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ABSTRACT 

Bilevel decision addresses the problem in which two levels of decision makers, each tries to 

optimize their individual objectives under certain constraints, and to act and react in an 

uncooperative and sequential manner. Given the difficulty of formulating a bilevel decision 

problem by mathematical functions, a rule-sets based bilevel decision model was proposed. This 

paper presents an algorithm to solve a rule-sets based bilevel decision problem. A case based 

example is given to illustrate the functions of the proposed algorithm. Finally, a set of 

experiments is analyzed to further show the functions and the effectiveness of the proposed 

algorithm. 

Key words: Decision making model, rule sets, bilevel decision making, optimization 

algorithm.  
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1．．．． INTRODUCTION 

A bilevel decision problem can be viewed as a static version of the non-cooperative, two-

player (decision maker) game (Stackelberg 1952). The decision maker at the upper level is 

termed the leader, and at the lower level, the follower. In a bilevel decision problem, the control 

for decision factors is divided amongst the decision makers who seek to optimize their individual 

objective functions (Aiyoshi and Shimizu 1981). Perfect information is assumed so that both the 

leader and the follower know the objectives and feasible choices available to the other. The 

leader attempts to optimize his/her objective function but he/she must anticipate all possible 

responses of the follower (Lai 1996). The follower observes the leader’s decision and then 

responds to it in a way that is personally optimal. For example, we consider a logistic companies  

decision making on how to use commission as a means for its distributors to improve product 

sale volume. The company, as the leader, attempts to maximize its benefit of product sale 

through offering a highly competitive commission to its distributors. For each of the possible 

commission strategies, the distributors, as the follower, will respond on product sale volume 

which is based on the maximized benefit obtained through the product sale. Therefore, in such a 

bilevel decision problem described by a bilevel programming (BLP) model, a subset of the 

decision variables (such as ‘commission’ in the example) is constrained to be a solution of a 

given optimization problem parameterized by the remaining variables (such as ‘sale volume’) 

(Anandalingam and Friesz 1992; Bard and Falk 1982; Bard and Moore 1992). In mathematical 

terms, a BLP problem consists of finding a solution for the upper level problem: 
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where ( 1, 2, , ),iy i m= L  for each value of y0, is the solution of the lower level problem: 
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The majority of BLP research has centered on the linear version of the problem. Reference 

(Candler and Townsley 1982) first discussed a linear BLP problem with no upper level 

constraints and with unique lower level solutions. Later, references (Bard 1984; Bialas and 

Karwan 1984) proved this result under the assumption that the constraint region is bounded. 

Following these results, there have been nearly two dozen approaches and algorithms proposed 

for solving linear BLP problems, for example the Kth-Best approach (Candler and Townsley 

1982; Bialas and Karwan 1984), and the Kuhn-Tucker approach (Bard and Falk 1982; Bialas and 

Karwan 1982; Hansen, Jaumard, and Savard 1992). There have also been some intelligent 

approaches to solving linear bilevel programming problems (Lan et al. 2007; Calvete, Galé, and 

Mateo. 2008), as well as Penalty function approach (Aiyoshi and Shimizu 1981; White and 

Anandalingam 1993), stability based approach (Liang and Sheng 1992), and a globally 

convergent approach for solving nonlinear bilevel programming problems (Wang et al. 2007). 

Mathematicians, economists, engineers and other researchers and developers have delivered 

contributions to this field.  

BLP is the most suitable way to model a bilevel decision problem by assuming that: (1) both 

the leader and the follower have perfect information about their objectives and constraints; and (2) 

these objectives and constraints can be written into mathematics functions. However, in real 

situations, it is often very hard to describe these objectives and constraints by mathematical 
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functions including the determination of their parameters. Let us consider the logistic company 

example mentioned above. The company can only estimate various feasible choices taken and 

various costs spent by its distributors. Therefore, in establishing a BLP model for the 

‘commission’ problem, we are hard-pressed to arrive at a formula for the objective functions and 

constraint functions (including their function types and parameters) of the leader and the 

follower. Some researchers such as (Lai 1996; Sakawa, Nishizaki, and Uemura 2000a; Sakawa, 

Nishizaki, and Uemura 2000b; Sakawa and Yauchi 2000; Sakawa and Nishizak 2001a; Sakawa 

and Nishizak 2001b, 2002; Shih, Lai, and Lee. 1996; Zhang and Lu 2005, 2006; Zhang, Lu, 

Dillon 2007a, 2007b) have developed fuzzy BLP approaches to handle the difficulty in 

determining the parameters in the objective and constraint functions of a BLP. However, they 

still assume that all these objective and constraint functions can be established and only their 

parameters are uncertain. Obviously, this cannot solve the problem where these mathematical 

functions can not be established. 

We have recently observed that in many bilevel decision problems, the leader’s attempts to 

optimize his/her objectives and all the possible responses from the follower can be described by a 

number of rules (Zheng et al. 2009). Therefore, when a bilevel problem cannot be formulated by 

a classical BLP model, we can explore the use of rule sets to describe its objective functions and 

constrains. We thus proposed a rule-sets based bilevel decision (RSBLD) model. If a bilevel 

decision problem is modeled by a RSBLD model, we call it a RSBLD problem. We have also 

developed a modeling approach to establish a RSBLD model (Zheng et al. 2009). 

This study considers the challenge of developing a rule-sets based bilevel decision approach 

for solving a RSBLD problem. We propose a transformation based solution algorithm for the 

RSBLD problems. The main idea of the algorithm is to first transform a RSBLD model to a 
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single level decision model which has the same optimal solution as the original bilevel one, and 

then obtain the optimal solution by solving the single level decision model. 

The paper is organized as follows. After this introduction, Section 2 introduces the concepts 

and notions of information tables and rule sets, which are the preliminaries in this study. Section 

3 reviews our previous work including a RSBLD model and its modeling algorithm. How to 

transform a RSBLD problem into a single level one is discussed in Section 4. Section 5 presents 

a transformation based algorithm using the proposed transformation theories. A case based 

example is then shown in Section 6 for illustrating of the proposed algorithm. In Section 7, a set 

of experiment results are analyzed to show the effectiveness of the proposed algorithm. Finally, 

the conclusion and proposals for future work are given in Section 8.  

2．．．． PRELIMINARIES 

For the convenience of describing proposed models and algorithms, we will first introduce 

some basic notions regarding information tables, formulas, rules, decision rule set functions and 

rule trees. In addition, we will give some related definitions and theorems which will be used in 

the following sections. 

2.1. Information Tables 

To present the definition of a rule, we first describe information table and decision table 

techniques.  In general, an information table is a knowledge expressing system which can be used 

to represent and process knowledge in machine learning, data mining and other related fields. It 

provides a convenient way to describe a finite set of objects called the universe by a finite set of 

attributes (Pawlak 1991). 
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Definition 1 (Information table) (Pawlak 1991): An information table can be formulated as a 

tuple: 

S=(U, At, L, {Va | a∈At}, { Ia | a∈At}}), 

where U is a finite nonempty set of objects, At is a finite nonempty set of attributes, L is a 

language defined using attributes in At, Va is a nonempty set of values for a∈At, Ia: U→Va is an 

information function. Each information function Ia is a total function that maps an object of U to 

exactly one value in Va. 

 
A decision table is a special case of an information table. It is commonly viewed as a 

functional description, which maps inputs (conditions) to outputs (actions) without necessarily 

specifying the manner in which the mapping is to be implemented.  

 

Definition 2 (Decision table) (Pawlak 1991): A decision table is an information table for which 

the attributes in A are further classified into disjoint sets of condition attributes C and decision 

attributes D, i.e. At=CUD, CID=Φ . 

 
Decision attributes in a decision table can be unique or not. In the later case, the decision 

table can be converted to one with unique decision attributes (Wang 2001). Therefore, in this 

paper, we assume that there is only one decision attribute in a decision table. 

2.2. Formulas and Rules 

Usually, the knowledge implicated in information tables is expressed by rules. As formulas are 

the components of rules we first introduce the definition of formulas. 
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Definition 3 (Formulas) (Yao and Yao 2002): In the language L of an information table, an 

atomic formula is given by (a, v), where a∈At and v∈Va. If φ  and ϕ  are formulas, then so are 

φ¬ , φ ϕ∧ , and φ ϕ∨ . 

 
Here, “(a, v)” is a term where a is an attribute and v one of its values. The term covers objects 

of the information table when the attribute a in At has value v. The semantics of the language L 

can be defined in Tarski’s style (Tarski 1956) through the notions of a model and satisfiability. 

The model is an information table S, which provides interpretation for symbols and formulas of 

L. 

 
Definition 4 (Satisfiability of formulas) (Yao and Yao 2002): The satisfiability of a formula φ  

by an object x, written as x╞Sφ  or in short x╞φ  if S is understood, is defined by the following 

conditions: 

(1) x╞a=v iff Ia(x)=v, 

(2) x╞ φ¬  iff not x╞φ , 

(3) x╞φ ϕ∧  iff x╞φ  and x╞ϕ , 

(4) x╞φ ϕ∨  iff x╞φ  or x╞ϕ . 

If φ  is a formula, the set   

mS(φ )={x∈U | x╞φ } 

is called the meaning of the formula φ  in S. If S is understood, we simply write m(φ ). 
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The meaning of a formula φ  is therefore the set of all objects having the property expressed by 

the formulaφ . In other words, φ  can be viewed as the description of the set of objects m(φ ). 

Thus, a connection between the formulas of L and subsets of U is established. 

 
TABLE 1. An information table 

 

Object height hair eyes Class 

o1 short blond blue + 

o2 short blond brown - 

o3 tall dark blue + 

o4 tall dark blue - 

o5 tall dark blue - 

o6 tall blond blue + 

o7 tall dark brown - 

o8 short blond brown - 

 

To illustrate this idea, we consider an information table given by Table 1 (Quinlan 1983). The 

following expressions are some of the formulas of the language L: 

(height, tall),   (hair, dark),  

(height, tall)∧(hair, dark), 

(height, tall)∨(hair, dark). 

The meanings of the formulas are given by: 

m((height, tall))={o3, o4, o5, o6, o7}, 

m((hair, dark))={o4, o5, o7}, 

m((height, tall) ∧(hair, dark))={ o4, o5, o7}, 

m((height, tall) ∨(hair, dark))={ o3, o4, o5, o6, o7}. 
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Usually, the knowledge implicated in information tables is expressed by rules which can be 

formulated as follows. A rule is a statement of the form: “if an object satisfies a formula, then the 

object must satisfy another formula”. The expression of rules can be formulated as follows 

(Pawlak 1991; Yao and Yao 2002). 

 
Definition 5 (Rules): Let S=(U, At, L, {Va | a∈At}, { Ia | a∈At}}) be an information table, then 

a rule r is a formula with the form  

φ ⇒ ϕ , 

where φ  and ϕ  are formulas of information table, and S for any x∈U, 

x╞φ ⇒ ϕ  iff x╞ φ ϕ¬ ∨ . 

 
Definition 6 (Decision Rules): Let S=(U, CUD, L, {Va | a∈At}, { Ia | a∈CUD}}) be a decision 

table, where C is the set of condition attributes and D is the set of decision attributes. A decision 

rule dr is a rule with the form φ ⇒ ϕ , where φ , ϕ  are both conjunction of atomic formulas, for 

any atomic formula (c, v) in φ , c∈C, and for any atomic formula (d, v) in ϕ , d∈D. 

 
It is obvious that each object in a decision table can be expressed by a decision rule. The 

relationship between objects and rules can be defined by the following definition. 

 
Definition 7 (Objects which are consistent or conflict with a rule): An object x is said to be 

consistent with a decision rule dr:φ ⇒ ϕ , iff  x╞φ  and x╞ϕ ; x is said to be conflict with dr, iff  

x╞φ  and x╞ ϕ¬ . 
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2.3. Decision Rule Set Function 

  We introduced the concept of decision rules in Section 2.2 and now we need to explore how to 

make decisions based on decision rules. We first describe decision rule sets and then define 

decision rule set functions. 

Given a decision table S=(U, At, L, {Va | a∈At}, { Ia | a∈At}}), where At =CU D and D={d}. 

Suppose x and y are two variables, where x∈X and X=Va1× ...×Vam, y∈Y and Y=Vd. Vai is the set 

of attribute ai’s values, ai∈C, i=1 to m, m is the number of condition attributes. RS is a decision 

rule set generated from S. 

 
Definition 8 (Decision rule set function): A decision rule set function rs from X to Y is a subset 

of the Cartesian product X×Y, such that for each x in X, there is a unique y in Y generated with 

RS such that the ordered pair (x, y) is in rs. Here, x is called a condition variable, y is called a 

decision variable, X is the definitional domain, and Y is the value domain.  

 
Calculating the value of a decision rule set function is to make decisions for objects with 

decision rule sets. In order to present the method of calculating the value of a decision rule-set 

function, we introduce a definition below about matching objects to decision rules. 

 
Definition 9 (An object matching a decision rule): An object o is said to be matching a decision 

rule φ ⇒ ϕ , if o╞φ .  

 
Given a decision rule set RS, all decision rules in RS that are matched by object o are denoted 

as o
RSMR .  
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With the definition, a brief method for calculating the result of a decision rule set function is 

described as follows: 

Step 1:  Calculate o
RSMR ; 

Step 2:  Select a decision rule dr from o
RSMR , where  

dr :∧{( a, va)} ⇒ (d, vd); 

Step 3:  Set the decision value of object o to be vd, i.e. rs(o)=vd. 

Here dr is called the final matching rule matched by object o in rule set RS. In Step 2, how to 

select a decision rule from o
RSMR  is the key task of the process. For example, there is a decision 

rule set RS: 

1) (a, 1)∧ (b, 2)⇒ (d, 2), 

2) (a, 2 )∧ (b, 3)⇒ (d, 1), 

3) (b, 4)⇒ (d, 2), 

4) (b, 3)∧ (c, 2)⇒ (d, 3), 

and an undecided object: 

o = (a, 2)∧ (b, 3)∧ (c, 2). 

With Step 1, o
RSMR ={(a, 2 )∧ (b, 3)⇒ (d, 1); (b, 3)∧ (c, 2)⇒ (d, 3)}. 

With Step 2, if we select the final matching  rule as (a, 2)∧ (b, 3)⇒ (d, 1), then with Step 3, 

rs(o)=1;  

if select the final matching rule as (b, 3)∧ (c, 2)⇒ (d, 3), then with Step 3, 

rs(o)=3. 

From the above example, we know that there may be more than one rule in o
RSMR . In this case, 
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when the decision values of these rules are different, the result would be controlled according to 

above method, known as uncertainty of a decision rule-set function. The method of selecting the 

final rule from o
RSMR  is thus very important, and is called the uncertainty solution method. In our 

research, we use AID-based rule trees (Def. 11) to deal with the problem. 

2.4. Rule Trees  

A rule tree is a compact and efficient structure for expressing a rule set. We first introduce the 

definition of rule trees in (Zheng and Wang 2004) as follows. We use it in this paper as the 

expression form of rule sets for a bilevel decision model.  

 
Definition 10 (Rule tree): 

(1) A rule tree is composed of one root node, some leaf nodes and some middle nodes; 

(2) The root node represents the whole rule set; 

(3) Each path from the root node to a leaf node represents a rule; 

(4) Each middle node represents an attribute testing. Each possible value of an attribute in a 

rule set is represented by a branch. Each branch generates a new child node. If an attribute 

is reduced in some rules, then a special branch is needed to represent it and the value of the 

attribute in this rule is supposed as “*”, which is different from any possible values of the 

attribute. 

 

Figure 1 gives an example of a rule tree, where “Age”, “Educational level (Edulevel)”, 

“Seniority”, and “Health” are its conditional attributes, and “Grade” is its decision attribute. The 

values of these attributes are noted beside the branches. 



 
 

 

14 

 

We define the number of nodes between a branch and the root node as the level of the branch 

(including the root node) in the path. For each rule tree, we make two assumptions as follows: 

 
Assumption 1: The branches at the same level represent the possible values of the same 

attribute.  

 
Here, an attribute is expressed by the level of a rule tree. 

 
Assumption 2: If a rule tree expresses a decision rule set, the branches at the bottom level 

represent the possible values of the decision attribute. 

 
Based on Def.10 and the two assumptions, we can improve the rule tree structure by 

considering the two constraints described in Def. 11. 

 
Definition 11 (Attribute importance degree (AID) based rule tree): An AID-based rule tree is a 

rule tree, which satisfies the following two additional conditions: 

(1) The conditional attribute expressed at the upper level is more important than that expressed 

at any lower level; 

(2) Among the branches with the same start node, the value represented by the left branch is 

more important (or better) than represented by any right branch. And each possible value is 

more important (or better) than the value “*”. 

 
In the rule tree illustrated in Figure 1, if we suppose  

• ID(a) is the importance degree of attribute a, and 

ID(Age)>ID(Edulevel)>ID(Seniority)>ID(Health); 



 
 

 

15 

 

• (Age, Young) is better than (Age, Middle), and (Age, Middle) is better than (Age, Old);  

• (Seniority, Long) is better than (Seniority, Short), and (Health, Good) is better than 

(Health, Poor), 

then the rule tree illustrated by Figure 1 is an AID-based rule tree.   

 

2.5.  Rules Comparison and Confliction 

Definition 12 (Comparison of rules): Suppose the condition attributes are ordered by their 

importance degrees as a1, ... , ap. Rule dr1: ∧ {( ai, va1i)} ⇒ (d1, vd1) is said to be better than rule    

dr2: ∧ {( ai, va2i)} ⇒ (d2, vd2), if there exists an index k∈{1, ... ,  p} that satisfies: 

(1) va1k is better than va2k or the value of ak is deleted from rule dr2; 

(2) If k>1, then for each j<k, va1j=va2j. 

If for each attribute ai, va1i is with the same importance (or evaluation) degree as va2i, rule dr1 has 

the same importance (or evaluation) degree as rule dr2. 

 
For example, we have two rules as follows:  

dr1: (Age, Middle)∧(Working Seniority, Long)⇒ 2,  

dr2: (Age, Middle)∧(Working Seniority, Short)⇒ 3, 

and the value “Long” is better than the value “Short” in the attribute “Working Seniority”, with 

Def. 12 we know dr1 is better than dr2.  

 
Definition 13 (Rule confliction): Rule dr1 is said to be conflict with rule dr2, if 

for ∀ x╞dr1, x╞¬ dr2. 
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From Section 2.3, we know there are some uncertainties when make a decision with decision 

rule sets. The uncertainty can be eliminated through a process of rule selection. We can select a 

rule rightly only when related information is known. In other words, we are said to be informed 

only when we can select rules rightly and definitely. In this paper, we present a rule-tree based 

model to deal with these kinds of uncertainties. After the ordering of importance degrees and 

attributes’ possible values, a rule tree (Def. 10) is improved to become an AID-based rule tree 

(Def. 11). It can be proved that the following theorems hold from the definition of AID-based 

rule trees (Zheng et.al 2009).  

 
Theorem 1: In an AID-based rule tree, the rule expressed by the left branch is better than the 

rule expressed by the right branch. 

 
Theorem 2: After being transformed to an AID-based rule tree, the rules in a rule set are totally 

in order, that is, every two rules can be compared. 

 
Therefore, we can use an AID-based rule tree to solve the uncertainty problem of decision rule 

set functions. For example, we can order the rules expressed by the rule tree shown in Figure 1 as 

follows: 

1) (Age, Young) ∧(Edulevel, High)⇒ 2, 

2)  (Age, Middle)∧(Working Seniority, Long)⇒ 2,  

3) (Age, Middle) ∧(Working Seniority, Short)⇒ 3, 

4) (Age, Old)⇒ 4, 

5) (Edulevel, Short) ⇒ 4, 
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where rule i is better than rule i+1, i = 1, 2, 3, 4.  

3．．．． A RULE-SETS BESED BILEVEL DECISION MODEL AND A 

MODELLING APPROACH  

This section will introduce our previous related work including a RSBLD model and an 

approach for modeling bilevel decision problems by rule sets. 

3.1 A RSBLD Model 

In principle, after emulating all possible situations in a decision domain, all objective functions 

can be transformed into a set of decision tables, known as objective decision tables. As decision 

rule sets have stronger knowledge expressing ability than decision tables, we use decision rule-

set function to represent the objectives of the leader and follower of a bilevel decision problem in 

the proposed RSBLD model. 

Similarly, after emulating all possible situations in a constraint field, the constraints can be 

formulated to an information table. When the information table is too big to be processed, it can 

be transformed to rule sets using the “Agrawal” methods provided by references (Agrawal, 

Imielinski, and Swami 1993; Agrawal and Srikant 1994). 

By using rule sets, we have the following definition about constraint functions. 

 
Definition 14 (Constraint Function): Suppose x is a decision variable and RS is a rule set, then 

a constraint function cf (x, RS) is defined as 

( ) ( )True, if for ,
,

False, else

r RS x m r
cf x RS

 ∀ ∈ ∈
= 


.                         (1) 
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The meaning of the constraint function cf(x, RS) is whether variable x belongs to the region 

constrained by RS. 

Now, we can describe a RSBLD model as follows (Zhang et al 2009).  

 
Definition 15 (RSBLD model): 

( )min ,L
x

f x y  

subject to  ( ), Lcf x G =True 

( )min ,F
y

f x y  

subject to  ( ), Fcf y G =True             (2) 

where x and y are decision variables (vectors) of the leader and the follower respectively; fL and 

fF are the objective decision rule set functions (Def. 8) of the leader and the follower respectively; 

cf is the constraint function; FL and GL are the objective decision rule set and constraint rule set 

of the leader; and FF and GF are the objective decision rule set and constraint rule set of the 

follower respectively. 

3.2 An Approach for Modeling Bilevel Decision Problems by Rule Sets 

In Zheng et al. (2009) we proposed an approach for modeling a bilevel decision problem by rule 

sets as follows. 

 

Algorithm 1 (An approach for modeling bilevel decision problems by rule sets): 

Input: A bilevel decision problem; 

Output: A RSBLD model; 
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Step 1: Transform the bilevel decision problem with rule sets (information tables are as special 

cases); 

Step 2: Pre-process FL, such as delete reduplicate rules from the rule sets, eliminate noise, etc.; 

Step 3: If FL needs to be reduced,  

then using a reduction algorithm to reduce FL; 

Step 4: Pre-process GL, such as delete reduplicate rules from the rule sets, eliminate noise, etc; 

Step 5: If GL needs to be reduced,  

then using reduction algorithm to reduce GL; 

Step 6: Pre-process FF, such as delete reduplicate rules from the rule sets, eliminate noise, etc.; 

Step 7: If FF needs to be reduced,  

then using a reduction algorithm to reduce FF; 

Step 8: Pre-process GF, such as delete reduplicate rules from the rule sets, eliminate noise, etc.; 

Step 9: If GF needs to be reduced,  

then using a reduction algorithm to reduce GF. 

Complete 

In the algorithm, Step 1 is the key step of the modeling process. Decision makers (or experts) 

complete this step by transforming a bilevel decision problem to a set of information tables or 

related rule sets. This transformation can be done by laying out all possible situations of the 

bilevel decision problem.  

In Steps 2, 4, 6 and 8, four sets of decision rule sets are pre-processed respectively. As data 

incompleteness, noisy, and inconsistency are the common characters for a huge real data set, we 

need to use related techniques to eliminate these problems before using the rule sets to model a 

bilevel decision problem (Han and Kamber  2001). 
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In Steps 5, 7, and 9 of Algorithm 1, related rule sets are reduced by applying a reduction 

algorithm. It is because of at least one of the following three reasons: 

(1) When modeling a real-world bilevel decision problem, the rule sets in the model are often in 

a large scale, which is not convenient to be processed, and cannot be easily interpreted and 

understood. 

(2) The rules in the rule sets are lack of adaptability. In this case, the rule sets cannot adapt new 

situations well, so it is unable or has poor ability to support decision making.  

(3) The rule sets in the model are just original data sets, the patterns in such data sets are needed 

to be extracted, and the results are more general rules. 

 
The detailes of the algorithm can be obtained from our previous work (Zheng et al. 2009). Now 

we give some analysis about the complexity of Algorithm 1. Obviously, it can be estimated as the 

integration of the complexity of Step 1, Steps 2, 4, 6, 8 and Steps 3, 5, 7, 9 respectively.  

Suppose poL and poF are the numbers of the rules in the objective decision rule sets of the leader 

and the follower generated in Step 1 respectively, pcL, and pcF are the numbers of the rules in the 

constraint rule sets of the leader and the follower generated in Step 1 respectively, and mL and mF 

are the numbers of the condition attributes of the leader and the follower. For Step 1, the 

complexity is  

( )( )( )
L F oL oF cL cF

O m m p p p p+ + + + . 

For Steps 2, 4, 6, 8, different pre-process methods can cause different complexities. For above 

mentioned pre-process methods, the complexity is between ( )( )
L F

O m m p+  and ( )( )2

L F
O m m p+ , 

where p=poL for Step 2, p= poF for Step 4, p= pcL for Step 6, and p= pcF for Step 8. 
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For Steps 3, 5, 7, and 9 the time complexity depends on the sizes of the processed rule sets. 

Using the methods mentioned above, it has complexity  

( ) ( )( )1
L F

O m m p p+ ⋅ ⋅ − , 

where  p=poL for Step 3, p=poF for Step 5, p=pcL for Step 7, and p=pcF for Step 9. 

Therefore, Algorithm 1 has the maximal time complexity  

( )( )( )2 2 2 2

L F oL oF cL cF
O m m p p p p+ + + + . 

In Section 6, we will use a case based example to illustrate the modeling process of a bilevel 

decision problem by using the proposed algorithm. In Section 7, a set of experiments are 

designed to test the complexity of the algorithm. 

4．．．． TRANSFORMATION THEOREM FOR RSBLD PROBLEMS 

In this section, we explore how to transform a RSBLD problem to a single level one, where the 

two problems have the same optimal solution. A transformation theorem will be proposed to 

show the solution equivalence for the two problems. First, we give a definition below. 

 
Definition 16 (Combination rule of two decision rules): Suppose dr1: ( )1 1 1,d vφ ⇒  and           

dr2: ( )2 2 2,d vφ ⇒  are two decision rules and they are not conflict, then the combination rule of 

them are denoted as dr1I dr2 with the form 

( )( )1 2 1 2, ,d v vφ φ∧ ⇒ ,                                                            (3) 

where d1, d2, and d are the decision attributes of dr1, dr2 and dr respectively, v1, v2 and (v1, v2) are 

the decision values of dr1 and dr2 and dr respectively. 

Here, v1, v2 are called the leader decision and the follower decision of dr respectively. 
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For example, suppose 

dr1: (Age, Young)⇒ 2, 

dr2: (Working Seniority, Long)⇒ 2,  

then the combination of the two rules is 

dr: (Age, Young)∧ (Working Seniority, Long)⇒ (d, (2, 2)). 

Suppose the objective rule sets are expressed by AID-based rule trees, then the transformation 

process can be presented as follows. 

 
Step 1(Initialization): Let CT be an empty attribute importance degree based rule tree; 

Step 2 (Construct a new rule tree): 

For each rule drL in FTL 

For each decision rule drF in FTF 

{If drL are not conflict with drF, then 

Add rule drLI drF to CT;} 

Complete 

 
Suppose the combined rule set is noted as F, then the single level rule-sets based decision 

problem can be formulated as: 

( )min ,
x,y

f x y  

s.t. ( ), Lcf x G =True 

  ( ), Fcf y G =True,                                                              (4) 
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where x and y are variables of the leader and the follower respectively; f is the objective decision 

rule-set function; cf is the constraint function; F, GL, GF are the objective decision rule set, 

leader’s constraint rule set and follower’s constraint rule set respectively.  

With the following theorem, we can prove the solution equivalence of the original problems 

and the transformed problem. 

 
Theorem 3: The RSBLD model presented in Equation (2) has an optimal solution (x, y), iff (x, 

y) is an optimal solution of its corresponding single level decision model presented in Equation 

(7). 

Proof: Suppose x and y are variables of the leader and the follower respectively, fL and fF are 

the objective rule-set functions of the leader and the follower respectively in Equation (2), and f is 

the objective rule set function in Equation (7). FL and FF are the objective rule sets of the leader 

and the follower in the RSBLD model, and F is the objective rule set in the single level decision 

model. 

(⇒ ) 

If the optimal solution of the RSBLD model presented in Equation (2) is (x, y), and 

fL(x, y)= vL and fF (x, y)=vF. 

Suppose the final matching rules (Section 2) of (x, y) in rule sets FL and FF are drL and drF 

respectively. Then, from the process of transformation, we know the rule drLI drF belongs to the 

combined rule set F. 

Because (x, y) is the optimal solution of the RSBLD model, drL and drF must be the best rules 

having the minimal decision values in FL and FF respectively. Thus, dr=drLI drF must be the 

best rules matched by (x, y) in F. Besides, because (x, y) is the best object satisfying drL and drF 
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both, thus (x, y) is the best object satisfying dr. Thus, (x, y) is the optimal solution of the single 

level decision model presented in Equation (7). 

The sufficient condition of the theorem is proved. 

( ⇐ ) 

If the optimal solution of the single level decision model presented in Equation (7) is (x, y), and 

f(x, y)=(d, (vLd, vFd)). 

Suppose the final matching rule of (x, y) in rule set F is dr, then from the process of 

transformation, there must be two decision rules drL in FL and drF in FF that dr= drLI drF. If 

there is more than one rule pair drL and drF satisfying that dr= drLI drF, then select the best one 

among them. 

Because (x, y) is the optimal solution of the single level decision model, dr must be the best 

rules having the minimal decision value in F. Thus, drL and drF must be the best rules matched 

by (x, y) in FL and FF respectively. Besides, because (x, y) is the best object satisfying dr, thus (x, 

y) is the best object satisfying drL and drF both. So, (x, y) is the optimal solution of the bilevel 

decision model. 

Thus, the necessary condition of the theorem is proved.                                                            

 
From Theorem 3, we know the solutions of the RSBLD problem presented in Equation (2) and 

its transformed problem shown in Equation (7) are equivalent. Therefore, we can transform any 

RSBLD problem into a single level decision problem and get a solution through solving the 

single level decision problem. We need to indicate that although the original bilevel decision 

problem and the transformed one level problem have the same optimal solution, they are not 

equivalent. However, the transformation can achieve our aim, that is, to generate a model which 



 
 

 

25 

 

can be easily solved but has the same optimal solution with the original bilevel decision model. 

5．．．． A TRANSFORMATION BASED SOLUTION ALGORITHM FOR 

RSBLD PROBLEMS 

Based on the transformation theory proposed, this section gives a transformation based solution 

algorithm for RSBLD problems. To describe the algorithm clearly, we first give some important 

definitions. 

 

Definition 17: 

(a) Constraint region of a bilevel decision problem: 

S= {(x, y): ( ), Lcf x G =True, ( ), Fcf y G =True}                                 (5) 

(b) Feasible set for the follower for each fixed x: 

S(x)={y: (x, y)∈S}                                                     (6) 

(c) Projection of S onto the leader’s decision space: 

S(X)={x: ∃ y, (x, y)∈S}                                             (7) 

(d) Follower’s rational reaction set for x∈S(X): 

P(x)={y: y∈arg ( ) ( )min , :Fy'
f x y y S x′ ′ ∈   }                             (8) 

(e) Inducible region:  

 IR={(x, y): (x,  y)∈S, y∈P(x)}                                   (9) 
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From the features of the bilevel decision problem, it is obvious that once the leader selects a 

value of x, the first term in the follower’s objective function becomes a constant and can be 

removed from the problem. In this case, we replace fF(x, y) with fF(y). 

To ensure that a RSBLD model is well posed it is common to assume that S is in nonempty and 

compact, and that for all decisions taken by the leader, the follower has some room to respond, 

i.e. P(x) Φ≠ . The rational reaction set P(x) defines the response while the inducible region IR 

represents the set over which the leader may optimize. Thus in terms of the above notation, the 

bilevel decision problem can be written as 

min { ( ),Lf x y : (x, y)∈IR}. 

Now, we can give a description of the new algorithm. The algorithm has two stages. It first 

transforms a bilevel decision problem described by a RSBLD model to a single level one. It then 

solves the single level problem to get a solution. The solution obtained is of the original RSBLD 

problem.  For simple description, we suppose the importance degrees of the leader’s condition 

attributes are more than those of the follower’s. That means, the branches representing the 

possible values of the leader’s condition attributes are at higher levels of AID-based rule trees 

than those of the follower’s. The detail of the transformation based algorithm is as follows. 

 

Algorithm 2 (A transformation based solution algorithm for RSBLD problems): 

Input: The objective decision rule set FL={drL1, ... , drLp} and the constraint rule set GL of the 

leader, the objective decision rule set FF={drF1, ... , drFq} and the constraint rule set GF 

of the follower; 

Output: An optimal solution of the RSBLD problem (ob); 

Step 1: Construct the objective rule tree FTL of the leader by FL; 
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Step 1.1: Arrange the condition attributes in ascending order according to the 

importance degrees. Let the attributes be the discernible attributes of levels from the top 

to the bottom of the tree; 

Step 1.2: Initialize FTL to an empty AID-based rule tree; 

Step 1.3: For each rule R of the decision rule set FL { 

Step 1.3.1: let CN=root node of the rule tree FTL; 

Step 1.3.2: For i=1 to m /*m is the number of levels in the rule tree*/ 

{    If there is a branch of CN representing the ith discernible attribute value of 

rule R, then 

let CN=node I; /*node I is the node generated by the branch*/ 

else {Create a branch of CN to represent the ith discernible attribute value; 

According to the value order of the ith discernible attribute, put the 

created branch to the right place; 

Let CN=node J /*node J is the end node of the branch*/}}} 

Step 2: Construct the objective rule tree FTF by FF; 

The detail of Step 2 is similar to that in Step 1. What needs to be done is to replace FTL with 

FTF and replace FL with FF in the sub-steps of Step 1. 

Step 3: Transform the bilevel decision problem to a single level one, and the resultant objective 

rule tree is CT; 

Step 4: Use the constraint rule sets of both the leader and the follower to prune CT; 

Step 4.1: Generate an empty new AID-based rule tree CT́ ; 

Step 4.2: For each rule dr in GL and GF,  

Add the rules in CT to CT́  that are consistent with dr to FTL´; 
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Delete the rules in CT and CT́  that are conflict with ruel dr; 

    Step 4.3: Let CT=CT́ ; 

Step 5: Search for the lefmost rule dr in CT whose leader decision and follower decision are 

both minimal;  

Step 6: If dr does not exist, then  

There isn’t an optimal solution for the problem; 

Go to End; 

Step 7: OB={ob| ob╞dr and for∀ r∈GLU GF, ob╞r }; 

Step 8: If there is more than one object in OB, then 

According to Def. 12, select the best or most important object ob; 

else 

ob=the object in OB; 

Step 9: ob is the optimal solution of the RSBLD problem. 

Complete  

 
The flow chart of the algorithm is illustrated in Figure 2. By this algorithm, we can obtain a 

solution for a bilevel decision problem through solving the transformed single level problem. The 

time complexity of the new algorithm is 

( )( )( )
oL oF cL cF L F

O n n n n m m+ + , 

where noL, noF are numbers of the rules in the objective rule sets of the leader and the follower, 

ncL, ncF are numbers of the rules in the constraint rule sets of the leader and the follower, mL and 

mF are the numbers of the condition attributes of the leader and the follower respectively.  
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6．．．． A CASE BASED EXAMPLE 

A factory’s human resource management system is distributed into two levels. The upper level 

is the factory executive committee and the lower is the workshop management committee. For 

the recruitment policy, the executive committee mainly considers how to meet the overall 

business objectives with a long term development plan, and the workshop management 

committee concentrates on the current daily needs of workers. Obviously, their objectives are 

different. However, their objectives are transparent to each other though they may operate in 

separate ways. A recruitment action will ultimately emerge that is the optimal result for the 

company as a whole but will also consider current daily needs. This is a typical bilevel decision 

problem, in which the company executive committee is as the leader, and the workshop 

management committee, the follower. 

When determining whether a person could be recruited for a particular position, the factory 

executive committee mainly considers the following two factors, the “age” and “education level 

(edulevel)” of the person, and the workshop management committee mainly considers another 

two factors, “seniority” and “health”. Suppose the condition attributes in ascending order 

according to the importance degree are “age”, “edulevel”, “seniority”, and “health”. 

Obviously, it is hard for the two committees to express the conditions of the workers whom 

they want to recruit to linear or nonlinear functions. But they have the data of the workers having 

already been recruited in their databases. We can therefore build two decision tables as shown in 

Tables 2 and 3, and then generate decision rule sets from these two tables to represent the 

objectives of the two committees. The condition attributes of the two decision tables are the 

factors; the decision attributes of the two decision tables are acceptance grades of the workers. 
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The constraints of the two committees are expressed by simple rule sets (Equations 13, 14), 

which define the constraint regions. 

Now, we use algorithm 1 to establish a RSBLD model from the problem. 

Alg. 1-Step 1: Transform the problem with decision rule sets. 

As indicated above, the objective rule sets and constraint rule sets of the leader and the 

follower are described in Tables 2, 3 and Equations 13, 14 respectively. 

TABLE 2. Objective rule set of the leader 
 

Age Edulevel Seniority Health Grade 

Young High Middle Good 2 

Middle High Long Middle 2 

Young Short Short Poor 4 

Young Middle Middle Middle 2 

Middle Middle Short Middle 3 

Middle Middle Long Middle 2 

Old High Long Middle 3 

Young Short Middle Poor 2 

Middle Short Short Middle 4 

Old Short Middle Poor 4 

Middle Short Long Good 3 

Middle Short Long Middle 2 

Old High Middle Poor 3 

Old High Long Good 2 

Old Short Long Good 4 

Young High Long Good 4 

Young Short Long Middle 3 
 

The constraint rule set of the leader is: 
 

GL= {True⇒ (Age, Young)∨ (Age, Middle)}                                 (10) 
 

TABLE 3. Objective decision table of the follower 
 

Age Edulevel Seniority Health Grade 

Young High Long Good 2 

Old Short Short Good 4 

Young High Short Good 2 

Old High Long Middle 3 

Young Short Long Middle 4 

Middle High Middle Poor 3 
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Middle Short Short Poor 4 

Old Short Short Poor 4 

Old High Long Good 2 

Young Short Long Good 2 

Young Short Middle Middle 3 

Middle Short Middle Good 3 

Old High Long Good 2 

Middle High Long Good 2 

Middle High Short Poor 4 
 
The constraint rule set of the follower is: 

GF={True⇒ (Seniority, Long)∨ (Seniority, Middle)}                         (11) 

Because the scale of the data is very small, the preprocess steps (Steps 2, 4, 6 and 8) are passed 

over. Besides, the constraint rule sets of the leader and the follower are brief enough, so the 

reduction steps of GL and GF (Step 5 and Step 9) can be ignored. 

Alg. 1-Step 3 and Step 7: Reduce the objective rule sets of the leader and the follower. 

After reducing the decision tables based on rough set theory, we can get the reduced objective 

rule sets of the leader and the follower as shown in Equations (15) and (16). Here, we use the 

decision matrices based value reduction algorithm (Ziarko 1996) in the RIDAS system (Wang, 

Zheng, and Zhang 2002). 

The refined objective rule set of the leader is: 

FL= {(Age, Young)∧ (Seniority, Middle)⇒ (Grade, 2) 

(Age, Middle)∧ (Edulevel, High)⇒ (Grade, 2) 

(Edulevel, Short)∧ (Seniority, Short)⇒ (Grade, 4) 

(Edulevel, Middle)∧ (Seniority, Short)⇒ (Grade, 3) 

(Edulevel, Middle)∧ (Seniority, Long)⇒ (Grade, 2) 

(Age, Old)∧ (Health, Middle)⇒ (Grade, 3) 

(Age, Old)∧ (Edulevel, Short)⇒ (Grade, 4) 
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(Age, Middle)∧ (Health, Good)⇒ (Grade, 3) 

(Age, Middle)∧ (Seniority, Long)∧ (Health, Middle)⇒ (Grade, 2) 

(Age, Old)∧ (Edulevel, High)∧ (Health, Good)⇒ (Grade, 2) 

(Edulevel, High)∧ (Health, Poor)⇒ (Grade, 3) 

(Age, Young)∧ (Edulevel, High)∧ (Seniority, Long)⇒ (Grade, 4) 

(Age, Young)∧ (Edulevel, Short)∧ (eniority, Long)⇒ (Grade, 3)}     (12) 

 
The refined objective rule set of the follower is: 

FF={ (Edulevel, High)∧ (Health, Good)⇒ (Grade, 2)   

         (Edulevel, Short)∧ (Seniority, Short)⇒ (Grade, 4)   

         (Age, Old)∧ (Health, Middle)⇒ (Grade, 3)   

          (Age, Young)∧ (Seniority, Long)∧ (Health, Middle)⇒ (Grade, 4)   

          (Seniority, Middle)⇒ (Grade, 3)   

          (Seniority, Long)∧ (Health, Good)⇒ (Grade, 2)   

          (Seniority, Short)∧ (Health, Poor)⇒ (Grade, 4)}                                                        (13) 

 
With above steps, we get the RSBLD model of the decision problem as follows: 

( )min ,L
x

f x y  

subject to ( ), Lcf x G =True                                                      (17) 

( )min ,F
y

f x y  

subject to ( ), Fcf y G =True, 

 
where fL, fF are the corresponding decision rule set functions of FL, FF respectively. 
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Now, we use the Alg. 2 to solve the RSBLD problem. We suppose the four condition attributes 

are ordered as ‘age’, ‘edulevel’, ‘seniority’, and ‘health’. 

Alg. 2-Step 1: Construct the objective rule tree FTL of the leader by FL, and the result is 

illustrated by Figure 3; 

Alg. 2-Step 2: Construct the objective rule tree FTF of the follower by FF, and the result is 

illustrated by Figure 4; 

Alg. 2-Step 3: Transform the RSBLD problem to a single level one, and the resulted objective 

rule tree CT is illustrated by Figure 5; 

Alg. 2-Step 4: Use the constraint rule sets of both the leader and follower to prune CT, and the 

result is illustrated by Figure 6; 

Alg. 2-Step 5: Search for the leftmost rule dr in CT whose leader decision and follower 

decision are both minimal, and the result is  

dr: (Age, Young)∧ ( Edulevel, High)∧ (Seniority, Middle)∧ (Health, Good)⇒ (d, (2, 2)); 

Alg. 2-Step 6: OB={ob| ob is the object satisfying: 

(Age, Young)∧ ( Edulevel, High)∧ ( (Seniority, Middle)∧ (Health, Good) }; 

Alg. 2-Step 7: ob=(Age, Young)∧ (Edulevel, High)∧ (Seniority, Middle)∧ (Health, Good); 

Alg. 2-Step 8: ob is the final solution of the RSBLD problem. 

In Figures 3 - 6, these attribute values are represented by its first letter. 

7．．．． EXPERIMENTS AND ANALYSIS 

In order to test the effectiveness of the proposed rule-sets based bilevel decision problem 

modeling algorithm (Algorithm 1) and solution algorithm (Algorithm 2), we implemented these 

two algorithms within Matlab 6.5. We then used some classical data sets from the UCI database 
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to test them by a set of experiments. UCI database (http://www.ics.uci.edu/ 

~mlearn/MLRepository.html) consists of many data sets that can be used by the decision systems 

and machine learning communities for the empirical analysis of algorithms.  

For each data set we chosen, we first select half of a data set as the original objective rule set of 

the leader, and the remaining as the original objective rule set of the follower. We assume that 

there are no constraints, which means all objects consistent with the objective rule sets are in the 

constraint region. Besides, we suppose the first half of the condition attributes are the ones for 

the leader and the others for the follower. The importance degrees of the condition attributes are 

descending order from the first condition attribute to the last condition attribute. The two 

experiments are processed on a computer with 2.33GHz CPU and 2G memory space. We 

describe these two experiments respectively as follows. 

 
Experiment 1: Testing of Algorithm 1 with the data sets in the UCI database. 

Step 1. Randomly choose 50% of the objects from the data set to be the original objective 

decision rule set of the leader, and the remaining 50% of the objects to be the original 

objective decision rule set of the follower; 

Step 2. Apply Algorithm 1 to construct a rule-sets based bilevel decision model by using the 

chosen rule sets. Here, we use the decision matrices based value reduction algorithm 

(Ziarko, Cercone, and Hu 1996) in the RIDAS system (Wang, Zheng, and Zhang 2002) 

to reduce the sizes of original rule sets. 

 
Experiment 2: Testing of Algorithm 2 with the data sets in the UCI database. 

  Following Steps 1 and 2 in Experiment 1, we have 
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Step 3. Apply Algorithm 2 to get a solution from the generated rule-sets based bilevel decision 

model in Experiment 1.  

 

The complexity of the two algorithms (algorithms 1 and 2) is also tested through conducting 

these two experiments. As showed in Table 4, pOL and pOF are the numbers of objects in the 

original decision rules of the leader and the follower respectively (Refer to Step 1 of Algorithm 

1), mL and mF are the condition attribute numbers of the leader and the follower respectively, nOL 

and nOF are the numbers of the rules in the reduced objective decision rule sets of the leader and 

the follower respectively, t1 and t2 are the processing times of Algorithms 1 and 2 respectively. 

 
TABLE 4. Testing results of Algorithms 1 and 2 

 

Alg. 1 Alg. 2 
Data Sets pOL pOF mL mF nOL nOF 

t1(sec.) t2 (sec.) 

LENSES 12 12 2 3 6 3 <0.01 0.03 

HAYES-ROTH 50 50 2 3 21 24 <0.01 0.09 

AUTO-MPG 199 199 4 4 80 76 0.08 0.39 

BUPA 172 172 3 3 159 126 0.06 3.10 

PROCESSED_ 

CLEVELAND 
151 151 6 7 115 127 0.28 5.20 

BREAST-
CANCER-

WISCONSIN 
349 349 5 5 47 47 0.51 0.63 

 

From the results shown in Table 4 we can find that 

1) The processing time of Alg. 1 highly relates with the numbers of the rules in the original 

objective decision rule sets and the condition attribute numbers of the leader and the follower 

respectively, expressed by the symbols pOL, pOF, mL and mF. 
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2) The processing time of Alg. 2 highly relates with the numbers of the rules in the reduced 

objective decision rule sets and the condition attribute numbers of the leader and the follower 

respectively, expressed by nOL, nOF, mL and mF. 

These are consistent with our complexity analysis results in Sections 3 and 5. 

8．．．． CONCLUSION AND FUTURE WORK 

Bilevel decision making is a common issue in organizational management activities. As many 

bilevel decision problems are difficult to model with mathematical functions, RSBLD models are 

proposed, in which all objective functions and constraint functions are expressed by rule sets. 

Based on our previous research, this paper presents a transformation based algorithm to solve a 

RSBLD problem. Some experiments have proved the functions and the effectiveness of the 

proposed solution algorithm.  

In the traditional BLP model, Kuhn-Tucker conditions (Bard and Falk 1982; Bialas and 

Karwan 1982; Hansen, Jaumard, and Savard 1992) are used to transform a BLP model to a single 

level one. The basic idea of the transformation proposed in this paper is different from the Kuhn-

Tucher condition based transformation. In the solution algorithm of traditional BLP problems, 

the follower’s problem is transformed to constraints, while in the solution algorithm proposed for 

RSBLP problems, the objective functions of the leader and the follower are combined to one. 

Besides, the most important issue is that the two transformations solve different models of 

bilevel problems, as one is a RSBLD problem and another is a bilevel linear programming. 

Further study will include the development of approaches for multi-objectives or multi-

followers RSBLD problems. A comprehensive bilevel decision support system is being 

developed to implement the proposed techniques for supporting real decision makers to solve 
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their bilevel decision problems effectively.  
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FIGURE 1. An example of rule tree 
 
 

 

   
FIGURE 2.  Flow chart of Alg. 1 
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FIGURE 3. Rule tree of the leader’s objective rule set 

 
 

FIGURE 4. Rule tree of the follower’s objective rule set 
 

 
 

FIGURE 5. Transformation result of the objective rule trees 
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FIGURE 6. Combined objective rule trees after pruning by the constraint rules 


