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Abstract: There has been a recent increase in the frequency of mass disaster events. Following these
events, the rapid location of victims is paramount. Currently, the most reliable search method is scent
detection dogs, which use their sense of smell to locate victims accurately and efficiently. Despite their
efficacy, they have limited working times, can give false positive responses, and involve high costs.
Therefore, alternative methods for detecting volatile compounds are needed, such as using electronic
noses (e-noses). An e-nose named the ‘NOS.E’ was developed and has been used successfully to
detect VOCs released from human remains in an open-air environment. However, the system’s
full capabilities are currently unknown, and therefore, this work aimed to evaluate the NOS.E to
determine the efficacy of detection and expected sensor response. This was achieved using analytical
standards representative of known human ante-mortem and decomposition VOCs. Standards were
air diluted in Tedlar gas sampling bags and sampled using the NOS.E. This study concluded that the
e-nose could detect and differentiate a range of VOCs prevalent in ante-mortem and decomposition
VOC profiles, with an average LOD of 7.9 ppm, across a range of different chemical classes. The
NOS.E was then utilized in a simulated mass disaster scenario using donated human cadavers, where
the system showed a significant difference between the known human donor and control samples
from day 3 post-mortem. Overall, the NOS.E was advantageous: the system had low detection
limits while offering portability, shorter sampling times, and lower costs than dogs and benchtop
analytical instruments.

Keywords: sensor; DVI; machine olfaction; metal oxide sensors; decomposition odor; VOCs

1. Introduction

Mass disaster incidents result from a spontaneous event that can originate from
natural or unnatural causes and involve large numbers of victims [1]. The frequency of
these events is increasing. Natural causes can include events such as earthquakes, tsunamis,
hurricanes, flooding, bushfires, and landslides. Typical unnatural causes include building
collapses or explosions from terrorist or industrial causes, and aircraft, train, or other
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vehicle crashes [1,2]. Although most deaths following a mass disaster are immediate and
rapid, some are delayed due to causes such as starvation, dehydration, and blood loss,
making rapid detection important [3,4]. Current post-disaster search methods include
manual searching, imaging, search and rescue (SAR) dogs, and human remains detection
(HRD) dogs. Although successful, there are several disadvantages to these methods:
searching methods can often be dangerous, time-consuming, and not always reliable,
posing both short- and long-term health risks to searchers, other personnel, and SAR or
HRD dogs [3,5–7]. Detection dogs are currently the most reliable method to search for mass
disaster victims as they can cover large areas rapidly and can detect victims where vision
or sound is limited [8]. While detection dogs are an effective search tool, these specialized
dogs are expensive to train and maintain, can only work for short periods, can give false
positive alerts, and are unable to convey information on what they are detecting [8,9].

Both SAR and HRD dogs use volatile organic compounds (VOCs) to track an odor to
its source; these are compounds with high vapor pressure that vaporize readily at room
temperature. VOCs are responsible for odor, and are detected by the olfactory system, to
then be perceived by the brain as odor or scent. VOCs are released into the environment
through sweat, blood, urine [10–12], and expired air [11,13] in live victims. Specifically,
ketones are present in ante-mortem VOC profiles in high abundance due to starvation.
During starvation, the body undergoes ketosis, and ketones are synthesized from the
use of fatty acids as an alternative food source [10,14,15]. In deceased victims, VOCs are
released through the decomposition process from the breakdown of macromolecules and
are also produced from microbial activity [5,16–18]. Decomposition VOCs from human
donors have been studied during a mass disaster simulation; Ueland et al. [5] placed six
donors under rubble for one month to simulate a building collapse. The VOC profile was
sampled over the month period to determine how the effects of building debris affected
the VOC profile. Overall, they identified and investigated sulfur compounds due to their
association with decomposition VOC profiles. Specifically, dimethyl disulfide (DMDS) and
dimethyl trisulfide (DMTS) are produced as a result of protein breakdown and through
microbial activity, and have been found in decomposition VOC profiles from day one
post-mortem, making them ideal biomarkers for searching [5,17]. Additionally, alcohols
and hydrocarbons were found in high abundance and increasing concentration in the
earlier days of the mass disaster simulation.

Current analytical methods for the identification of the VOC profile produced from
living or deceased victims are a two-step approach, requiring samples to be collected
in-field, and then analyzed in the laboratory using benchtop instrumentation. Currently,
two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC
× GC − TOFMS) is utilized to separate and identify the components of complex VOC
profiles [5,9,19–22]. Despite its high sensitivity, GC × GC − TOFMS has several limitations:
the instrument is expensive to buy and maintain, requires user expertise for analysis, is
not portable, and has long run times. Therefore, the need for a new field-based system for
VOC detection is evident, making electronic nose technology invaluable.

Electronic noses (e-noses) are a gas measurement system which imitate the mammalian
olfactory system by collecting and analyzing the VOCs in air samples [23]. E-noses use the
combination of a multi-sensor array and pattern recognition to generate a unique ‘chemical
fingerprint’ for VOCs [24]. This allows for the detection and differentiation of simple or
complex VOC profiles, providing real-time results without the need for user expertise
or benchtop instrumentation [25–28]. E-noses can be fitted with different chemosensors
of partial specificity such as metal oxide (MOS), organic CPs, chemocapacitors (CAPs),
and gravimetric sensors; each sensor material exhibits different resistance changes when
exposed to different VOCs [23,24]. The usage of different materials is dependent on
the specific application of the e-nose. E-noses have a wide range of applicability across
various industries, where they have been utilized to grade the freshness of food [23,29], to
recognize the characteristic odors of cancers and diseases [29,30], drug detection [27,28],
or food and alcohol fraud [31,32]. Current chemometric methods used with e-noses for
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pattern recognition include principal component analysis (PCA) [30,33], which allows
visualization of the e-noses’ ability to differentiate different VOCs or VOC profiles. Several
limitations with e-noses have been previously highlighted, which are predominantly related
to their inability to identify individual VOCs within profiles and quantify compound
concentrations. Sensor drift, or the gradual unpredictable changes in sensor response
over time, from environmental factors, general use, or sensor poisoning has similarly been
recognised as an issue which affects the reproducibility of e-nose results and influences
reliability [29,33]. Furthermore, the presence of air patches and eddy currents in the sensor
chamber can cause changes in analyte concentration, which have been understood to
reflect in sensor response. These changes in sensor response subsequently affect detection
limits and cause fluctuations in results [34], posing a challenge when implementing pattern
recognition and assessing reliability. Despite these initial drawbacks of the technology,
e-nose data interpretation can be improved through machine learning algorithms such
as neural networks, which can improve sensor selectivity and recognize complex VOC
profiles [35–39].

The NOS.E is an e-nose that has been developed at The University of Technology
Sydney (UTS) [9,31,33,40–43]. The NOS.E contains an array of commercially available
metal oxide gas sensors that are used to detect different VOC classes. Specifically, the
sensors were chosen to target chemical classes such as alcohols, hydrocarbons, ketones, and
sulfur- and nitrogen-containing compounds, which are abundant in the ante-mortem [3,10–
13] and decomposition VOC profiles [16,17]. The sensors are comprised of a metal oxide
semiconductor (MOS) layer, where, based on the sensor type and compound classes present,
the conductivity of the semiconductor increases with the analyte concentration [44]. The
NOS.E system has an automated airflow and control system (Figure 1), which assists
in decreasing the distortion of VOC analysis results due to deviations in airflow, since
duration and speed have been seen to affect the sensor response [33]. Air flows into
the open-designed sensor chamber over the sensors one way through four channels, not
flowing directly over the sensors, then exits through a single output (Figure 1). The impact
of eddy currents within the sensor chamber on sensor response is unknown, and it is
unclear whether these air currents influence the system’s repeatability and detection limits.
Additionally, how these air currents affect sensor response in relation to sensor positioning
within the sensor chamber is also undetermined.

Figure 1. Schematic of the configuration of the NOS.E air intake system and sensor positioning
(sensor numbers 1–8) within the gas chamber; arrows represent the direction of airflow through the
system, with the blue arrows highlighting airflow through the sensor chamber. The sensor 3 position
was not used in this study.

While the NOS.E cannot provide identification of the individual compounds present
within the VOC profile, the pattern of the collective sensor responses provides sufficient
information to detect and distinguish between chemical compounds. The NOS.E has
previously proven its ability to classify compounds of similar chemical classes in studies
where different iterations of the system have been utilized in the differentiation of alcohols
and perfumes, or to monitor human breath for illnesses [31,33,40–43]. Brown et al. [9]
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determined the system’s in-field performance, monitoring human cadavers in the early
decomposition stages; they successfully distinguished between the human decomposition
and environmental VOC profiles.

Despite its use in prior studies, the current capabilities and limitations of the NOS.E are
unknown. This work aimed to assess the capabilities of the system’s current configuration
using chemical standards in a controlled laboratory environment to determine if the system
can differentiate ante-mortem and decomposition VOC profiles. Additionally, the system
was tested in a mass disaster simulation to determine the in-field applicability of the system
with donated human cadavers. While e-noses have demonstrated limited capability in
detecting individual components of VOC profiles due to the partial specificity of their
gas sensors, this study utilized individual compounds commonly found in ante-mortem
and decomposition VOC profiles. These specific analytes were selected to explore the
system’s limits while minimizing potential interferences from complex mixtures. Given
the dynamic nature and complexity of VOC profiles, replicating and diluting a profile for
calibration purposes poses significant challenges. Consequently, this research cannot be
used for training pattern recognition or machine learning algorithms, and authentic VOC
profiles should be utilized for these purposes.

This research provides the first steps in validating the system as a detection tool
with future scope to improve the system’s capabilities through different configurations.
Ultimately, the aim of this portable technology is to serve as a search method in the
aftermath of mass disasters or in missing persons situations. As a detection tool, the
NOS.E can assist in locating and recovering live victims trapped beneath debris, as well
as retrieving deceased remains. Additionally, the system can provide searchers with
information on the VOC profiles detected, offering an advantage over detection dogs.

2. Materials and Methods
2.1. Chemicals

Fourteen analytical standards representative of human ante-mortem and decomposi-
tion volatile compounds were chosen. The assay percentage (%) of each analyte is as shown
in the brackets. Dioctyl ether (99.0), α-terpineol (≥95.0), estragole (≥98.0), bromobenzene
(≥99.5), ethylcyclohexane (≥99.0), toluene (99.9), 2-heptanone (≥99.0), 2-pentanone (≥98.0),
and dimethyl disulfide (DMDS) (≥98.5) were supplied by Sigma-Aldrich (Macquarie Park,
NSW, Australia). Methanol (>99.9), acetone (>99.0), and acetonitrile (ACN) (>99.9) (all
HPLC grade) were supplied by Honey Research Chemicals (ChemSupply Australia Pty Ltd.,
Gillman, SA, Australia). Dimethyl trisulfide (DMTS) (≥98.0) and 4-methylheptane (99.0)
from Tokyo Chemical Industry (ChemSupply Australia Pty Ltd., Gillman, SA, Australia)
were used.

2.2. Sample Preparation

An air dilution method was used to achieve five different VOC concentrations for each
analyte; each liquid standard was individually injected into an air-filled sampling bag, and
passive diffusion was allowed until the liquid was volatilized. SKC Tedlar Air Sample Bags
with dual stainless-steel fittings (Airmet Scientific, Artarmon, NSW, Australia) were filled
with compressed air (Industrial grade, Coregas, Yennora, NSW, Australia). The volume of
compressed air used to fill each bag was measured using an Allborg mass flow controller
GFC (Staton Scientific, Mullumbimby, NSW, Australia), calibrated using an Ellutia 7000
flowmeter (Ellutia Chromatography Solutions, Witchford, Ely, UK) with a filling volume
of 500 mL/min. The filling time for each different sampling bag volume (1 L, 10 L, 50 L,
and 100 L) was 2 min, 20 min, 100 min, and 200 min, respectively. After filling with air, the
analyte was injected into separate sampling bags through the rubber septum fitting, using
an eVol XR handheld automated analytical syringe with a SGE 5 µL XCHANGE Syringe
(Trajan Scientific Australi Pty Ltd., Ringwood, VIC, Australia). Six different concentrations
were produced per analyte in the range of 0.2–119 ppm and were subsequently analyzed
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using the NOS.E; the final concentrations of each analyte are displayed in Table 1 in parts
per million (ppm).

Table 1. Final analytes and concentrations which were tested on the NOS.E, in parts per million
(ppm), and the air (L) and analyte volume (µL) used to generate the standards.

Air Volume (L) 1 10 10 10 50 100
Analyte Volume (µL) 0.2 1.0 0.4 0.2 0.2 0.2

α-Terpineol 34.6 17.3 6.9 3.5 0.7 0.3
2-Heptanone 45.2 22.6 9.0 4.5 0.9 0.5
2-Pentanone 29.7 14.8 5.9 3.0 0.6 0.3

4-Methylheptane 65.5 32.8 13.1 6.6 1.3 0.7
Acetone 91.6 45.8 18.3 9.2 1.8 0.9

Acetonitrile 45.7 22.8 9.1 4.6 0.9 0.5
Bromobenzene 16.0 8.0 3.2 1.6 0.3 0.2

DMDS 53.4 26.7 10.7 5.3 1.1 0.5
DMTS 45.6 22.8 9.1 4.6 0.9 0.5

Dioctyl ether 30.7 15.4 6.1 3.1 0.6 0.3
Estragole 33.8 16.9 6.8 3.4 0.7 0.3

Ethylcyclohexane 29.0 14.5 5.8 2.9 0.6 0.3
Methanol 118.8 59.4 23.8 11.9 2.4 1.2
Toluene 45.2 22.6 9.0 4.5 0.9 0.5

2.3. The NOS.E Test Setup

The NOS.E system contains an array of interchangeable metal oxide semiconductor
(MOS) sensors, which, in this case, were chosen to target the most abundant chemical
classes present in ante-mortem and decomposition VOC profiles. All sensors in the array
were manufactured by Figaro Engineering Inc., Mino, Osaka, Japan (Table 2).

Table 2. Sensor numbers for the air dilution and field trial studies; sensor type as per the manufacturer
and their target chemical class.

Sensor Number
(Air Dilution)

Sensor
Number

(Field Trial)
Sensor Type Target Chemical Class

1 1 TGS 2610 Alcohols, alkanes, and hydrogen
2 3 TGS 2600 Alcohols, alkanes, and hydrogen

4, 7 2 TGS 2602 Alcohols, hydrogen, sulfur, nitrogen,
and toluene

5, 6 5 TGS 2603 Alcohols, hydrogen, sulfur, and nitrogen
8 4 TGS 2612 Alkanes

The sampling protocol (Table 3) consisted of three phases: pre-conditioning, sampling,
and recovery/cleaning. Of the pre-conditioning steps, Chamber Wash I and Vacuum Time
I only occurred when the NOS.E was initially switched on and was not repeated during
testing. Each sampling protocol consisted of the following steps: Baseline Setup, Vacuum
Time II, Sampling Time, Baseline Recovery, and Chamber Wash II. The sampling parameters
were chosen based on previous studies [9]; however, it was experimentally determined
that a longer chamber washing time was needed, to reduce carryover between samples
and to ensure the sensor response returned to baseline. The system was tested with a
test mix (methanol, hexane, and DMDS) prior to each testing day, to ensure sensors were
functioning correctly and significant sensor drift was not detected. Sensor drift was visually
assessed using the dynamic graph within the user interface, NOS.E Analyzer, to detect
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significant changes in peak height. A sensor was only replaced once it showed minimal or
no response to the test mix.

Table 3. The NOS.E sampling parameters.

Parameter Time (s) Phase

Chamber Wash I 300
Pre-conditioningVacuum Time I 10

Baseline Setup 60

Vacuum Time II 10
Sampling

Sampling Time 60

Baseline Recovery 60
Recovery and cleaning

Chamber Wash II 300

The setup of the NOS.E used for sample collection was as seen in Figure 2. The
reference port was connected to clear, inert Tygon R-3603 tubing (Sigma-Aldrich, Macquarie
Park, NSW, Australia), which was fastened to the filling port on the sample bag using a
hose clamp to minimize air leakage. The sample port was connected to a Watsford Tubex
Flexible Nylon Tube (6 mm OD × 1 mm wall). A 50 L sample bag filled with compressed
air was fitted to the reference port and used as reference air, and a second 50 L sample bag
filled with compressed air was fitted to the sampling port and used as a blank between
different concentrations.

Figure 2. Three-dimensional model of the NOS.E system displaying sampling setup with sampling
port, reference port, and tubing.

The sampling bags for each concentration and analyte were individually connected to
the sampling port, and the sampling bag valve was opened only during the 60 s sampling
time. Triplicate repeats of each standard were analyzed for the 10 L, 50 L, and 100 L bags.
For the 1 L bags, separate bags were used and analyzed independently since each repeat
needed a full liter of air during testing. Three blanks were run between each concentration
to mitigate carryover from higher concentration standards.

2.4. Experimental Site

A field study was conducted at the Australian Facility for Taphonomic Experimental
Research (AFTER; Yarramundi, NSW, Australia). Six donated human cadavers were used
for the trial (Table 4). All ethical and legal requirements associated with researching
donated human cadavers were acquired through the University of Technology Sydney
(UTS) Human Research Ethics Committee (HREC ETH18-2999) and the UTS Body Donation
Program with consent provided by donors accordance with the New South Wales (NSW)
Anatomy Act (1977). A detailed description of the facility and the environmental conditions
at the site is provided in [5]. The simulated disaster was conducted during the Australian
summer and remains were allowed to decompose for 14 days post-placement.
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Table 4. Donor information for each donor used in the field trial, including donor number, age, sex,
and the cause of death (CoD).

Donor
Number Age Sex Cause of Death (CoD)

D1 33 Female Coroner’s case

D2 94 Female Aspiration Pneumonia, Cerebral Infarct—Left
Posterior, Inferior

D3 88 Female Bronchiectasis, Aspiration Pneumonia

D4 89 Female Large Bowel Obstruction, Sigmoid Colon Cancer,
Heart Failure

D5 77 Male Multiple Organ Shutdown, Pancreatic Cancer, Liver
Metastases

D6 67 Male Cardiac arrest due to acute myocardial infarction, Diabetes
Mellitus—Type 2, Hypertension

The NOS.E was fitted with 5 different sensors (Table 2). A discrete sampling method
was carried out by taking replicate (n = 5) samples from pre-determined locations. Samples
were taken from an area of the disaster site where remains were present (known) but
obstructed from view, and an area of the disaster where no remains were present and at a
distance away from any remains (control). Samples were taken on days 1, 3, 5, 7, 9, and
11 post-placement, using the sampling parameters and the NOS.E setup as described in
Section 2.3.

2.5. Data Analysis

The NOS.E Analyser displayed the sensor response in real time as a dynamic graph,
where each sensor was represented by a different color. The data collected by the NOS.E
were saved as a text file (.txt) and analyzed using Python programming language (Python
3.10.9) in the Scientific Python Development Environment (Spyder 5.4.1). Sensor responses
from baseline setup, test time, and baseline recovery were collected, resulting in 190,000
data points for each sensor. Automated peak detection was performed to determine
the response of each sensor, as presented in Brown et al. [9]. In brief, automated peak
detection compared the sensor response values to neighboring values until the maxima
were determined. Once the maxima were determined, both sides of the peak base were then
found and the highest peak base was subtracted from the peak maxima with a prominence
value of 0.01. Using Matplotlib (Version 3.7.0), the peak heights were averaged across the
three replicates and the standard deviation was calculated.

Matplotlib was used to visualize the data. Sensors that showed zero response to any
concentration of standard were excluded (sensors 3 and 8). Outliers were removed from
the averaged standard curve data, only in circumstances where significant sensor drift
was seen to have occurred, where a concentration had been tested more than 3 months
later, and peak height was >0.5 points different from the trendline. Outliers were only
removed from sensor TGS 2602, which was seen to have a shorter life than the other sensors;
specifically, outliers were removed from sensor 4 for DMDS, 2-heptanone, 2-pentanone,
acetone, and estragole, and sensor 7 for dioctyl ether, methanol, ethylcyclohexane, and
toluene. These outliers were identified from the 1 µL in the 10 L bag standard since this
standard was added at a later stage, after significant sensor drift had occurred. SciPy was
used to fit a logarithmic and linear trendline to the data for each sensor; the trendline with
the higher determination coefficient was selected. The limit of detection (LOD) was then
calculated from the calibration curve for each sensor using the residual standard deviation;
the residual standard deviation is the standard deviation of the difference between the
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observed and predicted values [45], and the equation is displayed below. The LOQ for the
system was not established due to the low R2 values of the system for most analytes.

LOD =
3.3 × sresiduals

slope

To determine the system’s qualitative performance, a PCA plot was created using
Python with the Scikit learn and Matplotlib packages. Separate plots were generated for
each concentration range (i.e., 0.2 µL of analyte in 10 L of air (Table 1)). The data were
centered, and singular value decomposition (SVD) was used to decrease the dimensionality
of the data. Individual loadings were calculated for each sensor to display their contribution
to the principal component, allowing visualization of the direction and strength of each
sensor’s contribution to the principal component.

With respect to the field trial data, the peak responses were exported, and further
analysis was completed using MetaboAnalyst (Version 5.0) [46] to perform a partial least
squares-discriminant analysis (PLS-DA) and determine feature importance.

3. Results
3.1. Sensor Responses

Standard curves were generated for each compound to assess how the system responds
and performs quantitatively to compounds that are commonly reported in ante-mortem or
decomposition VOC profiles, to understand the detection limits of the system and expected
sensor response. Sensor response was plotted against the analyte concentration in ppm. The
NOS.E was seen to respond to all concentrations of compounds tested (Table 1), except for
the lowest concentration of dioctyl ether and toluene (0.2 and 0.5 ppm, respectively). The
alcohols, hydrocarbons, ketones, and sulfur- and nitrogen-containing compound classes
generated a standard curve, where sensor response increased with concentration following
either a linear or logarithmic model. As displayed in Table 5, the model that was produced
was dependent on sensor type and the saturation of some sensors at higher concentrations.

Table 5. Summary of the model the sensors followed and the average R2 of all sensors which
responded for each compound.

Compound Model Average R2 of All Sensors

α-Terpineol Log and linear 0.8

2-Heptanone Log 0.82

2-Pentanone Log 0.67

4-Methylheptane Log and linear 0.88

Acetone Log and linear 0.97

ACN Log and linear 0.87

Bromobenzene Log and linear 0.66

Dioctyl ether Log and linear 0.09

DMDS Log and linear 0.69

DMTS Log and linear 0.88

Estragole Log and linear 0.50

Ethylcyclohexane Log 0.62

Methanol Log and linear 0.90

Toluene Log and linear 0.77

Overall, DMDS (Figure 3) had R2 values above 0.83 for the OH and CH, and the OH,
S, N, and Aromatics sensors, fitting a logarithmic model. Similarly, DMTS (Figure S1) had
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R2 values of >0.70 for the OH and CH (TGS 2610), and the OH, S, N, and Aromatics (TGS
2602) sensors. The R2 values across all sensors for both sulfur compounds indicate that the
system is unsuitable for quantifying these compounds.

Figure 3. Standard curve of DMDS; sensor response was plotted against concentration (ppm) with
each sensor being represented by a different color/marker. The R2 value and equation for each sensor
are displayed.

Sensor response for the detection of ethers and halogens was unpredictable, with
estragole (Figure 4) having low R2 values for all sensors (<0.60). This was particularly
evident from the OH, S, N, and Aromatics sensor (TGS 2602), where sensor response did not
correlate with analyte concentration. Similarly, dioctyl ether (Figure S8) and bromobenzene
(Figure S7) also produced unpredictable responses in relation to concentration, specifically
with the OH, S, N, and Aromatics sensor (TGS 2602). The weak correlation is likely due to
the lack of specificity towards these compound classes in the sensor array.

The manufacturer reported the OH, S, N, and Aromatic sensor (TGS 2602) to be sen-
sitive to air contaminants [47] (VOCs, ammonia, H2S) and it was seen to respond to all
fourteen compounds tested, at all concentrations (Table 6). Similarly, the OH and CH
sensors (TGS 2610 and 2600) also responded to all compounds tested, while the OH, S, and
N sensors (TGS 2603) were only seen to respond to high concentrations of alcohols, hydro-
carbons, halogens, and nitrogen- and sulfur- containing compounds. All sensors produced
both logarithmic and linear responses; a logarithmic response was observed when the rate of
increase in sensor response was notably higher at lower concentrations, and then plateaued
as the concentration increased due to sensor saturation at concentrations > 30 ppm. The
linear model was seen in the compounds where the sensors were not saturated at the higher
concentrations (Table 5). Each of the OH, S, and N sensors (TGS 2603) were seen to respond
to high concentrations of hydrocarbons, alcohols, sulfur, halogens, and nitrogen. The
sensors only responded to six out of the fourteen compounds tested and did not respond
to the ketones, making this sensor type useful for differentiating between ante-mortem and
decomposition VOC profiles.
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Figure 4. Standard curve of estragole; sensor response was plotted against concentration (ppm) with
each sensor being represented by a different color/marker. The R2 value and equation for each sensor
are displayed.

Table 6. Lowest LOD for each sensor (ppm); the number of compounds each sensor reacted to (n = 14)
and the compound classes to which each sensor reacted.

Sensor
Number

Sensor
Type

Lowest
LOD

Number of
Analytes Classes Reacted to

1 TGS 2610 2.0 14
Alcohols, ethers, halogens,

hydrocarbons, ketones, nitrogen,
and sulfur

2 TGS 2600 1.3 14
4 TGS 2602 1.3 11
7 TGS 2602 0.6 10

5 TGS 2603 10.4 6 Hydrocarbons, alcohols, sulfur,
halogens, nitrogen6 TGS 2603 10.9 7

3.2. Limit of Detection

In the context of a mass disaster, the system must have low detection limits since the
VOC profile of victims buried under debris needs to be detected. The calculated LOD was
between 0.6 and 67.3 ppm for all chemical classes (Table 7). However, experimentally, the
system was seen to respond to concentrations lower than the calculated LOD (0.2–1.2 ppm).
All compounds but dioctyl ether and toluene responded to the lowest concentration tested.
Due to limitations with syringe and sampling bag size, lower concentrations were not tested.

Overall, Sensor 2 (OH, CH sensor; TGS 2600) produced the lowest LOD for most
compounds, with sensors 4 and 7 (OH, S, N, Aromatics; TGS 2602) contributing to the
lowest LOD for the other compounds. The OH, S, and N (TGS 2603) sensor had the highest
detection limits in comparison to the other sensors (Table 6), and only reacted to the higher
concentration standards, having a calculated average LOD of 10.4 and 10.9 ppm. The sensor
type contributing to the lowest LOD was seen not to be dependent on compound class. The
system could detect ethers at 0.3 ppm; however, the LOD was high in the ethers due to the
unpredictability in sensor response.
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Table 7. Lowest LOD for each compound by class and the sensor number and its target chemical
class responsible.

Compound Class LOD
(ppm)

Sensor
Number Target Chemical Class

α-Terpineol
Alcohols

67.3 4 OH, S, N, Aromatics
Methanol 1.6 2 OH, CH

Dioctyl ether
Ethers

10.8 2 OH, CH
Estragole 4.4 7 OH, S, N, Aromatics

Bromobenzene Halogen 2.4 2 OH, CH

4-Methylheptane
Hydrocarbons

0.6 7 OH, S, N, Aromatics
Ethylcyclohexane 3.0 2 OH, CH

Toluene 2.5 2 OH, CH

2-Heptanone
Ketones

1.3 2 OH, S, N, Aromatics
2-Pentanone 3.6 2 OH, S, N, Aromatics

Acetone 8.0 1 OH, S, N, Aromatics

ACN Nitrogen-
containing 1.9 2 OH, CH

DMDS Sulfur-
containing

2.5 1 OH, S, N, Aromatics
DMTS 1.0 7 OH, S, N, Aromatics

Detection limits were seen not to be affected by sensor positioning within the sensor
chamber (Figure 1). Lower detection limits were seen for the sensors in the centre positions
of the sensor chamber (Sensor 2; TGS 2600, Sensors 4 and 7; TGS 2602). Whether these
lower detection limits are due to sensor type or their position is unknown; however, the
LOD was not statistically different to the sensors in other positions. Sensors 5 and 6 (TGS
2603) produced a similar LOD (Table 6) for all compounds they reacted to, though they
were placed on opposite ends of the sensor chamber. Sensor 1 exhibited a detection limit of
2 ppm, and no significant differences were observed to suggest that eddy currents within
the sensor chamber influenced the system’s LOD. Sensor 8 (TGS 2612) did not react to
any compounds; it is unknown whether this is due to the positioning within the sensor
chamber and issues with airflow or the specific analytes as this sensor was not trialled in a
different position.

3.3. Compound Detection

The collective sensor response of each analyte was assessed to determine the system’s
ability to qualitatively separate compounds within similar or distinct compound classes
at different concentration ranges. Compounds were grouped based on the volume of
analyte added to the volume of air, i.e., all samples using 0.2 µL of analyte in 50 L of air
was analyzed together. Principal component analysis (PCA) was used to visualize the
collective sensor response of the analytes within a concentration range and to determine
if ante-mortem and decomposition VOCs could be differentiated. The triplicate sensor
responses for each analyte were plotted in two dimensions, and a PCA biplot was utilized to
determine the effect of sensor type on the grouping and separations (Figures 5 and 6). The
length of the line indicates the contribution of each sensor type to the principal component.

The NOS.E could successfully distinguish the alkanes, ketones, and sulfur- and
nitrogen-containing compounds from each other. Figures 5 and 6 indicate that separation of
the compounds was driven by the alcohol, sulfur, nitrogen, and aromatic sensor (TGS 2602)
for all concentrations tested. The separation of similar compounds shows promise for the
system as a search tool in a mass disaster, where the system could use pattern recognition
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and machine learning to distinguish between a live or deceased victim, helping searchers
when triaging the victims.

Figure 5. PCA biplot of the standards in the 0.2–1.2 ppm range displaying the separation and
clustering of all analytes and the contribution of each sensor type to the principal component.

Figure 6. PCA biplot of the standards in the 1.6–11.9 ppm range displaying the separation and
clustering of all analytes and the contribution of each sensor type to the principal component.

The lowest concentration range analyzed (0.2–1.2 ppm) demonstrated good repro-
ducibility between replicates; all replicates were clustered tightly and had a low standard
deviation (Figure 5). However, some analytes were found to cluster together, namely,
α-terpineol, dioctyl ether, DMTS, and toluene. Similarly, the NOS.E had difficulty distin-
guishing between all the compounds at the highest concentration analyzed (16–118 ppm)
with α-terpineol, 4-methylheptane, acetonitrile, bromobenzene, dioctyl ether, ethylcyclo-
hexane, and methanol all showing poor separation and clustering at this concentration
(Figure S13b). Clustering was due to several sensors becoming saturated at this concen-
tration and producing a response lower than the 8–59 ppm concentrations (Figure S16),
skewing the PCA results. Furthermore, the ethers and halogenated compounds showed
poor differentiation across all concentration ranges, which is likely due to the lack of
ether- and halogen-specific sensors within the array (Figure 5, Figure 6, Figures S13–S15).
When challenged with the combination of all low and high concentrations of the analytes
(0.2–5 ppm and 10–110 ppm; Figures S17 and S18), the system showed separation between
the ketones and sulfur-containing compounds, while the rest of the analytes were seen to
cluster together in the direction of the two OH, S, N, and Aromatics sensors.
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The 1.6–11.9 ppm range was the concentration analyzed that provided the best level
of discrimination between the analytes (Figure 6). The NOS.E had a significant sensor
response to all compounds at this concentration range. Three or more sensors reacted for
each compound, meaning the system’s ability to distinguish different compounds increases
with the number of sensors reacting; a greater sensor response and better discrimination
facilitate the creation of a more accurate ‘chemical fingerprint’ [26]. All replicate samples for
each compound were tightly clustered, validating the NOS.E’s reproducibility of replicates
and ability to separate VOCs. Furthermore, compounds from the same chemical class,
alcohols, ketones, and sulfur- and nitrogen-containing compounds could be differentiated
from each other, which is important in the context of the proposed application of the system.

3.4. Field Trial

The NOS.E was used in a simulated mass disaster scenario where six human cadavers
were placed under rubble, and samples were taken from areas of the disaster site where
remains were present (known) and areas of the disaster site where there were no remains
(control). A t-test (95% confidence interval) demonstrated significant differences between
the known and control sensor responses for all five sensors tested. On days 1 and 3, the
samples were clustering close to the control samples on the PLS-DA scores plot, showing
that there were limited differences between the control and known sites (Figure 7). The last
sampling day, day 11, was clustered with the samples from days 3 and 5, indicating that
the VOC profile was similar to the earlier days.

Figure 7. PLS-DA scores plot for the comparison between the sensor response produced from the
control (red) and known (green) samples for each sampling day and replicate.

As observed in Figure 8, Sensor 2 (TGS 2602), the OH, S, N, Aromatics sensor, was
seen to be the most important feature with PLS-DA analysis, followed by Sensor 1 (TGS
2610) and Sensor 5 (TGS 2603), with both Sensor 2 and 1 having variable importance in a
projection (VIP) score > 1. Thus, these sensors are considered significant in the classification
of the known samples.
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Figure 8. PLS-DA feature importance for each sensor type used in the field trial.

4. Discussion
4.1. Analytes

Fourteen analytes (Table 1) were chosen to determine the detection capabilities and
expected response of the NOS.E for use as a victim detection tool post-mass disasters and
to determine the ability of the system to differentiate ante-mortem and decomposition VOC
profiles. The compounds tested are significant within the ante-mortem or decomposition
VOC profile, with some compounds identified in both VOC profiles. Bromobenzene was the
only compound that was not identified in either VOC profile but was included to test how
the NOS.E responded to halogens, since halogens have been identified in the decomposition
VOC profile [17]. Sulfur-containing compounds are some of the most widely reported
decomposition VOCs and are often described as having a ‘rotten egg’ odor, making them
an ideal VOC marker following a mass disaster, or to look for human remains in a missing
person’s context. Consequently, DMDS and DMTS were analyzed with the e-nose. These
compounds are often found in high abundance during the decomposition process and are
produced through protein breakdown and microbial activity [9,17,19,48]. Additionally,
they were some of the most abundant compounds identified during a simulated mass
disaster study [5].

Two alcohols were analyzed: methanol, a simple alcohol, and α-terpineol, a terpene
alcohol. Methanol has been identified in several ante-mortem matrices, including expired
air [13,49], saliva, blood, feces, and urine [50], while α-terpineol has been identified as a
volatile component of urine [51] and was identified during the aforementioned simulated
human mass disaster scenario [5]. 2-Heptanone, 2-pentanone, and acetone were also
analyzed using the NOS.E; these compounds were chosen due to their prevalence within
ante- and decomposition VOC studies and their association with starvation [14,52,53]. As
the body experiences starvation, it undergoes ketosis, whereby ketones are synthesised
from fatty acids as an alternative fuel source [10,14]. Because ketones are so abundant
in the ante-mortem VOC profile due to starvation, this makes them ideal biomarkers for
finding live victims in a post-mass disaster context [11]. Acetone is an important compound
within the ante-mortem VOC profile since it is a major volatile of breath, blood, sweat,
and urine [3,11], and is produced in high concentrations during ketosis, with one study
observing a 30-fold increase during starvation [14]. Acetonitrile (ACN) was the only
nitrogen-containing compound that was tested and it can be identified within feces, saliva,
and the early decomposition VOC profile [50,54].

Estragole and dioctyl ether are ethers that have been identified in the ante-mortem
VOC profile and can be found in saliva and feces [50]. They were included to determine the
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response of the NOS.E to ethers. Finally, toluene, 4-methylheptane, and ethylcyclohexane
were analyzed as hydrocarbons are present in high abundance within the ante-mortem and
decomposition VOC profiles [21,55,56]. Hydrocarbons were the most detected compounds
identified in the first ten days of the mass disaster simulation [5]; consequently, it is
important that the system can detect low concentrations of this compound class. Toluene is
an aromatic hydrocarbon which has been identified in both the ante-mortem [50,53] and
early decomposition VOC profiles [17], while 4-methylheptane and ethylcyclohexane have
both been identified in expired air [50,57]. Each compound analyzed differed in molecular
weight, vapor pressure, and polarity to determine how the NOS.E reacts to a range of
chemically diverse compounds.

4.2. Sensor Responses

Sensor type was chosen based on current knowledge about the chemical classes
abundant in decomposition and ante-mortem VOC profiles, aligning the system as a tool
which searchers can utilize to look for victims following a mass disaster incident. The
manufacturer reported that each MOS sensor responds to different compounds [47,58–61],
although it was observed throughout the study that the sensors responded to a broader
range of compounds than reported (Table 5). Largely, at least three sensors responded for
each compound, facilitating compound detection and allowing differentiation, which will
prove beneficial when later employing pattern recognition and machine learning techniques.
All sensors were seen to react to at least half of the analytes, excluding the alkane sensor
(TGS 2612) [60], which did not respond to any of the compounds tested. The use of this
sensor within these VOC profiles should be tested with more concentrated standards or
reassessed for use in this context. The OH, S, N, and Aromatic sensor (TGS 2602) was
reported by the manufacturer to be sensitive to air contaminants (VOCs, ammonia, H2S)
and responded to all analytes. TGS 2602 was also seen to drive differentiation between
analytes on PCA analysis, providing the highest variability (Section 3.3). Similarly, the
two OH and CH sensors (TGS 2610 and TGS 2600) also responded to all compound
classes, although they were only reported by the manufacturer to react to alcohols and
alkanes [58,59], while the OH, S, and N sensor (TGS 2603) only responded to alcohols,
halogens, and sulfur- and nitrogen-containing compounds, which is consistent with the
manufacturer’s specifications. All sensors produced a logarithmic or linear model; this
was observed not to be dependent on sensor type. A logarithmic model was produced
when sensor saturation occurred at the higher concentrations (Figure S13), while a linear
model was produced for the compounds where saturation did not occur and appeared to be
compound-specific rather than class-specific. TGS 2603 was the only sensor that consistently
followed a linear model due to sensor response only occurring at higher concentrations
(>23 ppm). TGS 2602 was seen to be most affected by the effects of sensor drift and had a
shorter life compared to otherss. Several outliers were removed due to significant sensor
drift from this sensor, predominantly in the concentrations in the 8–59 ppm range, which
were analyzed three months later than the other concentrations.

While the purpose of the system is not to specifically quantitate compounds, correla-
tion was observed between concentration and sensor response. However, the R2 values
were <95 for most compounds, indicating that the linear or logarithmic models cannot
be relied on for accurate quantitation. The alcohols (Figures S1 and S11), hydrocarbons
(Figures S4, S10 and S12), and sulfur- (Figure 3 and Figure S9) and nitrogen- (Figure S6)
containing compounds had R2 values of >0.80 for most sensors. The sulfur compounds
are some of the most important VOCs within the decomposition VOC profile, and are
associated in the literature with being biomarkers for decomposition [5,17,19,48]. This
emphasizes the importance of the system’s ability to detect these compounds, especially at
low concentrations. The NOS.E was seen to produce a high response to low concentrations
of both DMDS (Figure 3) and DMTS (Figure S9), showing promise for the use of the system
as a search tool following a mass disaster and to detect human decomposition in other
scenarios. The system showed an indeterminate response to the ethers and halogens, with
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R2 values of <0.50 for ethers and <0.66 for the halogenated compound, as a result of the
lack of specificity for these compound classes in the sensor array.

There are currently few studies in which electronic nose technology has been examined
quantitatively. Sorocki et al. [62] used standard curves to determine the performance of
their handheld electronic nose with acetone. However, although they reported using a
metal oxide-type sensor, the specific sensor type was not provided [62]. Similarly to the
NOS.E, the sensor response from their system was logarithmic, with high R2 values for all
their sensors in the range of 2–20 ppm. However, sensor response was determined using a
different calculation: they used a resistant ratio (RS/R0) calculation to determine sensor
response which corrected for temperature and humidity, since sensors have been seen to
be affected by these environmental factors [62]. The NOS.E accounts for these factors by
determining a baseline immediately prior to testing, during the baseline setup phase of the
sampling procedure. Consequently, any sensor response from these variables should be in-
significant. Hence, a temperature variable in post-processing is unnecessary for the NOS.E.
Additionally, Peters et al. [26] tested a commercially available handheld e-nose assessing
the response of the system quantitatively to toluene. The e-nose utilised was equipped
with 16 carbon nanotube (CNT) sensors. The e-nose produced a linear trendline with a
high R2 value (0.99), whereby the authors used a percentage sensor response calculation,
determined using the sensor resistance ratio to determine the overall response. Similarly
to the NOS.E, the baseline sensor response under ambient conditions was used in the
calculation to eliminate temperature and humidity variables from influencing the results.

While the NOS.E provides some level of quantitation, the R2 values were too low to
quantify unknown concentrations or determine a LOQ. The results should be improved
through the implementation of algorithms to compensate for sensor drift and sensor
fluctuations to increase the reliability and accuracy of the system.

4.3. Limit of Detection

In a mass disaster scenario where the NOS.E would be deployed to detect the VOC
profile of ante- or post-mortem victims, low detection limits across all chemical classes
become highly advantageous. The NOS.E had an average LOD of 7.9 ppm, with most
compounds having a calculated LOD between 0.6 and 3 ppm, which was not dependent on
the class, molecular weight, polarity, or vapor pressure of the analyte. Higher LODs were
present in compounds with poor vaporisation properties (α-terpineol; m.p. 31–35 ◦C [63])
or compound classes where sensors lack specificity (ethers; dioctyl ether and estragole).
Experimentally, the system was seen to respond to all compounds between 0.5 and 1 ppm,
which is comparable to commercially available e-noses. Peters et al. [26] estimated the LODs
for all their compounds rather than calculating them; their estimated LODs were 0.2 ppm
for toluene and methylamine and 0.5 ppm for ethyl acetate and acetonitrile [26]. Another
handheld analyser was seen to detect acetone concentrations of 2 ppm; this study also
estimated the LOD from the lowest concentration instead of determining it statistically [62].

The NOS.E is currently not as sensitive as existing methods for VOC detection. De-
tection dogs have been reported to detect VOC profiles at lower concentrations, ranging
from ppb to parts per trillion (ppt) [64], and analytical instruments can identify compounds
at the ppt level [65]. Although detection limits are higher, the NOS.E presents distinct
advantages over these methods since it can provide more information than detection dogs
while also offering portability and ease of use in comparison to benchtop instruments; how-
ever, at its current sensitivity, the system may encounter difficulties when detecting victims
below rubble. Therefore, to increase the sensitivity of the system to be more comparable to
detection dogs, the sensitivity should be increased by using different sensor materials [66].

The OH and CH sensor (TGS 2600) reacted to all compounds and was responsible for
the lowest LOD for most compounds, with the sensor detecting all compound classes in
the range of 1.3–21.5 ppm. The manufacturer reported TGS 2600 to have detection limits of
1–30 ppm for H2 [58], reflecting what was observed in the sensor response and the LOD
values. The OH, S, N, and Aromatics sensor (TGS 2602) had a calculated LOD of 0.6 ppm,
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confirming the reported detection range of the manufacturer of 1–30 ppm of ethanol or
0.1 ppm of hydrogen sulfide [47]. The OH, S, and N (TGS 2603) sensor had high detection
limits compared to other sensors, only reacting to the more concentrated standards, and a
calculated LOD 10 times higher than the other sensors.

Generally, eddy currents have been seen to affect the response of sensors, leading to
variations in response attributed to airflow dynamics within the chamber [34]. The sensor
chamber is an open design, allowing air to mix within the chamber and be distributed to
all sensors. Air flows over the sensors one way, through four channels, which do not flow
directly over the sensors, then exits through a single output. Additionally, the air intake
design of the NOS.E is modelled from the human olfactory system and is a critical element
of the e-nose system [33]; it is automated to ensure airflow parameters are kept constant
throughout all tests. This study did not observe these air currents as significant since most
concentrations had a low standard deviation and tight clustering on PCA (Figures 5 and 6).
Sensor positioning within the chamber (Figure 1) did not appear to have a substantial
impact on the detection limits, although the sensors positioned within the center of the
chamber had the lowest detection limits (Table S1). However, a comparable detection limit
was seen for the other sensors. Additionally, Sensors 5 and 6 (TGS 2603) were seen to have
the same LOD for the analytes to which they responded, despite these sensors being placed
on opposite ends of the sensor chamber and subjected to differing air currents.

The detection limits of the NOS.E were established within a controlled laboratory
environment, where the VOC source was connected directly to the tubing. When used
within the field for searching, the system will not be directly exposed to the VOC source and
will be affected by the wind and other environmental factors, which have been previously
understood to affect the system [9]. When used in the field, the system will need to be able
to detect individuals trapped below debris and rubble while mounted on a drone or robot
to reduce the number of searchers needed in the field, making searching safer. Therefore,
lower detection limits are essential, and the system should be improved through different
chamber designs or sensor materials [66].

4.4. Compound Detection

Analyte differentiation was tested to determine if the system could separate ante-
mortem and decomposition compounds. Differentiating these compounds would offer
an advantage for searchers over detection dogs. Currently, different types of detection
dogs (SAR and HRD dogs) are deployed due to the change in VOC profile from life to
death [3,5,10,19]. E-nose technology can detect both, and with the implementation of pat-
tern recognition and machine learning algorithms, can offer more information to searchers.

The system showed effective separation between most analytes at all concentra-
tion ranges and could differentiate the compounds of the same functional groups. The
1.6–11.9 ppm range was the lowest concentration that produced the best separation (Fig-
ure 6), while the 8–59 ppm range was the only concentration range in which all analytes
were differentiated from each other due to the increased number of sensors responding.
The NOS.E could successfully distinguish the alkanes, ketones, and sulfur- and nitrogen-
containing compounds from each other. This is significant since alkanes, ketones, and
sulfur-containing compounds are compound classes that are important within the ante-
mortem and early decomposition VOC profiles (Section 4.1). Hence, the NOS.E must be
able to detect, recognize, and distinguish these compounds at low concentrations to provide
valuable information as a search tool during mass disasters. Separation was limited at
the lowest concentration (0.2–1.2 ppm range; Figure 5), which was driven by analytes
that produced an insignificant or zero response, or compounds where only one sensor
responded, predominantly the OH, S, N, and Aromatics sensor (TGS 2602), demonstrating a
lack of sufficient information for discrimination. TGS 2602 was seen to drive differentiation
throughout all chemical classes and concentrations.

Differentiation was observed when all the high and low concentration standards were
plotted on the same PCA (0.2–5 ppm and 10–110 ppm; Figures S17 and S18), showing
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promise for the system when having to differentiate between an ante-mortem or decom-
position VOC profile. The different concentrations of the same analytes were separated,
meaning the system did not identify these as the same compound. However, this is not
the purpose of the system since it is expected to provide enough information to provide
a detect/no detect to searchers for mass disaster victims. TGS 2602 was seen to drive
separation, with the other analytes clustering in the direction of these sensors.

At the 0.2–1.2 ppm concentration range, the specific ante-mortem compounds, ketones,
and decomposition compounds, DMDS and DMTS, were differentiated from each other,
showing promise for the system when faced with differentiating the two VOC profiles at
low concentrations. Brown et al. [9] also reported the same sensor, TGS 2602, as having
the highest success in differentiating the various stages of decomposition in an open-air
environment, in addition to the OH and CH sensor (TGS 2600) and the OH, S, and N
sensor (TGS 2603). Comparatively, the NOS.E had difficulty distinguishing between the
compounds at the highest concentration analyzed (16–118 ppm), with toluene, methanol,
dioctyl ether, bromobenzene, and ethylcyclohexane clustering together. Sensors 1 and
2, TGS 2610 and 2600, became saturated at this concentration, producing a response
lower than the 8–59 ppm concentrations (Figure S13), skewing the PCA results and
decreasing differentiation.

Again, the system had difficulty differentiating ethers and halogenated compounds,
which was seen consistently throughout all concentration ranges; the sensor array con-
tained no sensors, which the manufacturer claims are sensitive to these chemical classes.
Therefore, the sensor array would need to be changed to improve the differentiation of
these compounds. While halogens and ethers have been detected in both ante-mortem
and decomposition VOC profiles, they do not represent the most prevalent classes in ei-
ther profile [5]. While it is important that the system can detect these compounds, their
differentiation within the ante-mortem and decomposition VOC profile is not a priority for
the e-nose.

Although the NOS.E has promising results when detecting and differentiating specific
ante-mortem and decomposition analytes, the system cannot detect individual components
of a VOC profile due to the partial selectivity of the MOS sensors, this is however not
the system’s objective. Instead, the aim of the NOS.E is to be a user-friendly system that
can provide a detect/no detect result to non-specialised users when searching for victims
during a mass disaster. Zhu et al. [37] discussed that machine learning algorithms, such as
artificial neural networks (ANNs), can be combined with MOS sensor arrays to improve
the selectivity and recognise complex VOC mixtures. Similarly, Qiao et al. [36] explored
how machine learning can be implemented into different sensing materials to assist with
health monitoring. They concluded that ANN algorithms could be combined with sensing
materials to allow for more accurate monitoring and real-time alerts [36]. Additionally,
Galanga et al. [39] implemented artificial neural networks to measure environmental VOCs,
finding that machine learning could identify VOCs and predict concentrations with a
higher R2 than other statistical methods, while Szulczyński et al. [38] found that a machine
learning algorithm combined with e-noses could identify the number of components within
a VOC mixture.

Implementing machine learning models, such as AANs, into the NOS.E system would
be beneficial for the proposed application of the system, where real-time information could
be reported back to untrained/non-specialised users in-field to inform searchers of the
individuals’ status (alive or deceased) and location, offering more granular information than
detection dogs. As discussed earlier, due to the partial selectivity of the metal oxide sensors,
the system cannot identify the individual components of a VOC profile, meaning the system
cannot be trained to detect biomarkers of decomposition or ante-mortem VOC profiles.
However, the objective is to use the entire VOC profile to detect victims since a single
biomarker is likely to be insufficient. Future work for the system includes utilizing machine
learning to provide an alert when a sensor response distinctive to human decomposition or
an ante-mortem VOC profile is detected. Therefore, the NOS.E would require training on
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the entire ante-mortem and decomposition VOC profiles at differing stages and with large
sample sizes to account for the intrinsic variability between humans.

4.5. Field Trial

Samples were taken using the NOS.E from areas of a simulated mass disaster site
where there were donated human cadavers and an area where no remains were present.
The known VOC profile was found to be statistically different from the control samples.
The first stage of decomposition, known as the fresh stage, produces minimal VOCs,
while autolysis and putrefaction have been recorded to be the most odorous stages of
decomposition, producing predominantly sulfur-containing compounds, alcohols, and
hydrocarbons [16,18]. The Day 1 and 3 known samples were clustered close to the control
samples, indicating that the VOC profile was similar to the control samples (Figure 7)
initially, aligning with the previous literature, where minimal variation in the VOC profile
was observed in the in-field monitoring of human cadavers with the NOS.E system for
the first 3 days post-placement [9]. Additionally, a previous mass disaster simulation
saw minimal change in the VOC profile in the first 4 days post-placement [5]. The Day
5 samples were clustered together, demonstrating that the system identified these VOC
profiles as similar, and likely the start of autolysis, while the later post-placement samples
(Days 7 and 9) were clustered together, implying the VOC profile from these days was
comparable, reflecting what is known about human decomposition and the dynamicity of
the VOC profile [5,16,18]. The Day 11 samples were clustered with Days 3 and 5, owing
to environmental factors, such as wind or a cooler temperature, influencing the VOC
production or the system’s capabilities for detection [9].

All sensors used in the sensor array for the field trial (Table 2) were seen to respond
to the known samples, with Sensor 2 (TGS 2602), the OH, S, N, and Aromatics sensor,
proving to be the most significant feature according to PLS-DA in the field trial, with a
VIP score > 1, validating the standard curve findings, where this sensor was a key factor
in driving separation with PCA. A field trial by Brown et al. [9] further validated the
importance of Sensor 2 (TGS 2602) in detecting decomposition VOC profiles, as they found
this sensor to have the most significant response. Sensor 1 (TGS 2610) was the second
most important sensor, while Sensor 5 (TGS 2603) followed, supporting the findings from
the standard curve and PCA data, proving these sensors are suitable for the proposed
application of the system and showing potential as a search tool when implemented in a
mass disaster. Overall, the detection limits of the system should be improved, and trials
with a different sensor array should be conducted, aiming to improve the system’s ability
to detect both living and deceased victims in the earlier stages of decomposition.

5. Conclusions

The NOS.E is an e-nose developed at UTS which uses artificial olfaction to detect the
volatile organic compounds (VOCs) emitted by mass disaster victims. Current research has
predominantly used this e-nose qualitatively; however, no research exists where the con-
figuration and performance of the system was quantitatively evaluated. Thus, the NOS.E
was tested with fourteen ante-mortem and decomposition-related analytical standards to
ascertain the system’s expected response and performance.

Standard curves were constructed for each of the fourteen analytes, where six different
concentrations were plotted against sensor response. The NOS.E produced both logarithmic
and linear trendlines throughout the study, which were dependent on the sensor type,
compound class, and whether sensor saturation occurred. The NOS.E could detect VOC
concentrations of 0.2–1.2 ppm for all alcohols, hydrocarbons, and sulfur- and nitrogen-
containing compounds but had difficulty when detecting ethers and halogens due to the
limitations of the sensor array.

The results indicate that the system can qualitatively distinguish compounds from
different chemical classes that include alcohols, hydrocarbons, ketones, and sulfur- and
nitrogen-containing compounds. This shows promise for the system when searching for
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human victims and differentiating between ante-mortem and decomposition VOC profiles,
providing valuable information to searchers regarding the condition of the victim. The
1.6–11.9 ppm range was the lowest concentration range that showed the best differentiation.
However, differentiation was limited due to poor sensor response at the lowest concen-
tration, 0.2–1.2 ppm, and the highest concentration, 16–118 ppm, from sensor saturation,
which reduced the system’s ability to differentiate the analytes.

When deployed in-field, the NOS.E was advantageous, with a significant sensor
response difference seen between the known human remains and control samples in a
simulated mass disaster. The system was seen to differentiate the samples from Day 5
post-placement onwards, showing promise for the system when used in a mass disaster to
provide a detect/no detect response to searchers to determine if victims are present.

The NOS.E system exhibits potential as a portable device that utilizes VOCs to detect
both live and deceased victims in the aftermath of a mass disaster. However, critical future
steps for the system include improving the sensitivity through different sensor materials,
and validation of the long-term repeatability and additional field testing are necessary
to understand how environmental factors and the circumstances of a mass disaster may
impact its performance. Additionally, machine learning algorithms should be implemented
to alert searchers in-field on whether a victim is detected.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s24185918/s1, Table S1: The sensors which responded to each
compound, the target chemical class of the compounds, and the limit of detection model the response
best fitted and R2 for each compound. Figure S1: Standard curve of α-terpineol; sensor response
was plotted against concentration with each sensor being represented by a different color/shape.
The R2 value and equation for each sensor is displayed. Figure S2: Standard curve of 2-heptanone;
sensor response was plotted against concentration with each sensor being represented by a different
color/shape. The R2 value and equation for each sensor is displayed. Figure S3: Standard curve of 2-
pentanone; sensor response was plotted against concentration with each sensor being represented by
a different color/shape. The R2 value and equation for each sensor is displayed. Figure S4: Standard
curve of 4-methylheptane; sensor response was plotted against concentration with each sensor being
represented by a different color/shape. The R2 value and equation for each sensor is displayed.
Figure S5: Standard curve of acetone; sensor response was plotted against concentration with
each sensor being represented by a different color/shape. The R2 value and equation for each
sensor is displayed. Figure S6: Standard curve of acetonitrile; sensor response was plotted against
concentration with each sensor being represented by a different color/shape. The R2 value and
equation for each sensor is displayed. Figure S7: Standard curve of bromobenzene; sensor response
was plotted against concentration with each sensor being represented by a different color/shape.
The R2 value and equation for each sensor is displayed. Figure S8: Standard curve of dioctyl ether;
sensor response was plotted against concentration with each sensor being represented by a different
color/shape. The R2 value and equation for each sensor is displayed. Figure S9: Standard curve of
DMTS; sensor response was plotted against concentration with each sensor being represented by a
different color/shape. The R2 value and equation for each sensor is displayed. Figure S10: Standard
curve of ethylcyclohexane; sensor response was plotted against concentration with each sensor being
represented by a different color/shape. The R2 value and equation for each sensor is displayed.
Figure S11: Standard curve of methanol; sensor response was plotted against concentration with
each sensor being represented by a different color/shape. The R2 value and equation for each
sensor is displayed. Figure S12: Standard curve of toluene; sensor response was plotted against
concentration with each sensor being represented by a different color/shape. The R2 value and
equation for each sensor is displayed. Figure S13: (a) Standard curve of methylcyclohexane, toluene
and methanol sensor 1 showing the saturation, (b) PCA biplot of the standards in the 16–118 ppm
range displaying the separation and clustering of all analytes and the contribution of each sensor
type to the principal component. Figure S14: PCA biplot of the standards in the 0.3–2.4 ppm range
displaying the separation and clustering of all analytes and the contribution of each sensor type to the
principal component. Figure S15: PCA biplot of the standards in the 3.2–23.8 ppm range displaying
the separation and clustering of all analytes and the contribution of each sensor type to the principal
component. Figure S16: PCA biplot of the standards in the 8–59 ppm range displaying the separation
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and clustering of all analytes and the contribution of each sensor type to the principal component.
Figure S17: PCA biplot of low concentrations of the analytes tested (0.2–5 ppm) displaying the
separation and clustering of all analytes and the contribution of each sensor type to the principal
component. Figure S18: PCA biplot of high concentrations of the analytes tested (10–110 ppm)
displaying the separation and clustering of all analytes and the contribution of each sensor type to
the principal component. Figure S19: Box and whisker plot for the distribution of Sensor 1 (TGS
2601) response for the control (top of rubble) vs the known (top of known). Figure S20: Box and
whisker plot for the distribution of Sensor 2 (TGS 2602) response for the control (top of rubble) vs
the known (top of known). Figure S21: Box and whisker plot for the distribution of Sensor 3 (TGS
2600) response for the control (top of rubble) vs the known (top of known). Figure S22: Box and
whisker plot for the distribution of Sensor 4 (TGS 2612) response for the control (top of rubble) vs the
known (top of known). Figure S23: Box and whisker plot for the distribution of Sensor 5 (TGS 2603)
response for the control (top of rubble) vs the known (top of known). Figure S24: PLS-DA scores
plot for the comparison between the sensor response produced from the control (red) and known
(green) for each sample taken. Figure S25: PCA biplot of sensor response, displaying the separation
and clustering for each sampling day and replicate, and the contribution of each sensor type to the
principal component.
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