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Abstract

Stocks with similar financial ratio values across years havesimilar price move-
ments.We investigate this hypothesis by clustering groups of stocks that exhibit
homogeneous financial ratio values across years, and then study their price move-
ments. We propose usingCross-Graph Quasi-Biclique (CGQB) subgraphsto
cluster stocks, as they can define the three dimensional (3D)subspaces of finan-
cial ratios that the stocks are homogeneous in across the years, and they can also
handle missing values that are rampant in the stock data. Furthermore, investors
can easily analyze these 3D subspaces to explore the relations between the stocks
and financial ratios. We develop a novel algorithm,CGQBminer, which mines
the complete set of CGQB subgraphs from the stock data. Through experimen-
tal analysis, we show that the hypothesis is valid. Furthermore, we demonstrate
that having an investment strategy which uses groups of stocks mined by CGQB
subgraphs have higher returns than one that does not. We alsoconducted an ex-
tensive performance analysis onCGQBminer, and show that it is efficient across
different 3D datasets and parameter settings.
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1. Introduction

In 1934, Graham and Dodd introduced the concept ofvalue investing[12],
which involves analyzing financial ratios to pick stocks. Today, value investors
such as Warren Buffett, have been outperforming the market indices [34]. Fi-
nancial ratios reflect the core ‘health’ status of a stock. For example,Return on
Equityratio (ROE) measures the efficiency of the stock in using its assets to pro-
duce profit, whileDebt-Equityratio (D/E) measures how much assets of the stock
are debts1. It is believed that financial ratio values are crucial indicators of how
future stock prices move in the market [11, 12], and if this claim is valid, investors
can utilize this knowledge to make better investment choices. For example, if in-
vestors know which particular financial ratio values will lead to rising stock price,
they can buy stocks having these financial ratio values to make profits. Note that
the concept of value investing is different frommodern portfolio theory[30]. The
former advocates the buying of stocks with ‘good’ financial ratios, while the latter
advocates the buying of stocks with good historical price performance, but with
diverse price movements (to minimize the risk).

Previous works [5, 25] have studied the effect of an individual financial ratio
on stock price movements across years, but no work has investigated how financial
ratios collectively affect stock price movements across years. Different financial
ratios quantify different financial aspects of a stock, so itwill be interesting to
study the collective influence of financial ratios on the stock price movements.

There is another school of thought which believes that the stock market is ef-
ficient and the stock prices reflect all known information [10]. That is, the current
price of a stock fully reflects its ‘health’ status, and studying its financial ratios
will not unearth hidden information, such as the stock is currently undervalued or
overvalued.

Given these two contrasting views on financial ratios, we study the effect of
financial ratios on price movements using the following hypothesis:

Hypothesis 1. Stocks with similar financial ratio values across years havesimilar
price movements.

We conduct a systematic investigation of Hypothesis 1, and our research de-
sign consists of three main phases, namely,data preparation, data miningand
data analysis. The data preparation phase prepares the stock data of financial

1The definitions of these financial ratios are given in Appendix A.
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Figure 1: The research design structure of this work.

ratios, the data mining phase clusters stocks with similar financial ratios values
across years, and the data analysis phase evaluates the price movements of these
stocks to validate Hypothesis 1. The structure of the research design is presented
in Figure 1, and details of the research design is in Section 2.

The data preparation phase is an engineering task of converting the financial
figures into financial ratios, while the data analysis phase uses standard statistical
tests to validate the significance of Hypothesis 1. The challenge is in the data min-
ing phase, as existing clustering techniques lack the ability to handle the highly
complex stock data. Hence, in this paper, besides investigating Hypothesis 1, we
also focus on developing a novel and efficient clustering approach to handle the
stock data.

We first give a description of the characteristics of the stock data and the weak-
ness of existing techniques in handling it, before presenting our proposed cluster-
ing approach. The stock data can be represented as a set of yearly transaction
tables, with rows corresponding to stocks and columns corresponding to the fi-
nancial ratios. An example is the set of tables shown in the middle of Figure
3.

Firstly, the stock data has a large number of features (financial ratios). If tra-
ditional clustering approaches (e.g. k-means) are used, they are bound to suffer
from the curse of dimensionality [23]. Applying feature selection or transforma-
tion techniques such as PCA can reduce the number of features, but the stocks
are clustered based on the global transformed space, which means that the finan-
cial ratios that a cluster of stocks are similar in is unknown. Therefore, subspace
clustering approaches [23] are more suitable for the stock data, as they can find
clusters of stocks in different subspaces of financial ratios. Secondly, the stock
data is a three dimensional (3D) data (stocks× financial ratios× years) and hence
3D subspace clustering algorithm that handles 3D data is required. Thirdly, the
stock data, similar to any real-world data, has high percentage of missing values
(in fact, 26% of the stock data used in this paper are missing values). Clustering
without considering the missing values naturally degradesthe quality of the clus-
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Figure 2: Example of a stock data modeled into a set of bipartite graphs. The encircled vertex sets
correspond to a CGQB subgraph.

tering results. Existing 3D subspace clustering algorithms [6, 19, 50] do not han-
dle errors, and it is not straightforward to modify them to handle missing values.
Some existing 2D subspace clustering algorithms can handlemissing values, but
it is computationally expensive to first apply 2D subspace clustering algorithms
on each year’s data, and then combine the 2D subspace clusters mined from each
year to form 3D subspace clusters.

1.1. Overview of Our Approach

We propose a graph-based 3D subspace clustering approach, which handles
all three characteristics of the stock data, whereby

1. stocks are clustered based on subspaces of financial ratios that they aresim-
ilar in.

2. the subspace clusters of stocks are of 3D.
3. stocks can still be clustered in the presence of missing financial ratio values.

We achieve this by first modeling the stock data into a set of bipartite graphs
D = {G1, . . . , Gn}, as shown in Figure 2. Each bipartite graph represents stocks’
data for a year, with vertices on one side of the graph representing stocks, and
vertices on the other side representing partitions of financial ratio values. Let us
assume that the partitions are arbitrary created for illustration purpose. ThePrice-
Earnings(PE) ratio measures the price of the stock in relative to the earnings of
the stock. For example, the vertex with PE:[0,10] represents the partition of PE
from 0 to 10. If the value of a financial ratio of stocks falls in partitionf of the
corresponding ratio, an edge connectss andf .

We then mine allCross-Graph Quasi-Biclique (CGQB)subgraphs (depicted
by pairs of encircled vertex sets in Figure 2) fromD, where a CGQB subgraph
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corresponds to a group of stocks (denoted asstock group) and a corresponding
group of partitions on financial ratios, formostof which they share similar values
across several years. More specifically, a CGQB subgraphg consisting of two
disjoint sets of vertices{U ′, V ′}, occurs inD if every vertex inU ′ is connected
to at least|V ′| − ǫ vertices inV ′, and vice versa.ǫ is thequasithreshold which
controls the strictness of the connectivities betweenU ′ andV ′. Therefore, by
mapping this financial problem into a ‘quasi’ graph-based problem, stocks can be
clustered in the presence of missing financial ratio values.Note thatu3 is not part
of the CGQB subgraph in Figure 2, as it is only densely connected to vertex set
{v0, v1, v2} in year 1 but not in year 2 and 3.

The naı̈ve way to mine all CGQB subgraphs fromD can be based on the
two mining stages of Algorithm TRICLUSTER [50], which mines3D subspace
clusters. In the first stage, we mine quasi-biclique subgraphs from each bipar-
tite graphG ∈ D, and then in the second stage, we generate CGQB subgraphs
from these quasi-biclique subgraphs. This approach is computationally expen-
sive, as we show in Section 6.3. To overcome this problem, we develop a novel
algorithm,CGQBminer, to efficiently mine the complete set of CGQB sub-
graphs.CGQBminer uses an effective search space strategy,tri-extensions, and
incorporates several pruning techniques to efficiently mine the cross-graph quasi-
bicliques. In our experiments, we show the efficacy ofCGQBminer on datasets
of different dimensions and densities.

Besides being competent in solving this financial data mining problem, the
CGQB model is in fact generic, and can be used for clustering any noisy 3D
datasets in other domains, such as gene× sample× time microarray datasets in
biology, item× transaction× store datasets in consumer analysis, etc.

1.2. Layout of the paper

The rest of the paper is organized as follows. Section 2 presents the research
design used to investigate Hypothesis 1. Section 3 discusses the related work.
Section 4.1 presents the formal definition, problem statement of CGQB subgraphs.
Section 4.2 presents the algorithm to mine CGQB subgraphs,CGQBminer. Sec-
tion 5 describes the methodology to evaluate the price movements of stock groups.
Section 6 presents the experimental results. Section 7 discusses the key findings
of the experimentations and the limitations of our approach. Section 8 concludes
the paper.
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Figure 3: The data preparation phase.

2. Research Design

As mentioned in Section 1, our research design consists of three main phases:
data preparation, data mining and data analysis. Figure 1 presents the structure of
our research design.

2.1. Data Preparation Phase
Figure 3 shows the general overview of the preparation phase. In the data

preparation phase, financial figures of stocks across years are obtained and con-
verted into a dataset of financial ratios, which can be represented as a set of yearly
transaction tables, with rows corresponding to stocks and columns corresponding
to the financial ratios. The set of tables shown in the left of Figure 3 is an example
of a set of financial figures. For example,a1 anda2 can be financial figuresStock
Price per ShareandEarnings per Sharerespectively. The set of tables shown in
the middle of Figure 3 is an example of a set of financial ratios. For example,r1
can be thePrice-Earnings(PE) ratio which is obtained byStock Price per Share

Earnings per Share. This
dataset of financial ratios is then discretized and modeled into a set of bipartite
graphs D, with its rational explained earlier in Section 1.1. Details of the data
preparation phase is given in Section 6.1.

2.2. Data Mining Phase
As we described in Section 1, the stock data is highly complexand existing

clustering techniques have limitations in handling it. Hence, we propose mining
CGQB subgraphs, which is a novel clustering approach that can handle the stock
data. CGQB subgraphs are mined from the set of bipartite graphs D, and each
CGQB subgraph corresponds to a set of stocks (denoted asstock group) that have
similar financial ratio values across years. The formal definition and problem
statement of CGQB subgraphs are presented in Section 4.1, and the algorithm to
mine CGQB subgraphs is explained in Section 4.2. Section 6.2explains how the
parameters are set in mining CGQB subgraphs.
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2.3. Data Analysis Phase

We calculate the price movements of the stocks in the stock group of each
CGQB subgraph, and measure the standard deviations of theirprice movements,
which is a standard way of measuring the dispersion of their price movements [8].
Statistical tests are then conducted to investigate if the standard deviations of price
movements of stock groups are significantly lower than thoseof randomly picked
stocks and industry indices. If so, we cannot reject Hypothesis 1 and conclude that
it is valid. Details of the methodology to investigate Hypothesis 1 is presented in
Section 5, and Section 6.2 presents the statistical results. Figure 4 shows a sample
result of different groups of stocks from the Chemical industry. In this example,
the standard deviation of the industry index is based on 35 stocks, the standard
deviation of random stocks is based on an average of 10 groupsof 5 random
stocks, and the standard deviation of the CGQB subgraph is based on 5 stocks
that have similar financial ratios across years. From our experiments, we show that
stock groups obtained by CGQB subgraphs are statistically proven to have lower
standard deviations than those of randomly picked stocks and industry index2, thus
confirming the validity of Hypothesis 1. Moreover, we show that more statistically
significant stock groups can be discovered using CGQB subgraphs than using
existing 3D subspace clusters, as CGQB subgraphs can tolerate high percentage
of missing values in the stock data.

2The industry index is an aggregate representation of the prices of stocks from an industry.
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3. Related Work

Jianget al. [20, 32, 33] proposedcross-graph quasi-clique(CGQC), which is
a set of graphs with vertex setg, and in each graph, each vertex connects at least
γ.(|g| − 1) other vertices ing. Hence, CGQCs are groups of ‘intra-connected’
vertices, while CGQBs are pairs of groups of ‘inter-connected’ vertices.

Another related work to cross-graph mining is frequent subgraph mining [15,
16, 24, 47, 48], where subgraphs that occur frequently in a set of graphs are mined.
There is no constraint that the structure of the subgraph must be clique or biclique,
but the edges of the graph dataset must be labeled. Thus, frequent subgraph min-
ing is not suitable for our problem.

Triclusters [50], closed 3-sets [6] and frequent closed cubes [19] are 3D sub-
space clustering algorithms which can minecross-graph biclique(CGB) sub-
graphs from a set of bipartite graphs (represented as a set ofbinary matrices).
CGB subgraphs are CGQB subgraphs without the quasi threshold, so they do not
tolerate missing values. In our experiments, we show that itis harder to discover
stock groups by CGB subgraphs.

Mining biclique subgraphs from a single graph is a well-established research
problem [2, 9, 27, 29]. A biclique is a disjoint pair of vertexsets where there is
full connection between them. Due to this strictness of connectivities, it is not
suitable for dataset that has missing values.

There are several works in mining quasi-biclique (QB) subgraphs from a sin-
gle graph [1, 4, 28, 31, 38, 39, 46], and not from a set of bipartite graphs. The
QBs defined by [1, 31, 46] are inclined to have skewed distribution of missing
edges in their QBs, as the missing edges allowed in each vertex of their QBs are
not restricted. QBs defined by [4, 28, 38, 39] have this missing edges restrictions
on each vertex of their quasi-biclique. Due to the high computation costs of min-
ing QB subgraphs, only [28, 38, 39, 46] mine the complete set of results, while
[1, 4, 31] do not. Simet al. [38] proposed clustering stocks with similar financial
ratio values, but their clustering technique is limited only to a year, and they did
not study the relation between financial ratios and price movements of stocks.

In formal concept, Bessonet al. [3] introduced fault tolerance into bi-sets by
proposing DR-bi-sets, which correspond to QBs. However, Bessonet al. mine
the complete set of DR-bi-sets from a single binary matrix (which represents a
bipartite graph), and not a set of binary matrices.

There are a wide range of discretization techniques [35, 41,43] which can
be applied on the financial ratios of the stock data, thus we leave the choice of
the discretization technique to the users. In this paper, weuse the agglomerative
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hierarchical clustering withCDbw index 3 [14, 45], which maximizes the inter
distances between partitions of a financial ratio and minimizes the intra distances
within partitions of the financial ratio. As this technique is parameter-free, we
avoid the study of the impact of discretization parameters on the clustering results.
For a fair comparison in our experiments, CGQB subgraphs andCGB subgraphs
are mined from the same set of bipartite graphs which represents the discretized
stock data.

Kovalerchuk and Vityaev [22] gave an excellent introduction on using data
mining techniques for financial applications. Similar to our problem, they dis-
cussed on mining patterns from stocks to identify good stocks to purchase. How-
ever, they focused on different types of stock data, namely the technical data (e.g.
stock price) and macro-economic data (e.g. industrial production indices and cur-
rency exchange rates).

There are also several works on applying computational techniques to analyze
financial ratios, but they are solving problems different from ours. Wang and Lee
[44] proposed to identify representative financial ratios by clustering the financial
ratios and using a representative indicator to represent each cluster. Yen [49] pro-
posed using adaptive resonance theory to predict accounting frauds using financial
ratios. Self-organizing learning array [51], Gaussian case-based reasoning [26]
and neural network-genetic programming hybrids [36] were used to predict the
failure of companies using financial ratios.

4. Cross-Graph Quasi-Bicliques (CGQBs)

We present CGQBs, which are used in the data mining phase to mine stock
groups that have similar financial ratio values across years. We first present the
formal definition of CGQBs and the CGQB subgraphs mining problem, and then
we present the algorithm to mine CGQB subgraphs.

4.1. Definitions and Problem Statement

An undirected graphG consists of a set of vertices denoted byV(G) and a set
of edges denoted byE(G) = {{u, v}|u, v ∈ V(G)}. An edge{u, v} denotes that
u andv are connected.

3CDbw(c) = Intra den(c)×Sep(c), wherec is the set of clusters (partitions),Intra den(c)
measures the density of each cluster [14, 45] andSep(c) measures both the inter-cluster distances
and inter-cluster densities.
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Definition 1. (Neighborhood ofv) The neighborhood ofv in graphG is denoted
asNG(v) = {u|{v, u} ∈ E(G) ∧ u ∈ V(G)}. The neighborhood ofv in V is
denoted asNV

G (v) = {u|{v, u} ∈ E(G) ∧ u ∈ V ⊆ V(G)}, given thatv ∈
V(G) \ V .

GraphG′ is a subgraph of graphG, denoted asG′ ⊆ G, if V(G′) ⊆ V(G) and
E(G′) ⊆ E(G). GraphG′ is apropersubgraph ofG if G′ is a subgraph ofG, and
G′ 6= G. GraphG′ is aninducedsubgraph ofG if, for any pair of verticesu and
v of G′, edge{u, v} is in E(G′) if and only if edge{u, v} is in E(G). The edge
set of an induced subgraph is determined by its vertex set, sowe also useG(V ′)
to represent the subgraph ofG induced on vertex setV ′ ⊆ V(G).

GraphG is a bipartite graph if its vertex set consists of two disjoint sets of
verticesU andV , and edges only exist between vertices inU and vertices inV .
That is,V(G) = {U, V }, andE(G) = {{u, v}|u ∈ U ∧ v ∈ V }. A bipartite
graphG is complete if there is complete connections between vertices inU and
vertices inV , that isE(G) = {{u, v}|∀v ∈ V ∧∀u ∈ U}. For brevity, a complete
bipartite graph (or subgraph) is called a biclique (or biclique subgraph).

The full connection requirement of bicliques is often too restrictive for real
world data because real data often contain missing values. To solve this problem,
we allow some missing edges between vertices inU and vertices inV , and we call
such graphsquasi-bicliques. We give the formal definition below.

Definition 2. (ǫ-QB) LetG be a bipartite graph withV(G) = {U, V }, andǫ be
the quasi threshold.G is a ǫ-QB if and only if

• ∀u ∈ U , |NV
G (u)| ≥ |V | − ǫ

• ∀v ∈ V , |NU
G (v)| ≥ |U | − ǫ.

Parameterǫ controls the strictness of the connectivities between the vertex sets
U andV of quasi-bicliques to prevent skewed distribution of missing edges. In
Figure 2, atǫ = 1, there is a quasi-biclique subgraphG0(U

′, V ′) in G0, with
U ′ = {u0, u1, u2} andV ′ = {v0, v1, v2}.

Lemma 1. If a bipartite graphG is a ǫ-QB, then for any induced subgraphG′ of
G, G′ is also aǫ-QB.

PROOF. Let V(G) = {U, V } andG′ be induced on vertex set{U ′, V ′}, where
U ′ ⊆ U andV ′ ⊆ V . For all v ∈ V ′ ⊆ V , we have|U ′| − |NU ′

G (v)| ≤ |U | −
|NU

G (v)| ≤ ǫ becauseU ′ ⊆ U ; and for allu ∈ U ′ ⊆ U , we have|V ′|−|NV ′

G (u)| ≤
|V | − |NV

G (u)| ≤ ǫ becauseV ′ ⊆ V .
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We represent the stock data of one year as one bipartite graph, so groups of
stocks having similar values on a group of financial ratios across several years cor-
respond to quasi-biclique subgraphs that occur in several bipartite graphs. We use
a minimum support thresholdmsg to constrain the minimum number of bipartite
graphs containing a quasi-biclique subgraph.

Definition 3. (Cross-graph quasi-biclique (CGQB) subgraph) Let D = {G1,

. . . , Gn} be a set of bipartite graphs withV(G1) = . . . = V(Gn) = {U, V }.
Given a quasi thresholdǫ and a minimum support thresholdmsg, vertex set
{U ′, V ′}, whereU ′ ⊆ U, V ′ ⊆ V , forms a CGQB subgraph if and only if

• |{G|G ∈ D ∧ G(U ′, V ′) is a ǫ-QB}| ≥ msg, whereG(U ′, V ′) is the sub-
graph ofG induced on vertex set{U ′, V ′}.

We useocc(U ′, V ′) to denote{G|G ∈ D ∧ G(U ′, V ′) is a ǫ-QB}. Givenǫ = 1
andmsg=3, Figure 2 shows a CGQB subgraph withU ′ = {u0, u1, u2} andV ′ =
{v0, v1, v2}, andocc(U ′, V ′) = {G1, G2, G3}.

Based on Lemma 1, if{U ′, V ′} forms aǫ-QB in graphG, then for any{U ′′, V ′′}
such thatU ′′ ⊆ U ′ andV ′′ ⊆ V ′, {U ′′, V ′′} also forms aǫ-QB in G. There-
fore, if {U ′, V ′} is a CGQB, then{U ′′, V ′′} must also be a CGQB, and we have
occ(U ′′, V ′′) ⊇ occ(U ′, V ′). In the case ofocc(U ′′, V ′′) = occ(U ′, V ′), {U ′′, V ′′}
becomes uninteresting because it provides no more information than{U ′, V ′}. In
this paper, we are interested in mining only maximal CGQB subgraphs.

Definition 4. (Maximal CGQB subgraph) Let D = {G1, . . . , Gn} be a set of
bipartite graphs and{U ′, V ′} be a CGQB subgraph inD. If there does not exist
another CGQB subgraph{U ′′, V ′′} in D such that{U ′, V ′} ⊂ {U ′′, V ′′} and
occ(U ′, V ′) = occ(U ′′, V ′′), then{U ′, V ′} is called a maximal CGQB subgraph
in D.

CGQB subgraphs containing only a few vertices are not very interesting. A trivial
case is quasi-biclique subgraphs containing only one stockand one financial ratio.
To filter such small CGQB subgraphs, we use two thresholdsmsu andmsv to
constrain the minimum number of vertices inU ′ and minimum number of vertices
in V ′ respectively.

Problem statement Given a set of graphsD = {G1, . . . , Gn}, the CGQB
subgraphs mining problem is to mine the complete set of CGQB subgraphs from
D, such that each CGQB subgraph is maximal and satisfies the quasi thresholdǫ,
the minimum size thresholdsmsu, msv and minimum support thresholdmsg.

In the rest of the paper, we assume CGQB subgraphs to be maximal, unless it
is explicitly stated not to be.
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{{ u0},{v0}}

{{ u0,u1},{v0,v1}}
U' andV'extension

{{ u0,u1,u2},{v0,v1}} {{ u0,u1},{v0,v1,v2}} {{ u0,u1,u2},{v0,v1,v2}}

U'extension V'extension U' andV'extension

Figure 5: Partial set enumeration tree of the set of bipartite graphs in Figure 2. Each node of the
tree is represented by a subset ofU (denoted asU ′ ⊆ U ) and a subset ofV (denoted asV ′ ⊆ V ).

4.2. CGQBminer : Mining Cross-Graph Quasi-Biclique (CGQB) Subgraphs
A naı̈ve method to mine CGQB subgraphs can be based on the mining struc-

ture of Algorithm TRICLUSTER [50], which consists of two mining stages. In
the first stage, we mine quasi-biclique (QB) subgraphs from each bipartite graph
G ∈ D using some existing QB mining algorithms [1, 4, 31, 38, 46], and then in
the second stage, we generate CGQB subgraphs from these QB subgraphs. How-
ever, this approach is computationally slow as it is possible that a large number of
QB subgraphs are generated, and many of them cannot form CGQBsubgraphs.
Therefore, there is a need to develop an efficient algorithm to mine CGQB sub-
graphs.

In this section, we present our CGQB subgraph mining algorithm,CGQBminer,
which takes the set of bipartite graphsD = {G1, . . . , Gn} with V(G1) = . . . =
V(Gn) = {U, V } as input.

4.2.1. Tri-extensions: Three dimensional search space traversal strategy
We project the three dimensional search space of the data into a modifiedset

enumeration tree[37] (we shorten it totree for conciseness) that represents the
power sets ofU andV . This modified tree is able to accommodate the two power
sets, where eachnodeof the tree, denoted as{U ′, V ′}, represents a subset ofU
(U ′ ⊆ U) and a subset ofV (V ′ ⊆ V ). At each node{U ′, V ′}, we also maintain
occ(U ′, V ′) which contains the set of graphs in which{U ′, V ′} forms aǫ-QB.

We sort the vertices inU andV according to some order, so that only vertices
that are after all the existing vertices inU ′(V ′) can be used to extendU ′(V ′).
For example, vertexu2 can be used to extendU ′ = {u1}, but it cannot be used
to extendU ′ = {u3}. We uselast(U ′) to denote the last vertex inU ′ and use
last(V ′) to denote the last vertex inV ′. Figure 5 shows a partial tree of the set of
bipartite graphs in Figure 2.
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We propose a strategytri-extensions, to recursively traverse down the tree. Let
us assume thatCGQBminer is at node{U ′, V ′} of the tree.

• U-extension. U ′ is extended with a vertexu ∈ extCand(U ′), where
extCand(U ′) = {u|u ∈ U ∧ u > last(U ′)} is the set of extension can-
didates ofU ′. For a node reached byU-extension, onlyU-extensions are al-
lowed for its subsequent extensions. Thus,U-extension is a series of traver-
sal to nodes{U ′′, V ′′}, whereU ′′ ⊃ U ′.

• V -extension. V -extension is similar toU-extension, except thatV ′ is ex-
tended withv ∈ extCand(V ′), whereextCand(V ′) = {v|v ∈ V ∧ v >

last(V ′)} is the set of extension candidates ofV ′. For a node reached
by V -extension, onlyV -extensions are allowed for its subsequent exten-
sions. Thus,V -extension is a series of traversal to nodes{U ′, V ′′}, where
V ′′ ⊃ V ′.

• (U, V )-extension. U ′ is extended withu ∈ extCand(U ′) andV ′ is ex-
tended withv ∈ extCand(V ′). For a node that is reached by(U, V )-
extension, the three types of extension are still applicable in subsequent
extensions.

Lemma 2. Through tri-extensions,CGQBminer recursively traverses all nodes
of the tree that contain CGQB subgraphs, and every node is traversed only once.

PROOF. We prove that every node{U ′, V ′} can be reached byCGQBminer

and every node is traversed at most once. LetU ′ = {u1, u2, · · · , ui} andV ′ =
{v1, v2, · · · , vj}. There are three cases:
(1) i=j. In this case, it is obvious that{U ′, V ′} can be reached byi (U, V )-
extensions from the empty set. We need to prove that it is the only way to reach
{U ′, V ′}. Suppose there is another path to reach{U ′, V ′} throughU-extension at
node{U ′′, V ′′}, whereU ′′ = {u1, u2, · · · , uk}, V ′′ = {v1, v2, · · · , vk} andk < i.
Since{U ′′, V ′′} is extended by aU-extension, all of its subsequent extensions
must beU-extensions, andV ′′ ⊂ V ′ will not be extended further. Therefore,
{U ′, V ′} can never be reached if there is aU-extension on the path. Similarly, we
can prove that{U ′, V ′} cannot be reached if there is aV -extension on the path.
(2) i > j. In this case,{U ′, V ′} must be reached byj (U, V )-extensions followed
by (i− j) U-extensions. The proof is similar to (1).
(3) i < j. In this case,{U ′, V ′} must be reached byi (U, V )-extensions followed
by (j − i) V -extensions. The proof is similar to (1).
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Algorithm 1 CGQBminer(U ′, V ′,extCand(U ′),extCand(V ′))
Require: U ′ andV ′ are subsets ofU andV respectively

extCand(U ′) is the set of candidates to extendU ′

extCand(V ′) is the set of candidates to extendV ′

Ensure:
1: if |occ(U ′, V ′)| < msg then return;
2: if |U ′| ≥ msu ∧ |V ′| ≥ msv ∧ |occ(U ′, V ′)| ≥ msg then
3: Output CGQB{U ′, V ′} andocc(U ′, V ′)
4: end if
5: if |U ′ ∪ extCand(U ′)| < msu or |V ′ ∪ extCand(V ′)| < msv then return;

6: /* U−extension */
7: if |V ′| ≥ msv then
8: for all u ∈ extCand(U ′) do
9: CGQBminer(U ′ ∪ {u}, V ′, extCand(U ′ ∪ {u}), {});

10: end for
11: end if
12: /* V−extension */
13: if |U ′| ≥ msu then
14: for all v ∈ extCand(V ′) do
15: CGQBminer(U ′, V ′ ∪ {v}, {}, extCand(V ′ ∪ {v}));
16: end for
17: end if
18: /* (U, V )−extension */
19: for all u ∈ extCand(U ′) do
20: for all v ∈ extCand(V ′) do
21: CGQBminer(U ′ ∪ {u}, V ′ ∪ {v}, extCand(U ′ ∪ {u}), extCand(V ′ ∪ {v}));
22: end for
23: end for

The pseudo code ofCGQBminer is shown in Algorithm 1. WhenCGQBminer

is first called on the set of bipartite graphsD, U ′ is set to{} andV ′ is set to{}.
ForU-extensions, vertex setV ′ will not be changed in the future. Therefore, we
performU-extension on{U ′, V ′} only if |V ′| ≥ msv. Similarly, we perform
V -extension on{U ′, V ′} only if |U ′| ≥ msu.

4.2.2. Pruning techniques for the search space traversal
We now describe the set of pruning techniques which helps in minimizing the

traversal of the search space. Before the set of bipartite graphsD is used as the
input forCGQBminer, we pre-process it to reduce its size.

Pruning technique 1. (Pre-processing on the set of bipartite graphsD) In
eachG ∈ D, verticesu ∈ U whose neighborhood size|NG(u)| is less thanmsv−ǫ
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are pruned, as they cannot form CQGB subgraphs. This pruningis also done on
vertices inV . For eachG ∈ D, if |U | < msu − ǫ or |V | < msv − ǫ, thenG is
pruned, as no QB subgraph can be found inG.

Let us assume thatD is pre-processed andCGQBminer has traversed to node
{U ′, V ′} in its tree.CGQBminer proceeds to obtain the candidates to extendU ′

andV ′, which are pruned by the following technique.

Pruning technique 2. (Pruning extension candidates based on the minimum
support constraint) For a vertexu ∈ U andu > last(U ′), if |{G||NV ′

G (u)| ≥
|V ′| − ǫ ∧ G ∈ D}| < msg, thenu cannot form a CGQB subgraph withV ′,
and it should be excluded fromextCand(U ′). Similarly, for a vertexv ∈ V and
v > last(V ′), if |{G||NU ′

G (v)| ≥ |U ′| − ǫ ∧ G ∈ D}| < msg, thenv cannot from
a CGQB subgraph withU ′, and it should be excluded fromextCand(V ′).

Vertex sets{u} andV ′ form a QB if |NV ′

G (u)| ≥ |V ′|−ǫ. However, if there are
less thanmsg number of graphs in which{u} andV ′ form a QB, then no CGQB
subgraph can be formed byu andV ′. Thus,u is pruned. By adding pruning tech-
nique 2, the set of extension candidates ofU ′ becomesextCand(U ′) = {u|u ∈
U ∧ u > last(U ′) ∧ |{G||NV ′

G (u)| ≥ |V ′| − ǫ ∧G ∈ D}| ≥ msg}.

Example 1. We setmsu = msv = 2, msg = 3 and ǫ = 1. Let us assume
that we are traversing the tree of the set of bipartite graphsof Figure 2 and
is at node{{u0, u1}, {v0, v1}}. We havelast({u0, u1}) = u1. For u2 ∈ U ,
u2 > last({u0, u1}) and |{G||N

{v0,v1}
G (u2)| ≥ |{v0, v1}| − ǫ ∧ G ∈ D| =

|{G0, G1, G2}| ≥ msg, sou2 is an extension candidate ofU ′. Foru3 ∈ U , u3 >

last({u0, u1}) and|{G||N
{v0,v1}
G (u3)| ≥ |{v0, v1}| − ǫ ∧ G ∈ D| = |{}| < msg,

sou3 is not an extension candidate ofU ′. Thus,extCand({u0, u1}) = {u2}.

Similarly the set of extension candidates ofV ′ becomesextCand(V ′) =
{v|v ∈ V ∧ v > last(V ′) ∧ |{G||NU ′

G (v)| ≥ |U ′| − ǫ ∧ G ∈ D}| ≥ msg}
after applying pruning technique 2. The sets of candidates for extension are then
used to check if the current node{U ′, V ′} should be pruned.

Pruning technique 3. (Pruning nodes based on the minimum size constraint)
If |U ′ ∪ extCand(U ′)| < msu or |V ′ ∪ extCand(V ′)| < msv, then current
node{U ′, V ′} is pruned (Algorithm 1 line 5), as current node and subsequent
nodes traversed from it do not contain CGQB subgraphs that fulfill the mini-
mum size thresholdsmsu, msv. Since we reduce the sizes ofextCand(U ′) and
extCand(V ′) using pruning technique 2, more nodes can be pruned using this
pruning technique.
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If current node{U ′, V ′} is not pruned,CGQBminer proceeds to pruneocc(U ′, V ′),
which contains the set of graphs in which{U ′, V ′} forms aǫ-QB.

Pruning technique 4. (Pruningocc(U ′, V ′) based on the quasi threshold) Given
a graphG ∈ D, if ∃u ∈ U ′, |NV ′

G (u)| < |V ′| − ǫ or ∃v ∈ V ′, |NU ′

G (v)| < |U ′| − ǫ,
thenU ′ andV ′ do not form aǫ-QB inG. ThusG is pruned.

After applying the above pruning technique,occ(U ′, V ′) = {G|G ∈ D∧∀u ∈
U ′, |NV ′

G (u)| ≥ |V ′| − ǫ ∧ ∀v ∈ V ′, |NU ′

G (v)| ≥ |U ′| − ǫ}.

Example 2. Continuing from Example 1, assume thatCGQBminer has tra-
versed to node{{u0, u1, u2}, {v0, v1, v2}}. We haveocc(U ′, V ′) = {G|G ∈

D ∧ ∀u ∈ {u0, u1, u2}, |N
{v0,v1,v2}
G (u)| ≥ |{v0, v1, v2}| − ǫ ∧ ∀v ∈ {v0, v1, v2},

|N
{u0,u1,u2}
G (v)| ≥ |{u0, u1, u2}| − ǫ} = {G0, G1, G2}.

The next pruning technique prunes the current node{U ′, V ′}, based on the
size ofocc(U ′, V ′).

Pruning technique 5. (Pruning nodes based on the minimum support con-
straint) If the number of graphs inocc(U ′, V ′) for node{U ′, V ′} is less than
msg, then this node does not contain CGQB subgraphs that fulfillmsg, and is
pruned (Algorithm 1 line 1). Since we remove graphs inocc(U ′, V ′) using prun-
ing technique 4, more nodes can be pruned in this pruning technique.

Based on Lemma 1, if{U ′, V ′} does not satisfy the minimum support con-
straint, then none of its supersets can satisfy the minimum support constraint.
Therefore, there is no need to extend{U ′, V ′} further, and the whole sub-tree
rooted at node{U ′, V ′} can be pruned.

As we are interested in only maximal CGQB subgraphs, we need to check
whether every generated CGQB is maximal. One approach is to mine all CGQB
subgraphs, store them and then check the results and return only those that are
maximal. However, the stored results can be very large, which not only consumes
lots of memory, but also slows down the checking operation. The better approach
is to check directly if each CGQB is maximal, which is done by using two types of
maximal checks on{U ′, V ′}: (1) adding vertexu ∈ U−U ′ toU ′. If {U ′∪{u}, V ′}
forms a QB in every graph inocc(U ′, V ′), then{U ′, V ′} is not maximal. (2)
adding vertexv ∈ V − V ′ to V ′. If {U ′, V ′ ∪ {v}} forms a QB in every graph in
occ(U ′, V ′), then{U ′, V ′} is not maximal.
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4.2.3. Correctness and Time Complexity ofCGQBminer

In summary, all nodes of the tree that contain CGQB subgraphsare traversed
(shown in Lemma 2), and nodes that do not contain CGQB subgraphs are pruned
by the pruning techniques described above.

Theorem 1. (Correctness ofCGQBminer) CGQBminer generates the com-
plete set of maximal CGQB subgraphs from a set of bipartite graphsD, with re-
spect to the minimum size thresholdsmsu, msv, minimum support thresholdmsg
and quasi thresholdǫ.

The correctness and completeness ofCGQBminer is guaranteed by Lemma 1
and 2.

On the complexity analysis ofCGQBminer, it is a well known fact that
the worst case time complexity of algorithms that use set enumeration tree is
exponential to the size of the input [42]. Thus, the worst case time complex-
ity of CGQBminer is in exponential. However in Section 6.3, we show that
CGQBminer generally performs well due to its efficient search space traversal
strategy and effective pruning techniques.

4.2.4. Handling non-bipartite graphs
Besides mining from bipartite graphs,CGQBminer can also mine CGQB

subgraphs from a set of non-bipartite graphs. AssumeD = {H1, . . . , Hn} is a
set of non-bipartite graphs withV(H1) = . . . = V(Hn) = U . We first dupli-
cateU and denote the duplicate asV . We then convertD into a set of bipartite
graphsD = {G1, . . . , Gn}, with V (Gi) = {U, V } andE(Gi) = {{u, v}|{u, v} ∈
E(Hi) ∧ u ∈ U ∧ v ∈ V }, ∀i ∈ {1, . . . , n}. D will be used as the input dataset
for CGQBminer. As U = V , Algorithm 1 is modified to preventU ′ andV ′

containing the same vertex. Vertices inV ′ andU ′ are also prevented to be in
extCand(U ′) andextCand(V ′) respectively.

5. Evaluating Price Movements of Stocks

In the data analysis phase, the price movements of the stock groups obtained
by CGQB subgraphs are evaluated to check if their price movements are statis-
tically similar. The following describes the methodology to evaluate the price
movements.

1. CGQB subgraphs are mined from the set of bipartite graphs representing the
stock data from an industry (refer to Section 1.1), and from each of them,
we obtain itsstock group, which we formally define as follows.
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Definition 5 (Stock group). Let{U ′, V ′} be a CGQB subgraph mined from
a set of bipartite graphs representing a stock data. LetU ′ represents a set
of stocks andV ′ represents a set of financial ratios’ values which this set
of stocks are similar in.U ′ is known as the stock group of this CGQB sub-
graph.

For example, let{{u0, u1, u2}, {v0, v1, v2}} be a CGQB subgraph from Fig-
ure 2, and{u0, u1, u2} is the stock group of this CGQB subgraph. In addi-
tion, we denoteS as the set of stock groups obtained from a set of bipartite
graphs.

2. Calculating standard deviation of stock groups In a stock group, we
calculate the standard deviation of its stocks’ price movements. Low stan-
dard deviation implies high similarity in price movements for these stocks.
From each yearyi which the stocks of the stock group have similar finan-
cial ratio values, we calculate the standard deviation of these stocks for year
yi+1. This calculation will show how stocks having similar financial ratio
values in current year will affect their next year price movements. The stan-
dard deviation is calculated per year basis since the financial ratios of stocks
change every year.

3. Conducting statistical hypothesis tests Statistical tests are conducted to
test if the standard deviations of stock groups are statistically significantly
lower than those of randomly picked stocks from the industry, and the indus-
try index. For the first comparison, we are comparing the price movements
between stocks with similar financial ratio values and stocks without simi-
lar financial ratio values. For the second comparison, we arecomparing the
price movements of stocks with similar ratio values and the average price
movements of all stocks. If the standard deviations of the stock groups are
statistically significantly lower, then we cannot reject Hypothesis 1, and the
claim that financial ratio values are indicators of future stock prices is valid.

5.1. Calculating standard deviation of stock groups

For a stock groupS = {s1, . . . , sj} which are similar in a group of financial
ratios across yearsy1, . . . , ym, we track the price movements ofS across its suc-
ceeding years, that is,Y = {y2, . . . , ym+1}. Let p(s, y) denote the closing price
of the stocks for yeary, and the price movement for yeary is denoted as

d(s, y) =
p(s, y + 1)− p(s, y)

p(s, y)
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We then denote the standard deviation ofS for yeary as

σ(S, y) =

√

1

|S|

∑

s∈S

(d(s, y)− µ(s, y))2

whereµ(S, y) = 1

|S|

∑

s∈S d(s, y) is the mean price movements ofS for yeary.
We averageσ(S, y) over the set of yearsY to calculate the standard deviation

of S across the set of years,

σ(S) =
1

|Y |

∑

y∈Y

σ(S, y)

For the set of stock groupsS = {S1, . . . , Sk}, we calculateσ(S1), . . . , σ(Sk),
and obtain their average

σ(S) =
1

|S|

∑

S∈S

σ(S)

We denoteσ(S) as the standard deviation of the set of stock groupsS. Low
σ(S) means on average, each stock groupS ∈ S has highly similar price move-
ments.

5.2. Conducting statistical hypothesis tests

We use t-test to conduct the following hypotheses as the population standard
deviation of the stock data is unknown, and we assume that thestandard deviation
of the price movement of stocks follows a standard normal distribution.

Paired t-test is conducted to test the following hypothesis

Hypothesis 2. The standard deviation of the set of stock groups is lower than the
standard deviation of the randomly picked stocks.

This is to compare if the standard deviation of the set of stock groups is lower
than the standard deviation of stocks that are grouped not based on similarity in
their financial ratios. Paired t-test is used since both the stock groups and ran-
domly picked stocks are drawn from the same data. To have an unbiased paired
t-test, each stock group is matched with a group of randomly picked stocks, and
they are of the same size and industry.

Next, one sample t-test is conducted to test the following hypothesis, with the
assumption that stocks in the set of stock groups are from thesame industry.
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Hypothesis 3. The standard deviation of the set of stock groups is lower than the
standard deviation of the industry index.

This is to compare if the standard deviation of the stock groups is lower than
the standard deviation of all stocks in the same industry. Stocks in same indus-
tries tend to have similar values in their financial ratios [13]. In a separate work,
King [21] shows that price movements of stocks in the same industry are similar.
Based on these two works, one may suspect that similar financial ratios’ values
are related to similar prices. If we can show that stocks in stock groups have more
similar price movements than stocks in the same industry, then we are compound-
ing the fact that stocks with high similarity in their financial ratios have similar
price movements, as the stocks in stock groups have higher similarity in financial
ratios than stocks in the same industry.

If Hypothesis 2 and 3 are not rejected by the tests, then we cannot reject Hy-
pothesis 1 and we will conclude that it is valid.

6. Experimental Results

Our experiments were performed on Windows XP environment, using Intel
3.4Ghz and 2GB RAM. All algorithms were coded in C++. We present the sta-
tistical test results on the price movements of stock groupsobtained by CGQB
subgraphs, and then we show how stock groups mined by them canbe used for
stock investments. Lastly, we present the performance study of CGQBminer.

6.1. Data Preparation
We downloaded financial figures of stocks from from Compustat[40], for year

2000 to 2006. These financial figures of stocks are from 9 industries, namely Ap-
parel& Other Textile Products, Chemicals& Allied Products, Food, Insurance&
Real Estate, Oil& Gas Extraction, Paper& Allied Products, Printing& Publish-
ing, Wholesale Trade and Metal Mining, and each industry consists of 28 to 36
stocks. We converted these financial figures to 32 major financial ratios, based
on the ratios’ formula from Investopedia [18]. The formulaeof the popular fi-
nancial ratios are presented in Appendix A for the interested reader. In total, we
have 32 financial ratios of 234 stocks for 7 years, with26% of the data being
missing values. As the financial ratios are in continuous values, we discretized
them into partitions using the agglomerative hierarchicalclustering withCDbw

index [14, 45]. We then converted the stock data into sets of bipartite graphs, as
described in Section 1.1. We obtained 9 sets of bipartite graphsD1, . . . , D9, with
eachD representing the stock data of an industry.
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Figure 6: (a) Average standard deviation of price movementsof different stock groups from 9
industries. (b) Number of stock groups mined from 9 industries.

6.2. Study on the stock price movements

We mined CGQB subgraphs from eachD to obtain its set of stock groups.
Recall that a stock group has a group of similar financial ratio values across several
years. Setting the appropriate threshold to mine CGQB subgraphs can be a tricky
task. We attempted to study the effect of varying thresholds, but at the same
time we want to obtain large CGQB subgraphs that do not contain one stock or
financial ratio. We set a minimum number of 7 years (msg = 7), as we required
the stock groups to exist across all years of the data. We fixeda minimum number
of 5 stocks (msu = 5) to prevent the stock groups to be trivially small. We varied
the minimum number of financial ratios from 3 to 7 (msv) to study the effect of
stock groups having different number of similar financial ratio values. We set
the upper bound to 7 as we found that very few or no CGQB subgraphs were
mined if msv > 7, and we set the lower bound to 3 as we found that too many
small CGQB subgraphs were mined ifmsv < 3. We kept the quasi thresholdǫ
small and varied it from 0 to 2 as we want the mined stock groupsto be highly
similar in their financial ratios. Thus, we have 135 sets of stock groups (9 sets of
data× 5 varyingmsv × 3 varyingǫ). Note that we are mining CGB subgraphs
at ǫ = 0, and they can be mined using the frequent closed cube [19], tricluster
[50] or closed 3-sets [6] models. We adopted the frequent closed cube model and
used the CubeMiner algorithm [19] to mine cross-graph biclique subgraphs. The
CubeMiner algorithm was kindly obtained from the authors.
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6.2.1. Standard deviation of the sets of stock groups
We calculated the standard deviation of each set of stock groupsS , σ(S), and

Figure 6(a) shows the average standard deviations of the sets of stock groups from
the 9 industries. The sets of stock groups are obtained by varying the minimum
number of financial ratios from 3 to 7 (msv). The average standard deviations of
stock groups obtained by different quasi thresholdǫ are shown in the lines labeled
with ‘ǫ’. The lines labeled with ‘Random forǫ’ are the average standard deviations
of the groups of randomly picked stocks matched to each set ofstock groups. The
line labeled with ‘Industry index’ is the average standard deviations of all stocks
in the 9 industries.

From Figure 6(a), we can see that the average standard deviations of all 135
sets of stock groups are distinctly lower than those of groups of randomly picked
stocks and the average industry index. Besides this, we can also see that the
average standard deviations decrease asmsv increases. This means that stock
groups which have a larger number of similar financial ratio values across several
years have higher similarity in their price movements.

6.2.2. Number of stock groups mined
Figure 6(b) presents the number of stock groups obtained from CGQB sub-

graphs mined fromD1, . . . , D9. The minimum number of financial ratiosmsv is
varied from 3 to 7. The lines labeled with differentǫ indicates the number of stock
groups obtained by different quasi thresholdǫ settings. Figure 6(b) shows that the
number of stock groups mined depends on two factors: the minimum number of
financial ratiosmsv and the quasi thresholdǫ. Either decreasingmsv or increasing
ǫ results in increasing number of stock groups. Therefore, a prudent investor will
select the appropriatemsv andǫ to obtain his/her desired number of stock groups.

Figure 6(b) also shows the advantages of having quasi threshold ǫ. At ǫ = 0,
very few cross-graph biclique subgraphs were mined to obtain the stock groups,
even at lowmsv. This clearly shows that the high percentage (26%) of missing
values in the stock data hinders the discovery of potential stock groups, and the
strict connectivities requirement of cross-graph biclique subgraphs does not help
in discovering these stock groups. However, with the introduction of quasi thresh-
old ǫ, the connectivities in CGQB subgraphs can be relaxed and more stock groups
can be discovered in the stock data, as shown in Figure 6(b).

6.2.3. Statistical hypothesis tests
We conducted the paired t-test for Hypothesis 2 and one sample t-test for

Hypothesis 3 (refer to Section 5.2) on each of the 135 sets of stock groups. We
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Table 1: Percentage of test outcomes whosep-value< 0.05, for 135 sets of stock groups.
Paired t-test One sample t-test

ǫ Available test
outcomes

All test
outcomes

Available test
outcomes

All test
outcomes

0 87 44.4 91.3 46.7
1 94.3 73.3 100 77.8
2 90 80 100 88.9

calculated thep-value for each test and categorized the outcome of a test into
three categories:p-value< 0.05, p-value≥ 0.05 and N.A..p-value< 0.05 means
that the average standard deviations of the set of stock groups are statistically
significantly lower than the standard deviation of the groups of randomly picked
stocks or the industry index, depending on which test is conducted. N.A. means
that the test outcome is not available as the size of the set ofstock groups is too
small to be considered for the statistical test.

Table 1 presents the percentage of test outcomes whosep-value< 0.05. The
test outcomes of sets of stock groups obtained with different ǫ settings are shown
in each row. The column ‘Available test outcomes’ presents the percentage of test
outcomes whosep-value< 0.05, with respect to all tests which have outcomes.
The column ‘All test outcomes’ presents the percentage of test outcomes whose
p-value< 0.05, with respect to all tests outcomes (which includes N.A.).

Almost all the paired t-tests and one sample t-tests outcomes havep-value
< 0.05. In particular, whenǫ > 0 on ‘Available test outcomes’, more than90%
of the test outcomes havep-value< 0.05. This shows that it is very rare that
Hypothesis 2 and 3 were rejected. Whenǫ = 0, the percentage of the t-tests
outcomes havingp-value< 0.05 is lower than those ofǫ > 0. Since less number
of stock groups is obtained whenǫ = 0, the statistical tests have less confidence
of not rejecting Hypothesis 2 and 3.

There is also a low percentage ofp-value< 0.05 on ‘All test outcomes’ when
ǫ = 0. Again, this is due to few or no cross-graph biclique subgraphs being mined
to obtain sets of stock groups, resulting in a large percentage of test outcomes
being N.A..

The results in Table 1 convey two important information. First, we cannot
reject Hypothesis 1 due to the overwhelming percentage of tests failing to reject
Hypothesis 2 and 3. This shows that stock groups that have groups of similar
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financial ratio values across several years have similar price movements. Sec-
ond, the quasi relation of CGQB subgraphs is crucial in leading to discovery of
stock groups that have more number of similar financial ratiovalues across several
years, and these stock groups are statistically proven to have higher similarity in
their price movements, as shown in the rows of Table 1 whenǫ = 1, 2.

6.2.4. Utility of stock groups
After proving that stock groups with similar financial ratiovalues have similar

price movements, the natural question to ask is how do we utilize this valuable
knowledge? Let us assume that we have a simple investment strategy which we
denote as strategy A. Strategy A assumes that if the average return of a stock from
year 2000 to 2005 is positive, then it predicts that the return of the stock for 2006
is positive too.

Let us also assume that we have strategy B, which is using CGQBsubgraphs
with strategy A. In strategy B, the stocks are clustered as stock groups described
in Section 6.2, and if the average return of a stock group fromyear 2000 to 20005
is positive, then it predicts that the return of this stock group is positive for year
2006. The purpose of this strategy is to study how using stockgroups can improve
an investment strategy.

We obtained 346 stocks for strategy A and 1,328 stock groups for strategy
B. For strategy A, 47.4% of the stocks have positive return for year 2006 while
83.8% of the stock groups have positive return for year 2006.We can see that
the simple approach of strategy A to predict future returns is closed to random
guessing. However, by incorporating the same strategy withCGQB subgraphs,
the percentage of positive returns increases considerably. This shows that the
usage of CGQB subgraphs can provide a margin of ‘safety’ for an investment
strategy.

6.3. Study on the performance ofCGQBminer

As there are no existing algorithms to mine CGQB subgraphs, we imple-
mented the naı̈ve approach that we described in Section 4.2 for performance
comparison. This naı̈ve approach consists of two mining stages, which follows
the mining structure of algorithm TRICLUSTER [50]. Given a set of graphs
D = {G1, . . . , Gn}, this naı̈ve algorithm first mines quasi-biclique subgraphs
from eachG ∈ D. In the second stage, CGQB subgraphs are generated from
them. For the first stage, we used theCompleteQB algorithm [38] to mine quasi-
biclique subgraphs.
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Figure 7: Performance study ofCGQBminer across different scenarios

We evaluated how the size and density of the datasets, and theparameter set-
tings ofCGQBminer affect the running time ofCGQBminer. For this perfor-
mance study, we generated a synthetic set of bipartite graphsD = {G1, . . . , Gn},
using IBM Quest Market-Basket Synthetic Data Generator [17]. Each bipartite
graph contains 2000 vertices, with 1000 in each of its vertexset.

6.3.1. Effect of the size and density of the dataset
We studied how the size and density of the dataset affect the running time of

CGQBminer. To evaluate the effect of the size of the dataset, we varied the
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number of bipartite graphs inD from 10 to 40, and set the density ofD to 10%4.
Hence, the number of edges inD varies from 1 to 4 million. For the parame-

ters, we setmsu = msv = msg = 10, ǫ = 1. Note that we fixed the parameters
so that we can have a fair evaluation of how the number of bipartite graphs inD
affects the running time ofCGQBminer. Figure 7(a) presents the running time
of CGQBminer and the naı̈ve algorithm across the different sizes ofD. The
naı̈ve algorithm could not complete mining after 12 hours for all different sizes of
D, while CGQBminer completed all mining in less than 1.5 hours. The naı̈ve
algorithm is slow as its two mining stages potentially can generate large number
of quasi-biclique subgraphs that are not cross-graph quasi-bicliques. On the con-
trary, CGQBminer is fast as thetri-extensionstraversal strategy is efficient in
traversing the search space ofD.

To evaluate the effect of the density of the dataset, the number of bipartite
graphs inD is fixed at 10 and we varied the density ofD from 6% to 30%. So,
the number of edges inD varies from 0.6 to 3 million. Figure 7(b) presents the
results. The naı̈ve algorithm completed mining in about 9 hours when the density
is 6%, but could not complete mining for the rest after more than 12hours. On
the other hand,CGQBminer completed all mining in less than 100 seconds.

6.3.2. Effect of the parameter settings
We studied how the minimum sizesmsu, msv, minimum supportmsg and

quasi thresholdǫ affect the running time ofCGQBminer. We usedD containing
10 bipartite graphs with density10%. To evaluate the effect ofmsu, msv, msg,
we varied them from 4 to 10, and setǫ = 1. Figure 7(c) presents the running
time of CGQBminer and the naı̈ve algorithm. The naı̈ve algorithm could not
complete mining after 12 hours for all settings, butCGQBminer completed all
mining in less than 1000 seconds. This shows thatCGQBminer is able to ex-
ploit msu, msv, msg to efficiently prune the search space, as the running time is
constantly low across the thresholds. There is a noticeableincrease in the running
time when the threshold dropped from 5 to 4, which is due to a large increase in
the number of CGQB subgraphs mined.

To evaluate the effect ofǫ, we setmsu, msv, msg to 10 and variedǫ from 1
to 7. Figure 7(d) presents the results. The naı̈ve algorithmcould not complete

4Density ofD is calculated as
∏

G∈D
|E(G)|

∏
V(G)={U,V },G∈D

|U||V | , which is the number of edges ofD

divided by the total number of possible edges ofD [7]. Note that the density of a graph is different
from the density of a cluster explained in Footnote 3.
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Table 2: Key findings of the study on the stock price movementsin Section 6.2.
Experiment Key Findings
(1) Standard devia-
tion of stock groups

- Standard deviation of stock groups are distinctly lower
than those of randomly picked stocks and industrial in-
dexes
- Stock groups having larger number of similar financial
ratios have lower standard deviation

(2) Number of
stock groups mined

- Decreasingmsv or increasingǫ results in increasing
stock groups

(3) Statistical hy-
pothesis test

- Hypothesis 1 is not rejected as Hypothesis 2 and 3 are
not rejected
- Stock groups with quasi relation are statistically proven
to have higher similarity in their price movements than
those without quasi relation

(4) Utility of stock
group

The probability of making profit increases by36.4% if an
investment strategy utilizes CGQB subgraphs

Table 3: Key findings of the study on the performance ofCGQBminer in Section 6.3.
Experiment Key Findings
(1) Effect of the size and den-
sity of the dataset

CGQBminer is much scalable than the naı̈ve
algorithm for different sizes and densities ofD

(2) Effect of the parameter
settings

CGQBminer is much efficient than the naı̈ve
algorithm across different thresholds settings.

mining after 12 hours across the varyingǫ while CGQBminer completed all
mining within 30 seconds. The running time ofCGQBminer decreases asǫ
decreases, which evinces the effectiveness ofCGQBminer in utilizing ǫ to prune
the dataset.

7. Results Discussions

7.1. Key Findings from Experimentation

We summarize and present the key findings from our experimental results of
Section 6. Table 2 presents the summary of the study on the stock price movement
in Section 6.2 and Table 3 presents the summary of the study onthe performance
of CGQBminer in Section 6.3.
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7.2. Limitations of Proposed Approach

Although the results are promising, there are certain limitations of our pro-
posed approach, which we discuss as follows:

1. There are no methods to rank the CGQB subgraphs in terms of their utility
or usefulness. Ranking CGQB subgraphs will be useful in cases where a
large number of them are mined and the user would like to select a subset
of them.

2. The experiment results show thatCGQBminer is suitable for medium size
dataset and may not be scalable for large dataset, which contains thousands
of bipartite graphs or millions of vertices.

3. The quasi threshold of CGQB subgraphs is designed to be absolute based to
allow efficient implementation of the pruning techniques ofCGQBminer.
However, a percentage based quasi threshold may be a more natural way of
controlling the strictness of the connectivities in CGQB subgraphs.

4. Prudence must be exercised in setting the appropriate thresholds forCGQBminer.
Setting a large quasi and small minimum size and support thresholds will
likely to result in an exorbitant number of CGQB subgraphs being discov-
ered, while setting a small quasi and large minimum size and support thresh-
olds will likely to result in no CGQB subgraph being discovered.

8. Conclusion

We tackled an important hypothesis in financial data mining,and showed that
indeed, stocks with similar financial ratio values across years do have similar price
movements. This was achieved by mapping the problem to that of discovering
CGQB subgraphs, which are essentially 3D co-clusters between stocks and finan-
cial ratios in multiple yearly graphs. CGQB subgraphs fit thebill, because they
can handle the problem of missing data, which is quite rampant in financial data
in general. Itsquasithreshold allows users to control the degree of similarity be-
tween financial ratio values of stocks within a cluster. We developed a novel and
efficient algorithm,CGQBminer, to mine the complete set of CGQB subgraphs
from a set of bipartite graphs. In our experiments, we showedby statistical tests
that groups of stocks mined by CGQB subgraphs have similar price movements,
and they are statistically more significant than groups of stocks mined by existing
3D subspace clustering algorithm. We also demonstrated that the probability of
making profit by using groups of stocks mined by CGQB subgraphs is substan-
tially higher than by using an investment strategy based solely on historical prices.
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Lastly, we showed thatCGQBminer is highly efficient across datasets of differ-
ent dimensions and densities. Our future work consists of three parts. First, we
will conduct in-depth analysis on which ranges of financial ratio values are impor-
tant indicators of similar price movements, particularly rising price movements.
Second, based on the domain application, we will propose some ranking system
to rank the usefulness or utility of the CGQB subgraphs mined. Third, we will use
the price information of stocks to guide the discretizationof financial ratios, and
incorporate it into the clustering process.
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Appendix A. Definitions of Abbreviations

Abbreviation Definition

CGB Cross-graph biclique
CGQB Cross-graph quasi-biclique
CGQC Cross-graph quasi-clique
QB Quasi-biclique

D/E Debt-Equityratio = Total Liabilities
Shareholders’ Equity

PE Price-Earningsratio = Stock Price per Share
Earnings per Share

ROE Return on Equityratio = Net Income
Average Shareholders’ Equity
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