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Abstract In recent years, many metamodels have been introduced in the software engi-

neering literature and standards. These metamodels vary in their focus across, for example,

process, product, organizational and measurement aspects of software development and have

typically been developed independently of each other with shared concepts being only ac-

cidental. There is thus an increasing concern in the standards communities that possible

conflicts of structure and semantics between these various metamodels will hinder their

widespread adoption. The complexity of these metamodels has also increased significantly

and is another barrier in their appreciation. This complexity is compounded when more than

one metamodel is used in the lifecycle of a software project. Therefore there is a need to

have interoperable metamodels. As a first step towards engendering interoperability and/or

possible mergers between metamodels, we examine the size and complexity of various meta-

models. To do this, we have used the Rossi and Brinkkemper metrics-based approach to

evaluate the size and complexity of several standard metamodels including UML 2.3, BPMN

2.0, ODM, SMM and OSM. The size and complexity of these metamodels is also compared

with the previous version of UML, BPMN and Activity diagrams. The comparatively large

sizes of BPMN 2.0 and UML 2.3 suggest that future integration with these metamodels

might be more difficult than with the other metamodels under study (especially ODM, SSM

and OSM).
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1 Introduction

Over the last few years, several metamodels have been introduced in the software
engineering literature and through standards organizations. These metamodels vary
in their focus across, for example, process, product, organizational and measurement
aspects of software development. These metamodels have typically been developed
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independently of each other within the standards organizations with shared concepts
being only accidental. There is thus an increasing concern in the standards commu-
nities that possible conflicts of structure and semantics between these various meta-
models as well as their increasing size and complexity will hinder their widespread
adoption. As a first step towards engendering interoperability and/or possible merg-
ers between metamodels, we have undertaken a preliminary assessment of their size
and complexity. To do this, we have used the Rossi and Brinkkemper[1] metrics-based
approach to evaluate the size of several standard metamodels. This measurement of
size and complexity will help us to understand the likely issues to be considered when
merging metamodels or creating bridges between them to ensure interoperability.

Over the last 15 years, class-based metamodelling has been used as a basic un-
derpinning representational approach. Following work on CDIF[2, 3], suggestions were
made in 1994[4, 5] that this would be an appropriate means to facilitate the then-
required merger of the large number of extant object-oriented modelling notations.
In time this led, under the auspices of the Object Management Group (OMG), to the
creation of a number of metamodels, not only for UML[6] but also SPEM (Software
Process Engineering Metamodel)[7], SMM (Software Metrics Metamodel)[8], ODM
(Ontology Definition Metamodel)[9], OSM (Organization Structure Metamodel)[10]

and BPMN (Business Process Modelling Notation)[11].
Although these metamodels were endorsed by a single organization (the OMG),

nevertheless, as noted above, they have essentially been developed in “silos” of inde-
pendent concept sets. It has become increasingly clear that for a more widespread
adoption of metamodels in the wider software engineering community, a greater de-
gree of interoperability needs to be sought[12]. This need is further endorsed by the
rise of industry interest in model driven software engineering (MDSE)[13]. A recent
example is the change in OMG’s (Object Management Group) OMA (Object Man-
agement Architecture) to MDA (Model Driven Architecture)[14] as well as the various
conferences on the topic.

Our overall research topic focusses on how to ensure that these (and all future)
software engineering metamodels are interoperable – first within a single standards
organization (here the Object Management Group) and later across multiple such
organizations. As a first step towards such a consistent metamodel suite, we need to
assess what degree of commonality (syntactic and semantic) exists in the underlying
conceptual models; whether a straightforward merger of conceptual elements in the
metamodels is possible (and desirable) in order to expand and align the scopes of,
say, a pair of metamodels; whether discrepancies and differences in conceptual models
need a bridging structure, say as a mapping between sets; or whether the underlying
conceptual models are so very different that any interoperation is virtually impos-
sible, thus suggesting that a combined but newly created and more comprehensive
metamodel be constructed across the two domains in question.

This paper is a first step towards the long-term goal of acquiring such a quanti-
tative understanding of an interoperable metamodel suite. In order to evaluate the
impact of size and complexity on the interoperability of any pair of metamodels, an,
initial assessment of these factors is required for the selected metamodels. Different
aspects of size can be considered for evaluation such as the number of classes, relation-
ship and properties as well as the number of constraints. As an initial step, we have
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used the metrics provided by Rossi and Brinkkemper[1], originally devised for eval-
uating and comparing the underpinning concepts of object-oriented methodologies.
Although these are essentially size metrics, it can be argued that there is a reasonable
correlation for most systems between size and complexity[15] such that an increase in
the size of a metamodel is likely to increase the complexity and hence increase the
cognitive load for the modeller, thus making it harder to learn and follow[16].

Although out of scope for the research reported in this present paper, it is im-
portant to note that although a metamodel depicts the abstract syntax of its specific
domain of focus, it may also define some semantics – this is especially important when
we consider interoperability. In other cases, the metamodel is purely abstract syntax
and the semantics has to be supplied in some other way. In either case, in order to en-
sure an unambiguous semantics, various techniques have been investigated including
ontologies e.g.[17] and logic-based languages such as VDM[18]. The combination of ab-
stract syntax, semantics and possibly a concrete syntax (a.k.a. notation)1) is known
as a (modelling) language since it defines the grammar and the rules of “sentence
construction” as an analogy to natural languages. Whether the modelling languages
built from the above metamodels can have general applicability or whether domain
specific languages provide a more efficient and effective answer e.g. Refs. [19-21] is
still open for debate. To collect data to answer such a research question leads to the
recognition that formal measures of the metamodels are a prerequisite.

It should also be noted that these OMG metamodels are not static in nature.
Over the years, new versions have been introduced that, typically, extend the scope
of the focus domain. For instance, the scope of UML moved from object technology
to include component technology and, later, to include execution semantics for code
generation capabilities. This leads not only to an increase in size but also, typically, to
an increased complexity of the metamodel involved. This complexity is compounded
when more than one metamodel needs to be used during the life cycle of a software
development project. It is not easy for different key players of software development,
such as method engineers, methodologists and analysts, to either comprehend or
control this compounded complexity. We therefore propose that there is a need to
formulate a way in which these metamodels can be used in an interoperable fashion.
This interoperability may indeed reduce their joint complexity, hence making them
easy to understand and use. Whether interoperability should result in simply the
building of conceptual mappings between pairs of metamodels or total integration
(merger) will be the next step in our research project. As well as analyzing the
latter, we also propose to include an investigation of the applicability of Situational
Metamodel Engineering (SMME)[22] by which problem-specific metamodels can be
“carved out” of a more comprehensive, merged metamodel.

As a first step towards this goal, in this paper we have used the Rossi and
Brinkkemper approach[11] to evaluate the size and aspects of the complexity of the
BPMN 2.0 metamodel, OSM[10], ODM[9], SMM[8], SPEM[7] and UML 2.3[23]. We
have analyzed and compared their size and complexity with each other and also with
the values published by other authors for BPMN (V1.0 and 1.2), UML 1.4.1 and UML
Activity diagram. Although Version 1.4.1 of UML is not the latest version, it is the

1) The literature is undecided as to whether concrete syntax should or should not be included in the

definition of a modelling language
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version that is used in the cited papers and an almost identical version, but labelled
UML 1.4.2 was adopted as the ISO International Standard 19501. We have observed
that the complexity of the current BPMN and UML metamodels is higher than the
complexity of other metamodels presented in this paper. Secondly, the complexity of
these two metamodels has increased with the release of each new version. Thirdly, the
complexity values of OSM and SMM are significantly lower – suggesting that the effort
required to reconcile these metamodels at the conceptual level may be much lower for
these last two OMG standards – a topic worthy of a separate research investigation.

The rest of this paper is structured as follows: the next section gives a brief
overview of the metamodels selected for evaluation followed by a discussion in Sec-
tion 3 of the metrics-based evaluation approach we have used. The results of our
investigation into the relative complexities of the metamodel suite are presented in
Section 4 followed by an identification of related work in this area (Section 5). We
conclude in Section 6 including some recommended future research directions.

2 Metamodels

In this section, we give a brief overview of the selected metamodels. We have
restricted our choice to metamodels endorsed by the Object Management Group be-
cause (1) they are fairly well known but also, and probably more importantly, (2) one
might conjecture that models emanating from a single organization would have more
inter-coherence than models from different organizations. We thus initially exclude
other metamodels from organizations such as EIA e.g.[24], ISO e.g.[25] and WfMC
e.g.[26] Furthermore, although we are ultimately concerned with improving the qual-
ity and cohesion of modelling languages, here we exclude notational issues (a.k.a.
concrete syntax) as might be characterized by, for example, the notations proposed
for use for UML[27] and for ISO/IEC 24744[26] as well as semantic issues because we
propose that the size of a metamodel can be calculated without its concrete syntax
and semantics.

The models to be considered are those encapsulated in the Business Process
Modelling Notation[11], the Software Metrics Metamodel[8], the Ontology Definition
Metamodel[9], a recent draft of the Organization Structure Metamodel[10] and the
current versions of SPEM[7] and UML[58].

2.1 BPMN

BPMN (Business Process Modelling Notation) is the result of standardization
efforts started in 2001 by BPMI (Business Process Management Initiative) and was
then transferred to the OMG in 2006. BPMN is designed to support modelling of end-
to-end business processes. The latest specifications of BPMN are found in its version
2.0 beta[11]. There are three basic types of models within BPMN: Processes, Chore-
ographies and Collaborations. Processes include both private and public processes.
Private processes can be either executable or non executable. Process interactions
are modelled by collaborations and/or Choreographies.

There are five basic categories of modelling elements used in any BPMN model:
Flow Objects, Data, Connecting Objects, Swimlanes and Artifacts. Flow Objects are
the main elements to define the behaviour of a Business Process. There are three
types of flow objects: Events, Activities and Gateways. Data are represented as Data



Brian Henderson-Sellers, et al.: Towards an interoperable metamodel suite: ... 5

Objects, Data Inputs, Data Outputs, Data Stores and Properties. Flow objects are
connected to each other through Connecting Objects. There are four different types of
connecting objects: Sequence Flow, Message Flow, Association and Data Association.
Pools and Lanes are used to group modelling elements. Events and Gateways also
have extended sets of elements.

2.2 SMM

SMM (Software Metrics Metamodel)[8] is a metamodel for representing measure-
ment information related to software, its operation and its design. SMM contains
meta-model classes and associations to model Measurements, Measures and Observa-
tions.

Measures are evaluation processes that assign comparable numeric or symbolic
values to entities. The SMM associates a Measure to each measurement. Measurement
results are values from ordered sets. Contextual information such as who, where and
when is related by Observation.

SMM comprises 38 classes among which are 10 core classes including Measure,
Measurement and Observation. Excluding the Timestamp class and the Date class,
all core classes are extended from the SMM Element class.

2.3 ODM

ODM (Ontology Definition Metamodel) facilitates the modelling of knowledge
about real world concepts that are independent of an application[9]. Ontology as a
discipline has its roots in Philosophy. The ODM includes four normative metamod-
els: RDF (Resource Description Framework), OWL (Web Ontology Language), CL
(Common Logic) and TM (Topic Maps).

Three additional UML profiles are available for ODM for RDF, OWL and TM.
These profiles enable the use of the UML notation for ontology modelling and the
generation of corresponding ontology descriptions. In this paper we have used these
four metamodels but excluded the UML Profiles.

2.4 OSM

OSM (Organization Structure Metamodel)[10] is an effort from the OMG to pro-
vide support for modelling of organizational structures in modern enterprises. Modern
organizations typically have a large variety of job titles and relationships within that
organization such as groups, teams, communities etc. and enterprise relationships
with other organizations. These types of relationships do not fit easily into tradi-
tional hierarchical structures.

OSM has become a point of integration for many other metamodels like BMM
(Business Motivation Model), SBVR (Semantics of Business Vocabulary and Rules)
and BPMN etc. The current specifications for OSM are found in the 3rd initial
submission in response to the RFP issued by the Object Management Group. This
specification is not yet fully mature but it does define an initial metamodel for orga-
nizational structures worthy of discussion here. This metamodel contains 11 classes,
among which Participant is the main generalized class with specialization classes of
Person, OrgRole and OrgRelationship.
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2.5 SPEM

SPEM (Software & Systems Process Engineering Metamodel)2)[7] is a metamodel
for representing elements of a process model. It focusses on conceptual descriptions
of work that is undertaken, things that are produced or consumed during that work
and the people and tools involved in their production. It also supports the sequencing
of work.

SPEM packages the metalevel classes into either Method content or Managed
content, the former being a way of defining “the core elements of every method such
as Roles, Tasks, and Work Product Definitions” whilst the latter is said to define
“the fundamental concepts for managing textual descriptions for process and method
content elements”.

2.6 UML

UML (Unified Modeling Language)[58] facilitates the visualization and documen-
tation of models of software systems. It also aims to support models of business
systems. UML include constructs to support both structural and behavioural aspects
of systems. The current version of UML (2.3) includes 6 structural and 7 behavioral
and interaction diagrams.

In this paper we have used the UML superstructure specifications given by OMG
[58]. It is the superstructure that is the main constituent part of UML as far as the
user is concerned – the infrastructure is focussed on tool developers and metamodellers
whilst UML profiles provide support for domain-specific modelling and are therefore
both out of scope for this size and complexity assessment.

3 Size and Complexity Metrics

To measure the size and complexity of the metamodels, we have used the metrics
proposed by Rossi and Brinkkemper[1]. The rationale for choosing this approach is
that it has already been used to evaluate process models[29] and BPMN[30].

Rossi and Brinkkemper[1] have presented a set of 17 metrics, based on the meta-
model’s vocabulary (i.e. concepts and properties). Specifically, these are the aggregate
and average measurement of object types, their attributes/properties, their relation-
ships with each other and roles. Formally, a model M of a technique T is defined as
M = {O, P, R, X, r, p}, where:

O is a finite set of object types. An object is defined as a “thing” that exists
independently[1]. For example, class, association and classifier are different object
types in the software and systems process engineering metamodel[7].

• P is a finite set of property types or attributes that are the characteristics
associated with the object types.

• R is a finite set of relationship types. A relationship is an association between
two or more object types.

• X is a finite set of role types, a role being the name of the connection between
an object type and its association.

• The variables r and p represent mappings from role types to relationship types
and objects types; and from non-property types to property types, respectively –

2) The acronym comes from the first version: Software Process Engineering Metamodel
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although neither is used for the metrics calculations.
In this paper we apply these metrics to evaluate the size and complexity of the

metamodels (mentioned in Section 2) in order to provide a direct comparison with each
other and the values published using previous versions of BPMN[31] and with UML
activity diagram[30]. We have used four metrics from Rossi and Brinkkemper[1], three
of them to measure the size of different object types, property types and relationship
types in these metamodels and the fourth to measure the overall complexity of the
metamodel. These metrics are elaborated below.

Definition 1. n(OT ): number of individual object types in a technique. In
the case of BPMN 2.0, we find that, for example, n(OBPMN2.0) = 159. BPMN 2.0
has more than 80 class diagrams showing these object types and their relationship
with each other. We have excluded some of these diagrams (e.g. diagram interchange
and execution semantics) in our evaluation because they were not present in other
process modelling notations like the UML activity diagram.

Table 1 Size and complexity measures

Metamodel
Size measures

n(OT ) n(RT ) n(PT ) Total Complexity

UML (V 1.4.1) Activity Diagram 8 5 6 11.18

UML Full (V1.4.1) 57 53 72 106.00

UML Superstructure (V 2.3) 288 23 154 327.40

BPMN 1.0 22 10 85 88.30

BPMN 1.2 90 6 143 169.07

BPMN 2.0 159 17 294 334.70

ODM 100 27 21 105.69

OSM 11 6 13 18.05

SMM 38 6 41 56.22

SPEM 101 16 56 116.59

Definition 2. n(PT ): is the measure of the number of different property
types. In BPMN 2.0, for example, we have calculated that n(PBPMN2.0) = 294.
These property types are reported in BPMN 2.0 specifications in more than 85 dif-
ferent tables. An important point to understand is that an attribute with the same
name in two different objects is considered separately for every object. For example,
“complexBehaviorDefinition” and “conditionalEvent-Definition” both have a “condi-
tion” that will be treated separately as “complexBehaviorDefinition condition” and
“conditional-EventDefinition condition”.

Definition 3. n(RT ): is the measure of the different relationship types in a
method. In BPMN 2.0 specifications, for example, we have identified n(RBPMN2.0)
= 17. The reason for this large number of relationship types is that each relationship
type with different cardinalities is treated differently. For example “Composition 1
to 1” and “Composition 1 to *” are treated as two relationship types, as suggested
by Rossi and Brinkkemper[1]. While this could be argued to overcount the number
of relationship types, we retain it for consistency with earlier work (see also later
discussion in Section 4.2).
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Although offered as complexity metrics in Ref. [1], these three definitions are
more realistically measures of size. However, some measure of complexity is given by:

Definition 4. C(MT ):
√

n(OT )2 + n(RT )2 + n(PT )2. The total complexity of
BPMN is calculated from this equation as C(MBPMN2.0) = 334.70 and the total com-
plexity of UML as 327.4. These values alone do not give the complete picture unless
they are compared with the complexity values for other methods/techniques/metamodels.
Indeed, it is even arguable if this is a true complexity metric. However, in the spirit
of maintaining continuity and consistency with the Rossi and Brinkkemper metrics
set, we will defer further technical evaluation of its validity to further work. In the
following section, we provide an analysis and assessment of some of those other meta-
models.

4 Metamodel Analysis

4.1 Results of metric counts

Table 1 gives an overview of the size and complexity values not only of BPMN2.0,
UML 2.3, SMM, ODM, OSM and SPEM but also values from the literature for
BPMN1.0 from Ref. [32], BPMN1.2 from Ref. [30], UML activity diagrams from
Ref. [33] and the full UML from Ref. [29]. The two studies of UML both appear to
be analyzing Version 1.4.1 of UML, although this is not stated explicitly in the pa-
pers. As a further update, we include, in this table, values from UML Version 1.1[27].
BPMN 2.0 is apparently the most complex of these metamodels although UML 2.3 is
almost equivalent in complexity.

Table 1 show that the complexities of BPMN and UML have increased progres-
sively for every new version of BPMN and UML. BPMN 1.0 is the least complex
among them and then gradually BPMN 1.2 and BPMN 2.0 increase in complexity.
All measures (object types, relationship types and property types) in BPMN have
increased in almost the same proportion in its new versions as compared to the previ-
ous version. The only exception is the “number of relationship types” in BPMN 1.2
which has been reduced to 6 from its previous version’s 10.

Another observation is that prior to UML 2.3, BPMN 2.0 was the most complex
as compared to its own preceding versions and earlier versions of UML. As noted
above, UML 2.3 has a complexity (327.4) close to BPMN 2.0 (334.7). Indeed, since
the complexity values of UML 2.3 presented here do not include its profiles and
infrastructure (as discussed above), we can conjecture that for those using the full
UML, there will be additional complexity present. This suggests that overall UML
2.3 is the most complex of the metamodels studied here. Furthermore, the values in
Table 1 confirm the increasing complexity with time/version number.

All versions of BPMN including version 1.0 are far more complex than UML
Activity Diagrams, which have a similar scope to BPMN and are often used as an
alternative way of modelling processes. The size and complexity of these metamodels
create difficulties for normal users to utilize them without training, as was highlighted
in the case of BPMN[34].

Expressiveness of a metamodel is another important consideration. Complex
metamodels may be more difficult to learn but more effective to apply by experienced
users[1], and should lead to smaller models[35]. Expressiveness of any metamodel does
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not guarantee its wide application in the real world e.g. the theoretical size and
complexity of BPMN differs considerably from its practical complexity. Very few
constructs are used in practice in comparison with the much larger, full set of BPMN
constructs[36].

The evolution of BPMN and UML has been our initial, prime focus since the
scopes of the two metamodels clearly overlap; hence, integration is an obvious first
target. Our second consideration is possible integration with one or other of the re-
maining metamodels (ODM, OSM, SMM, SPEM). Of these three metamodels, ODM
and SPEM are of comparative complexity; whereas OSM and SMM have much less
complexity. This tentatively suggests that, while integration of OSM and SMM may
be easier, it may be more efficacious to first consider integration of ODM or SPEM.

4.2 Evaluating the validity of metrics suite

As explained in Section 3, we have used the metrics in Ref. [1] to measure the
size and complexity of the various metamodels analyzed in this paper. This was done
for compatibility purposes, since the works of Refs. [29, 30, 32, 33] have all used this
approach in the past.

However, we have found two major issues while applying these metrics. The first
relates to how relationships are counted; the second refers to the way in which size
and complexity are related. This section explains these issues in detail.

According to OPRR[37], n(RT ) refers to the number of relationship types. By
looking at Fig. 1 and Fig. 2 of the said work, and especially at their table 1, it
seems that the concept of what a relationship type is, as far as OPRR is concerned,
has a much finer granularity than what UML or most practitioners would nowadays
consider a relationship type to be. For example, 1-to-1 associations and 1-to-many
associations are two different relationship types in OPRR, while UML and most cur-
rent practitioners of conceptual modelling would probably agree that they are the
same relationship type, having only a cardinality attribute that allows association
instances (i.e. links in UML parlance) to exist in different amounts. Similarly, OPRR
distinguishes between qualified and non-qualified, optional and non-optional, and gen-
eralization and specialization. Such a fine granularity of relationship types may be
based on data modelling practices of the 1990s, such as Barker[38] and SSADM[39],
which used “crow’s foot” notation that visually distinguished between different car-
dinalities. Nowadays, and as exemplified by UML, the tendency is towards a simpler
categorization scheme of relationship types. We believe that the fact that OPRR
considers every combination of cardinality, optionality and qualification as a different
type of relationship creates a bias that misrepresents the size (and complexity) of a
metamodel, greatly overestimating the real number of relationship types that it com-
prises. For example, the list of 15 different relationship types that are represented in
Fig. 1 of Ref. [1] can be easily reduced to 3 (association, aggregation and generaliza-
tion) by using a “UML-friendly” approach. This suggests that the use of OPRR can
easily result in an overestimation of the relationship type size of a metamodel by up
to 500%.

Another area of concern is that, according to Ref. [1], complexity is calculated
(their definition 12, p. 217) as the square root of the sum of the squares of the different
counts computed on the method (this is captured in our Definition 4 (Section 3)).
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In particular, these counts are the number of object types, relationship types and
property types. This establishes a direct coupling between size and complexity, by
which an increment in size always implies an increment in complexity, and vice versa.
However, intuition tells us that complexity is not a mere function of the number
of elements in a model, but also of how they are organized and how carefully they
have been crafted. It is also easy to prove that models with very different numbers
of object, relationship and property types can yield exactly the same complexity
values using Rossi and Brinkkemper’s metrics. For example, a model with 100 object
types arranged in a linear fashion and connected by 99 associations, and with no
properties, has a complexity value of 141. A model with 40 classes arranged in a 4 x
10 matrix where each class is connected by associations to all its neighbours contains
approximately 135 associations; if this model has no properties, its complexity value
is also 141. However, the first model is conceptually much easier to comprehend than
the second, since it is comprised of a simple chain of classes, while the second model
is a tightly coupled mesh of classes with interlinking connections. This means that
the complexity metric of Rossi and Brinkkemper should be used with appropriate
caution, and perhaps considered as being more representative of overall size rather
than of actual cognitive complexity.

5 Related Work

Different approaches have been used to evaluate the complexity of software en-
gineering metamodels and methodologies. One is based on data collected through
different methods (e.g. surveys, laboratory experiments, case studies) and is gener-
ally known as empirical evaluation e.g.[40]. The second type of evaluation is based
on a features comparison where typically a checklist of method features is used to
evaluate a certain method e.g.[41]. Another approach is based on ontological analysis
of a method[42] that uses mapping between models of the real world and models of the
method to check the expressiveness of the modelling method. Ontological complete-
ness and ontological clarity are two major measures in these approaches[43]. Using
similar ideas relating to concept deficit and concept overload, Kargl et al.[44] intro-
duce a metric for the explicitness of a metamodel, which evaluates the concepts in the
metamodel (viewed as an abstract syntax) in respect of the concepts expressible in the
concrete syntax (its associated notation). Lastly, metamodel-based metrics[21,45,46]

are used to evaluate the complexity of a method based on the structural properties
of that method. Ontology-based evaluation of a method examines how well a method
represents the real world and determines how difficult the method is to use in the real
world, while a metamodel-based evaluation of a method determines how difficult that
method is to learn. The former is concerned with usage while the latter is concerned
with learning[30].

For the various versions of UML, a suite of standard OO design metrics was used
in Ref. [47] to depict changes from UML version 1.1 up to version 2.0. The increase in
size (in terms of number of metalevel classes) was shown to be monotonic increasing
over these versions – an observation confirmed in Table 1 here.

In the case of BPMN, a variety of these different approaches has been used to
evaluate the complexity and quality of its models. Some of these studies are based
on empirical data and some are based on metrics. In the proceeding paragraphs, we



Brian Henderson-Sellers, et al.: Towards an interoperable metamodel suite: ... 11

have briefly discussed some of these studies as reported in the literature. Bodart et
al.[40] presented a theory about the usage of optional attributes in conceptual models
(e.g. ER Diagrams) and conducted some experiments to test their predictions. Their
study does not include BPMN.

Wahl and Sindre[34] evaluated BPMN[31] using a semiotic quality framework[48]

that is based on linguistic as well as semiotic concepts. They have discussed different
aspects of quality for conceptual models and conceptual modelling languages and have
evaluated BPMN against those aspects; however, their work omits an evaluation of
BPMN at the metamodel level.

Aguilar et al.[49] have evaluated BPMN models based on a set of experiments us-
ing FMESP (Framework for the Modelling and Evaluation of Software Processes)[50].
Their evaluation is also limited to the models of BPMN and does not cover the meta-
modelling aspect. Muehlen and Recker[36] have assessed the practical complexity
of BPMN using different mathematical and statistical techniques on 120 BPMN di-
agrams collected from different sources. BPMN constructs were divided into core
and extended sets and the most frequent set of BPMN elements was identified. The
complexity of BPMN models was measured by calculating the average number of
semantically different constructs used in a model.

Chinosi and Trombetta[51] proposed BPeX (Business Process eXtensions) for
validating BPMN diagrams through the analysis of weak points in the BPMN 1.1
metamodel. Their analysis is not quantitative, using terms such as “weak hierarchi-
cal structure” or “single relationship type, generalization” and does not suggest any
metrics that might determine the degree of weakness of the hierarchical structure of
the BPMN metamodel.

Recker et al.[52] have evaluated BPMN both theoretically and practically. They
have used the Bunge ontology[53,54] to identify shortcomings of BPMN and then con-
ducted a series of interviews with BPMN users to validate their propositions. Two
important findings of their study were “deficit constructs” and “excess constructs” in
BPMN. Their study also lacks any discussion about the metamodel of BPMN or its
evaluation.

Dijkman et al.[55] have proposed some semantics for mapping BPMN models to
Petri nets to statistically check the semantic correctness of models. Their mapping
covers only “flow elements” of BPMN models and does not provide any mechanism
to map other constructs of BPMN to Petri nets.

Recker et al.[56] and Indulska et al.[30] evaluated the complexity of the BPMN
metamodel using metrics proposed by Rossi and Brinkkemper[1] and compared the
complexity of metamodels of BPMN and UML. They pointed out that BPMN has
a high level of complexity as compared to UML. As noted earlier, our extension to
version 2.0 of BPMN is largely based on their study.

6 Conclusions and Future Work

Previous studies of the complexity of BPMN and UML have shown values increas-
ing with time as newer versions of each metamodel standard have been published (see
also[46]). With metamodel integration in mind we have re-assessed the most recent
versions of BPMN and UML in particular, finding them both to have increased in
complexity over time. We have then extended the analysis by using the Rossi and
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Brinkkemper[1] approach to include metrics counts of four other OMG metamodel
standards (ODM, OSM, SMM and SPEM). Thus, although conceptually one might
anticipate a ready integration of UML and BPMN (because of the overlap in domain
of discourse), the numbers in Table I suggest that, instead, integration of OSM and
SMM or between one of these (OSM, SMM) and BPMN might be an easier target[58].
This will be an additional element of our future research plan for creating a suite of in-
tegrated metamodels. Finally, we undertook an analysis of the research methodology
itself viz. the Rossi and Brinkkemper metrics suite. We have identified two threats
to validity: (1) the likely inflation of the count of relationship types and (2) concern
that the equation for total complexity is not truly representative of complexity since
a single “complexity value” can be achieved with entity configurations that ostensibly
have very different true complexity.

These topics will be the foci of future papers resulting from this research project.
Future work already planned includes the evaluation of the semantics of each meta-
model and the conceptual mappings across metamodels; approaches to merging meta-
models using experiences gained in merging ontologies e.g.[57]; and the application of
SMME[22] to take the merged metamodel and “carve” out situationally specific meta-
models on a case-by-case basis. It should also be worthwhile to evaluate the potential
of better complexity metrics (e.g. metrics discussed in Ref. [46, 59, 60]) that may
help us to increase the value of this study beyond the use of a ‘standard’ metrics set
such as those of Rossi and Brinkkemper, potentially replacing their complexity met-
ric (Definition 4 above) with one or more true complexity metrics. Finally, a deeper
understanding of the roles of size and complexity in the specific context of metamodel
integration might allow one to highlight optimal areas for metamodel integration as
well as identifying likely semantic incompatibilities.
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