡𝑈 [𝑡] [𝑢] = |𝑉𝑆 |, it means 𝑢 is the common m-neighbors

of all the vertices in 𝑉𝑆 in 𝐺𝑡 . Therefore, 𝑢 can be stored in 𝑐𝑎𝑛𝑑𝑈
(correspond to Step 1). If |𝑐𝑎𝑛𝑑𝑈 | < 𝜏𝑈 , we can skip the timestamp

(Step 2). Similarly, if 𝑐𝑛𝑡𝑉 [𝑡] [𝑣] ≥ 𝜏𝑈 , it means 𝑣 connects to at

least 𝜏𝑈 vertices in 𝑐𝑎𝑛𝑑𝑈 at 𝑡 and can be stored in 𝑐𝑎𝑛𝑑𝑉 (Step

3). Then, we increase 𝑐𝑛𝑡𝑇 [𝑣] by 1, which means 𝑡 is a survived

timestamp for 𝑉𝑆 ∪ {𝑣} (Step 4).

Example 4.2. Reconsider the graph in Figure 2 with 𝜏𝑈 = 𝜏𝑉 = 2

and 𝜆 = 3. Suppose the current processing set 𝑉𝑆 = {𝑣1}. To
compute the valid candidate set, Figure 4(a) visualizes the results
of three data structures after processing timestamp 𝑡 = 1. When
𝑉𝑆 = {𝑣1}, we have 𝐶𝑉 = {𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝐶𝑇 = {1, 2, 3, 4, 5, 6},
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(b)𝑉𝑆 = {𝑣1},𝐶∗𝑉 = {𝑣2, 𝑣3, 𝑣5},𝐶𝑇 = {1, 2, 3, 4}

𝑡 = 1 0 0 0
𝑡 = 2 0 01 1
𝑡 = 3 0 00
𝑡 = 4

00 12 2

00 00 0

00 22 2
00 13 3

𝑐𝑛𝑡! 𝑡 [𝑢] 𝑐𝑛𝑡" 𝑡 [𝑣] 𝑐𝑛𝑡#[𝑣]

1+𝟏1+𝟏

1+𝟏

0+𝟏

1+𝟏

0 00 1+𝟏1+𝟏 00 02 2

00 01 1

00 01 1
00 12 2

(c)𝑉𝑆 = {𝑣1, 𝑣2},𝐶∗𝑉 = {𝑣3, 𝑣5},𝐶𝑇 = {1, 3, 4}

Figure 4: Running example of computing valid candidate set
using VFree with 𝜏𝑈 = 𝜏𝑉 = 2 and 𝜆 = 3

since it is the first vertex explored. The three data structures are
initialized with 0. The m-neighbors of 𝑣1 at 𝑡 = 1 are 𝑢3 and 𝑢4.
Thus, we increase 𝑐𝑛𝑡𝑈 [1] [3] and 𝑐𝑛𝑡𝑈 [1] [4] by 1, respectively. As
𝑐𝑛𝑡𝑈 [1] [3] = 𝑐𝑛𝑡𝑈 [1] [4] = |𝑉𝑆 | = 1, we have 𝑐𝑎𝑛𝑑𝑈 = {𝑢3, 𝑢4}.
Since |𝑐𝑎𝑛𝑑𝑈 | ≥ 𝜏𝑈 = 2, 𝑡 = 1 is a survived timestamp. Next, we
process the m-neighbors of 𝑢3 at 𝑡 = 1, i.e., {𝑣1, 𝑣2, 𝑣3, 𝑣5}. Thus, we
assign a value of 1 to 𝑐𝑛𝑡𝑉 [1] [2], 𝑐𝑛𝑡𝑉 [1] [3], 𝑐𝑛𝑡𝑉 [1] [5] for vertex
𝑣2, 𝑣3 and 𝑣5, respectively. Similarly, we process the m-neighbors of
𝑢4 and increase the corresponding count. We have 𝑐𝑛𝑡𝑉 [1] [2] = 2,
𝑐𝑛𝑡𝑉 [1] [3] = 2, 𝑐𝑛𝑡𝑉 [1] [4] = 1 and 𝑐𝑛𝑡𝑉 [1] [5] = 2. Finally, since
𝑐𝑛𝑡𝑉 [1] [2] = 𝑐𝑛𝑡𝑉 [1] [3] = 𝑐𝑛𝑡𝑉 [1] [5] = 2, we have 𝑐𝑎𝑛𝑑𝑉 = {𝑣2,
𝑣3, 𝑣5} and increment 𝑐𝑛𝑡𝑇 [2], 𝑐𝑛𝑡𝑇 [3] and 𝑐𝑛𝑡𝑇 [5] by 1.

After processing each timestamp in 𝐶𝑇 , we get the final 𝑐𝑛𝑡𝑇 [𝑣].
For a vertex 𝑣 ′ ∈ 𝑉 \𝑉𝑆 , if 𝑐𝑛𝑡𝑇 [𝑣 ′] ≥ 𝜆, it means 𝑣 ′ is in the valid

candidate set of 𝑉𝑆 .

Example 4.3. Following Example 4.2, Figure 4(b) shows the final
results of the three data structures after processing all the timestamps
in𝐶𝑇 . As shown, 𝑐𝑛𝑡𝑇 [𝑣2] = 𝑐𝑛𝑡𝑇 [𝑣3] = 𝑐𝑛𝑡𝑇 [𝑣5] = 3 ≥ 𝜆. Therefore,
we have the valid candidate set 𝐶∗

𝑉
= {𝑣2, 𝑣3, 𝑣5}, and its survived

timestamp set is {1, 2, 3, 4}. The first column of 𝑐𝑛𝑡𝑉 [𝑡] [𝑣] is 0. This
is because 𝑣1 is in the current processing vertex set 𝑉𝑆 , and we do not
need to record the value.

In the search branch of 𝑉𝑆 , 𝑉𝑆 is continuously expanded by

adding new vertices into𝑉𝑆 . It means that the values in 𝑐𝑛𝑡𝑈 [𝑡] [𝑢]
are non-decreasing. Thus, we can incrementally maintain the data

structure 𝑐𝑛𝑡𝑈 [𝑡] [𝑢], i.e., 𝑐𝑛𝑡𝑈 [𝑡] [𝑢] can be inherited in the sub-

sequent search to avoid duplicated computation. 𝑐𝑛𝑡𝑉 [𝑡] [𝑣] and
𝑐𝑛𝑡𝑇 [𝑣] are temporally maintained when computing the valid can-

didate set 𝐶∗
𝑉
for a 𝑉𝑆 , and will be reset after each 𝐶∗

𝑉
computation.

Example 4.4. Following Example 4.3, suppose we add 𝑣2 to expand
the vertex set {𝑣1}, and compute the valid candidate set 𝐶∗

𝑉
for 𝑉𝑆 =
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{𝑣1, 𝑣2}. Figure 4(c) shows the final results of the three data structures.
The bold values in 𝑐𝑛𝑡𝑈 [𝑡] [𝑢] denote the incremental computations.
Note that, since the survived timestamps of {𝑣1} is 𝐶𝑇 = {1, 2, 3, 4},
we can skip the processing of 𝑡 = 5 and 6. Similarly, to compute 𝐶∗

𝑉
,

we need to iterate through 𝐶𝑇 . The difference is that, when updating
𝑐𝑛𝑡𝑈 [𝑡] [𝑢], we only need to increment the values based on the newly
added vertex 𝑣2 instead of 𝑉𝑆 . For instance, at 𝑡 = 1, the m-neighbors
of 𝑣2 is {𝑢3, 𝑢4}. Therefore, we increment 𝑐𝑛𝑡𝑈 [1] [3] and 𝑐𝑛𝑡𝑈 [1] [4]
by 1, respectively. After processing all the timestamps in𝐶𝑇 , We have
𝐶∗
𝑉
= {𝑣3, 𝑣5} by checking 𝑐𝑛𝑡𝑇 [𝑣].

4.2 VFree Algorithm
By incorporating the above techniques, we present our verification-

free (VFree) approach, whose details are shown in Algorithm 4.

Initialization (lines 1-7). R is used to store all the MFGs. We also

use the graph filtering technique (Algorithm 2 in Section 3.2) to

reduce the search space. Then, we reassign the id of each vertex in

𝑉 in ascending order of the structural degree. Ties are randomly

broken if vertices have the same structural degree. Note that, in
VFree, we process vertices of𝑉 in the order of vertex id to ensure the

maximality of the result, i.e., avoid explicit maximality verification.

That is, for any given vertex id setting, as long as we process the

vertices in ascending order of the id, the algorithm’s properties

and correctness can be ensured. We initialize 𝑐𝑛𝑡𝑈 , 𝑐𝑛𝑡𝑉 and 𝑐𝑛𝑡𝑇
in lines 4-7. In line 8, we invoke the procedure VerifyFreeMFG to

enumerate all MFGs, where we initialize 𝑉𝑆 with ∅, 𝐶𝑉 with 𝑉 and

𝐶𝑇 with T . Generally,𝑉𝑆 is the current processing vertex set,𝐶𝑉 is

the valid candidate set and 𝐶𝑇 is the survived timestamp set for 𝑉𝑆 .

Details of the procedure VerifyFreeMFG are shown in lines 9-43.

In lines 11-36, we compute the valid candidate set for 𝑉 ′
𝑆

=

𝑉𝑆 ∪ {𝑣}, where the 𝑛𝑜𝑡𝑅𝑒𝑝𝑒𝑎𝑡 flag in lines 31 and 35 is used for

later maximality check. We initialize𝐶∗
𝑉
,𝐶′

𝑇
and 𝑐𝑎𝑛𝑑𝑉 with ∅ (line

11), and perform the following operations in turn under each times-

tamp 𝑡 ∈ 𝐶𝑇 (lines 12-30). Step 1: ascertain from𝑈 (lines 13-17).We

first initialize 𝑐𝑎𝑛𝑑𝑈 with ∅ to denote the common m-neighbor set

of all the vertices in 𝑉 ′
𝑆
at 𝑡 and 𝑣𝑖𝑠𝑖𝑡𝑉 with ∅ to help maintain the

information in 𝑐𝑛𝑡𝑉 [𝑡] [𝑣]. Recall that 𝑐𝑛𝑡𝑉 [𝑡] [𝑣] and 𝑐𝑛𝑡𝑇 [𝑣] are
temporally maintained, and 𝑐𝑛𝑡𝑈 [𝑡] [𝑢] can be inherited. 𝑣𝑖𝑠𝑖𝑡𝑉 can

help restore the corresponding information in 𝑐𝑛𝑡𝑉 [𝑡] [𝑣] instead of
repeated initialization. For each m-neighbor𝑢 ∈ Γ(𝑣, 𝑡), we increase
𝑐𝑛𝑡𝑈 [𝑡] [𝑢] by 1 denoting that 𝑢 is connected with 𝑣 at 𝑡 (line 16). If

𝑐𝑛𝑡𝑈 [𝑡] [𝑢] = |𝑉 ′𝑆 |, whichmeans𝑢 connects all the vertices in𝑉 ′
𝑆
, we

push 𝑢 into 𝑐𝑎𝑛𝑑𝑈 (line 17). Step 2: termination check (lines 18-19).
After processing all the m-neighbors of 𝑣 , if |𝑐𝑎𝑛𝑑𝑈 | is less than
𝜏𝑈 , which means that 𝑡 is not a survived timestamp for 𝑉 ′

𝑆
, we

can skip 𝑡 . Otherwise, we push 𝑡 into 𝐶′
𝑇
that records the survived

timestamps for 𝑉 ′
𝑆
. Then we need to explore all the vertices in

𝑐𝑎𝑛𝑑𝑈 in lines 20-30. Step 3: reverse-ascertain from 𝑉 (lines 20-29).
For each vertex 𝑢′ ∈ 𝑐𝑎𝑛𝑑𝑈 , we need to traverse its m-neighbors

Γ(𝑢′, 𝑡) iteratively. Specifically, if its m-neighbor 𝑣 ′ ∈ Γ(𝑢′, 𝑡) exists
in 𝑉 ′

𝑆
, we skip the current vertex (line 22). If 𝑣 ′ ∉ 𝑣𝑖𝑠𝑖𝑡𝑉 , which

means that it is the first time to visit 𝑣 in the current search, we

set 𝑐𝑛𝑡𝑉 [𝑡] [𝑣 ′] with 1 and push 𝑣 ′ into 𝑣𝑖𝑠𝑖𝑡𝑉 (lines 23-24). Oth-

erwise, we add 𝑐𝑛𝑡𝑉 [𝑡] [𝑣 ′] by 1 (lines 25-26). If 𝑐𝑛𝑡𝑉 [𝑡] [𝑣 ′] = 𝜏𝑈 ,

which means 𝑣 ′ has no less than 𝜏𝑈 common m-neighbors with all

vertices in 𝑉 ′
𝑆
at timestamp 𝑡 (i.e., 𝑣 ′ connects at least 𝜏𝑈 vertices

Algorithm 4: Verification-Free (VFree)
Input : G = (𝑈 ,𝑉 , E) : a temporal bipartite graph,

𝜏𝑈 , 𝜏𝑉 : size constraints, 𝜆: frequency constraint

Output : R: all theMFGs
R ← ∅;1
G ← GFCore(G, 𝜏𝑈 , 𝜏𝑉 , 𝜆) ; /* graph filter: Algorithm 2 */2
Reassign vertex id of𝑉 in ascending order of the structural degree;3
for each 𝑡 ∈ T do4

for each 𝑢 ∈ 𝑈 do 𝑐𝑛𝑡𝑈 [𝑡 ] [𝑢 ] = 0;5
for each 𝑣 ∈ 𝑉 do 𝑐𝑛𝑡𝑉 [𝑡 ] [𝑣 ] = 0;6

for each 𝑣 ∈ 𝑉 do 𝑐𝑛𝑡𝑇 [𝑣 ] = 0;7
VerifyFreeMFG(∅,𝑉 , T) ;8

Procedure VerifyFreeMFG(𝑉𝑆 ,𝐶𝑉 ,𝐶𝑇 )9
for each 𝑣 ∈ 𝐶𝑉 do10

𝑉 ′
𝑆
← 𝑉𝑆 ∪ {𝑣},𝐶∗𝑉 ← ∅,𝐶

′
𝑇
← ∅, 𝑐𝑎𝑛𝑑𝑉 ← ∅;11

for each 𝑡 ∈ 𝐶𝑇 do12
𝑐𝑎𝑛𝑑𝑈 ← ∅;13
𝑣𝑖𝑠𝑖𝑡𝑉 ← ∅; /* store vertices for the first verify */14
for each 𝑢 ∈ Γ (𝑣, 𝑡 ) do15

𝑐𝑛𝑡𝑈 [𝑡 ] [𝑢 ] = 𝑐𝑛𝑡𝑈 [𝑡 ] [𝑢 ] + 1;16
if 𝑐𝑛𝑡𝑈 [𝑡 ] [𝑢 ] = |𝑉 ′𝑆 | then 𝑐𝑎𝑛𝑑𝑈 .𝑝𝑢𝑠ℎ (𝑢 ) ;17

if |𝑐𝑎𝑛𝑑𝑈 | < 𝜏𝑈 then continue;18
𝐶′
𝑇
.𝑝𝑢𝑠ℎ (𝑡 ) ; /* survived timestamp set for 𝑉 ′

𝑆
*/19

for each 𝑢′ ∈ 𝑐𝑎𝑛𝑑𝑈 do20
for each 𝑣′ ∈ Γ (𝑢′, 𝑡 ) do21

if 𝑣′ ∈ 𝑉 ′
𝑆
then continue;22

if 𝑣′ ∉ 𝑣𝑖𝑠𝑖𝑡𝑉 then23
𝑐𝑛𝑡𝑉 [𝑡 ] [𝑣′ ] = 1, 𝑣𝑖𝑠𝑖𝑡𝑉 ← 𝑣𝑖𝑠𝑖𝑡𝑉 ∪ {𝑣′ };24

else25
𝑐𝑛𝑡𝑉 [𝑡 ] [𝑣′ ] = 𝑐𝑛𝑡𝑉 [𝑡 ] [𝑣′ ] + 1;26

if 𝑐𝑛𝑡𝑉 [𝑡 ] [𝑣′ ] = 𝜏𝑈 then27
if 𝑐𝑛𝑡𝑇 [𝑣′ ] = 0 then28

𝑐𝑎𝑛𝑑𝑉 .𝑝𝑢𝑠ℎ (𝑣′ ) ;29

𝑐𝑛𝑡𝑇 [𝑣′ ] = 𝑐𝑛𝑡𝑇 [𝑣′ ] + 1;30

𝑛𝑜𝑡𝑅𝑒𝑝𝑒𝑎𝑡 ← 𝑡𝑟𝑢𝑒 ;31
for each 𝑣′ ∈ 𝑐𝑎𝑛𝑑𝑉 do32

if 𝑐𝑛𝑡𝑇 [𝑣′ ] < 𝜆 then 𝑐𝑛𝑡𝑇 [𝑣′ ] = 0, continue;33
𝑐𝑛𝑡𝑇 [𝑣′ ] = 0;34
if 𝑣′ < 𝑣 then 𝑛𝑜𝑡𝑅𝑒𝑝𝑒𝑎𝑡 ← false;35
else𝐶∗

𝑉
.𝑝𝑢𝑠ℎ (𝑣′ ) ; /* valid candidate set for 𝑉 ′

𝑆
*/36

if |𝑉 ′
𝑆
| + |𝐶∗

𝑉
| ≥ 𝜏𝑉 ∧ |𝐶′𝑇 | ≥ 𝜆 then37

sort𝐶∗
𝑉

based on vertex id; /* ensure the processing order */38
VerifyFreeMFG(𝑉 ′

𝑆
,𝐶∗

𝑉
,𝐶′

𝑇
) ;39

if |𝐶∗
𝑉
| = 0 ∧ 𝑛𝑜𝑡𝑅𝑒𝑝𝑒𝑎𝑡 then R ← R ∪ {𝑉 ′

𝑆
}; /* MFG */40

for each 𝑡 ∈ 𝐶𝑇 do41
for each 𝑢 ∈ Γ (𝑣, 𝑡 ) do42

𝑐𝑛𝑡𝑈 [𝑡 ] [𝑢 ] = 𝑐𝑛𝑡𝑈 [𝑡 ] [𝑢 ] − 1; /* update 𝑐𝑛𝑡𝑈 */43

in 𝑐𝑎𝑛𝑑𝑈 ), we check whether 𝑐𝑛𝑡𝑇 [𝑣 ′] equals 0 or not (lines 27-

28). As discussed before, 𝑐𝑛𝑡𝑇 [𝑣 ′] denotes the number of survived

timestamps for the set 𝑉 ′
𝑆
∪ {𝑣 ′}. If 𝑐𝑛𝑡𝑇 [𝑣 ′] = 0, we push 𝑣 ′ into

𝑐𝑎𝑛𝑑𝑉 (lines 28-29). Step 4: survived timestamp update (line 30).We

add the number of survived timestamps for 𝑣 ′ (i.e., 𝑐𝑛𝑡𝑇 [𝑣 ′]) by
1. Valid candidate set computation (lines 31-36). After processing all
the timestamps in 𝐶𝑇 , we can obtain the final 𝑐𝑛𝑡𝑇 [𝑣 ′] for each
vertex 𝑣 ′ ∈ 𝑐𝑎𝑛𝑑𝑉 . If 𝑐𝑛𝑡𝑇 [𝑣 ′] < 𝜆, we set 𝑐𝑛𝑡𝑇 [𝑣 ′] as 0 and skip 𝑣 ′.
If 𝑣 ′ < 𝑣 , we set 𝑛𝑜𝑡𝑅𝑒𝑝𝑒𝑎𝑡 as false. If 𝑣 ′ ≥ 𝑣 , we push 𝑣 ′ into𝐶∗

𝑉
as

the valid candidate vertex for 𝑉 ′
𝑆
.

We recursively invoke VerifyFreeMFG if the size constraint is

satisfied (lines 37-39). 𝐶∗
𝑉
is sorted to ensure the processing order

of vertices in 𝑉 . We restore 𝑐𝑛𝑡𝑈 [𝑡] [𝑢] by reducing 1 for each m-

neighbor 𝑢 of 𝑣 to utilize it in the next iteration (lines 41-43). Unlike
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Figure 5: Response time on all the datasets

FilterV, which explicitly conducts maximality verification through

expensive computation (i.e., Section 3.4), in VFree, if 𝐶∗
𝑉

= 0 and

𝑛𝑜𝑡𝑅𝑒𝑝𝑒𝑎𝑡 is true, it means we find an MFG that can be added to

the result set R (line 40). The correctness is shown in Theorem 4.1.

Theorem 4.1 (Algorithm correctness). Given a temporal bi-
partite graph G, three positive integers 𝜏𝑈 , 𝜏𝑉 and 𝜆, Algorithm 4 can
return all the MFGs in G.

Theorem 4.2 (Time complexity analysis). The time complexity
of computing the valid candidate set 𝐶∗

𝑉
for a vertex set 𝑉𝑆 based on

Algorithm 4 is O(𝑑𝑚𝑎𝑥 (𝑢) · 𝑑𝑚𝑎𝑥 (𝑣) · |T |).

According to Theorems 3.1 and 4.2, VFree can reduce each valid

candidate set computation cost in FilterV by a factor of O(|𝑉 |).

5 EXPERIMENT
In this section, we conduct the experiment on 15 real-world datasets

to verify the performance of proposed techniques. More details

about experiment setup can be found in the full version [42].

5.1 Efficiency Evaluation
Exp-1: Experiments over all the datasets. Figure 5 reports the
response time of BK-ALG+, FilterV-, FilterV and VFree over all the
datasets with the default settings. FilterV- is faster than BK-ALG+
due to the optimization in the BK framework, i.e., compute the valid

candidate set first before the exploration. FilterV further improves

FilterV- because of the filtering and verification techniques devel-

oped. VFree outperforms the other algorithms with a significant

margin. This is because 𝑖) VFree is time-oriented when comput-

ing the valid candidate, and the dynamic counting structures can

extraordinarily speedup the computation; 𝑖𝑖) the search paradigm

also significantly reduces the cost of the maximality verification.

For instance, on the dataset D14, BK-ALG+ fails to complete the

computation within 12 hours. FilterV- and FilterV return the result

in 2081 seconds and 445 seconds, respectively. VFree can return the

result in 50 seconds. On the largest dataset D15 with more than 70

million edges, the response time of VFree is 218 seconds. In datasets
D5, D6 and D9, where BK-ALG+ can finish in a reasonable time,

VFree can achieve up to three orders of magnitude speedup.

Exp-2: Response time by varying parameters. In Figures 6(a) to

6(f), we report the response time of BK-ALG+, FilterV-, FilterV and

VFree on the two largest datasets D14 and D15 by varying param-

eters 𝜏𝑈 , 𝜏𝑉 and 𝜆, respectively. Note that, in these experiments,

we use default settings for the other unchanged parameters. As

shown, VFree is faster than the other three algorithms under all the

parameter settings. Besides, the response time of all the algorithms

decreases when the parameters increase. This is because more ver-

tices can be skipped and larger search space can be pruned by the

graph filtering technique due to the tighter constraints. BK-ALG+

8 9 10 11 12
τU

102

103

104
INF

T
im

e
C

os
t

(s
)

BK-ALG+

FilterV-

FilterV

VFree

(a) D14 (𝜏𝑈 )

4 5 6 7 8
τV

102

103

104
INF

T
im

e
C

os
t

(s
) BK-ALG+

FilterV-

FilterV

VFree

(b) D14 (𝜏𝑉 )

6 7 8 9 10
λ

102

103

104
INF

T
im
e
C
os
t
(s
) BK-ALG+

FilterV-

FilterV

VFree

(c) D14 (𝜆)

11 12 13 14 15
τU

102

103

104

INF

T
im

e
C

os
t

(s
) BK-ALG+

FilterV-

FilterV

VFree

(d) D15 (𝜏𝑈 )

11 12 13 14 15
τV

102

103

104

INF

T
im

e
C

os
t

(s
)

BK-ALG+

FilterV-

FilterV

VFree

(e) D15 (𝜏𝑉 )

11 12 13 14 15
λ

102

103

104

INF

T
im

e
C

os
t

(s
)

BK-ALG+

FilterV-

FilterV

VFree

(f) D15 (𝜆)

Figure 6: Response time by varying 𝜏𝑈 , 𝜏𝑉 and 𝜆
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Figure 7: Response time by varying |T | and |T |%

fails to return the results in a reasonable time on most datasets even

with large parameters.

Exp-3: Response time by varying |T | and |T |%. In this exper-

iment, we report the response time of BK-ALG+, FilterV-, FilterV
and VFree by varying the settings of time span on D14, D15 and

D16. D16
2
is a larger graph (with over 256 million edges) employed

to further demonstrate the performance of proposed techniques,

and default parameters for D16 are 𝜏𝑈 = 10, 𝜏𝑉 = 15 and 𝜆 = 10. We

conduct two sets of experiments. 𝑖) For each dataset, we generate

6 temporal bipartite graphs by varying |T |, i.e., setting different

time scales. The results are shown in Figures 7(a)-7(c). As observed,

VFree outperforms the other algorithms by a significant margin

and scales well. For example, when |T | = 300 in D16, BK-ALG+
and FilterV- cannot return results within 12 hours. The response

time of FilterV and VFree are 4105.32 seconds and 46.86 seconds,

respectively. The response time of all the algorithms decreases

when |T | increases. This is because, as |T | increases, the number

of edges in each snapshot decreases, leading to more space pruned

based on the cohesive constraint. 𝑖𝑖) For each dataset, we keep |T |
unchanged as the default value, i.e., 66 for D14, 67 for D15 and

134 for D16, and generate 6 temporal bipartite graphs by covering

the edges in the first 50%-100% timestamps, i.e., |T |%. The results
are shown in Figures 7(d)-7(f). As observed, VFree outperforms

the other algorithms. The response time of all algorithms grows

with the increase of |T |% due to the larger search space. The above

2
http://konect.cc/networks/yahoo-song/
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Figure 8: Evaluation of the vertex ID reorder technique

experiments demonstrate that our proposed algorithms are scalable

towards different temporal settings.

Exp-4: Evaluation of the ID reorder technique. To evalu-

ate the impact of the ID reorder technique in VFree, we con-

duct the experiments on D14 and D15 by varying 𝜏𝑈 , 𝜏𝑉 and

𝜆, respectively. For FilterV-, FilterV and VFree, we report the

speedup ratio of ID reorder technique, which is calculated by

response time of algorithms without ID reorder

response time of algorithms with ID reorder
. The results are shown in

Figure 8. Note that, we omit BK-ALG+ here, since it cannot finish on
D14 and D15 within 12 hours even with the ID reorder technique.

As observed, the ID reorder technique can improve the efficiency

of algorithms. For instance, the speedup for VFree is up to 1.8x.

We also conduct the experiments to evaluate the scalability,

graph filtering technique, candidate filtering rule and the verifica-

tion technique, whose details can be found in the full version [42].

5.2 Effectiveness Evaluation
Exp-5: Multimorbidity detection. To demonstrate the effective-

ness of proposed model, we conduct a case study on D1 (MIMIC-III)

for potential multimorbidity detection. MIMIC-III is a real clini-

cal dataset representing relationships between patients and health

conditions, where the timestamp denotes the time of diagnosis

[1, 2, 15]. By applying our model MFG, we can model the situation

where multiple health conditions appear for different patients at

multiple times simultaneously. The partially identifiedMFGs are
shown in Table 2. For instance, ‘SEPSIS’ and ‘PNEUMONIA’ are

highly correlated, since pneumonia is a common cause of sepsis.

Moreover, we compareMFG with two variants based on existing

models, i.e., 𝑖) maximal frequent (𝜏𝑈 , 𝜏𝑉 )-biclique (MFB) and 𝑖𝑖)
maximal static group (MSG).MFB is the maximal (𝜏𝑈 , 𝜏𝑉 )-biclique
with frequency at least 𝜆, i.e., appearing in at least 𝜆 snapshots.

MSG is the maximal group included in (𝜏𝑈 , 𝜏𝑉 )-biclique of the cor-
responding static graph. As shown in Table 2, these two models

cannot obtain practical results. Specifically, we cannot find any

results by applying MFB model due to the tight constraint. For

MSG, the identified groups may be too large to provide practical

information due to neglect of temporal aspect.

Exp-6: Fraud detection. In this case study, we demonstrate the

application for a fraud detection task in face of the camouflage

attack [18] on D9 (Amazon Ratings) compared withMFB andMSG.
Considering a practical scenario with a random camouflage attack

Table 2: Case study on D1 (𝜏𝑈 = 𝜏𝑉 = 2 and 𝜆 = 6)

Model Partial results

MFG
{SEPSIS, PNEUMONIA}, {GASTROINTESTINAL BLEED,

LOWER GI BLEED}, {ASTHMA, COPD EXACERBATION,

PNEUMONIA}, {UPPER GI BLEED, LOWER GI BLEED}, . . .

MSG

{CHRONIC OBST PULM DISEASE, CHRONIC OBSTRUC-

TIVE PULMONARY, RESPIRATORY FAILURE, PNEUMO-

NIA, COPD EXACERBATION, ASTHMA}, {HYPERTENSIVE

EMERGENCY, HYPERTENSIVE URGENCY, ABDOMINAL

PAIN, DIABETIC KETOACIDOSIS}, . . .
MFB N/A
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Figure 9: Case study on D9
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Figure 10: Number of MFGs by varying parameters

on D9, we randomly select five timestamps and choose 2K prod-

ucts at each selected timestamp. Specifically, at each of the selected

timestamps, we introduce a fraudulent block containing 1K fake

users, 1.5K fake comments and 0.5K camouflage comments to the

data. The same fake users are used across selected timestamps. Be-

sides, at each selected timestamp, fake comments (resp. camouflage

comments) are generated randomly between these injected fake

users and the chosen products (resp. real products). We categorize

all users identified within the detected subgraphs as fake items and

all others as real one, and report the precision, recall and F1 score

in Figure 9. As observed, MFG can achieve better results compared

to the others, which demonstrates the effectiveness of our proposed

model. For MFB, it cannot find results under some settings, and

we omit the corresponding value in the figure. For MSG, it usually
has high recall but low precision since it would find large groups

involving many users.

Exp-7: Number of MFGs. In this experiment, we report the num-

ber of returned MFGs on D14 and D15 by varying different param-

eters. The results are shown in Figure 10. The settings for other

unchanged parameters follow the default values. The number of

MFGs decreases with the increase of three parameters due to the

tighter constraint required. As shown, even with large parameters,

we can still findMFG patterns, which demonstrates the applicability

of our model in different settings for real scenarios.

6 RELATEDWORK
Graphs are widely used to capture the relationships between en-

tities [10, 37, 41]. In the literature, many subgraph models have
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been proposed for temporal unipartite graphs (e.g., [22, 30, 32, 33]).

Ma et al. [30] study the connected temporal subgraph whose ag-

gregated graph has the maximum cohesive density on temporal

weighted graphs. They develop algorithms based on the assump-

tion that the weights of all edges are increasing or decreasing in

the same direction. Li et al. [23] define a novel 𝑘-core based model

to capture the persistence of a community. They first propose a

novel temporal graph reduction method and then develop a novel

branch and bound algorithm with several powerful pruning rules

to find the result. [32] leverages the clique model and investigates

the 𝜎-periodic 𝑘-clique enumeration problem. The authors first

prune the input temporal graph based on two novel relaxed pe-

riodic clique models. Then, they propose a graph transformation

technique and efficiently enumerate the results on the transformed

graph. Qin et al. [31] propose a novel concept named (𝜇, 𝜏, 𝜖)-stable
core, to characterize the stable core nodes of the clusters. They call

a node𝑢 is (𝜇, 𝜏, 𝜖)-stable core if it has no less than 𝜇 neighbors that

are simultaneously similar to itself in at least 𝜏 snapshots of the

temporal graph. Using the similar ideas of [32], they first propose

the weak and strong cores to significantly prune the unpromising

nodes, and then identify all the stable clusters from the remaining

graph. There are also some studies that focus on bursting subgraph

mining, which are established on the time-interval based constraint.

In [33], Qin et al. study the problem of mining bursting cores, where

the (𝑙, 𝛿)-maximal bursting core model is developed. They propose

a novel dynamic programming algorithm to speedup the calcula-

tion of the segment density. Zhang et al. [48] propose a frequency

bursting pattern in temporal graphs. It tries to model the interactive

behaviors that accumulate their frequencies the fastest. Chu et al.

[13] aim to find the top-𝑘 density bursting subgraphs, each of which

is the subgraph that accumulates their density at the fastest speed in

the temporal graph. In [28], a new metric named T-cohesiveness is
proposed by jointly considering the time and topology dimensions.

For temporal bipartite graphs, Li et al. [22] study the community

search problem, and a persistent community model is proposed

based on (𝛼, 𝛽)-core, which has different semantics from ours. If we

consider a temporal graph as a set of snapshots, the problems of fre-

quent subgraph mining and multi-layer cohesive subgraph mining

are correlated. Specifically, the goal of frequent subgraph mining

is identifying frequently appeared subgraphs from a collection of

graphs (e.g., [19, 26]). As for multi-layer graph mining, many mod-

els are proposed to pinpoint structures, such as the 𝑑-coherent core

and firm truss [7, 17, 52]. Besides the above studies, there are some

works focusing on dynamic graphs (e.g., [14, 27, 38]). For instance,

Tang et al. [38] propose a novel (𝜃, 𝑘)-core reliable community in

the weighted dynamic networks. That is, a 𝑘-core with each edge

weight no less than the weight threshold 𝜃 spans over a period of

time. To find the most reliable local community with the highest

reliability score, they first filter the unpromising edges from the

graph. Then they develop an index structure and devise an index-

based dynamic programming search algorithm. Although many

studies have been conducted over temporal or dynamic graphs, it

is non-trivial to extend the existing solutions to our problem.

As the most cohesive structure in bipartite graphs, the biclique

model has attracted significant attention. The problem of maximal

biclique enumeration has been widely studied in static bipartite

graphs [3, 4, 11, 25, 49]. Most of the existing biclique enumeration

algorithms conduct the search by expanding the vertices from one

side. Then, we can intersect their neighbors to form the correspond-

ing biclique [3, 11, 49]. In [16], the authors reduce the maximal

biclique enumeration problem to the maximal clique enumeration

problem. In [49], Zhang et al. remove the unpromising candidates

from the search branches by employing the branch-and-bound

framework. In [3], Abidi et al. develop a novel pivot-based tech-

nique to block non-maximal search branches. In [11], the authors

accelerate the process of maximal biclique enumeration by propos-

ing the concepts of unilateral coreness for individual vertices, uni-

lateral order for each vertex set and unilateral convergence for a

large sparse bipartite graph. Generally, in the unilateral core, for all

vertices on one side of it, the number of their two-hop neighbors

within must be no less than 𝑘 . The concepts of unilateral coreness,

order and convergence are proposed based on the concept of uni-

lateral core. However, these concepts are orthogonal to our model

and have different semantics. In [47], the authors propose a dense

bipartite subgraph model, which considers similarity between ver-

tices from the same side on static bipartite graphs. To the best of

our knowledge, although there are a few works considering the

one-layer properties in bipartite graphs, no existing works study

the unilateral frequency model. There are also some studies that

consider the biclique problem in various bipartite graphs, such as

signed bipartite graph [35, 36]. As we can see, few studies consider

the case of temporal bipartite graphs. Moreover, due to the unilat-

eral property of our model, the existing studies cannot be extended

to solve our problem efficiently.

7 CONCLUSION
Temporal bipartite graph is an important data structure to model

many real-world applications. To analyze the properties of tem-

poral bipartite graphs, in this paper, we propose a novel model,

named maximal 𝜆-frequency group, by considering both unilateral

cohesiveness and temporal aspect. We first introduce a filter-and-

verification method by extending the BK framework. Novel filtering

techniques and array-based checking method are developed. To

further improve the performance, a verification-free approach is

proposed based on advanced dynamic counting strategy, which can

significantly reduce the cost of valid candidate set computation and

avoid explicit maximality verification. Experiments over 15 real-

world datasets confirm the efficiency and effectiveness of proposed

techniques and model.
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