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Abstract: Differential beamforming has attracted much research since it can utilize an array with a
small aperture size to form frequency-invariant beampatterns and achieve high directional gains. It
has recently been applied to the loudspeaker line array to produce a broadside frequency-invariant ra-
diation pattern. However, designing steerable frequency-invariant beampatterns for the loudspeaker
line array has yet to be explored. This paper proposes a method to design a steerable differential
beamformer with a loudspeaker line array. We first determine the target differential beampatterns
according to the desired direction, the main lobe width, and the beampattern order. Then, we trans-
form the target beampattern into the modal domain for representation. The Jacobi-Anger expansion
is subsequently used to design the beamformer so that the resulting beampattern matches the target
differential beampattern. Furthermore, based on the criterion of minimizing the mean square error
between the synthesized beampattern and the ideal one, a multi-constraint optimization problem,
which compromises between the robustness and the mean square error, is formulated to calculate
the optimal desired weighting vector. Simulations and experimental results show that the proposed
method can achieve steerable frequency-invariant beamforming from 300 Hz–4 kHz.

Keywords: differential loudspeaker arrays; beam steering; frequency-invariant beamforming

1. Introduction

Beamforming is a fundamental technique in array signal processing and has garnered
significant attention in the research [1–6]. In microphone arrays, beamforming suppresses
spatial interferences and improves the output signal-to-noise ratio [7–12]. In loudspeaker
arrays, beamforming creates highly directional beampatterns, reducing room reflections
and enhancing the desired sound’s delivery [13–18]. Array systems can be classified
into two categories: additive arrays and differential arrays. Additive arrays generate
directional beampatterns through the synchronize-and-add principle [19]. However, they
cannot achieve high directivity at low frequencies with limited array apertures. In contrast,
differential arrays, which respond to the spatial derivatives of the sound field, can generate
narrow beampatterns and achieve high directional gains even with small apertures [20].

Differential arrays offer the advantages of compact size, frequency-invariant beampat-
terns, and high spatial directivity, and have been extensively studied in microphone array
applications over the last two decades. Differential microphone arrays can be implemented
in various geometric shapes, including line-shaped [20–25], planar [26–33], and volumetric
designs [34–37]. Among these, the line-shaped differential microphone array (LDMA)
is particularly well-studied due to its ease of integration with electronic devices. While
most research focuses on directing the main lobe in the end-fire direction, this is often
unsuitable for applications like smart TVs or tablets, where beam steering is needed, e.g.,

Sensors 2024, 24, 6277. https://doi.org/10.3390/s24196277 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24196277
https://doi.org/10.3390/s24196277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-4834-2945
https://doi.org/10.3390/s24196277
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24196277?type=check_update&version=2


Sensors 2024, 24, 6277 2 of 26

to accurately pick up voice commands from users speaking from different positions. Planar
arrays, such as circular arrays [26,31,32] or concentric circular arrays [27,30,33], have much
better steering capabilities. Based on the use of circular harmonics decomposition [32]
and spherical harmonics decomposition [33], the beamformers can be designed to steer
the frequency-invariant beampatterns in two-dimensional and three-dimensional spaces.
Volumetric arrays, such as cube arrays [34–36] and spherical arrays [37], can also generate
steerable differential beampatterns in a three-dimensional space. Although planar arrays
and volumetric arrays can solve the beam steering issue, their large size limits their appli-
cation in certain scenarios. As a result, there is a great need to study the problem of beam
steering with LDMAs.

Efforts have been made to design first- and second-order steerable LDMAs [38,39],
including the development of general conditions for steerable differential beamformers [40].
However, the ideal beampattern can become ineffective due to improper null position
selection. To address this, extremum and interference suppression constraints have been
used in designing steerable LDMAs [41]. Nonetheless, selecting the optimal trade-off
parameter between the directivity factor (DF) and interference suppression energy re-
mains challenging. Recently, a novel method was proposed using both omnidirectional
and directional microphones to design fully steerable LDMAs, achieving steering- and
frequency-invariant beampatterns with a linear super array (LSA) [42,43]. However, mis-
matches between omnidirectional and directional microphones can impact beamformer
performance in practical applications.

Differential beamformers have also been applied to linear loudspeaker arrays to pro-
duce highly directional patterns [44–51]. For example, a three-element line array with a
second-order differential broadside beam has been studied to create a near-field sound zone
in car cabins [46]. For higher-order broadside differential beampatterns, a null-constrained
method has been proposed as a convenient approach for designing differential beam-
formers [47]. However, its frequency-invariant beampattern is limited, which may be
undesirable for certain applications. Our recent research extends the null-constrained
method using a series expansion approach for broadside linear loudspeaker arrays, en-
hancing the beamformer’s robustness and better preserving the frequency-invariant beam-
pattern [50,51]. In a study of beam steering for differential loudspeaker arrays (DLAs),
a linear loudspeaker array composed of miniature omnidirectional speakers and dipole
speakers is used to design steerable first-order DLAs [49]. Our recent study develops
steerable frequency-invariant differential beampatterns using a circular loudspeaker array
with a rigid baffle [48]. However, miniature loudspeakers and circular arrays are not widely
applicable, such as in public broadcasting and outdoor sound reinforcement scenarios.
Therefore, there is a need to explore beam steering with loudspeaker line arrays.

In this paper, we propose a method for designing steerable differential beamformers
using a loudspeaker line array. The key contributions include (1) calculating the target
steerable differential beampattern based on the desired direction, main lobe width, and
beampattern order; (2) formulating the desired differential beampattern in the modal do-
main for representation; and (3) developing a multi-constraint optimization problem, which
compromises the white noise gain (WNG) and the mean square error (MSE) between the
synthesized and ideal beampatterns, to design a steerable frequency-invariant beamformer
using the Jacobi-Anger expansion. Both simulation and experimental studies are provided.
Although this work focuses on differential loudspeaker line arrays, the proposed method is
also applicable to differential microphone arrays, making it suitable for designing LDMAs
with steerable differential beampatterns for high-quality acoustic signal acquisition.

Notice that some methods were developed in the literature to achieve a compromise
between WNG and DF of the differential beamformers with LDMAs. In [52], a simple
theory and a novel differential beamforming method are proposed to compromise the
white noise gain (WNG), the directivity factor (DF), and the front-to-back ratio (FBR) of
the beamformer. In [53], the authors present a study on theory and methods based on the
null constrained fixed beamformer to achieve the optimal and fundamental compromise
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between WNG and DF, e.g., to find a beamformer that maximizes the DF and whose WNG
is equal to a preset value. But these beamforming methods with LDMAs only consider
the desired signal that comes from the end-fire direction, and the designed beamformer
does not have the capability for beam steering. The focus of this work is on how to design
differential beampatterns with steering capability using a linear array and, once the desired
beampattern is determined, how to achieve a compromise between WNG and MSE in the
modal domain. Therefore, the method proposed in this paper is significantly different from
the methods presented in the aforementioned literature.

The paper is organized as follows: Section 2 introduces the signal model, problem
formulation, and key definitions. Section 3 details the proposed method for designing
steerable frequency-invariant beampatterns with a linear array. Section 4 presents sim-
ulations with design examples and discusses the impacts of constraint parameters and
element mismatch, as well as a performance comparison with existing methods. Section 5
provides experimental results that align with the simulations, validating the proposed
method. Finally, Section 6 concludes the paper.

2. Problem Formulation

Figure 1 illustrates a loudspeaker array designed to radiate a steerable differential
beampattern towards a listener. The line array, consisting of L loudspeakers with an
interelement spacing δ, lies on the x axis. The loudspeaker array is centered at the origin of
the coordinate system. Each loudspeaker is modeled as an omnidirectional point source.
The far-field sound pressure at a listener position (r, θ) generated by the loudspeaker array
can be expressed as

p(k, r, θ) ≈ eikr

4πr

L

∑
l=1

w∗
l (k)e

−ikxl cos θ , (1)

where i is the imaginary unit, with i2 = −1, k = 2π f /c is the wave number, f denotes
the frequency, c is the speed of sound in air, the superscript (·)∗ is the complex-conjugate
operator, wl(k) denotes the weight of the l-th loudspeaker at (xl , 0), where xl = −(L +
1)δ/2 + lδ, l is the loudspeaker index, l = 1, 2, . . ., L, r is the distance from the origin of the
coordinate system to the listener, and the angle θ is defined with the respect to the positive
x axis.
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Figure 1. The loudspeaker line array with a steerable differential radiation pattern.

In the far-field, the directivity of the loudspeaker array does not change with the
distance r. To evaluate the directivity of radiation, the normalized far-field radiation
pattern is as follows:

B(k, θ) = p(k, r, θ)/(eikr/4πr) =
L

∑
l=1

w∗
l (k)e

−ikxl cos θ (2)
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This can be written in a vector form,

B(k, θ) = wH(k)g(k, θ), (3)

where
w(k) = [w1(k), . . . , wL(k)]

T, (4)

g(k, θ) = [e−ikx1 cos θ , · · · , e−ikxL cos θ ]
T

, (5)

the superscripts (·)H and (·)T are the conjugate-transpose operator and the transpose
operator, respectively, and w is the beamforming filter to be designed to achieve a steerable
differential radiation pattern.

Apart from the normalized far-field radiation pattern, there are two commonly used
metrics to evaluate the performance of a beamformer: white noise gain (WNG) and di-
rectivity factor (DF). The WNG quantifies the robustness of the beamformer against the
white noise,

WNG(k) =
|B(k, θs)|2

wH(k)w(k)
, (6)

where θs is the desired radiation direction. For the loudspeaker array, the WNG also
represents the radiation efficiency of the array.

The DF evaluates the directional characteristics of the beamformer. The two-dimensional
DF is defined as the ratio of the sound power radiated in the desired direction to the average
sound power across the half-plane in front of the loudspeaker array, and is expressed as

DF(k) =
π|B(k, θs)|2∫ π

0 |B(k, θ)|2dθ
=

|B(k, θs)|2

wH(k)Γ(k)w(k)
, (7)

where
Γ(k) =

1
π

∫ π

0
g(k, θ)gH(k, θ)dθ(1) (8)

is an L × L square matrix, whose elements are [Γ]m,n(k) = J0[k(i − j)δ], m, n ∈ {1, 2, . . . , L}.
Here, J0(·) is the zero-order Bessel function of the first kind. For brevity, we will omit the
dependence on k in the following text.

3. Methods

The objective of the proposed method is to form a directional steerable loudspeaker
array, such that the energy radiated by the array is mainly concentrated in the main lobe
area, while minimizing the output energy of the sidelobe area. It is achieved in three
steps: (1) calculating the target radiation pattern according to the radiation steering angle,
main lobe area and sidelobe area; (2) formulating the target radiation pattern in the modal
domain; and (3) designing the steerable differential beamformer using the modal matching
with the Jacobi-Anger expansion.

3.1. Target Radiation Pattern with the Main Lobe Steering

The ideal N-th order differential beampattern for a differential microphone array is

B̃(N)(θ) =
N

∑
n=0

αN,n cosn θ, (9)

which assumes the microphone spacing is much smaller than the wavelength, and αN,n,
n = 0, 1, . . . , N are real coefficients. To allow main lobe steering to the desired direction
θs, two conditions should be satisfied: that B̃(N)(θs) = 1 and ∂B̃(N)(θs)/∂θs = 0. In the
vector form,

ATαN = b, (10)
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where

A =

[
1 cos θs . . . cosN θs
0 sin θs . . . N cosN−1 θs sin θs

]T

, (11)

αN =
[
αN,0 αN,1 . . . αN,N

]T, b =
[
1 0

]T. (12)

Also, (9) in the vector form is
B̃(N)(θ) = αT

NcN , (13)

where
cN = [1 cos θ . . . cosN θ]

T.(2). (14)

The corresponding beam power can be expressed as∣∣∣B̃(N)(θ)
∣∣∣2 = αT

NcNcT
NαN = αT

NCαN , (15)

where
C = cNcT

N . (16)

Due to the acoustic reciprocity principle, our proposed method applies Equation (13) as
the ideal N-th order differential radiation pattern for a differential loudspeaker array. It en-
ables precise steering of sound propagation towards the desired direction θs. Additionally,
it is necessary to minimize the radiation of sound energy in the sidelobe area, defined as

ΘSL ∈
[
0◦, θs − ∆/2

]
∪
[
θs + ∆/2, 180◦

]
, (17)

where ∆ is the main lobe width. Therefore, once the desired direction and main lobe
width are determined, the optimal solution αN can be obtained by solving the following
optimization problem:

min
αN

∣∣∣B̃(N)(ΘSL)
∣∣∣2 s.t. ATαN = b. (18)

This can be solved using the CVX toolbox [54]. Moreover, the selection of the main lobe
width ∆ and the desired direction θs must satisfy

∆ ≤ 2 · min(θs, 180◦ − θs). (19)

The optimal target radiation pattern can be obtained by substituting the resultant into
(13). Figure 2 provides examples of target radiation patterns designed using the above
method at different desired angles. This indicates that the proposed method can design
effective radiation patterns for different orders in various desired directions. Figure 2 also
presents the target radiation patterns of the same order and desired directions designed
using the method stated in Ref. [41]. Yu’s method finds the optimal vector αN by maxi-
mizing the directivity factor of the beampattern, under the distortionless constraint and
the extremum constraint in the desired direction (10). This method needs a regularization
parameter to trade off the radiation power in the end-fire direction and the spatial average
of the radiated power over the entire space. The regularization parameter is set to 0.15, as
given in Ref. [41] and applied in the following simulation.

Figure 2a–d present the comparison results of the fourth-order target differential
radiation patterns at desired angles of 30◦, 60◦, 90◦, and 135◦, using Yu’s method and the
proposed method, respectively. The main lobe width ∆ is set to 60◦. Though both methods
can design effective fourth-order differential radiation patterns at the desired angles, the
proposed method has smaller sidelobes (excluding those in the end-fire direction). This is
because Yu’s method adjusts the regularization parameter to balance the radiated energy
in the end-fire direction and the average over the entire space, when designing the target
radiation pattern. Since this method does not account for the energy distribution of
sidelobes other than the end-fire direction, it can result in excessively large sidelobes. Thus,
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the regularization parameter selection is required for different desired directions. However,
selecting the appropriate regularization parameter is quite challenging, which hinders the
practical application of this method. In contrast, the proposed method designs the target
radiation patterns by minimizing the total energy in the sidelobe area, which includes the
end-fire direction. As a result, the target beampattern radiates less energy into the sidelobe
area. Additionally, once the desired direction and main lobe width are determined, we
can design the optimal radiation pattern without adjusting other parameters, facilitating
practical applications.
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Figure 2. Comparison of the N-th order target radiation patterns designed by the method stated
in Ref. [41] and the proposed method at different desired angels: (a) N = 4, θs = 30◦, (b) N = 4,
θs = 60◦, (c) N = 4, θs = 90◦, (d) N = 4, θs = 135◦, (e) N = 5, θs = 45◦, and (f) N = 5, θs = 90◦.

Figure 2e,f further compare the fifth-order target radiation patterns by Yu’s and the
proposed methods, with the desired directions of θs = 45◦ and θs = 90◦, respectively. The
above findings hold. In addition, when the desired direction is in the broadside direction,
θs = 90◦, the fifth-order target radiation pattern (Figure 2f) is the same as the fourth-order
target pattern (Figure 2c). This occurs because the target radiation pattern in the broadside
direction is symmetrical along the y axis. As a result, the odd terms of the optimal vector
αN are zero, leading to pairs of nulls in the target beampattern that are symmetrically
distributed along the y axis. Therefore, when designing N-th order broadside radiation
patterns (where N is odd), the process automatically reduces to designing an (N − 1)-th
order pattern.
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3.2. Formulating the Target Radiation Pattern in the Modal Domain

Using the N-th order target radiation pattern obtained in Section 3.1, we will transform
the ideal radiation pattern from Equation (9) into the modal domain, depending on the
parity of N.

3.2.1. N Is Even

Let N = 2Ñ and αN,−1 = 0, (9) will be

B̃(N)(θ) =
N

∑
n=0

αN,n cosn θ =
Ñ

∑
n=0

αN,2n cos2n θ+
Ñ

∑
n=0

αN,2n−1 cos2n−1 θ. (20)

According to the following relations [55],

cos2n θ =
1

22n

{
n−1

∑
t=0

2
(

2n
t

)
cos 2(n − t)θ+

(
2n
n

)}
, (21)

cos2n−1 θ =
1

22n−2

{
n−1

∑
t=0

(
2n − 1

t

)
cos[2(n − t)− 1]θ

}
, (22)

where
(
·
·

)
is combinations. Combining the Euler’s formula, i.e.,

cos(nθ) =
einθ + e−inθ

2
, (23)

then (20) can be expressed as

B̃(N)(θ) =
N

∑
n=−N

γneinθ , (24)

where

γn =



Ñ
∑

p=
|n|+ 1

2

αN,2p−1η̃ n + sgn(n)
2

(p) n = ±1,±3, . . . ,±(2Ñ − 1) ,

Ñ
∑

p=|n|/2
αN,2pηn/2(p) n = 0,±2,±4, . . . ,±2Ñ ,

(25)

η̃t(n) =


0 t = 0 ,

1
22n−1

(
2n − 1
n − |t|

)
t = ±1,±2, . . . ,±n ,

(26)

sgn(t) =


1 t > 0 ,
0 t = 0 ,
−1 t < 0 ,

(27)

ηt(n) =
1

22n

(
2n

n − |t|

)
t = 0,±1, . . . ,±n. (28)

Here, |·| represents absolute value.

3.2.2. N Is Odd

Let N′ = (N + 1)/2 and

α2N′ ,n =

{
αN,n n = 0, 1, . . . , N ,

0 n = N + 1 ,
(29)
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and then we can express the odd (N-th) order target radiation pattern as a form of the even
(2N′) order target beampattern:

B̃(N)(θ) = B̃(2N′)(θ) =
2N′

∑
n=0

α2N′ ,n cosn θ =
N′

∑
n=0

α2N′ ,2n cos2n θ+
N′

∑
n=0

α2N′ ,2n−1 cos2n−1 θ. (30)

Similar to the derivation steps in Section 3.2.1, we can formulate (30) in the modal
domain with a symmetric form,

B̃(N)(θ) = B̃(2N′)(θ) =
2N′

∑
n=−2N′

γneinθ , (31)

where

γn =



N′

∑

p=
|n|+ 1

2

α2N′ ,2p−1η̃ n + sgn(n)
2

(p) n = ±1,±3, . . . ,±(2N′ − 1)

N′

∑
p=|n|/2

α2N′ ,2pηn/2(p) n = 0,±2,±4, . . . ,±2N′

, (32)

Here, η̃t(n), sgn(t), and ηt(n) are defined in (26), (27), and (28), respectively.

3.3. Beamformer Design

The objective is to determine the loudspeaker weighting so that the array’s radiation
pattern closely approximates the target radiation pattern. Based on (2) and (24), we use the
Jacobi-Anger series expansion method to accomplish this task.

3.3.1. Modal Matching Method with Maximum WNG

In the series expansion method, the Jacobi–Anger expansion is used to decompose
the resulting radiation pattern into a linear combination of circular harmonics. The Jacobi-
Anger expansion is

e−iσ cos θ =
+∞

∑
n=−∞

βn(σ)einθ , (33)

where βn(σ) = (−i)n Jn(σ) and Jn(·) is the N-th order Bessel function of the first kind.
Substituting (33) into (2), we obtain

B(θ) =
L

∑
l=1

w∗
l

+∞

∑
n=−∞

βn(kxl)einθ . (34)

In order to obtain an N-th order target radiation pattern, the infinite summation in (34) is
truncated to the order N:

B(θ) ≈
N

∑
n=−N

einθ
L

∑
l=1

βn(kxl)w∗
l . (35)

When the normalized far-field radiation pattern in (35) is inconsistent with the target
radiation pattern in (24), the following is true:

L

∑
l=1

βn(kxl)w∗
l = γn n = 0,±1, . . . ,±N. (36)

For the design of a steerable differential beamformer, the distortionless constraint in
the desired direction is needed:

wHg(θs) = 1. (37)
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Combing (36) and (37) yields
Φw = ν, (38)

where
Φ =

[
β−N . . . βN g(θs)

]H, (39)

βn = [βn(kx1) · · · βn(kxL)]
T, (40)

and
ν =

[
γ−N . . . γ0 . . . γN 1

]T. (41)

Using the symmetric property of the Bessel function, in Jn(·) = i−n J−n(·), (38) can be
simplified to

∼
Φw =

∼
ν, (42)

where ∼
Φ =

[
β0 · · · βN g(θs)

]H (43)

is (N+2)× L full matrix and

∼
ν = [γ0 . . . γN 1]T. (44)

With L > (N+2) loudspeakers to generate an N-th order steerable target radiation
pattern, one approach to design the beamformer is to maximize WNG with the constraints
of (42). Due to (37), (6) can be written as WNG = 1/wHw.

The optimization problem can be formulated as

min
w

wHw s.t.
∼
Φw =

∼
ν . (45)

The solution is

w =
∼
Φ

H
(
∼
Φ

∼
Φ

H
)
−1∼

ν. (46)

3.3.2. Modal Matching Method with WNG Constraint

Since the resulting beamformer (46) is obtained with some approximations, the mean
square error (MSE) is adopted to evaluate the accuracy of these approximations. The MSE
of the approximations of the beamformer to the N-th order target differential radiation
pattern is defined as

d(w) =
1
π

∫ π

0

∣∣∣wHg(θ)− B̃(N)(θ)
∣∣∣2dθ. (47)

Substituting (9) into (47), the MSE can be written as a quadratic function,

d(w) = wHΓw − wHq − qHw + ξ, (48)

where
q =

1
π

∫ π

0
g(θ)B̃(N)(θ)dθ = QαN , (49)

Q =
1
π

∫ π

0
g(θ)cT

Ndθ, (50)

ξ =
∫ π

0

∣∣∣B̃(N)(θ)
∣∣∣2dθ = αT

N
∼
CαN , (51)

∼
C =

1
π

∫ π

0
cNcT

Ndθ. (52)

The matrix Γ is the array spatial correlation matrix, which is defined in (8). Q is a complex
matrix. Its (m, n + 1)th (m = 1, 2, . . ., L; n = 0, 1, . . ., N) element is
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Qm,n+1 =
1

2n−1

⌊n/2⌋

∑
p=0

(
n
p

)
in−2p Jn−2p(−kxm)−

1
2n δ0,n−2⌊n/2⌋

(
n

⌊n/2⌋

)
in−2⌊n/2⌋ Jn−2⌊n/2⌋(−kxm), (53)

where ⌊·⌋ represents the floor function applied to a real number, Jn(·) is the N-th order

Bessel function of the first kind, and δm,n represents the Kronecker delta.
∼
C is an (L + 1)×

(L + 1) real matrix, whose (m + 1, n + 1)th element is

∼
Cm+1,n+1 =

1
π

∫ π

0
cosm+n θdθ =

(1 + (−1)(m+n))Γ((1 + m + n)/2)
2
√

πΓ((2 + m + n)/2)
(m = 0, 1, . . . , N; n = 0, 1, . . . , N), (54)

where Γ(·) is the Euler’s Gamma function.
After calculating the optimal coefficients of the target differential beampattern (9)

according to the actual requirements, the objective for designing the beamformer is twofold.
On the one hand, we aim to design a resulting beampattern that approaches the target one
as much as possible. On the other hand, we hope the system is robust enough to resist
unknown channel mismatch in real applications. The MSE, defined in (47), measures how
closely the synthesized beampattern approximates the target beampattern. The WNG,
defined in (6), is a metric for measuring the robustness of the designed beamformer.
Therefore, attention should be paid to these two metrics when designing the beamformer.

The solution in (46) gives the maximum WNG. The higher the value of the WNG,
the more robust the radiation. However, it does not consider the MSE in the design of
the beamformer. In practice, a WNG greater than a suitable value should be ensured. It
indicates the beamformer is robust enough for usage. In addition, the degrees of freedom
provided by the weighting functions can be used to minimize MSE. The optimization
problem can be described as follows:

min
w

wHΓw − wHq − qHw

s.t. Φ̃w =
∼
ν,

wHw ≤ εWNG.

(55)

The parameter εWNG represents the lower limit of the WNG of the designed beam-
former. It is noteworthy that εWNG must not exceed εmax

WNG, which is the WNG obtained
from the solution in (46). The optimal weighting vector w can be obtained by solving the
optimization problem in (55) using the CVX toolbox [54]. To clearly illustrate the design
process of a steerable differential beampattern with a linear array, we provide a detailed
design procedure in Algorithm 1.

In this section, we present the proposed method for designing steerable differential
beampatterns using a loudspeaker line array. Section 3.1 provides the method for calculat-
ing the steerable target differential beampatterns using convex optimization, which has
not been discussed in the existing literature. In Section 3.2, the analytical expression for
the desired steerable differential beampatterns in the modal domain is presented for the
first time. Section 3.3.1 uses the Jacobi-Anger expansion to approximate the beampattern
generated by the array to the desired one in the modal domain, which is similar to the
method in [23,27,32]. Then, we propose a multi-constraint optimization based on the modal
matching method in Section 3.3.2 to find a beamformer that minimizes the MSE while
the WNG is no less than a preset value. Therefore, the proposed steerable differential
loudspeaker line array method leverages the remaining degrees of freedom to minimize
the error caused by the finite truncation of the Jacobi-Anger series, while maintaining the
robustness of the beamformer. This is the key theoretical contribution of this paper.
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Algorithm 1 Steerable Frequency-Invariant Beamformer Design

Step 1: Calculate the ideal differential beampattern:
Set N, θs and ∆ according to the actual application scenarios.
Calculate A and b based on (11) and (12); Discretize the sidelobe area ΘSL based on (17)
and calculate CΘSL based on (16).
Compute αN using the following CVX code:
cvx_begin

variable αN
minimize quad_form(αN , CΘSL )
subject to

ATαN = b
cvx_end

Step 2: Calculate the circular harmonic coefficients of the ideal differential beampattern and the
upper limit of the WNG:
Calculate γn(n = 0,±1, . . . ± N) based on (25) or (32), according to the parity of N and
αN calculated in Step 1.

Calculate
∼
Φ and

∼
ν based on (43) and (44).

Compute the optimal solution with maximum WNG wMWNG based on (46) and
calculate the corresponding WNG εmax

WNG dB based on (6).
Step 3: Obtain the optimal solution by solving the multi-constraint optimization problem:

Calculate Γ, q and ξ based on (8), (49) and (51).
Compute the optimal solution wopt using the following CVX code:
cvx_begin

variable wopt complex
minimize (real (wH

optΓwopt) − real (2*wH
optq) + ξ)

subject to
∼
Φwopt =

∼
ν

real (w
′
optwopt) <= 1/10̂[(εmax

WNG − 2)/10]
cvx_end

4. Simulations

In this section, we will verify the effectiveness of the proposed method and investigate
the performance of the beamformer through simulations. A linear array of 21 loudspeakers
with a spacing of 0.04 m is used in the following simulation. The frequency range of interest
is from 300 Hz to 4 kHz, which covers the frequency range of speech.

4.1. Performance Study and Comparison

We first conduct the simulations to verify the effectiveness of the proposed method.
For ease of identification, we refer to the method proposed in Section 3.3.1 as the pro-
posed method I and the method proposed in Section 3.3.2 as the proposed method II. The
parameter εWNG used in the proposed method II is set to 0 dB in this simulation.

The second-order and third-order target radiation patterns, with the desired direction
set as θs = 30

◦
and the main lobe width ∆ = 60

◦
, are synthesized by the proposed method

I and the proposed method II, respectively. Figure 3 presents comparisons between the
beampatterns synthesized using the two proposed methods and the target beampattern at
2 kHz. The target beampatterns have maximum values of one, which is located at the preset
angle θs = 30

◦
. The second-order target beampattern has a null at 138

◦
. The third-order

target beampattern has two nulls at 100
◦

and 154
◦
. Figure 3a shows the comparison result

of the second-order beampattern. It is observed that the beampattern synthesized using
the proposed method I deviates from the target beampattern. Despite the value of the
synthesized beampattern being one at the preset direction, the values of the resulting
beampattern near 20

◦
and 60

◦
are both greater than one. This indicates that although the

distortionless constraint is satisfied in the proposed method I, the finite orders of modal
matching cannot ensure the maximum value of the generated beampattern in the preset
direction. However, the beampattern of the proposed method II matches well the target
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beampattern, shown with a solid black line. The same results can be seen in the comparison
of the third-order beampattern shown in Figure 3b. It is noteworthy that, compared to
the second-order synthesized beampattern, the third-order beampattern of the proposed
method I is closer to the target beampattern. This is because the truncation error caused by
(35) decreases as the order of the target beampattern increases.
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The broadband synthesized radiation patterns are shown in Figure 4. Figure 4a,b show
the broadband beampatterns of the second-order and third-order synthesized beampatterns
of the proposed method I. There are two issues with the beampattern generated by the
proposed method I. Firstly, the beampatterns cannot maintain consistency, as both the
main lobe width and the null positions change with frequency. Secondly, the maximum
values of the generated beampatterns deviate from the desired direction, which means
that the generated beampattern does not closely approximate the desired beampattern.
Figure 4c,d plot the broadband beampatterns synthesized using the proposed method II.
As seen, the proposed method II can design the different orders of target radiation patterns.
The resulting beampatterns almost maintain frequency-invariance across the evaluated
frequency range.

The performance comparisons of the two proposed methods for designing the second-
and third-order target differential beampatterns are shown in Figure 5. The performance
measures are DF, WNG, and MSE. Figure 5a shows the DF increases while the order
of the target beampattern increases. The DF of the proposed method I cannot remain
at constant values and exhibits some fluctuations at certain frequencies. However, the
proposed method II can maintain constant DF values over the frequency range of interest
(300 Hz–4 kHz) for designing the different order target beampatterns. This indicates
the proposed method II can achieve the frequency-invariant beampatterns in the whole
evaluated frequency range. From Figure 5b, the WNGs of the proposed method II are
smaller than those of the proposed method I. This is because the proposed method I uses
all the remaining degrees of freedom of the array to optimize the WNG while satisfying the
linear constraints. Therefore, the proposed method I has the highest WNG. The proposed
method II, while meeting the linear constraints and ensuring the WNG exceeds εWNG, uses
the remaining degrees of freedom of the array to optimize the MSE. The preset value εWNG
plays a role in a trade-off between the WNG and the MSE. As can be seen in Figure 5c, the
MSE of the proposed method II is significantly lower than that of the proposed method I.
Especially in the range of 1–3.5 kHz, compared to the proposed method I, the proposed
method II achieves a reduction of over 40 dB in MSE by only slightly decreasing the
WNG value. It is interesting to note that the performance of the proposed method I in
designing the third-order target beampattern is superior to its performance in designing
the second-order target beampattern. It has a larger DF factor, higher WNG, and lower
MSE. This means that the beamformer of the third-order ideal beampattern has stronger
directivity, higher robustness, and lower mean square error. Nevertheless, the MSEs of the
proposed method I are still only around −20 dB, which does not meet the requirements
for practical applications. However, the proposed method II can significantly improve the
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mean square error by sacrificing a slight degree of robustness, which is highly valuable in
real applications. Therefore, we will only study the performance of the proposed method
II in the following sections. Any mention of the proposed method hereafter refers to the
beamformer obtained by solving the optimization problem (55).
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4.2. Impact of the Parameter εWNG

εWNG is a key parameter to trade off the robustness and the approximation error
of the proposed method. This simulation studies the impact of the value of εWNG on
the performance of the proposed method, with the third-order differential beampattern
(see in Figure 3b) being the ideal radiation pattern. The level of εWNG is set to four
different values: (1) εWNG = εmax

WNG dB; (2) εWNG = (εmax
WNG − 2) dB; (3) εWNG = 0 dB; and

(4) εWNG = −10 dB.
The corresponding broadband radiation patterns of the proposed method are shown

in Figure 6. Figure 6a presents the synthesized beampattern when εWNG equals εmax
WNG dB.

It gives the same result shown in Figure 4b, indicating the solutions obtained by solving
the optimized problem in (55) equal the solution in (46) when εWNG = εmax

WNG dB. Figure 6b
displays the synthesized beampattern when εWNG = (εmax

WNG − 2) dB. With a slight decrease
in the value of εWNG, the mean square error (MSE) between the synthesized beampattern
and the ideal beampattern is reduced above 500 Hz (shown in Figure 6c), resulting in an
improvement of the synthesized beampattern, although there is a slight deviation from the
ideal beampattern at low frequencies. Furthermore, from Figure 6c,d, we can observe that
as the value of εWNG is further reduced, the synthesized beampattern can be closer to the
ideal one across the entire evaluated frequency range.
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The DFs, WNGs, and MSEs of these synthesized third-order beamformers are shown
in Figure 7. Figure 7a shows that the DF of the beamformer with εWNG = εmax

WNG fluctuates at
certain frequencies, and the DFs of the beamformers with other εWNG values can maintain
a constant over the whole evaluated frequencies range. This indicates that the frequency-
invariant beampattern can be achieved by the proposed method with an appropriate εWNG
value. Figure 7b,c plot the WNG and the MSE of the proposed method with different εWNG
values. It can be observed that at low frequencies, especially below 1.4 kHz, the WNG and
MSE of the beamformer decrease as εWNG decreases. This means that, with the decrease
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in the value of εWNG, the synthesized beampattern more closely approaches the target
beampattern, but this improvement comes at the expense of a decrease in the WNG. Above
1.4 kHz, the WNG of these beamformers does not differ significantly. However, the MSE of
the beamformers when εWNG = εmax

WNG − 2, εWNG = 0, and εWNG = −10 is much smaller
than the MSE of the beamformer when εWNG = εmax

WNG. Hence, we can tune the trade-off
between the WNG and MSE of the beamformer by setting εWNG to slightly less than εmax

WNG.
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4.3. Impact of Loudspeaker Mismatch

It was assumed in the previous section that the loudspeakers used for designing
the beamformer are ideal, without any mismatch issues among the loudspeaker units.
However, in practice, there exists uncertainty in the loudspeaker characteristics (magnitude,
phase, and position) due to the variations in the response of the drivers. This simulation
investigates the impact of the driver mismatch on the proposed method with different εWNG
values. The target beampattern and εWNG values are set the same as in Section 4.2. The
perturbations are added to the spatial responses of the loudspeakers, for which the error
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has a multiplicative form with uniform distribution between −3 and +3 dB in magnitude
and uniform distribution between −10◦ and +10◦ in phase. The performance measures are
averaged over 1000 Monte Carlo trails.

Broadband beampatterns are plotted in Figure 8. By comparing Figure 8a,b with
Figure 6a,b, we can observe that, aside from the difference in amplitude range, the basic
shape of the beampattern remains unchanged. This indicates that when εWNG = εmax

WNG
and εWNG = εmax

WNG − 2, the beamformer is robust enough to resist the perturbations in the
frequency response of the loudspeaker. However, Figure 8c,d show significant differences
from Figure 6c,d at low frequencies, suggesting that when εWNG = 0 and εWNG = −10, the
beamformer’s robustness is reduced, causing the synthesized beampattern to deviate from
the target beampattern due to the errors added to the loudspeaker.
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Figure 8. The averaged broadband beampatterns of the third-order differential beampattern with
loudspeaker mismatch for different εWNG values: (a) εWNG = εmax

WNG dB, (b) εWNG = εmax
WNG − 2 dB,

(c) εWNG = 0 dB, and (d) εWNG = −10 dB.

Figure 9 shows the averaged DF, WNG, and MSE of the beamformers. Figure 9a shows
that the DFs of the beamformers with εWNG = εmax

WNG and εWNG = εmax
WNG − 2 are almost

identical over the whole evaluated frequency range. When εWNG = 0 and εWNG = −10,
the DFs decrease with the εWNG value decrease below 1 kHz. Figure 9b,c plot the WNG
and MSE, respectively. Unlike the conclusion drawn in Section 4.2, that a smaller WNG of
the beamformer results in a smaller MSE, when there exists a mismatch in the drivers, a
smaller WNG value leads to a larger MSE, which means large deviations from the target
beampattern at low frequencies. Hence, the appropriate selection of the εWNG value is
crucial for the proposed method in practical applications.
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4.4. Validation of the Steering Flexibility

In this simulation, we investigate the steering flexibility of the proposed method. For
the broadside array illustrated in Figure 1, we consider four different desired directions:
θs = 30◦, θs = 45◦, θs = 60◦, and θs = 90◦. The coefficients of the third-order differential
beampattern with main lobe width equals 60◦. The different desired directions need to be
determined by solving (18) first, and then the synthesized beampattern is obtained using
the proposed method. The parameter εWNG used in the simulation is set to (εmax

WNG − 2) dB.
Figure 10 shows the synthesized broadband beampatterns. As seen, the main lobe of

the synthesized beampatterns can be steered to the desired directions. This indicates that
the proposed method can design different steerable beamformers with a linear array. The
synthesized beampatterns slightly deviate from the ideal beampatterns at low frequencies
for θs = 30◦, θs = 45◦, θs = 60◦, and θs = 90◦. When θs = 90◦, the proposed method can
achieve a frequency-invariant beampattern over the whole evaluated frequency range.
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Figure 11b, the WNG decrease as sθ  increases at low frequencies. Figure 11c shows that 
when 90sθ =  , the MSE is below −40 dB over the whole evaluated frequency range, which 
is considered the ideal beampattern and has been well approximated. 

 

Figure 10. Broadband beampatterns of the third-order differential beampatterns for different steering
directions: (a) θs = 30◦, (b) θs = 45◦, (c) θs = 60◦, and (d) θs = 90◦.

Figure 11 shows the DFs, WNGs, and MSEs of the beamformers with different desired
directions. As seen from Figure 11a, when θs is 30◦, 45◦, and 60◦, respectively, the DF of the
beamformer increases as θs increases. However, when the desired direction θs is 90◦, the
DF does not increase as expected. That is because, in this case, the ideal beampattern is
symmetrical with respect to the direction; the coefficient of the ideal beampattern satisfies
αN,m = 0 when m is odd, leading to a reduction in the DF value. From Figure 11b, the
WNG decrease as θs increases at low frequencies. Figure 11c shows that when θs = 90◦, the
MSE is below −40 dB over the whole evaluated frequency range, which is considered the
ideal beampattern and has been well approximated.
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4.5. Comparison with Other Steerable Beamforming Methods

To demonstrate the advantages of the proposed method in designing the steerable
broadband differential beampattern with a linear array, we compare the performance of
the proposed method with three other steerable beamforming methods: (i) the Delay and
Sum (DS) method, which increases the acoustic energy in the desired direction by phase-
aligning [45]; (ii) the Minimum Variance Distortionless Response (MVDR) method, which
aims to minimize the output power of the array while maintaining a distortionless response
in the desired direction [56]; and (iii) the Null Constrained (NC) method, which utilizes
the null position for the ideal beampattern to design the differential beamformer [40]. The
MVDR method requires a regularization parameter during the solving process. We set the
regularization parameter to 0.001 in the simulation. The steerable differential beamformer
we designed aims to approach the fourth-order differential beampattern with the main lobe
width of 60◦ and the desired direction being steered to 120◦.

Figure 12 plots the broadband beampatterns synthesized by these four methods. As
seen, the main lobes of the DS and MVDR methods become narrower as the frequencies
increase. The NC method can only maintain a constant main lobe width at low frequencies.
Above 600 Hz, like the DS method, its main lobe width also narrows as the frequency
increases. In contrast, the proposed method maintains the frequency-invariant beampattern
over the whole frequency range.

The DFs and WNGs of the different beamforming methods are plotted in Figure 13.
Figure 13a shows MVDR has the highest DF among the four methods, indicating the
strongest ability of directivity across the whole frequency range. The DF of DS and MVDR
increases with frequency. The DF of NC maintains almost the same below 600 Hz but
increases with frequencies above 600 Hz, where the frequency-invariant cannot hold. Above
600 Hz, the DF of NC converges with that of the DS method. The DF of the proposed
method can maintain a constant across the whole frequency range, indicating the frequency-
invariant pattern can be achieved by the proposed method. It is worth noting that below
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600 Hz, the DF of the DS method is the lowest, indicating that DS has the weakest directivity
at low frequencies. In Figure 13b, DS has the maximum WNG and remains constant across
the entire frequency range, which indicates that it has the strongest robustness for practical
usage. The WNG of the NC method increases with frequency at low frequencies, and at
high frequencies, its value matches that of the DS. In the 500–3k Hz frequency range, the
MVDR method has the lowest WNG, indicating the worst anti-perturbation ability within
this frequency band. Above 1 kHz, the WNG of the proposed method is lower than that of
the DS and NC methods, but it is still greater than 5 dB, which is considered a proper level
of robustness for practical usage. From the above discussion, it can be seen that, unlike the
DS method, which has the highest WNG, and the MVDR method, which has the highest
DF, the proposed method achieves a better balance between WNG and DF while generating
frequency-invariant beampatterns.
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Figure 12. Broadband synthesized beampatterns of different beamforming methods: (a) the DS
method, (b) the MVDR method, (c) the NC method, and (d) the proposed method.
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5. Experiment and Discussion

Experiments were conducted in an anechoic chamber. A line loudspeaker array,
shown in Figure 14a, was used. The array consists of 31 loudspeaker drivers, B1S (1 inch,
metal cone, moving coil type) of HiVi Inc., spaced 3.8 cm apart. Each driver has an
independent cavity with the internal dimensions of 3.6 × 5.8 × 6 cm3. The experimental
setup is illustrated in Figure 14b. The array was mounted on a turntable and positioned
in the front when the turntable angle was 0◦. An omnidirectional microphone (BSWA
MPA201, Beijing, China) was placed at 3 m from the geometrical center of the array. Both
the microphone and the linear array were placed at a height of 2 m from the floor.
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Figure 14. A photo of the linear array with 31 loudspeakers and experimental setup of the measure-
ment: (a) the linear array and (b) the experimental setup.

The transfer functions of the loudspeaker array have been measured to evaluate the
performance of the different beamforming methods. The measured transfer functions
include the acoustic characteristics, such as reflections and scattering effects due to the
array cabinet, and loudspeaker mismatches, such as gain, phase, and position errors.
Therefore, the beampattern using the measured transfer function is more aligned with
practical applications than the free-field point source model, which does not take into
account the influence of the array cabinet or the mismatch between loudspeaker drivers.

A linear swept sine signal in the frequency range of 300–4k Hz with a resolution of
5 Hz was reproduced by each loudspeaker to measure its transfer function. The signals
recorded by the microphone were processed by an audio analyzer (Audio Precision 2720,
Beaverton, OR, USA) to obtain the transfer function at a specific angle. The turntable
was then rotated by 5◦ in the counter-clockwise direction, and the same measurement
procedure was repeated. This process was repeated when the array was rotated from 0◦

to 180◦, giving a total of 37 positions with 31 measurements each. Finally, the transfer
functions were used to calculate the measured beampattern to evaluate the performance of
the proposed method.

Figures 15 and 16 illustrate comparisons between the measured beampatterns and the
ideal beampatterns under different desired directions at frequencies: 500 Hz, 1 kHz, 2 kHz,
and 4 kHz. The ideal beampattern has an order of 4, with a main lobe width of 60◦. As can
be seen, when the desired direction is at 75◦ or 120◦, the measured beampatterns closely
resemble the ideal beampattern, although there exist some minor differences due to array
imperfections and measurement errors.
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To further demonstrate the good performance of the proposed method, Figure 17 gives
the measured broadband beampatterns of the four different methods: DAS, MVDR, NC,
and the proposed method. The regularization parameter used in the MVDR method is
0.001, and the WNG constraint value of the proposed method is set to εmax

WNG − 2 over the
whole evaluated frequency range. It can be observed that the main lobe of the beampattern
generated by the DS method becomes narrower as the frequency increases. The MVDR
method cannot generate an effective beampattern due to its poor robustness. The main lobe
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of the NC method is well-maintained at low frequencies. However, at high frequencies,
its beampattern becomes similar to that of the DS method, with the main lobe narrowing
as the frequency increases. In contrast, the main lobe of the proposed method stayed
almost the same in the evaluated frequency range of up to 4 kHz, which demonstrates
that the frequency-invariant beampattern can be synthesized by the proposed method in a
broadband of frequencies. It is worth noting that, compared to other existing beamforming
methods, the advantage of the proposed method is its ability to form steerable frequency-
invariant beampatterns over a wide frequency range. However, the above analysis and
results were obtained under free-field conditions. The directivity of the proposed method
is only validated in an anechoic chamber. In a regular room, room effect may degrade
the directional performance of the proposed method. Future work will investigate the
proposed method in more complex and real-world environments.
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6. Conclusions

In this paper, we propose a method for designing a steerable frequency-invariant
beamformer using a differential loudspeaker line array. The design process begins by
determining the target differential beampatterns based on the desired direction, main
lobe width, and beampattern order. These target beampatterns are then represented in
the modal domain. The Jacobi-Anger series expansion is employed to design the beam-
former, ensuring that the resulting beampattern closely aligns with the target differential
beampattern. To further enhance beampattern matching and robustness, a multi-constraint
optimization problem is formulated. This approach introduces a white noise gain constraint
value, enabling a trade-off between the white noise gain performance and the mean square
error of the synthesized beampatterns. We also derive the upper limit for the proposed
constraint value. Simulation results demonstrate that setting the proposed constraint value
slightly below this upper limit can significantly improve the mean square error performance.
Both simulations and experimental results demonstrate that the proposed method outper-
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forms existing steerable beamforming techniques, achieving steerable frequency-invariant
beamforming across the frequency range of 300 Hz to 4 kHz.
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