A Case Study on Financial Ratios via
Cross-Graph Quasi-Bicliques

Kelvin Sin?P, Guimei Lilf, Vivekanand GopalkrishndnJinyan LP

aInstitute for Infocomm Research, A*STAR, Singapore.
bSchool of Computer Engineering, Nanyang Technologicabélsity, Singapore.
€School of Computing, National University of Singapore.

Abstract

Stocks with similar financial ratio values across years haweilar price move-
ments.We investigate this hypothesis by clustering groups ofkstdbat exhibit
homogeneous financial ratio values across years, and theytsteir price move-
ments. We propose usingross-Graph Quasi-Biclique (CGQB) subgraptus
cluster stocks, as they can define the three dimensionalg@hgpaces of finan-
cial ratios that the stocks are homogeneous in across the, ye®l they can also
handle missing values that are rampant in the stock datahdfanore, investors
can easily analyze these 3D subspaces to explore the reldtgiween the stocks
and financial ratios. We develop a novel algorithitit; Q Bminer, which mines
the complete set of CGQB subgraphs from the stock data. §hrexperimen-
tal analysis, we show that the hypothesis is valid. Furtloee;nwe demonstrate
that having an investment strategy which uses groups okstmined by CGQB
subgraphs have higher returns than one that does not. Weaisloicted an ex-
tensive performance analysis 6it:(Q) Bminer, and show that it is efficient across
different 3D datasets and parameter settings.

Keywords: Financial data mining, Financial ratios analysis, Quasiidues, 3D
subspace clustering

Email addressesshsi m@ 2r . a- st ar . edu. sg (Kelvin Sim),
I i ugm@onp. nus. edu. sg (Guimei Liu),asvi vek@t u. edu. sg (Vivekanand
Gopalkrishnan), yl i @t u. edu. sg (Jinyan Li)

Preprint submitted to INFORMATION SCIENCES August 15, 2010



1. Introduction

In 1934, Graham and Dodd introduced the conceptadfie investing12],
which involves analyzing financial ratios to pick stocks.d@g, value investors
such as Warren Buffett, have been outperforming the mardtes [34]. Fi-
nancial ratios reflect the core ‘health’ status of a stock: éxample,Return on
Equityratio (ROE) measures the efficiency of the stock in usingstets to pro-
duce profit, whileDebt-Equityratio (D/E) measures how much assets of the stock
are debt& It is believed that financial ratio values are crucial irdtzs of how
future stock prices move in the market [11, 12], and if thésralis valid, investors
can utilize this knowledge to make better investment clwi€®r example, if in-
vestors know which particular financial ratio values willdeto rising stock price,
they can buy stocks having these financial ratio values tcerpadéifits. Note that
the concept of value investing is different fromodern portfolio theory30]. The
former advocates the buying of stocks with ‘good’ financaias, while the latter
advocates the buying of stocks with good historical pricégsmance, but with
diverse price movements (to minimize the risk).

Previous works [5, 25] have studied the effect of an indiaidinancial ratio
on stock price movements across years, but no work has igaesd how financial
ratios collectively affect stock price movements acrosayeDifferent financial
ratios quantify different financial aspects of a stock, swilt be interesting to
study the collective influence of financial ratios on the ktogce movements.

There is another school of thought which believes that tbekstnarket is ef-
ficient and the stock prices reflect all known information][Ihat is, the current
price of a stock fully reflects its ‘health’ status, and stundyits financial ratios
will not unearth hidden information, such as the stock isentty undervalued or
overvalued.

Given these two contrasting views on financial ratios, welysthe effect of
financial ratios on price movements using the following hyesis:

Hypothesis 1. Stocks with similar financial ratio values across years hsiv@lar
price movements.

We conduct a systematic investigation of Hypothesis 1, andesearch de-
sign consists of three main phases, namelgta preparation, data miningnd
data analysis The data preparation phase prepares the stock data of iihanc

1The definitions of these financial ratios are given in Appeidi
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Figure 1: The research design structure of this work.

ratios, the data mining phase clusters stocks with simife@mitial ratios values
across years, and the data analysis phase evaluates thenqavements of these
stocks to validate Hypothesis 1. The structure of the rebedesign is presented
in Figure 1, and details of the research design is in Section 2

The data preparation phase is an engineering task of comyeiie financial
figures into financial ratios, while the data analysis phass standard statistical
tests to validate the significance of Hypothesis 1. The ehgk is in the data min-
ing phase, as existing clustering techniques lack thetpltdihandle the highly
complex stock data. Hence, in this paper, besides investiggaypothesis 1, we
also focus on developing a novel and efficient clustering@ggh to handle the
stock data.

We first give a description of the characteristics of thelsttata and the weak-
ness of existing techniques in handling it, before presgriur proposed cluster-
ing approach. The stock data can be represented as a setrlyf tyaasaction
tables, with rows corresponding to stocks and columns sparding to the fi-
nancial ratios. An example is the set of tables shown in thedhaiof Figure
3.

Firstly, the stock data has a large number of features (finhratios). If tra-
ditional clustering approaches (e.g. k-means) are use#g,are bound to suffer
from the curse of dimensionality [23]. Applying featureesgtlon or transforma-
tion techniques such as PCA can reduce the number of featureshe stocks
are clustered based on the global transformed space, wiaahsrthat the finan-
cial ratios that a cluster of stocks are similar in is unknowherefore, subspace
clustering approaches [23] are more suitable for the stat&, cas they can find
clusters of stocks in different subspaces of financial satiecondly, the stock
data is a three dimensional (3D) data (stogkitnancial ratiosx years) and hence
3D subspace clustering algorithm that handles 3D data isinesty Thirdly, the
stock data, similar to any real-world data, has high pesggnbf missing values
(in fact, 26% of the stock data used in this paper are missahgeg). Clustering
without considering the missing values naturally degradegjuality of the clus-



Go(Year 1) Gy(Year2)  Gy(Year3)

(Stock A)ug e\, (PE:[0,10]) 8\
(Stock B)u, @</ ev; (ROE:[10,15]) v
(Stock C)us. v, (D/E:[0,0.1]) v,
(Stock D)us ov; (PE:[11,15]) oV

Figure 2: Example of a stock data modeled into a set of biagtaphs. The encircled vertex sets
correspond to a CGQB subgraph.

tering results. Existing 3D subspace clustering algor#i@n 19, 50] do not han-
dle errors, and it is not straightforward to modify them totii@ missing values.
Some existing 2D subspace clustering algorithms can hanidiging values, but
it is computationally expensive to first apply 2D subspacsstelring algorithms
on each year’s data, and then combine the 2D subspace slustezd from each
year to form 3D subspace clusters.

1.1. Overview of Our Approach

We propose a graph-based 3D subspace clustering approhit kandles
all three characteristics of the stock data, whereby

1. stocks are clustered based on subspaces of financia tladitthey arsim-
ilar in.

2. the subspace clusters of stocks are of 3D.

3. stocks can still be clustered in the presence of missiagdial ratio values.

We achieve this by first modeling the stock data into a set gduttite graphs
D ={Gy,...,G,}, as shown in Figure 2. Each bipartite graph representsstock
data for a year, with vertices on one side of the graph reptigggstocks, and
vertices on the other side representing partitions of firshmatio values. Let us
assume that the partitions are arbitrary created for rétisin purpose. ThErice-
Earnings(PE) ratio measures the price of the stock in relative to #raiags of
the stock. For example, the vertex with PE:[0,10] represé#me partition of PE
from O to 10. If the value of a financial ratio of stogKalls in partition f of the
corresponding ratio, an edge connectd f.

We then mine allCross-Graph Quasi-Biclique (CGQBubgraphs (depicted
by pairs of encircled vertex sets in Figure 2) frdm where a CGQB subgraph
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corresponds to a group of stocks (denotesgstask group and a corresponding
group of partitions on financial ratios, farostof which they share similar values
across several years. More specifically, a CGQB subggapbnsisting of two
disjoint sets of vertice$U’, V'}, occurs inD if every vertex inU’ is connected
to at leasil”’| — e vertices inV’, and vice versae is thequasithreshold which
controls the strictness of the connectivities betwéérand V'. Therefore, by
mapping this financial problem into a ‘quasi’ graph-basesbfgm, stocks can be
clustered in the presence of missing financial ratio vallese thatus is not part
of the CGQB subgraph in Figure 2, as it is only densely coratetd vertex set
{vo, v1, v} in year 1 but not in year 2 and 3.

The naive way to mine all CGQB subgraphs frdmcan be based on the
two mining stages of Algorithm TRICLUSTER [50], which min8® subspace
clusters. In the first stage, we mine quasi-biclique subdggdpm each bipar-
tite graphG € D, and then in the second stage, we generate CGQB subgraphs
from these quasi-biclique subgraphs. This approach is atetipnally expen-
sive, as we show in Section 6.3. To overcome this problem, eveldp a novel
algorithm, CGQ Bminer, to efficiently mine the complete set of CGQB sub-
graphs.CGQ Bminer uses an effective search space stratgggxtensionsand
incorporates several pruning techniques to efficientlyentine cross-graph quasi-
bicliques. In our experiments, we show the efficacy 6fQ) Bminer on datasets
of different dimensions and densities.

Besides being competent in solving this financial data ngigroblem, the
CGQB model is in fact generic, and can be used for clustermgrisy 3D
datasets in other domains, such as gergamplex time microarray datasets in
biology, itemx transactionx store datasets in consumer analysis, etc.

1.2. Layout of the paper

The rest of the paper is organized as follows. Section 2 pteske research
design used to investigate Hypothesis 1. Section 3 dissubgerelated work.
Section 4.1 presents the formal definition, problem statgimeCGQB subgraphs.
Section 4.2 presents the algorithm to mine CGQB subgrdpfs) Bminer. Sec-
tion 5 describes the methodology to evaluate the price mewnenof stock groups.
Section 6 presents the experimental results. Section ushss the key findings
of the experimentations and the limitations of our appro&sction 8 concludes
the paper.
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Figure 3: The data preparation phase.

2. Research Design

As mentioned in Section 1, our research design consists@d thain phases:
data preparation, data mining and data analysis. Figuresepts the structure of
our research design.

2.1. Data Preparation Phase

Figure 3 shows the general overview of the preparation ph&se¢he data
preparation phase, financial figures of stocks across yearsbéained and con-
verted into a dataset of financial ratios, which can be reprtes! as a set of yearly
transaction tables, with rows corresponding to stocks ahdhans corresponding
to the financial ratios. The set of tables shown in the leftigfiFe 3 is an example
of a set of financial figures. For examplg,anda, can be financial figureStock
Price per SharendEarnings per Shareespectively. The set of tables shown in
the middle of Figure 3 is an example of a set of financial ratles exampler;
can be thePrice-Earnings(PE) ratio which is obtained b§EeEiee BEEAE This
dataset of financial ratios is then discretized and modelgala set of bipartite
graphs D, with its rational explained earlier in Section. 10etails of the data
preparation phase is given in Section 6.1.

2.2. Data Mining Phase

As we described in Section 1, the stock data is highly comptek existing
clustering techniques have limitations in handling it. Eenwe propose mining
CGQB subgraphs, which is a novel clustering approach thrahaadle the stock
data. CGQB subgraphs are mined from the set of bipartitehgr&p and each
CGQB subgraph corresponds to a set of stocks (denotstasgroup that have
similar financial ratio values across years. The formal defim and problem
statement of CGQB subgraphs are presented in Section 4l tharalgorithm to
mine CGQB subgraphs is explained in Section 4.2. Sectioepiins how the
parameters are set in mining CGQB subgraphs.
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2.3. Data Analysis Phase

We calculate the price movements of the stocks in the stookpyof each
CGQB subgraph, and measure the standard deviations ofpitie@ movements,
which is a standard way of measuring the dispersion of theiepnovements [8].
Statistical tests are then conducted to investigate iftdredard deviations of price
movements of stock groups are significantly lower than tlmdsandomly picked
stocks and industry indices. If so, we cannot reject Hypgitheand conclude that
it is valid. Details of the methodology to investigate Hylpesis 1 is presented in
Section 5, and Section 6.2 presents the statistical regudfare 4 shows a sample
result of different groups of stocks from the Chemical irtdysin this example,
the standard deviation of the industry index is based on @&kst the standard
deviation of random stocks is based on an average of 10 groupsrandom
stocks, and the standard deviation of the CGQB subgraphsisdban 5 stocks
that have similar financial ratios across years. From oueexents, we show that
stock groups obtained by CGQB subgraphs are statisticedlyem to have lower
standard deviations than those of randomly picked stocksnatustry index, thus
confirming the validity of Hypothesis 1. Moreover, we shoattmore statistically
significant stock groups can be discovered using CGQB sphgrthan using
existing 3D subspace clusters, as CGQB subgraphs canteldgh percentage
of missing values in the stock data.

2The industry index is an aggregate representation of the@of stocks from an industry.



3. Related Work

Jianget al. [20, 32, 33] proposedross-graph quasi-cliqueCGQC), which is
a set of graphs with vertex sgt and in each graph, each vertex connects at least
v.(]g| — 1) other vertices iry. Hence, CGQCs are groups of ‘intra-connected’
vertices, while CGQBs are pairs of groups of ‘inter-conedtvertices.

Another related work to cross-graph mining is frequent saply mining [15,
16, 24, 47, 48], where subgraphs that occur frequently in afggaphs are mined.
There is no constraint that the structure of the subgraph beuglique or biclique,
but the edges of the graph dataset must be labeled. Thusefregubgraph min-
ing is not suitable for our problem.

Triclusters [50], closed 3-sets [6] and frequent closedesti9] are 3D sub-
space clustering algorithms which can mic@ss-graph bicliqugCGB) sub-
graphs from a set of bipartite graphs (represented as a sehafy matrices).
CGB subgraphs are CGQB subgraphs without the quasi thigsgmthey do not
tolerate missing values. In our experiments, we show thatharder to discover
stock groups by CGB subgraphs.

Mining biclique subgraphs from a single graph is a well-Bksted research
problem [2, 9, 27, 29]. A biclique is a disjoint pair of vertegts where there is
full connection between them. Due to this strictness of eatiwities, it is not
suitable for dataset that has missing values.

There are several works in mining quasi-biclique (QB) sapbs from a sin-
gle graph [1, 4, 28, 31, 38, 39, 46], and not from a set of bifgagraphs. The
QBs defined by [1, 31, 46] are inclined to have skewed didibbuof missing
edges in their QBs, as the missing edges allowed in eachxvefrtbeir QBs are
not restricted. QBs defined by [4, 28, 38, 39] have this mgssitiges restrictions
on each vertex of their quasi-biclique. Due to the high cotaton costs of min-
ing QB subgraphs, only [28, 38, 39, 46] mine the complete Setsults, while
[1, 4, 31] do not. Simret al. [38] proposed clustering stocks with similar financial
ratio values, but their clustering technique is limitedyotd a year, and they did
not study the relation between financial ratios and priceenmnts of stocks.

In formal concept, Bessoet al. [3] introduced fault tolerance into bi-sets by
proposing DR-bi-sets, which correspond to QBs. HowevessBgret al. mine
the complete set of DR-bi-sets from a single binary matrikiflv represents a
bipartite graph), and not a set of binary matrices.

There are a wide range of discretization techniques [3548] which can
be applied on the financial ratios of the stock data, thus aeelehe choice of
the discretization technique to the users. In this papensesthe agglomerative



hierarchical clustering witl' Dbw index?3 [14, 45], which maximizes the inter
distances between partitions of a financial ratio and mimésithe intra distances
within partitions of the financial ratio. As this technigueparameter-free, we
avoid the study of the impact of discretization parametarthe clustering results.
For a fair comparison in our experiments, CGQB subgraph<C®H subgraphs
are mined from the same set of bipartite graphs which repteske discretized
stock data.

Kovalerchuk and Vityaev [22] gave an excellent introductan using data
mining techniques for financial applications. Similar ta @uoblem, they dis-
cussed on mining patterns from stocks to identify good st@clpurchase. How-
ever, they focused on different types of stock data, nanimeyechnical data (e.g.
stock price) and macro-economic data (e.g. industrialyecdn indices and cur-
rency exchange rates).

There are also several works on applying computationahigales to analyze
financial ratios, but they are solving problems differentirours. Wang and Lee
[44] proposed to identify representative financial ratipslustering the financial
ratios and using a representative indicator to represeht @aster. Yen [49] pro-
posed using adaptive resonance theory to predict accgundinds using financial
ratios. Self-organizing learning array [51], Gaussiaredaased reasoning [26]
and neural network-genetic programming hybrids [36] weseduto predict the
failure of companies using financial ratios.

4. Cross-Graph Quasi-Bicliques (CGQBs)

We present CGQBs, which are used in the data mining phasene stock
groups that have similar financial ratio values across yea#s first present the
formal definition of CGQBs and the CGQB subgraphs mining [@ok and then
we present the algorithm to mine CGQB subgraphs.

4.1. Definitions and Problem Statement

An undirected graplky consists of a set of vertices denotedy(~) and a set
of edges denoted b¥(G) = {{u,v}|u,v € V(G)}. An edge{u, v} denotes that
u andv are connected.

3CDbw(c) = Intra_den(c) x Sep(c), wherec is the set of clusters (partitions)ptra_den (c)
measures the density of each cluster [14, 45] 8l ) measures both the inter-cluster distances
and inter-cluster densities.



Definition 1. (Neighborhood ofv) The neighborhood afin graphG is denoted
as Ng(v) = {ul{v,u} € E(G) Au € V(G)}. The neighborhood of in V' is
denoted asV) (v) = {ul{v,u} € E(G) Au € V C V(G)}, given thatv €
V(G)\ V.

GraphG’ is a subgraph of grapi, denoted as”’ C G, if V(G') C V(G) and
E(G") C E(G). GraphG' is apropersubgraph of if G’ is a subgraph of7, and
G' # G. GraphG’ is aninducedsubgraph of7 if, for any pair of vertices, and
v of G', edge{u, v} isin E(G’) if and only if edge{u, v} is in E(G). The edge
set of an induced subgraph is determined by its vertex setesalso usex (1)
to represent the subgraph@finduced on vertex sét’ C V(G).

Graph( is a bipartite graph if its vertex set consists of two disjaats of
verticesU andV/, and edges only exist between verticeg/irand vertices ir/.
Thatis,V(G) = {U,V}, andE(G) = {{u,v}|lu € U Av € V}. A bipartite
graphG is complete if there is complete connections between \esticU and
vertices inV/, thatisE(G) = {{u,v}|Vv € V AVu € U}. For brevity, a complete
bipartite graph (or subgraph) is called a biclique (or ljgé subgraph).

The full connection requirement of bicliques is often tostrietive for real
world data because real data often contain missing valuesolVe this problem,
we allow some missing edges between verticd$ and vertices i/, and we call
such graphsgjuasi-bicliguesWe give the formal definition below.

Definition 2. (-QB) LetG be a bipartite graph with’(G) = {U, V'}, ande be
the quasi threshold’ is ae-QB if and only if

o YueU, |Ng(u)| > V] —e
o Yo e V,|INY(w)| >|U| —e.

Parameter controls the strictness of the connectivities between #réex sets
U andV of quasi-bicliques to prevent skewed distribution of rmgsedges. In
Figure 2, ate = 1, there is a quasi-biclique subgragh(U’,V’) in G,, with
U" = {ug, ur, us} andV’ = {vg, vy, v2}.

Lemma 1. If a bipartite graphG is a¢-QB, then for any induced subgragh of
G, G'is also a«-QB.

PROOF LetV(G) = {U,V} andG’ be induced on vertex sét/’, V'}, where
U CUandV’' C V. Forallv € V' C V, we havelU’| — |[NY (v)| < |U| —
INY(v)| < e becausé” C U; and forallu € U’ C U, we haveV’| — N} (u)| <
V| —|NY (u)| < e becausé’”’ C V.
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We represent the stock data of one year as one bipartite ,gsapiroups of
stocks having similar values on a group of financial ratioesE several years cor-
respond to quasi-biclique subgraphs that occur in sevgrattite graphs. We use
a minimum support thresholets, to constrain the minimum number of bipartite
graphs containing a quasi-biclique subgraph.

Definition 3. (Cross-graph quasi-biclique (CGQB) subgraph Let D = {G;,
..., Gy} be a set of bipartite graphs witk(G,) = ... = V(G,,) = {U,V}.
Given a quasi threshold and a minimum support thresholas,, vertex set
{U",V'}, whereU’ C U, V' C V, forms a CGQB subgraph if and only if

o {G|G e DANGU', V') is a eQB}| > ms,, whereG(U’, V') is the sub-
graph ofG induced on vertex sét/’, V'}.

We useocc(U’, V') to denote{G|G € D AN G(U’, V') is a e-QB}. Givene = 1
andms,=3, Figure 2 shows a CGQB subgraph with= {ug, u;, us} andV’ =
{vo, v1,v2}, andoce(U’, V') = {G1, Ga, G3}.

Based onLemma 1, {fU’, V'} forms ae-QB in graphG, then foranyf{ U”, V"'}
such thatt” C U’ andV” C V', {U”,V"} also forms a-QB in G. There-
fore, if {U’,V'} is a CGQB, theU”, "} must also be a CGQB, and we have
occ(U", V") D occ(U', V). In the case obcc(U", V") = occ(U', V"), {U", V"}
becomes uninteresting because it provides no more infmgtan{U’, V'}. In
this paper, we are interested in mining only maximal CGQBgsaphs.

Definition 4. (Maximal CGQB subgraph) Let D = {G,...,G,} be a set of
bipartite graphs andU’, V’} be a CGQB subgraph i®. If there does not exist
another CGQB subgrapkU”,V"} in D such that{U’,V'} c {U”,V"} and
occ(U', V') = occ(U", V"), then{U’,V'} is called a maximal CGQB subgraph
inD.

CGQB subgraphs containing only a few vertices are not vagyresting. A trivial
case is quasi-biclique subgraphs containing only one stndlone financial ratio.
To filter such small CGQB subgraphs, we use two thresholds and ms, to
constrain the minimum number of verticedihand minimum number of vertices
in V' respectively.

Problem statement Given a set of graph® = {G,,...,G,}, the CGQB
subgraphs mining problem is to mine the complete set of CG@igmaphs from
D, such that each CGQB subgraph is maximal and satisfies ts thuashold,
the minimum size thresholdss,,, ms, and minimum support threshotds,.

In the rest of the paper, we assume CGQB subgraphs to be maximess it
is explicitly stated not to be.
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Figure 5: Partial set enumeration tree of the set of bigagtibphs in Figure 2. Each node of the
tree is represented by a subsetbfdenoted ag/’ C U) and a subset df (denoted a§’’ C V).

4.2. CGQBminer : Mining Cross-Graph Quasi-Biclique (CGQB) Subgraphs

A naive method to mine CGQB subgraphs can be based on thagrstruc-
ture of Algorithm TRICLUSTER [50], which consists of two niiig stages. In
the first stage, we mine quasi-biclique (QB) subgraphs fraohéipartite graph
G € D using some existing QB mining algorithms [1, 4, 31, 38, 46} ¢hen in
the second stage, we generate CGQB subgraphs from theseb@Qighs. How-
ever, this approach is computationally slow as it is posdifsht a large number of
QB subgraphs are generated, and many of them cannot form CEQdaphs.
Therefore, there is a need to develop an efficient algorithmine CGQB sub-
graphs.

In this section, we present our CGQB subgraph mining algoriC GQ Bminer,
which takes the set of bipartite graphs= {G,...,G,} with V(G,) = ... =
V(G,) ={U,V} as input.

4.2.1. Tri-extensions: Three dimensional search spaceetsal strategy

We project the three dimensional search space of the data imodifiedset
enumeration tre¢37] (we shorten it tdree for conciseness) that represents the
power sets ot/ andV'. This modified tree is able to accommodate the two power
sets, where eachodeof the tree, denoted &3/', '}, represents a subset of
(U C U) and a subset df" (' C V). At each nodgU’, V'}, we also maintain
occ(U', V') which contains the set of graphs in whi€t’, V'} forms ae-QB.

We sort the vertices ity andV according to some order, so that only vertices
that are after all the existing vertices if(V’) can be used to extend’(1).
For example, vertex., can be used to exterld = {u,}, but it cannot be used
to extendU’ = {us}. We uselast(U’) to denote the last vertex ifi’ and use
last(V') to denote the last vertex i#'. Figure 5 shows a partial tree of the set of
bipartite graphs in Figure 2.
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We propose a strategdgi-extensionsto recursively traverse down the tree. Let
us assume that GQ) Bminer is at node{U’, V'} of the tree.

e U-extension. U’ is extended with a vertex € extCand(U’), where
extCand(U") = {u|lu € U ANu > last(U’)} is the set of extension can-
didates ofU’. For a node reached liy-extension, only/-extensions are al-
lowed for its subsequent extensions. THusgxtension is a series of traver-
sal to nodeqU”, V"}, whereU” D U'".

e VV-extension. VV-extension is similar td/-extension, except that’ is ex-
tended withv € extCand(V"), whereextCand(V') = {vjlv € V Av >
last(V')} is the set of extension candidates 16f. For a node reached
by V-extension, onlyl/-extensions are allowed for its subsequent exten-
sions. Thus})/ -extension is a series of traversal to nogés, "}, where
Vo V.

e (U, V)-extension. U’ is extended withu € extCand(U’) andV’ is ex-
tended withv € extCand(V'). For a node that is reached By, V)-
extension, the three types of extension are still appleablsubsequent
extensions.

Lemma 2. Through tri-extensiong, GQ Bminer recursively traverses all nodes
of the tree that contain CGQB subgraphs, and every node vetszd only once.

PROOF We prove that every nod€U’, '} can be reached by'GQBminer
and every node is traversed at most once. Wet= {uq, ug, - -+ ,u;} andV’ =
{vi,ve,- -+ ,v;}. There are three cases:

(1) i=j. In this case, it is obvious thdtl’,V'} can be reached by (U, V)-
extensions from the empty set. We need to prove that it is tiyeweay to reach
{U’, V'}. Suppose there is another path to reéth V'} throughU-extension at
node{U"”,V"}, whereU"” = {uy,us,- -+ ,up}, V" = {v1,v9, -+ v} @andk < i.
Since{U”,V"} is extended by d/-extension, all of its subsequent extensions
must beU-extensions, and’” C V'’ will not be extended further. Therefore,
{U’, V'} can never be reached if there i&/aextension on the path. Similarly, we
can prove thafU’, '} cannot be reached if there id/aextension on the path.
(2)i > j. Inthis case{U’, V'} must be reached by (U, V')-extensions followed
by (i — j) U-extensions. The proof is similar to (1).

()i < j. Inthis case{U’, V'} must be reached by(U, V')-extensions followed
by (j — i) V-extensions. The proof is similar to (1).
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Algorithm 1 CGQBminer(U’, V' extCand(U"),extCand(V"))
Require: U’ andV’ are subsets df andV respectively

extCand(U’) is the set of candidates to extefid

extCand(V') is the set of candidates to extehd
Ensure:
if locc(U’, V)| < ms4 thenreturn;
if |U'| > msy A V'] > msy, Aloce(U',V')| > ms,4 then

Output CGQB{U’, V'} andocc(U’, V)

end if
if [U" U extCand(U'")] < ms, or |V' U extCand(V')] < ms, then return;

6: /* U—ext ensi on?*/
7:if |V'| > ms, then
8: forall u € extCand(U’) do

9: CGQBminer(U’' U{u}, V' extCand(U" U {u}),{});
10:  end for
11: end if

12: *V—ext ensi on?*/
13:if |U'| > ms, then
14: forall v € extCand(V') do

15: CGQBminer(U', V' U{v}, {}, extCand(V' U {v}));
16:  end for
17: end if

18: /* (U,V)—ext ensi on */
19: forall u € extCand(U’) do
20: forall v € extCand(V') do

21: CGQBminer(U’' U{u}, V' U{v}, extCand(U" U {u}),extCand(V' U {v}));
22:  end for
23: end for

The pseudo code 6f GQ Bminer is shown in Algorithm 1. Whed'GQ Bminer
is first called on the set of bipartite graphs U’ is set to{} andV" is set to{}.
For U-extensions, vertex sét’ will not be changed in the future. Therefore, we
perform U-extension or{U’, V'} only if |V’| > ms,. Similarly, we perform
V-extension oqU’, V'} only if |U’| > ms,.

4.2.2. Pruning techniques for the search space traversal

We now describe the set of pruning techniques which helpgnmmzing the
traversal of the search space. Before the set of bipartehsD is used as the
input for CGQ Bminer, we pre-process it to reduce its size.

Pruning technique 1. (Pre-processing on the set of biparté graphs D) In
eachG € D, verticesu € U whose neighborhood siz&;(u)| is less thanns, —e
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are pruned, as they cannot form CQGB subgraphs. This prusiatso done on
vertices inV. For eachG € D, if |U| < ms, —eor |V| < ms, — ¢, thenG is
pruned, as no QB subgraph can be foundin

Let us assume thd is pre-processed addz() Bminer has traversed to node
{U',V'} inits tree.CGQ Bminer proceeds to obtain the candidates to exteéhd
andV”’, which are pruned by the following technique.

Pruning technique 2. (Pruning extension candidates basechahe minimum

support constraint) For a vertexu € U andu > last(U"), if [{G||Ng (u)| >

V| —e NG € D} < ms,, thenu cannot form a CGQB subgraph witl’,

and it should be excluded fromxtCand(U’). Similarly, for a vertex» € V and
v > last(V'), if [{G||NZ (v)| > |U'| — e A G € D}| < ms,, thenv cannot from
a CGQB subgraph witl/’, and it should be excluded fromtCand(V").

Vertex setu} andV’ form a QB if [N (u)| > |V’| —e. However, if there are
less thanns, number of graphs in whicku} andV” form a QB, then no CGQB
subgraph can be formed byandV”’. Thus,u is pruned. By adding pruning tech-
nique 2, the set of extension candidates/6becomes:ztCand(U’) = {u|u €
U Au>last(U) A |{G||NE (u)| > [V'| — e NG € D} > ms,}.

Example 1. We setms,, = ms, = 2, ms, = 3 ande = 1. Let us assume
that we are traversing the tree of the set of bipartite graghBigure 2 and
is at node{{ug, u1}, {vo,v1}}. We havelast({ug,u1}) = uy;. Foruy € U,
uy > last({ug,ur}) and [{G|INE" (ug)] > Hvg, 01} — e A G € D| =
{Go, G1,Ga}| > ms,, SOu,y is an extension candidate bf. Forus € U, uz >
last({uo, ur }) and|{G|INE*" (us)| > [{vo,v1}| — e A G € D| = [{}] < ms,,
soug is not an extension candidate©f. Thus,extCand({ug, u1}) = {us}.

Similarly the set of extension candidates 16f becomeseztCand(V') =
{vjv € V Av > last(V') A {G||NY (v)| > |U'| — e AG € D} > ms,}
after applying pruning technique 2. The sets of candidatesxtension are then
used to check if the current nogé&’, v’} should be pruned.

Pruning technique 3. (Pruning nodes based on the minimum se&constraint)

If |U" U extCand(U")| < ms, or |V' U extCand(V')] < ms,, then current
node{U’,V'} is pruned (Algorithm 1 line 5), as current node and subsetjuen
nodes traversed from it do not contain CGQB subgraphs thidtl fthe mini-
mum size thresholds.s,, ms,. Since we reduce the sizeseofCand(U’) and
extCand(V') using pruning technique 2, more nodes can be pruned usisg thi
pruning technique.
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If current node{U’, V'} is not pruned(C'GQ Bminer proceeds to prung.c(U’, V'),
which contains the set of graphs in whi€t’, V’} forms ac-QB.

Pruning technique 4. (Pruningocc(U’, V') based on the quasi threshold) Given
agraphG € D, if Ju € U’ |NY (u)| < |V'| —eor Jv € V', |NY (v)| < |U'| — e,
thenU’ and V' do not form a-QB inG. ThusG is pruned.

After applying the above pruning technique¢(U’, V') = {G|G € D AVu €
UL INS (w)| > |V!| —enVo € V' |NY (v)| > |U'| — €}

Example 2. Continuing from Example 1, assume th@tzQ) Bminer has tra-
versed to nod€ {ug, ui, us}, {ve, v1,v2}}. We haveocc(U', V') = {G|G €
D AYu € {ug, ug,us}, \Névo’vl’UQ}(u)| > {vo,v1,v2}| — e AV € {vg, v1,02},
NG w)| = [{ug, wr, us}| — e} = {Go, G, Ga}.

The next pruning technique prunes the current nodé VV'}, based on the
size ofocc(U’, V).

Pruning technique 5. (Pruning nodes based on the minimum symwrt con-

straint)  If the number of graphs incc(U’, V') for node{U’, V'} is less than
ms,, then this node does not contain CGQB subgraphs that fulfil], and is
pruned (Algorithm 1 line 1). Since we remove graphsde(U’, V') using prun-
ing technique 4, more nodes can be pruned in this pruningiegcie.

Based on Lemma 1, i{U’,V'} does not satisfy the minimum support con-
straint, then none of its supersets can satisfy the minimuppat constraint.
Therefore, there is no need to extefd’, V'} further, and the whole sub-tree
rooted at nodg¢U’, V'} can be pruned.

As we are interested in only maximal CGQB subgraphs, we neeathéck
whether every generated CGQB is maximal. One approach isre all CGQB
subgraphs, store them and then check the results and retlyrnhose that are
maximal. However, the stored results can be very large, it only consumes
lots of memory, but also slows down the checking operatidre Better approach
is to check directly if each CGQB is maximal, which is done bing two types of
maximal checks ogU’, V'}: (1) adding vertex. € U-U"toU’. If {U'U{u},V'}
forms a QB in every graph icc(U’, V'), then{U’, V'} is not maximal. (2)
adding vertexw € V —V'to V'. If {U', V' U {v}} forms a QB in every graph in
occ(U', V"), then{U’, V'} is not maximal.
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4.2.3. Correctness and Time Complexity a¥() Bminer

In summary, all nodes of the tree that contain CGQB subgraph$raversed
(shown in Lemma 2), and nodes that do not contain CGQB suhgraqe pruned
by the pruning techniques described above.

Theorem 1. (Correctness o' GQ Bminer) CGQBminer generatesthe com-
plete set of maximal CGQB subgraphs from a set of bipartiéglgs D, with re-
spect to the minimum size threshoids,,, ms,,, minimum support thresholeks,
and quasi thresholé.

The correctness and completeness'6i(Q) Bminer is guaranteed by Lemma 1
and 2.

On the complexity analysis af GQBminer, it is a well known fact that
the worst case time complexity of algorithms that use setramation tree is
exponential to the size of the input [42]. Thus, the worstecasie complex-
ity of CGQBminer is in exponential. However in Section 6.3, we show that
CGQBminer generally performs well due to its efficient search spaceetsal
strategy and effective pruning techniques.

4.2.4. Handling non-bipartite graphs

Besides mining from bipartite graph€,GQ) Bminer can also mine CGQB
subgraphs from a set of non-bipartite graphs. Ass@me {H,,...,H,} is a
set of non-bipartite graphs with(H,) = ... = V(H,) = U. We first dupli-
cateU and denote the duplicate & We then converD into a set of bipartite
graphsD = {Gy,...,G,},withV(G;) = {U,V}andE(G;) = {{u,v}|{u,v} €
EH)NueUAveV}Vie{l,...,n}. Dwill be used as the input dataset
for CGQBminer. AsU = V, Algorithm 1 is modified to prevent/’ and V’
containing the same vertex. Verticeslii and U’ are also prevented to be in
extCand(U’) andextCand(V') respectively.

5. Evaluating Price Movements of Stocks

In the data analysis phase, the price movements of the stocipg obtained
by CGQB subgraphs are evaluated to check if their price mewtsnare statis-
tically similar. The following describes the methodologydvaluate the price
movements.

1. CGQB subgraphs are mined from the set of bipartite gragresenting the
stock data from an industry (refer to Section 1.1), and fr@acheof them,
we obtain itsstock groupwhich we formally define as follows.
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Definition 5 (Stock group). Let{U’, V'} be a CGQB subgraph mined from
a set of bipartite graphs representing a stock data. lletepresents a set
of stocks and/’ represents a set of financiahtios’ values which this set
of stocks are similar inlU’ is known as the stock group of this CGQB sub-
graph.

For example, lef{ug, u1, us}, {vo, v1,v2} } be a CGQB subgraph from Fig-
ure 2, and{uyg, u1, us } is the stock group of this CGQB subgraph. In addi-
tion, we denote as the set of stock groups obtained from a set of bipartite
graphs.

. Calculating standard deviation of stock groups In a stock group, we
calculate the standard deviation of its stocks’ price mamets. Low stan-
dard deviation implies high similarity in price movements these stocks.
From each yeay; which the stocks of the stock group have similar finan-
cial ratio values, we calculate the standard deviationedérstocks for year
yir1. This calculation will show how stocks having similar finalaatio
values in current year will affect their next year price monats. The stan-
dard deviation is calculated per year basis since the finhratios of stocks
change every year.

. Conducting statistical hypothesis tests Statistical tests are conducted to
test if the standard deviations of stock groups are steaibyi significantly
lower than those of randomly picked stocks from the indusing the indus-
try index. For the first comparison, we are comparing thegpmovements
between stocks with similar financial ratio values and stogkhout simi-
lar financial ratio values. For the second comparison, weamgparing the
price movements of stocks with similar ratio values and terage price
movements of all stocks. If the standard deviations of tbeksgroups are
statistically significantly lower, then we cannot rejectgdyhesis 1, and the
claim that financial ratio values are indicators of futuiegtprices is valid.

5.1. Calculating standard deviation of stock groups

For a stock grou = {s1, ..., s;} which are similar in a group of financial

ratios across yearsg, . . ., y,,, We track the price movements Sfacross its suc-
ceeding years, that i8] = {y2,...,ym+1}. Letp(s,y) denote the closing price
of the stocks for yeary, and the price movement for years denoted as

p(s,y+1)—p(s,y)
p(s,y)

d(s,y) =
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We then denote the standard deviatiorbdbr yeary as

a@w:%QZM@wﬂmwv

whereu(S,y) = ﬁ > scg d(s,y) is the mean price movements $ffor yeary.
We average (.S, y) over the set of year¥ to calculate the standard deviation
of S across the set of years,

1
() = g7 > o(S.0)

For the set of stock grougs= {51, ..., Sk}, we calculater(S;), ..., (Sk),
and obtain their average

1
o(S) = 5 > o(S9)

We denotes (S) asthe standard deviation of the set of stock groSGpd_ow
o(S) means on average, each stock gréug S has highly similar price move-
ments.

5.2. Conducting statistical hypothesis tests

We use t-test to conduct the following hypotheses as thelptpn standard
deviation of the stock data is unknown, and we assume thatdimelard deviation
of the price movement of stocks follows a standard normatitigion.

Paired t-test is conducted to test the following hypothesis

Hypothesis 2. The standard deviation of the set of stock groups is lowen the
standard deviation of the randomly picked stocks.

This is to compare if the standard deviation of the set ofkstpoups is lower
than the standard deviation of stocks that are grouped rs&tdban similarity in
their financial ratios. Paired t-test is used since both tbeksgroups and ran-
domly picked stocks are drawn from the same data. To have laiased paired
t-test, each stock group is matched with a group of randornekeg stocks, and
they are of the same size and industry.

Next, one sample t-test is conducted to test the followingptiyesis, with the
assumption that stocks in the set of stock groups are froraahe industry.
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Hypothesis 3. The standard deviation of the set of stock groups is lowen the
standard deviation of the industry index.

This is to compare if the standard deviation of the stock gsas lower than
the standard deviation of all stocks in the same industrgckdtin same indus-
tries tend to have similar values in their financial ratio3][1In a separate work,
King [21] shows that price movements of stocks in the samastrgt are similar.
Based on these two works, one may suspect that similar fialaratios’ values
are related to similar prices. If we can show that stocksanlsgroups have more
similar price movements than stocks in the same industewy We are compound-
ing the fact that stocks with high similarity in their finaatratios have similar
price movements, as the stocks in stock groups have hignéasty in financial
ratios than stocks in the same industry.

If Hypothesis 2 and 3 are not rejected by the tests, then weatarject Hy-
pothesis 1 and we will conclude that it is valid.

6. Experimental Results

Our experiments were performed on Windows XP environmesitiguintel
3.4Ghz and 2GB RAM. All algorithms were coded in C++. We predbe sta-
tistical test results on the price movements of stock grapained by CGQB
subgraphs, and then we show how stock groups mined by therhecased for
stock investments. Lastly, we present the performance/stlid'GQ Bminer.

6.1. Data Preparation

We downloaded financial figures of stocks from from Compuydtt for year
2000 to 2006. These financial figures of stocks are from 9 imigsgs namely Ap-
parel& Other Textile Products, ChemicalsAllied Products, Food, Insurande
Real Estate, Oikz Gas Extraction, Pap&t Allied Products, Printingz Publish-
ing, Wholesale Trade and Metal Mining, and each industrysisis of 28 to 36
stocks. We converted these financial figures to 32 major finhratios, based
on the ratios’ formula from Investopedia [18]. The formulafethe popular fi-
nancial ratios are presented in Appendix A for the inteestader. In total, we
have 32 financial ratios of 234 stocks for 7 years, W% of the data being
missing values. As the financial ratios are in continuousies| we discretized
them into partitions using the agglomerative hierarchatastering withC' Dbw
index [14, 45]. We then converted the stock data into setspafriite graphs, as
described in Section 1.1. We obtained 9 sets of bipartitplgg®,, . . ., Dy, with
eachD representing the stock data of an industry.
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Figure 6: (a) Average standard deviation of price movemehtifferent stock groups from 9
industries. (b) Number of stock groups mined from 9 indestri

6.2. Study on the stock price movements

We mined CGQB subgraphs from eathto obtain its set of stock groups.
Recall that a stock group has a group of similar financiabnediues across several
years. Setting the appropriate threshold to mine CGQB sudtgrcan be a tricky
task. We attempted to study the effect of varying threshdbds at the same
time we want to obtain large CGQB subgraphs that do not comtaée stock or
financial ratio. We set a minimum number of 7 yearssf = 7), as we required
the stock groups to exist across all years of the data. We &ixaohimum number
of 5 stocks {ns, = 5) to prevent the stock groups to be trivially small. We varied
the minimum number of financial ratios from 3 to74,) to study the effect of
stock groups having different number of similar financidlaavalues. We set
the upper bound to 7 as we found that very few or no CGQB subgrare
mined if ms, > 7, and we set the lower bound to 3 as we found that too many
small CGQB subgraphs were minednifs, < 3. We kept the quasi threshotd
small and varied it from 0 to 2 as we want the mined stock graagse highly
similar in their financial ratios. Thus, we have 135 sets otlsigroups (9 sets of
datax 5 varyingms, x 3 varyinge). Note that we are mining CGB subgraphs
ate = 0, and they can be mined using the frequent closed cube [1€])dter
[50] or closed 3-sets [6] models. We adopted the frequersed@ube model and
used the CubeMiner algorithm [19] to mine cross-graph ¢piwdi subgraphs. The
CubeMiner algorithm was kindly obtained from the authors.
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6.2.1. Standard deviation of the sets of stock groups

We calculated the standard deviation of each set of stoaks®, o(S), and
Figure 6(a) shows the average standard deviations of te@gstock groups from
the 9 industries. The sets of stock groups are obtained lyyngathe minimum
number of financial ratios from 3 to 7(s,). The average standard deviations of
stock groups obtained by different quasi threshadde shown in the lines labeled
with ‘¢’. The lines labeled with ‘Random fef are the average standard deviations
of the groups of randomly picked stocks matched to each stbok groups. The
line labeled with ‘Industry index’ is the average standaggtidtions of all stocks
in the 9 industries.

From Figure 6(a), we can see that the average standard idegiaf all 135
sets of stock groups are distinctly lower than those of gsamfrandomly picked
stocks and the average industry index. Besides this, we lsansae that the
average standard deviations decreasenasincreases. This means that stock
groups which have a larger number of similar financial ratitues across several
years have higher similarity in their price movements.

6.2.2. Number of stock groups mined

Figure 6(b) presents the number of stock groups obtained €&QB sub-
graphs mined fronDy, ..., Dy. The minimum number of financial ratioss, is
varied from 3 to 7. The lines labeled with differerindicates the number of stock
groups obtained by different quasi threshekkttings. Figure 6(b) shows that the
number of stock groups mined depends on two factors: thenmoim number of
financial ratiosns, and the quasi threshotd Either decreasingus,, or increasing
e results in increasing number of stock groups. Thereforeudemt investor will
select the appropriates, ande to obtain his/her desired number of stock groups.

Figure 6(b) also shows the advantages of having quasi thickshAt ¢ = 0,
very few cross-graph biclique subgraphs were mined to oltkee stock groups,
even at lowms,. This clearly shows that the high percentage (26%) of mgssin
values in the stock data hinders the discovery of potentalksgroups, and the
strict connectivities requirement of cross-graph bicliubgraphs does not help
in discovering these stock groups. However, with the intadidn of quasi thresh-
old ¢, the connectivities in CGQB subgraphs can be relaxed and stock groups
can be discovered in the stock data, as shown in Figure 6(b).

6.2.3. Statistical hypothesis tests
We conducted the paired t-test for Hypothesis 2 and one sat¥tpkt for
Hypothesis 3 (refer to Section 5.2) on each of the 135 setwok groups. We
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Table 1: Percentage of test outcomes whesalue< 0.05, for 135 sets of stock groups.

Paired t-test One sample t-test
¢ | Available test| All test Available test| All test
outcomes outcomes outcomes outcomes
0| 87 44.4 91.3 46.7
1(/94.3 73.3 100 77.8
2190 80 100 88.9

calculated thep-value for each test and categorized the outcome of a test int
three categoriegi-value< 0.05, p-value> 0.05 and N.A..p-value< 0.05 means
that the average standard deviations of the set of stockpgrate statistically
significantly lower than the standard deviation of the goaprandomly picked
stocks or the industry index, depending on which test is gotedl. N.A. means
that the test outcome is not available as the size of the s&#bok groups is too
small to be considered for the statistical test.

Table 1 presents the percentage of test outcomes wheakie < 0.05. The
test outcomes of sets of stock groups obtained with diftereettings are shown
in each row. The column ‘Available test outcomes’ preseémtgaercentage of test
outcomes whosg-value < 0.05, with respect to all tests which have outcomes.
The column ‘All test outcomes’ presents the percentagestfdetcomes whose
p-value< 0.05, with respect to all tests outcomes (which includes N.A.).

Almost all the paired t-tests and one sample t-tests outsdmagep-value
< 0.05. In particular, whers > 0 on ‘Available test outcomes’, more th&%
of the test outcomes hayevalue < 0.05. This shows that it is very rare that
Hypothesis 2 and 3 were rejected. When= 0, the percentage of the t-tests
outcomes having-value< 0.05 is lower than those of > 0. Since less number
of stock groups is obtained when= 0, the statistical tests have less confidence
of not rejecting Hypothesis 2 and 3.

There is also a low percentagegfalue< 0.05 on ‘All test outcomes’ when
e = 0. Again, this is due to few or no cross-graph biclique subsdgeing mined
to obtain sets of stock groups, resulting in a large pergentd test outcomes
being N.A..

The results in Table 1 convey two important information. sEiwe cannot
reject Hypothesis 1 due to the overwhelming percentagests tailing to reject
Hypothesis 2 and 3. This shows that stock groups that havwgpgrof similar
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financial ratio values across several years have similaepriovements. Sec-
ond, the quasi relation of CGQB subgraphs is crucial in legqdio discovery of
stock groups that have more number of similar financial ralaes across several
years, and these stock groups are statistically provenve lhigher similarity in
their price movements, as shown in the rows of Table 1 wherl, 2.

6.2.4. Utility of stock groups

After proving that stock groups with similar financial ratialues have similar
price movements, the natural question to ask is how do weeitihis valuable
knowledge? Let us assume that we have a simple investmatggrwhich we
denote as strategy A. Strategy A assumes that if the avestig® 10f a stock from
year 2000 to 2005 is positive, then it predicts that the retidithe stock for 2006
is positive too.

Let us also assume that we have strategy B, which is using C&@Braphs
with strategy A. In strategy B, the stocks are clustered @sksgroups described
in Section 6.2, and if the average return of a stock group fyear 2000 to 20005
is positive, then it predicts that the return of this stoc&ugy is positive for year
2006. The purpose of this strategy is to study how using sjoalps can improve
an investment strategy.

We obtained 346 stocks for strategy A and 1,328 stock groopstfategy
B. For strategy A, 47.4% of the stocks have positive returnytar 2006 while
83.8% of the stock groups have positive return for year 208@. can see that
the simple approach of strategy A to predict future retusnslosed to random
guessing. However, by incorporating the same strategy G@QB subgraphs,
the percentage of positive returns increases consideralitys shows that the
usage of CGQB subgraphs can provide a margin of ‘safety’ fomaestment
strategy.

6.3. Study on the performance@¢:Q Bminer

As there are no existing algorithms to mine CGQB subgraples,imple-
mented the naive approach that we described in Sectionod.pefrformance
comparison. This naive approach consists of two miningestawhich follows
the mining structure of algorithm TRICLUSTER [50]. Given at ©f graphs
D = {G,,...,G,}, this naive algorithm first mines quasi-biclique subgsaph
from eachG € D. In the second stage, CGQB subgraphs are generated from
them. For the first stage, we used themplete B algorithm [38] to mine quasi-
biclique subgraphs.
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Figure 7: Performance study 6fGQ Bminer across different scenarios

We evaluated how the size and density of the datasets, anphthmeter set-
tings of CGQ Bminer affect the running time of ' GQ) Bminer. For this perfor-
mance study, we generated a synthetic set of bipartite glaph {G4,...,G,},
using IBM Quest Market-Basket Synthetic Data Generatot. [E&Ach bipartite

graph contains 2000 vertices, with 1000 in each of its ves&tx
6.3.1. Effect of the size and density of the dataset

We studied how the size and density of the dataset affecuti@mg time of
CGQBminer. To evaluate the effect of the size of the dataset, we vahed t
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number of bipartite graphs if» from 10 to 40, and set the density bfto 10%*.

Hence, the number of edgesihvaries from 1 to 4 million. For the parame-
ters, we setns, = ms, = ms, = 10, e = 1. Note that we fixed the parameters
so that we can have a fair evaluation of how the number of bipagraphs inD
affects the running time af'GQ Bminer. Figure 7(a) presents the running time
of CGQBminer and the naive algorithm across the different size®ofThe
naive algorithm could not complete mining after 12 hoursafbdifferent sizes of
D, while CGQ Bminer completed all mining in less than 1.5 hours. The naive
algorithm is slow as its two mining stages potentially canagate large number
of quasi-biclique subgraphs that are not cross-graph duiasjues. On the con-
trary, CGQBminer is fast as thdri-extensiondraversal strategy is efficient in
traversing the search spacelof

To evaluate the effect of the density of the dataset, the earabbipartite
graphs inD is fixed at 10 and we varied the density Bffrom 6% to 30%. So,
the number of edges i varies from 0.6 to 3 million. Figure 7(b) presents the
results. The naive algorithm completed mining in about @rsevhen the density
is 6%, but could not complete mining for the rest after more tharh@@rs. On
the other hand;'GQ Bminer completed all mining in less than 100 seconds.

6.3.2. Effect of the parameter settings

We studied how the minimum sizess,,, ms,, minimum supportns, and
quasi threshold affect the running time of' GQ Bminer. We usedD containing
10 bipartite graphs with densit0%. To evaluate the effect ofis,, ms,,, ms,,
we varied them from 4 to 10, and set= 1. Figure 7(c) presents the running
time of CGQ Bminer and the naive algorithm. The naive algorithm could not
complete mining after 12 hours for all settings, U@ Bminer completed all
mining in less than 1000 seconds. This shows &t Bminer is able to ex-
ploit ms,, ms,, ms, to efficiently prune the search space, as the running time is
constantly low across the thresholds. There is a noticeablease in the running
time when the threshold dropped from 5 to 4, which is due togelancrease in
the number of CGQB subgraphs mined.

To evaluate the effect of, we setms,, ms,, ms, to 10 and varied from 1
to 7. Figure 7(d) presents the results. The naive algorithoid not complete

“Density of D is calculated a‘OITWG)l_Ifji}'i(C:'IUHVI’ which is the number of edges @#
= s ,G€E

divided by the total number of possible edgedf7]. Note that the density of a graph is different
from the density of a cluster explained in Footnote 3.
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Table 2: Key findings of the study on the stock price movemien8ection 6.2.
Experiment Key Findings
(1) Standard devia- - Standard deviation of stock groups are distinctly lower
tion of stock groups than those of randomly picked stocks and industrial in-
dexes
- Stock groups having larger number of similar financial
ratios have lower standard deviation
(2) Number of - Decreasingms, or increasinge results in increasing
stock groups mined stock groups
(3) Statistical hy- - Hypothesis 1 is not rejected as Hypothesis 2 and 3 are
pothesis test not rejected
- Stock groups with quasi relation are statistically proven
to have higher similarity in their price movements than
those without quasi relation
(4) Utility of stock The probability of making profit increases Bg.4% if an
group investment strategy utilizes CGQB subgraphs

Table 3: Key findings of the study on the performanc€'6fQ) Bminer in Section 6.3.
Experiment Key Findings
(1) Effect of the size and den-C'GQ Bminer is much scalable than the naive
sity of the dataset algorithm for different sizes and densitiesiof
(2) Effect of the parameterCGQBminer is much efficient than the naive
settings algorithm across different thresholds settings.

mining after 12 hours across the varyiagvhile CGQ Bminer completed all
mining within 30 seconds. The running time 6%GQ Bminer decreases as
decreases, which evinces the effectiveness@t) Bminer in utilizing e to prune
the dataset.

7. Results Discussions

7.1. Key Findings from Experimentation

We summarize and present the key findings from our expermheggults of
Section 6. Table 2 presents the summary of the study on thlk gtiwe movement
in Section 6.2 and Table 3 presents the summary of the stutlyeoperformance
of CGQBminer in Section 6.3.
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7.2. Limitations of Proposed Approach

Although the results are promising, there are certain &tianhs of our pro-
posed approach, which we discuss as follows:

1. There are no methods to rank the CGQB subgraphs in terrhgiofutility
or usefulness. Ranking CGQB subgraphs will be useful incasgere a
large number of them are mined and the user would like to salsabset
of them.

2. The experiment results show tliatz () Bminer is suitable for medium size
dataset and may not be scalable for large dataset, whichiosrthousands
of bipartite graphs or millions of vertices.

3. The quasi threshold of CGQB subgraphs is designed to lnduabdased to
allow efficient implementation of the pruning techniques@f () Bminer.
However, a percentage based quasi threshold may be a maralvedy of
controlling the strictness of the connectivities in CGQBg@aphs.

4. Prudence must be exercised in setting the appropriasttblds folC’ GQ Bminer.
Setting a large quasi and small minimum size and supporshiotds will
likely to result in an exorbitant number of CGQB subgraphisdpeliscov-
ered, while setting a small quasi and large minimum size apdart thresh-
olds will likely to result in no CGQB subgraph being discoser

8. Conclusion

We tackled an important hypothesis in financial data minamgi showed that
indeed, stocks with similar financial ratio values acrossyeo have similar price
movements. This was achieved by mapping the problem to thadisoovering
CGQB subgraphs, which are essentially 3D co-clusters twtocks and finan-
cial ratios in multiple yearly graphs. CGQB subgraphs fitibile because they
can handle the problem of missing data, which is quite ramipaiinancial data
in general. Itgquasithreshold allows users to control the degree of similardy b
tween financial ratio values of stocks within a cluster. Weettegped a novel and
efficient algorithm (C'GQ Bminer, to mine the complete set of CGQB subgraphs
from a set of bipartite graphs. In our experiments, we showesttatistical tests
that groups of stocks mined by CGQB subgraphs have simiiege pnovements,
and they are statistically more significant than groupsadlst mined by existing
3D subspace clustering algorithm. We also demonstratadhbgrobability of
making profit by using groups of stocks mined by CGQB subgsaplsubstan-
tially higher than by using an investment strategy baseel\goh historical prices.
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Lastly, we showed that'GQ Bminer is highly efficient across datasets of differ-
ent dimensions and densities. Our future work consistsregtiparts. First, we
will conduct in-depth analysis on which ranges of financaiar values are impor-
tant indicators of similar price movements, particularirg price movements.
Second, based on the domain application, we will proposessamking system
to rank the usefulness or utility of the CGQB subgraphs mifdéard, we will use
the price information of stocks to guide the discretizawdrinancial ratios, and
incorporate it into the clustering process.
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Appendix A. Definitions of Abbreviations

Abbreviation Definition

CGB Cross-graph biclique

CGQB Cross-graph quasi-biclique

CGQC Cross-graph quasi-clique

QB Quasi-biclique

D/E Debt-Equityratio = g eabiies

PE Price-Earningsratio = SEECEieebE e
ROE Return on Equityatio = et Income

Average Shareholders’ Equity
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