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Abstract—Billions of dollars are spent annually on software related
cost. It is estimated that up to 45% of software cost is due to difficulty
in understanding existing systems when performing maintenance tasks
(i.e., adding features, removing bugs, etc.). One of the root causes is that
software products often come with poor, incomplete or even without any
documented specifications. This situation is further aggravated by a phe-
nomenon termed software evolution – as software evolves or changes
over time, the documented specifications often remain unchanged.

In an effort to improve program understanding, Lo et al. have pro-
posed an algorithm for iterative pattern mining. The algorithm outputs
patterns that are repeated frequently within a program trace, or across
multiple traces, or both. These frequent iterative patterns reflect frequent
program behaviors that likely correspond to software specifications.
To reduce the number of patterns and improve the efficiency of the
algorithm, Lo et al. have also introduced mining closed iterative patterns.

In this paper, to technically deepen research on iterative pattern
mining, we introduce algorithms for mining iterative generators from pro-
gram traces. Iterative generators can be paired with closed patterns to
produce a set of representative rules having the shortest pre-conditions
and longest post-conditions. Different from many rule formats proposed
before, representative rules are able to specify forward, backward and
in-between temporal constraints in one general representation.

A performance study on synthetic and real datasets shows the
efficiency of our approach. A case study on traces of an industrial
system shows how iterative generators and closed iterative patterns can
be merged to form useful rules shedding light on software design.

1 INTRODUCTION AND MOTIVATION

It’s best if software is developed with clear, precise and doc-
umented specifications. However, due to hard deadlines and
‘short-time-to-market’ requirement, software products often
come with poor, incomplete and even without any documented
specifications. This situation is further aggravated by a phe-
nomenon termed software evolution [1]. As software evolves,
the documented specifications often remain unchanged [2].
This might render the documented specification of little use
after cycles of program evolution.

These factors have contributed to high software maintenance
cost. It has been reported that up to 90% of software cost is
due to maintenance [3] and up to 50% of the maintenance cost
is due to the effort put in comprehending or understanding
software code base [4]. Hence, approximately up to 45% of

software cost is due to the difficulty in comprehending an
existing code base. This is especially true for software projects
developed by many developers over a long period of time.

These needs motivate work on automated tools to extract
or mine specifications from programs. An interesting form of
specifications to be mined is patterns of software temporal
behaviors. These patterns are intuitive and commonly found
in software documentations. Some examples are as follows:

1) Resource Locking Protocol : 〈lock, unlock〉
2) Telecommunication Protocol (c.f., [5]): 〈off hook,

dial tone on, dial tone off, seizure int, ring tone, an-
swer, connection on〉

3) Java Authentication and Authorization Service
(JAAS) Authorization Enforcer Strategy Pattern
(c.f., [6]): 〈Subject.getPrincipal, PrivilegedAction.create,
Subject.doAsPrivileged, JAAS Module.invoke, Policy.-
getPermission, Subject.getPublicCredential, Privileged-
Action.run〉

4) Java Transaction Architecture (JTA) Protocol
(c.f., [7]): 〈TxManager.begin, TxManager.commit〉,
〈TxManager.begin, TxManager.rollback 〉

Each of these patterns reflects an interesting program behav-
ior. It can be mined by analyzing a set of program traces – each
being a series of method invocations. These program traces can
in turn be generated through running a test suite. From data
mining viewpoint, each trace can be considered a sequence. A
pattern (e.g., lock-unlock) can appear a repeated number of
times within a sequence. Each event can be separated by an
arbitrary number of unrelated events (e.g., lock → resource
use → . . . → unlock). Since a program behavior can be
manifested in numerous ways, analyzing a single trace will
not be sufficient. Usually, a set of test cases satisfying certain
code coverage (i.e., every statements are executed) or branch
coverage (i.e., every branch decision is taken) criterion (c.f.,
[8]) is required to test the correctness of a software system.
Running this test suite over an instrumented software will
generate the desired traces.

To mine software temporal patterns having the above char-
acteristics from traces, Lo et al. proposed iterative pattern min-
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ing [9] which extends sequential pattern mining and episode
mining to address software specification mining.

Sequential pattern mining first addressed by Agrawal and
Srikant in [10] discovers temporal patterns that are supported
by a significant number of sequences. A pattern is supported
by a sequence if it is a sub-sequence of it. It has application in
many areas, from analysis of market data to gene sequences.
On the other hand, Mannila et al. propose episode mining to
discover frequent episodes within a sequence of events [11].
An episode is defined as a series of events occurring relatively
close to one another (e.g., they occur at the same window). An
episode is supported by a window if it is a sub-sequence of
the series of events appearing in the window. Episode mining
focuses on mining from a single sequence of events.

Frequent iterative pattern is a series of events supported by
a significant number of instances repeated within and across
sequences. Similar to sequential pattern mining, we consider a
database of sequences rather than a single sequence. However,
we also mine patterns occurring repeatedly within a sequence.
This is similar in spirit to episode mining, but we remove the
restriction that related events must happen in the same window.

Due to looping, a trace can contain repeated occurrences
of interesting patterns. In fact, a series of events in an alarm
management system used by Manilla et al. is similar to a
series of system calls in a software system. However, there
are 2 notable differences.

First, program properties are often inferred from a set of
traces instead of a single trace. These are either produced by
executing a test suite [12] or generated statically from the
source code. Secondly, important patterns for verification, such
as lock acquire and release or stream open and close (c.f [12],
[13]), often have their events occur at some arbitrary distance
away from each other in a program trace. Hence, there is a
need to ‘break’ the ‘window barrier’ in order to capture these
patterns of interest. Interestingly, these two notable differences
between analysis of events from an alarm management system
and program traces are observed by sequential pattern miner
first introduced in [10].

To support iterative pattern mining, we need a clear def-
inition and semantics of iterative pattern different from that
of episode and sequential pattern. Our definition of itera-
tive pattern is inspired by common languages for specifying
software behavioral requirements, namely Message Sequence
Chart (MSC) [5] and Live Sequence Chart (LSC) [14].

MSC and LSC are variants of sequence diagram specifying
how a system should behave. An example of such a chart
is a simplified telephone switching protocol shown in Fig-
ure 1 – c.f., [5]. Abstracting caller and callee information,
it can be represented as a pattern: 〈off hook, dial tone on,
dial tone off, seizure int, ring tone, answer, connection on〉.
Such charts carry semantics that need to be obeyed e.g., the
example chart disallows ring tone to appear twice, one before
and another after answer (see sub-section 3.2 for more details).

Pattern mining in general is an NP-hard problem. For it to
be practical, efficient search space pruning strategies need to
be employed. In [9], Lo et al. address the issue by mining a
closed set of iterative patterns.

In this work, we investigate mining of iterative generators
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Fig. 1. Simplified Telecommunication Protocol.

from program execution traces. Generators are the minimal
members of an equivalence class, while closed patterns are
the maximal members. An equivalence class in turn is a set
of frequent patterns with the same support and corresponding
pattern instances. Iterative generators is a new data mining
concept, though generators for frequent itemsets [15], [16],
[17] and for sequential patterns [18] have been introduced
previously in the literature.

We find that the algorithms mining closed iterative patterns
and sequential generators can not be trivially extended to mine
iterative generators as major properties used for mining closed
iterative patterns and sequential generators no longer apply for
iterative generators (see sub-section 3.4 for details).

The set of closed patterns and generators are potentially of
much smaller size than the full-set of frequent patterns. As
generators are minimal members of equivalence classes, ac-
cording to the Minimum Description Length (MDL) principle,
generators are the preferred descriptions or representations of
the classes. Also, as argued by Li et al, generators are better
candidates than closed patterns for applications involving
model selection and classification [16].

Furthermore, closed iterative patterns and generators can be
merged to form a compact knowledge representation capturing
an expressive form of temporal constraints. These constraints
are in the form of rules with minimal pre-conditions and
maximal post-conditions referred to as representative rules.
Temporal constraints add more information to patterns and
are useful in software domain as they correspond to temporal
properties used to find bugs and ensure correctness of systems
via formal verification tools [19].

Past studies on mining rules have focused on finding for-
ward temporal constraints (i.e., if a series of events occurs,
eventually another series of events occurs) [20], [21] or
backward temporal constraints (i.e., if a series of events occurs,
previously, another series of events has occurred before) [22].
A representative rule on the other hand captures a more general
form of temporal constraints. It first describes a sequence of
pre-condition events which, if satisfied, implies the occurrence
of other events which can happen before, in-between or after
the sequence of pre-condition events.

For example, consider the rule 〈X, {A}, Y, {B}, Z〉, where
the ones marked with brackets correspond to the pre-condition
events. This rule states that when the events A and B occur,
X must happen before A, Y must happen in between A
and B and Z must happen after B. The rule captures not
only forward temporal constraints but also backward and in-
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between temporal constraints. As a visual representation, one
can imagine the horizontal arrows in Figure 1 be drawn in
two different colors, one representing the pre-condition and
the other the post-condition.

The utility of the general format of representative
rules is readily evident in daily life. Consider an Au-
tomated Teller Machine (ATM), one important prop-
erty is: “a user must be authenticated after an ATM
card is inserted and before money is dispensed”, i.e.,
〈{ins card}, authenticate, {dis money}〉. Also, consider a
university, an important property is: “a student must pass all
the examinations after he/she is matriculated and before he/she
graduates”, i.e., 〈{matriculate}, pass exams, {graduate}〉.
Consider an example temporal constraint used to verify cor-
rectness of Windows device drivers: a driver that has called
KeAcquireSpinLock , KeInsertDeviceQueue and eventually
KeReleaseSpinLock , must have called IoMarkIrpPending
after the call to KeInsertDeviceQueue, but before the
call to KeReleaseSpinLock , i.e., 〈{KeAcquireSpinLock},
{KeInsertDeviceQueue}, IoMarkIrpPending , {KeRelease-
SpinLock}〉 – c.f. [23]. These types of temporal constraints
can be mined by mining representative rules but not by
the previous studies on rule mining which only mine either
forward or backward temporal constraints separately.

To mine iterative generators, we introduce the concept of
approximate iterative pattern. An approximate pattern weakens
the constraint that a regular pattern imposes on its instances.
We introduce approximate patterns since we can obtain the set
of frequent patterns with correct support from them and they
have a good property which can be utilized to avoid redundant
efforts when traversing the search space of frequent patterns.
The support of an approximate pattern is an upper bound of
the actual pattern support.

We first construct a compact lattice representing frequent
approximate patterns by building it depth-first. Redundant
search space traversal efforts are avoided by detection of
equivalent sub-lattices. If a sub-lattice is equivalent to an
existing sub-lattice there is no need to build it again. Next,
we traverse the compact lattice breadth-first while performing:
(1) Computation of real pattern support, (2) Identification of
generators, and (3) Pruning of sub-search-spaces containing
only non-generators.

After the steps above are performed, a set of generators
would be mined. The generators are then merged with closed
patterns to produce a set of representative rules capturing
forward, backward and in-between temporal constraints.

A performance and a comparative study are conducted
on synthetic and real benchmark datasets to evaluate the
performance of the proposed mining algorithm. The proposed
algorithm can run efficiently at low support thresholds, large
number of sequences and reasonably long sequences on 10
synthetic and 2 real benchmark datasets. The experiments
also show that iterative generators can be mined with similar
efficiency as closed patterns. Since, both generators and closed
patterns are needed to form representative rules capturing
forward, backward and in-between temporal constraints we
need to ensure that both algorithms run at least with similar
efficiency. It is not our purpose to beat the efficiency of closed

iterative pattern mining algorithm.
As a case study, we extend the study on JBoss Application

Server (JBoss AS) in [9]. The mined generators combined
with mined closed patterns form interesting rules that shed
further light on the behavior of the software system expressing
forward, backward and in-between temporal constraints that
the system obeys.

The contributions of this work are as follows:
1) We propose iterative generators and representative ru-

les as new data mining concepts for software specifica-
tion discovery.

2) We present novel properties of iterative generators for:
(i) generator identification, (ii) search-space compact-
ion, and (iii) non-generator pruning.

3) We propose a new algorithm to mine iterative generators
and generate representative rules. Different from past
algorithms on mining from sequences of events, we
introduce: (i) A merge between depth-first and breadth-
first traversal of search space, (ii) A new lattice data
structure, and (iii) New techniques to detect equivalences
of projected databases, compute real support and utilize
the properties of iterative generators for their efficient
mining.

The outline of the paper is as follows: Section 2 presents
related work. Section 3 provides preliminary information on
notations, semantics of iterative pattern and definitions of
closed pattern and generator. An analysis on the need for a new
algorithm to mine iterative generators is also described in the
section. Section 4 presents approximate iterative pattern and
the approximate pattern lattice data structure. The section also
discusses some properties of approximate patterns for effective
search space compaction. Furthermore, some properties for
efficient pruning of iterative generators are also discussed in
this section. Section 5 describes our iterative generator mining
algorithm and representative rule generation process. Section 6
presents the results of our performance study. Section 7
presents the case study on JBoss AS.

2 RELATED WORK

Iterative pattern mining is an extension of sequential pattern
mining, which was first proposed by Agrawal and Srikant [10].
To remove redundant patterns, closed sequential pattern min-
ing was proposed by Yan et al. [24]. The approach was later
improved by Wang and Han [25]. Different from sequential
pattern, iterative pattern captures multiple occurrences of pat-
tern not only across multiple sequences but also those repeated
within each sequence. In this aspect, iterative pattern mining
resembles episode mining initiated by Mannila et al. [11]
which was later extended by Casas-Garriga to replace a fixed-
window size with a gap constraint between one event to the
next in an episode [26]. Both versions of episode mining mine
events occurring close to one another, expressed by “window
size” and gap constraint respectively. This is different with
iterative pattern mining, which does not have the notion of
an “episode”. This difference is significant, since important
program behavioral patterns, for example: lock acquire and
release, or file open and close (c.f [12], [13]), often have their
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events occur at some arbitrary distance away from one another
in a trace. In addition, both versions of episode mining handle
only one sequence, while iterative pattern mining operates over
a set of sequences.

There are also other studies on mining patterns that repeat in
sequences. In mining DNA sequences, Zhang et al. introduced
the idea of “gap requirement” in mining periodic patterns
from sequences [27]. Similar to ours, they detect repeated
occurrences of patterns within a sequence and across multiple
sequences. However, the gap requirement used in their work
does not always hold for other purposes. Consider analyzing
software traces, the useful patterns of lock-acquire followed-
by lock-release can be separated by any number of events, and
will violate the gap requirement. Recently, Ding et al. mine
for closed repetitive sub-sequences [28]. Different from their
work, we consider the minimal patterns in equivalence classes
(i.e., generators) rather than the maximal patterns in equiv-
alence classes (i.e., closed patterns). Also, the semantics of
Zhang et al.’s periodic pattern and Ding et al.’s repetitive sub-
sequence differ from iterative pattern that follows MSC/LSC.

In [9], Lo et al. mine all frequent and closed iterative
patterns. In this work, we mine for iterative generators. Closed
iterative pattern mining algorithm proposed in [9] can not be
trivially extended to mine for generators as the property used
to detect non-closed iterative patterns no longer applies on
iterative generators (more detail in sub-section 3.4).

There are also several studies on mining generators.
Pasquier et al. mine generators of frequent itemsets [15].
In [16], Li et al. improve the algorithm in [15]. In [17], Li
et al. extend their work by concurrently obtaining both closed
itemsets and generators, and computing delta discriminative
non-redundant equivalent classes. Lo et al. mine a set of
sequential generators [18]. A concurrent study on mining
sequential generators is also made by Gao et al. in [29].
Different from the above studies, we mine iterative generators
which poses further challenges since repeated occurrences of
patterns within a sequence need to be considered. Among the
above studies, the closest to our proposed approach is the
work mining sequential generators reported in [18]. However,
even this work can not be trivially extended to mine iterative
generators, as basic properties on sequential generators no
longer apply on iterative generators. These include basic
properties e.g., apriori property and detection on equivalence
on projected databases (more detail in sub-section 3.4).

There are past studies on mining rules from sequences of
events [20], [30], [31], [21], [22]. There are a number of
differences between our work and each of them. Most im-
portantly, the proposed representative rules are able to specify
forward, backward and in-between temporal constraints in one
representation and they can be mined efficiently.

3 PRELIMINARIES

In this section, we define some notations, outline the semantics
of iterative patterns and describe the definitions of closed
iterative patterns and iterative generators. An analysis on the
need for a new algorithm to mine iterative generators is also
presented.

3.1 Basic Definitions

Let I be a set of distinct events. Let a sequence S be a series
of events. We denote S as 〈e1, e2, . . . , eend〉 where each ei is
an event from I . The sequence database under consideration
is denoted by DB. The ith sequence in the database DB is
denoted as DB[i]. Also the jth position of the sequence DB[i]
is denoted as DB[i][j].

A pattern P1 = 〈e1, e2, . . . , en〉 is considered a subsequence
of another pattern P2 = 〈f1, f2, . . . , fm〉 if there exist integers
1 ≤ i1 < i2 < i3 < i4 . . . < in ≤ m where e1 = fi1 ,
e2 = fi2 , · · · , en = fin

. Notation-wise, we write this relation
as P1 v P2. We also say that P2 is a super-sequence of P1.
Concatenation of P1 and P2, denoted as P1++P2, results in a
longer pattern P3 = 〈e1, . . . , en, f1, . . . , fm〉.

We use the notation |P | to refer to the length of pattern
P. Given a series of events evs, fst(evs) and last(evs) refer
to the first and last event of evs respectively. An important
concept of erasure operator is defined below.

Definition 3.1 (Erasure Operator): Consider 2 series of
events S and P , the erasure of S wrt. P , denoted by
erasure(S, P ), is defined as a new series of events formed
by removing all events in S that occurs in P .

3.2 Semantics of Iterative Patterns

Based on the above motivation of patterns in software, in [9],
we define iterative patterns based on the semantics of com-
monly used software modeling languages. In particular we
follow the semantics of Message Sequence Charts [5], a
standard of International Telecommunication Union (ITU), and
its extension, Live Sequence Charts [32].

MSC and LSC is a variant of the well-known UML se-
quence diagram describing behavioral requirement of soft-
ware. Not only do they specify system interaction through
ordering of method invocation, but they also specify caller
and callee information. An example of such charts is a
telephone switching protocol in [5]; abstracting caller and
callee information, a simplified protocol can be represented as
a pattern: 〈off hook, dial tone on, dial tone off, seizure int,
ring tone, answer, connection on〉.

In verifying traces for conformance to an event sequence
specified in MSC/LSC, the sub-trace manifesting the event
sequence must satify the total-ordering property: Given an
event evi in a MSC/LSC, the occurrence of evi in the sub-trace
occurs before the occurrence of every evj where j > i and
after evk where k < i [5]. Kugler et al. strengthened the above
requirement to include a one-to-one correspondence between
events in a pattern and events in any sub-trace satisfying
it [33]. Basically, this requirement ensures that, if an event
appears in the pattern, then it appears as many times in the
pattern as it appears in the sub-trace.

For the telephone switching example, the following traces
are not in conformance to the protocol:

off hook, seizure int, ring tone,
answer,ring tone, connection on
off hook, seizure int, ring tone,
answer, answer, answer, connection on
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ID Sequence
S1 〈A, B, C, B, D, A, B, C, D〉
S2 〈A, B, E, C, F, D〉
S3 〈A, B, F, C, D, E〉

TABLE 1
Running Example - ExDB

The first trace above does not satisfy the total-ordering
requirement due to the out-of-order second occurrence of
ring-tone event. The second does not satisfy the one-to-one
correspondence requirement due to multiple occurrences of
answer event.

The pattern instance definition capturing the total-ordering
and one-to-one correspondence between events in the pattern
and its instance can be expressed unambiguously in the form of
Quantified Regular Expression (QRE) [34]. Quantified regular
expression is very similar to standard regular expression with
‘;’ as concatenation operator, ‘[-]’ as exclusion operator (i.e.
[-P,S] means any event except P and S) and * as the standard
kleene-star.

Definition 3.2 (Pattern Instance - QRE): Given a pattern
P (p1p2 . . . pn), a substring SB (sb1sb2 . . . sbm) of a se-
quence S in SeqDB is an instance of P iff it is of the
following QRE expression

p1; [−p1, . . . , pn]∗; p2; . . . ; [−p1, . . . , pn]∗; pn.

We use the term “pattern instance” and “iterative pattern
instance” interchangeably in this paper. An iterative pattern is
thus identified by a set of iterative pattern instances, which can
occur repeatedly in a sequence as well as across sequences.
We also use the term “pattern” and “iterative pattern” inter-
changeably.

An instance is denoted compactly by a triple (sx, isrt, iend)
where sx refers to the sequence index of a sequence S in the
database while isrt and iend refer to the starting point and
ending point of a substring in S. By default, all indices start
from 1. With the compact notation, an instance is both a string
and a triple – the representations are used interchangeably.
The set of all instances of a pattern P in a database DB is
denoted as Inst(P, DB). Reference to the database is omitted
if it refers to the input database

Consider a pattern P (〈A,B〉) and database ExDB in
Table 1. The set Inst(P ) is {(1,1,2),(1,6,7),(2,1,2), (3,1,2)}.

Definition 3.3 (Pattern Constraint Set): Iterative pattern
defines a constraint to its instances corresponding to the
exclusion operations (i.e., [−e1, . . . , en]) in Definition 3.2. We
define the constraint set of P to be ∪e∈P {e} and denote this
by Constr(P ). If Constr(P ) ⊂ Constr(P ′), we say that P
(P ′) has a weaker (stronger) constraint than P ′ (P ).

Many specifications obey these negation-like constraints,
for example, consider Windows device driver rule
CancelSpinLock in MSDN [35]:
“The CancelSpinLock rule specifies that the driver
calls IoAcquireCancelSpinLock before calling
IoReleaseCancelSpinLock and that the driver calls
IoReleaseCancelSpinLock before any subsequent calls to
IoAcquireCancelSpinLock.”

The above rule (implicitly) expressed that no
IoAcquireCancelSpinLock or IoReleaseCancelSpinLock
appear in between subsequent calls of the two function calls.

The above definition of pattern instance guarantees that
unless a pattern’s prefix is the same as one of its suffix,
instances of the pattern do not overlap. Also an instance is
never contained in another instance of the same pattern. The
pattern instance definition also allows the apriori property to
hold (see sub-section 4.3).

There is a one-to-one ordered correspondence between
events in the pattern and events in its instance. This one-to-
one correspondence can be captured by the concept of pattern
instance landmarks defined below.

Definition 3.4 (Pattern Inst. Landmarks): Given a pat-
tern P 〈e1, . . . , en〉, an instance I 〈s1, . . . , sm〉 of P has
the following landmarks: l1, . . . , ln where 1 = l1 < l2 <
. . . < ln = m and sl1 = e1, sl2 = e2, . . . , sln = en.
Landmarks l1, l2, . . . , ln are referred to as the first, second,
. . ., nth landmark respectively. For each instance of P , there
is only one possible set of landmarks.

As an example, consider a pattern 〈A,B, C〉 and its instance
〈A,D, E, B, D,C〉. The pattern instance has 3 landmarks: 1,
4, 6. They are called the first, second and third landmark
respectively.

The support of a pattern wrt. a sequence database DB is
the number of its instances in DB. Repeated occurrences of
a pattern within a sequence are taken into consideration for
support calculation. A pattern P is considered frequent when
its support, sup(P ) ≥ min sup threshold.

3.3 Generators and Closed Patterns
Unless otherwise stated, in this paper, we refer to iterative
generators, closed iterative patterns and representative rules as
generators, closed patterns and rules respectively. Before defin-
ing generators and closed patterns, we describe corresponding
pattern instances.

Definition 3.5 (Corresponding Pattern Insts): Consider
a pattern P and its super-sequence Q. An instance
IP (seqP ,startP ,endP ) of P corresponds to an instance
IQ(seqQ,startQ,endQ) of Q iff seqP = seqQ and
startP ≥ startQ and endP ≤ endQ. If every instance
of P corresponds to an instance of Q (and vice versa) we
denoted that by Inst(P )≈Inst(Q).

Definition 3.6 (Generators and Closed Patterns): A fre-
quent pattern P is a generator if there exists no subsequence
Q s.t.:

1. P and Q have the same support
2. Inst(P )≈Inst(Q)
Also, P is a closed pattern if there exists no super-sequence

Q such that the above two conditions hold.
The set of generators and closed patterns mined from ExDB

using min sup = 3 are {〈A〉 : 4, 〈A,B, D〉 : 3, 〈B〉 : 5,
〈B,C, D〉 : 3, 〈C〉 : 4, 〈D〉 : 4} and {〈A,B, C〉 : 4,
〈A,B, C, D〉 : 3, 〈A,C, D〉 : 4, 〈B〉 : 5, 〈B,D〉 : 4}
respectively.

We consider the following problem: Given a sequence
database, find a set of frequent iterative generators. We also
describe how iterative generators and closed iterative patterns
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are merged to form representative rules capturing forward,
backward and in-between temporal constraints.

3.4 Why a simple extension does not work?

Closed iterative pattern mining algorithm proposed in [9] can
not be trivially extended to mine for generators. To detect non-
closed patterns, the algorithm in [9] tries to extend instances
of P to form instances of a longer pattern P ′. If all instances
of P can be extended, then P is not closed. The approach
works since, based on the apriori property, the longer pattern
P ′ has less or equal instances as compared to P . One might be
tempted to perform a similar approach to detect non-generators
by removing events from instances of Q to form instances
of a shorter pattern Q′. Unfortunately, this does not work
since shorter patterns can have more instances. Some of these
instances might not correspond to any instance of the longer
pattern.

Similarly, the algorithm mining sequential generators in [18]
can not be trivially extended to mine iterative generators
since repetitions need to be addressed and the semantics of
MSC/LSC need to be obeyed (which involves negation on the
definition of pattern instance). A number of major properties
of sequential patterns no longer apply as described in the
following paragraphs.

First, the apriori property of sequential pattern is no longer
true, i.e., it is not always the case that if a pattern P is a
subsequence of another pattern P ′, then sup(P ) ≥ sup(P ′).
This is due to the negation involved in the definition of pattern
instance following the semantics of MSC/LSC.

Second, it is no longer the case that if two patterns P and P’
have the same projected database, i.e., DBP == DBP ′ , then
any extension of P (P++evs) will have the same projected
database as the corresponding extension of P ′ (P ′++evs),
i.e., DBP++evs == DBP ′++evs. This property has been used
in [18] to prune redundant search space. This necessitates us
to propose approximate iterative patterns with approximated
support where this property still holds. However our goal is
still to mine iterative patterns with correct support. To do
so, our approach first generates a compacted representation
of approximate iterative patterns and then obtain iterative
patterns with correct support from the compact representation
of approximate iterative patterns.

Third, the approach to detect equivalences of projected
databases used in sequential pattern mining [24], [18] no
longer applies in iterative pattern mining. The work mining
closed iterative patterns [9] does not require detection of equiv-
alent projected database, while we need it in our approach.
More details on this is given in sub-section 5.2.

Furthermore, different from the work in [18], there is no
need to generate and filter a set of candidate patterns which
can be expensive especially due to a large number of candi-
date patterns. Different from approximate iterative pattern, a
candidate sequential pattern in [18] has the correct support,
however might not be a sequential generator. Several sub-
sequence checks need to be made to ensure that the candidate
pattern is a generator (i.e., there is no shorter patterns having
the same support as itself). Elimination of this filtering step

is especially useful when mining iterative generators, as the
hash-based filtering approach used in [24], [18] is less effective
when applied to iterative patterns. In essence, the hash-based
approach tries to put patterns appearing in the same set of
sequences in the same bucket (via a heuristic). Only patterns
in the same bucket would need to be checked against one
another. There would be more patterns in each bucket in the
case of iterative patterns, as two patterns can occur in the same
set of sequences, but repeat a different number of times.

4 DATA STRUCTURE AND THEOREMS

Our approach works by first mining frequent approximate
patterns. The approximate patterns have a nice property that
enables non-redundant traversal of search space. A compacted
set of frequent approximate patterns can be represented as a
lattice. This lattice is then used as the compacted search space
for frequent iterative generators. Generator identification and
search space pruning strategies are effectively employed to
mine the set of frequent generators.

In this section, we describe approximate iterative patterns,
mention our compacted lattice structure, and describe some
properties for search space compaction and pruning of sub-
search spaces only containing non-generators.

4.1 Approximate Patterns

An instance of an approximate pattern is defined by the
following QRE expression shown in Definition 4.1.

Definition 4.1 (App. Pattern Instance - QRE): Given an
approximate pattern P 〈e1, e2, . . . , en〉, a substring SB
〈sb1, sb2, . . . , sbm〉 of a sequence S in DB is an instance of
P iff it is of the following QRE expression

e1; [−e1, e2]∗; e2; [−e2, e3]∗; e3; . . . ; [−e(n−1), en]; en.

The approximated support of a sequence of events P is
the number of instances of the approximate pattern P . It is
denoted as sup-app (P ).

Approximate patterns, as we shall see in Theorem 1, have
a nice property that enables avoidance of redundant search-
space re-computation. To calculate the support of approximate
patterns in the input database, we define two new projected
database operations.

Definition 4.2 (Projected-approx-all): A database
projected- approx-all on a pattern P is defined as:

DBapp−all
P = {(x, j, y) | the jth sequence in DB is s,

where s = a++x++y, and x is an instance of an approximate
pattern P in s }

The approximate support of the pattern P is then equal to
the size of DBapp−all

P . Also, let us define the number of events
in a projected database PDB to be: Σ(x,j,y)∈PDB) |y|.

Definition 4.3 (Projected-approx-next): A projected-
approx-all database PDB projected-approx-next on an event
e is defined as:

PDBapp−nxt
e = {(x′, i, y′) | (x, i, y) ∈ PDB, x′ =

x++w, y = w++y′, w = u++e, and last(x) & e do not occur
in u}
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The last term in the conjunction above is there to ensure
that x′ will be an instance of the approximate pattern P++e.
Hence, DBapp−all

P++e = (DBapp−all
P )app−nxt

e .
With projected-approx-next, a projected-approx-all database

of a pattern P can be built incrementally. The base case is
projected approx-all databases of single events, each simply
corresponds to all instances of the single event under pro-
jection, in the input database. Note that we only perform a
pseudo-projection to reduce memory and runtime overhead
similar to studies in [36], [24], [25], [9].

In this paper, unless otherwise stated, “projected” database
refers to “projected approx-all” database. Also, in this paper,
approximate pattern and pattern instance are stated explicitly.
If not stated, “pattern” and “instance” refer to the regular
iterative pattern and pattern instance defined in Definition 3.2.

As examples, projected-approx-all and projected-approx-
next databases wrt. ExDB are shown in Tables 2 & 3.

(〈A, B〉, 1, 〈C, B, D, A, B, C, D〉)
(〈A, B〉, 1, 〈C, D〉)
(〈A, B〉, 2, 〈E, C, F, D〉)
(〈A, B〉, 3, 〈F, C, D, E〉)

TABLE 2
ExDBapp−all

〈A,B〉

(〈A, B, C〉, 1, 〈B, D, A, B, C, D〉)
(〈A, B, C〉, 1, 〈D〉)
(〈A, B, E, C〉, 2, 〈F, D〉)
(〈A, B, F, C〉, 3, 〈D, E〉)

TABLE 3
(ExDBapp−all

〈A,B〉 )app−nxt
〈C〉 = ExDBapp−all

〈A,B,C〉

4.2 Data Structure and Constraint Violators

The data structure we are using is an extension of prefix
sequence lattice (PSL) first introduced in [24]. Each path in
the tree corresponds to a frequent approximate pattern. Every
projected database corresponding to a frequent approximate
pattern is represented by a node in the lattice. We refer
to this data structure as Equivalent P rojected-database-based
Approximate Pattern Lattice, shortened as PAL. In PSL, a
projected database is possibly represented by multiple nodes,
which is not the case with PAL.

Note that different patterns generated by traversing the PAL
from the root to a node n might have different supports since
the lattice only captures approximated pattern support. As a
further extension to the PSL introduced in [24], each node in
PAL is linked with a table storing the ids and actual supports
of various patterns ending at the node. Given a node n, its
support table is denoted as n.SupTable. Each transition in the
PAL is labelled. A transition t from node n to m is given
an integer label i if it is the ith transition incoming to a sink
node m when t is added to the PAL. As will be described
in sub-section 5.1, PAL is built depth first in lexicographical
order. Given a transition t the label is denoted as t.Id. PAL
built from ExDB by considering min sup threshold set at
3 is shown in Figure 2. The numbers next to the transitions
denotes transition labels.

We next introduce the concept of forward constraint viola-
tors in Definition 4.4.

Definition 4.4 (Forward Constraint Violators):
Consider a pattern P = 〈e1, e2, . . . , en〉. Let the set ext(P )
= {Q| Q = P++evs, where evs is a series of one or more
events and sup-app(Q) ≥ min sup}. It defines the set of
extended patterns of P whose approximate support are above
the min sup threshold.

The set of forward constraint violators of P wrt. an extended
pattern Q in ext(P ) is the set of events, occurring in an
instance of Q that appear in between adjacent pairs of events
in last(P )++ evs (i.e., between each pair of the (x − 1)th

and xth landmarks of Q (exclusive), where x > |P |). Let us
denote this as FV (P, Q).

The set of forward constraint violators of P , denoted as
FV (P ) = ∪Q∈ext(P ).FV (P, Q). Patterns having the same
projected database will have the same set of forward constraint
violators.

As examples of constraint violators, the constraint vio-
lators of the example database ExDB is provided on the
table in Figure 2. Consider pattern 〈A,B〉 and the example
database ExDB. The set ext(〈A, B〉) is the set {〈A, B,C〉,
〈A,B, C, D〉,〈A,B, D〉}. The set of FV (〈A,B〉, 〈A,B, C〉)
is the set {E, F}. This is the case as there is an occur-
rence of event E when we extend instance (2,1,2) of 〈A,B〉
to instance (2,1,4) of 〈A,B,C〉. Similarly, there is an oc-
currence of event F when we extend instance (3,1,2) of
〈A,B〉 to instance (3,1,4) of 〈A,B, C〉. The set FV (〈A,B〉)
is ∪q∈ext(〈A,B〉).FV (〈A, B〉, q) which is the set {C,E, F}
shown in the table in Figure 2. In Theorem 3, the concept
of constraint violators will be used to define a non-generator
pruning property.

Several pieces of information are attached to a node n in
PAL, namely the corresponding event, projected database and
forward constraint violators. They are denoted as n.Ev, n.PDB
and n.FV respectively. Details on how this data structure is
constructed and utilized are given in Section 5.

4.3 Properties and Theorems
Following are a property and theorems for efficient mining
of iterative generators. Due to space limitation, the proofs of
the property (and some others in the subsequent sections) and
Theorem 1 are omitted.

Property 1 (Apriori Property): Consider a pattern P and
its supersequence P ′ of the forms P++evs or evs++P ,
where evs is a series of events. It must be the case that
sup(P ) ≥ sup(P ′). Also, if they have the same support,
Inst(P )≈Inst(P ′)

Theorem 1 (Generator Identification): Pattern P is a gen-
erator iff ∀Q. if either one of the following conditions holds:
1. P = ev++Q, 2. P = Q++ev or 3. Q ∈ ∪e∈P erasure(P, e),
then sup(Q)>sup(P ). Given a pattern P , all Qs of the above
3 formats are referred to as sub-patterns of P .

Theorem 2 (Search Space Compaction): Consider
approximate patterns P and P ′, if DBapp−all

P = DBapp−all
P ′ ,

then for every arbitrary series of events evs, DBapp−all
P++evs =

DBapp−all
P ′++evs.
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ID FV sup-app 
N1 {B,C,E,F} 4 
N2 {B,F} 4 
N3 {} 4 
N4 {B,C,E,F} 5 
N5 {C,E,F} 4 
N6 {} 3 

Fig. 2. PAL of ExDB (left) and its details (right)

Proof: From Definition 4.1, an approximate pattern in-
stance has the following constraint: events occurring between
two adjacent landmarks should not be any of the two landmark
events. Since P and P ′ has the same projected database, it
must be the case that last(P ) = last(P ′). Hence, whenever
we can extend P with an event e to form P++e with support x,
we can always extend P ′ with e to form P ′++e with support
x, i.e., DBapp−all

P++e = DBapp−all
P ′++e . Extending the argument, it

can be shown that whenever we can extend P with evs we
can also extend P ′ with evs and the resultant patterns have
the same projected databases, i.e., DBapp−all

P++evs = DBapp−all
P ′++evs.

Theorem 3 (Non-Generator Pruning): Suppose there ex-
ist patterns P and P ′, where P ′ ∈ ∪ev∈P erasure(P, ev),
sup(P ) = sup(P ′), DBapp−all

P = DBapp−all
P ′ and ∀ event e ∈

Constr(P )− Constr(P ′). e 6∈ FV (P ). Then all patterns of
the form P++evs, where evs is an arbitrary series of events,
are not generators.

Proof: Since P ′ ∈ ∪ev∈P erasure(P, ev), every instance
of P is an instance of P ′. Since sup(P ) = sup(P ′), Inst(P )
= Inst(P ′).

Since DBapp−all
P = DBapp−all

P ′ , FV (P ) = FV (P ′). P ′ is
weaker than P by the set Constr(P )−Constr(P ′). Since all
events in this differential constraint set are not in FV (P ) ∪
FV (P ′), Inst(P )=Inst(P ′), and DBapp−all

P = DBapp−all
P ′ ,

it must be the case that whenever we can extend an instance
of P by evs we can also extend the corresponding instance of
P ′ by evs (and vice versa) such that Inst(P++evs)=Inst(P ′

++ evs). There will not be any constraint violation since all
events in the differential constraint set is not in the set of
forward constraint violators.

Hence, for any pattern P++evs there is another frequent
pattern P ′++evs which is its subsequence with the same set
of instances. Hence, all patterns of the form P++evs are not
generators.

5 MINING ALGORITHM

To mine frequent generators of iterative patterns, we first
compute frequent approximate patterns that can effectively be
compacted and represented as a lattice. This lattice of approx-
imate patterns can be computed fast by avoiding redundant
traversal of search space of frequent patterns. An approximate
pattern weakens the constraint that a regular pattern imposes

on its instances. Hence, the approximated support is an upper
bound to the actual support of an iterative pattern. This search
space lattice of patterns with over approximated support is then
traversed to mine for generators of iterative pattern. Several
strategies are employed to effectively compute the actual
support of patterns, check whether a pattern is a generator and
prune the sub-search spaces only containing non-generators.

5.1 Search Space Compaction into PAL
To generate the compact search space of frequent generators,
we perform a depth-first search of the search space of frequent
patterns. This is performed by growing single-event patterns.
Events are added one by one to this pattern according to
lexicographical order. Our goal is to produce PAL and avoid
redundant traversal of search space.

Every time an event is added, a new pattern P is formed.
Correspondingly, a new node nP is added to the PAL. A check
is performed if another pattern P ′ corresponding to node nP ′

with the same projected database exists. If it does, according to
Theorem 1, there is no need to extend P anymore. The subtree
rooted in nP will be the same as that rooted in nP ′ . This is
the case since for all sequence of events evs, the approximate
projected databases of P ′++evs and P++evs are the same.
We simply need to add a link from nP to the subtree rooted
at nP ′ . Otherwise, if there does not exist such a P ′ a new
node is added to the PAL and the search space compaction
process continues recursively.

The PAL data structure built from ExDB at min sup = 3
is shown in Figure 2. The algorithm performing the search
space compaction into PAL is shown in Figure 3.

5.2 Detection of Equivalent Projected DBs
A basic operation needed during construction of PAL is the
detection of equivalent projected databases. To avoid ‘re-
inventing the wheel’, we try to utilize the property used in [24]
and [18] stated below.

Property 2 (Eq. Proj. DB - Sequential Pat.): Consider
sequential patterns P and P ′ where P v P ′. It is the case
that the projected databases of P and P ′ are equal iff the total
number of items in the two projected databases are equal.

Unfortunately, the nice property above no longer holds for
iterative patterns. To see this consider the following sample
database.

Identifier Sequence
S1 〈A, B, B, C, E〉
S2 〈A, B, C, D〉

Consider patterns P=〈A,B, B, C〉 and P ′=〈A,B, C〉. The
total number of items in DBapp−all

P and DBapp−all
P ′ are the

same (i.e., 1, corresponding to event E in S1 and D in S2 for
DBapp−all

P and DBapp−all
P ′ respectively). However, they have

different projected databases. Hence, the property no longer
holds for iterative patterns.

To detect equivalences of projected databases, we need to
compare each element of the projected databases one by one.
To prevent unnecessary comparisons, we utilize the following
property on non-equivalence of projected databases.
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Property 3 (Non-Eq. of Proj. DB - Iterative Pat.): Let
T (P,DB) be defined as: (

∑
i∈{sid|∃(sid,x,y)∈Inst(P,DB)}. i

+
∑

(sid,x,j)∈Inst(P,DB). j). Consider patterns P and P ′, if
T (P,DB) 6= T (P ′, DB), then DBapp−all

P 6= DBapp−all
P ′ .

At line 13 in Figure 3, to find if there exists another
pattern having the same projected database, we first hash a
newly formed pattern P ’s projected database by T (P, DB),
where DB is the input sequence database, and locate a
bucket containing potential equivalent projected databases.
Only projected databases (if any) belonging to this bucket need
to be compared for equivalence. We find that the approach
works well since the key (i.e., T (P, DB)) is well distributed.

Procedure Generate PAL
Inputs: DB: A sequence database;

min sup: Minimum support threshold;
Outputs: PAL: Proj-db-based Approximate pattern Lattice ;
Method:
1: Let FreqEvs = {ev | (sup(ev, DB) ≥ min sup)}
2: Let root = Create new root node
3: Let PAL = root
4: For each pattern ev ∈ FreqEvs
5: Let Nnew = Create new node (ev,DBev)
6: Append Nnew as child of root
7: Call Extend PAL (DBev ,Nnew,PAL,min sup)
8: Append FV (ev) information to Nnew

9: Output PAL

Procedure Extend PAL
Inputs: PDB: A pseudo-projected approx-all database;

ParentNode: Current node in PSL;
PAL: Proj-db-based Approximate pattern Lattice;
min sup: Minimum support threshold;

Method:
10: FrNxEvs = {ev | |PDBapp−nxt

ev | ≥ min sup}
11: For each pattern ev ∈ FrNxEvs
12: Let Nnew = Create new node (ev,PDBapp−nxt

ev )
13: If (∃ node NO ∈ PAL. NO .ProjDB = Nnew.ProjDB)
14: Add NO as a child of ParentNode
15: Label the link from ParentNode to NO with the

number of current parents of NO .
16: Else
17: Add Nnew as a child of ParentNode
18: Label the link from ParentNode to Nnew with 1
19: Call ExtendPAL (PDBapp−nxt

ev ,Nnew,PAL,min sup)

Fig. 3. Search Space Compaction into PAL

5.3 Mining Generators from PAL
To mine for generators from PAL, there are several challenges.
First, we need to efficiently compute the actual support of
iterative patterns and efficiently store this in PAL. The support
of approximate patterns are only an over approximation of
actual support of iterative pattern. Since for every node we
store its corresponding projected approx-all database, we can
always do backward traversal to find actual support of patterns.
This is done by removing approximate instances of the pattern
that does not satisfy the actual instance constraint defined in
Definition 3.2.

Since a node can correspond to different patterns having
the same projected approx-all database, there are potentially
a number of actual support values corresponding to a node in

PAL. There is a need for labels to uniquely identify different
paths from root ending in a node n; each path corresponds to
a different pattern with potentially different actual support.

A naive way is to label a path by all the transitions it
traverses and use this label as the path identifier. However,
this will be an overkill as the path can be long for long
patterns. Our solution is to only include labels of important
transitions in the lattice as the path identifier. When a path
passes a transition t sinking at a node n with more than one
incoming transitions, only then the transition label t.Id will
be appended as part of the path id.

Consider the example PAL data structure in Figure 2. Only
transitions sinking in nodes having more than 1 incoming
transitions are labeled. Considering the PAL structure for
the example database ExDB (see Table 1), we note that
patterns P 〈A,B, C,D〉 and P ′ 〈D〉 has the same approximate
projected database and share a node in the PAL, however their
actual support is different – sup(P ) = 3 while sup(P ′) = 4. To
store and differentiate their support values, we use their path
id. The path id of P is 〈1, 1〉 (corresponding to transitions to
node N2 and N3) while the path id of P ′ is 〈4〉 (corresponding
to the transition to node N3).

Traversal of the entire paths in PAL with computation of
actual pattern supports will produce the full-set of frequent
iterative patterns. However, this is not our goal as we want to
mine the set of generators.

Hence, next we identify which patterns are generators. We
try to avoid candidate generator generation. This is needed
to avoid storage of candidate generators in the memory and
expensive filtering of candidates which are not generators.

To detect and identify generators, we use Theorem 1. A
pattern is a generator if none of its sub-patterns (defined in
Theorem 1) have the same support as itself. We check the
support of each sub-pattern by traversing the PAL from top
to bottom. Since we will need the support of P ’s sub-patterns
to decide whether a pattern P is a generator, we traverse the
PAL breadth first. We first compute all patterns of length 1.
We then continue to patterns of length 2, 3, . . .. Hence, when
we check whether a pattern P is a generator, we have the
actual support of P ’s sub-patterns.

As an example, consider the pattern 〈C, D〉 mined from
ExDB. One of its sub-patterns 〈D〉 has the same support as
itself. Hence, it is not a generator.

It is not profitable to check for every path in the PAL to
see whether they are generators. The mining cost will then be
larger than mining a full-set of patterns from the PAL. This
would not be efficient. Rather, we employ several search space
pruning strategies to prune the sub-search spaces containing
non-generators.

We use Theorem 3 to prune the search space containing
non-generators. For a pattern P , we look for P ′ ∈ ∪ev∈P

erasure(P, ev). If we detect that there is a P ′ such that
sup(P )= sup(P ′), DBapp−all

P = DBapp−all
P ′ and Cons−

tr(P ) − Constr(P ′) 6∈ FV (P ), according to Theorem 3,
P and its extensions (i.e., P++evs, where evs is an arbitrary
series of events) are not generators. We can then prune the sub-
search space in the PAL corresponding to patterns of the form
P++evs. Since we explore PAL breadth-first, the supports of
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all P ′s would have been computed before P is evaluated.
For example, consider pattern 〈A,C〉 mined from ExDB.

We note that 〈C〉 has the same support and projected database
as 〈A,C〉. Also, A is not in FV (〈C〉). From Theorem 3, there
is no need to extend 〈A,C〉 further. The search space can be
pruned.

The algorithm to mine iterative generators from PAL is
shown in Figure 4.

Procedure Mine Gen
Inputs: PAL: Proj-db-based Approximate pattern Lattice;

min sup: Minimum support threshold;
Result: Generators are outputted to a file
Method:
1: Let root = Get the root node of PAL
2: Let Trans = Get transitions from root to its children
3: For each t in Trans
4: Let chd = Sink node of t
5: Let eid = (chd has > one parent) ? chd.Id : ‘’
6: Call Extend Gen (chd, chd.Event, eid, min sup)

Procedure Extend Gen
Inputs: CNode: Current node in PAL;

Pat: Pattern considered;
pid: Path identifier;
min sup: Minimum support threshold;

Method:
7: Let realsup = Compute actual support of Pat (see text)
8: Add (pid, realsup) to CNode.SupTable
9: If (realsup ≥ min sup)
10: If (Pat is a generator acc. to Thm. 1)
11: Output Pat
12: If ¬(Pat++evs can be pruned acc. to Thm. 3)
13: Let Trans = Get trans. from CNode to its children
14: For each t in Trans
15: Let chd = Sink node of t
16: Let npat = Pat++(chd.Ev)
17: Let nid = pid++(chd has > one parent)?t.Id:‘’
18: Call Extend Gen (chd, npat, nid, min sup)

Fig. 4. Mine Generators

5.4 Generating Representative Rules
We would like to generate rules with minimum pre-condi-
tion and maximum post-condition satisfying a minimum con-
fidence threshold min conf. Different from past studies on
rule mining, we would like to discover rules representing not
only forward temporal constraints but also backward and in-
between temporal constraints.

To create a representative rule, we pair an iterative generator
G and a closed iterative pattern C. From the pairings, one
will be able to see what events are pre-pended, inserted and
appended to the generators. These events correspond to the
events that is likely to happen before, in-between and after a
precursor series of events. The challenge is that one needs to
ensure that every instance of a closed pattern C corresponds
to an instance of the generator G it pairs with. To do so, we
use this property:

Property 4: Given a generator G and closed pattern C
where C = G, every instance of C corresponds to an instance
of G iff G is a substring of a pattern P formed by erasing all
events not in G from C.

We keep the rule generation step simple by simply checking
each pair of generator G and closed pattern C where |C|
> |G| and sup(C)/sup(G) ≥ min conf for the satisfaction
of Property 4. Each pair of C and G satisfying the property
corresponds to a representative rule. We assume the number of
closed patterns and generators are reasonable enough for this
step to be performed scalably. In our case study, we find that
this final step incurs the minimum computation cost. A rule
composed of a generator G and a closed pattern C is denoted
by rule(G,C).

6 PERFORMANCE AND COMPARATIVE STUDY
We conducted extensive experiments for the performance
evaluation and a comparative study of our algorithm. In
this section, we report the performance/scalability results on
benchmark synthetic data sets, and present comparative results
on 3 data sets including two real-life benchmark data sets.

6.1 Performance Study
In this sub-section, the performance of our mining algo-
rithm when the support values and database size (number
of sequences, and average length of sequences) are varied is
studied. We use a synthetic data generator provided by IBM
(the one used in [10]) with slight modification to generate
sequences of events. The data generator accepts a set of param-
eters. The parameters D, C, N and S correspond respectively
to the number of sequences (in 1000s), the average number of
events per sequence, the number of different events (in 1000s),
and the average number of events in the maximal patterns. In
these set of experiments, we set the repetition factor parameter
of IBM data generator to 0.5 out of 1. Experiments were
conducted on a Pentium M 1.6GHz IBM X41 tablet PC with
1.5GB main memory, running Windows XP Tablet PC Edition
2005. Algorithms were written using C#.Net compiled using
“Release” mode of VS.Net 2005.

The results of the scalability experiments are shown as
line graphs in Figures 5, 6, and 7.The Y-axis corresponds
to the runtime taken or the number of generated patterns.
The X-axis corresponds to the number of sequences in the
database (|SeqDB|) or the average sequence length – these are
parameters of the synthetic data generators. For each graph we
plot 5 different support thresholds. The thresholds are reported
relative to the number of sequences in the database. Note that,
different from sequential patterns, due to repeated patterns
within a sequence this number can exceed 1.

Figure 5 shows the runtime (in linear scale)1 when the
number of sequences in the database is increased. From the
figure we can note that generally the runtime grows linearly
with the number of sequences in the database. Figures 6 & 7
show the runtime (in log scale) and number of patterns (in
log scale) when the average sequence length is increased.2

From the figure we note that the runtime corresponds to the

1.Due to space limitation, we omit the plot of the number of patterns vs.
variation of min sup and |SeqDB|.

2. Note that we set parameters C and S of the synthetic data generator to
be of the same value. Hence, the patterns are more likely to be longer and
harder to mine.
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Fig. 7. Varying min sup and C (Avg. Seq. Len.) for Synthetic Datasets - |Patterns|

number of mined generators. The runtime is more sensitive
to the length of sequences than the number of sequences in
the database. In general, this is the case with pattern mining
algorithms when the size of transactions (for itemset mining)
or the length of sequences is increased.

To mine from a set of very long sequences, we plan
to follow a similar approach with Lo and Maoz [31] by
embedding intuitive constraints familiar to software engineers
and providing support for user-guidance during the mining
process. In this study, we focus on a general purpose algorithm
which is fully automated without the need of additional user
input aside from the support threshold.

The memory requirement of the algorithm for the largest
dataset D25C250N10S250 at the lowest support threshold con-
sidered (at 1%) is capped at 690MB. The memory requirement
of the algorithm for the smallest dataset D5C50N10S50 at
the highest support threshold considered (at 5%) is capped at

33MB. The memory requirement when the application starts is
around 18MB (it comes with a Graphical User Interface). The
memory requirement is reasonable considering the main mem-
ory of current off-the-rack PCs. A lower memory consumption
can also be obtained by performing minor modifications to
data structures used, e.g., by using ushort (16 bit) rather than
int (32 bit).

6.2 Comparative Study
In this sub-section, we compare the performance of our
algorithm with two algorithms developed in [9]: one of them
for mining a complete set of frequent patterns, the other
for mining frequent closed iterative patterns. Similar to other
studies on mining from sequences [9], [24], [25], low support
thresholds are utilized to test for scalability. For comparison
purpose, the same datasets, thresholds and environment used
in [9] are reused. Our experiments are on the synthetic
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D5C20N10S20 dataset, and two real datasets: a click stream
dataset and TCAS program trace dataset.

The click stream dataset (i.e., Gazelle dataset) is from
KDDCup 2000 [37] which was previously examined in [9],
[24], [25]. It contains 29369 sequences with an average length
of 3 and a maximum length of 651. Though many of the
sequences are short, there are also some long sequences
(i.e., the maximum length is 651). Since we consider very
low support thresholds, these long sequences actually are
considered significantly during mining.

To evaluate the performance of our algorithm on real
program traces, we generate traces from the Traffic alert and
Collision Avoidance System (TCAS) of the Siemens Test
Suite [38], which has been used as one of the benchmarks for
research in software testing and error localization. This test
suite comes with 1578 correct test cases. We run these test
cases and obtained 1578 traces. The sequences are of average
length of 36 and maximum length of 70. In total, it contains 75
different events - the events corresponding to the basic block
ids of the control flow graph of TCAS. We call this dataset
the TCAS dataset.

The result of the experiments on the D5C20N10S20,
Gazelle and TCAS dataset performed using algorithms min-
ing generators (Generators), closed patterns (Closed) and all
frequent patterns (Full) are shown in Figure 8, 9 & 10
respectively. The Y-axis (in log-scale) corresponds to the
runtime taken or the number of generated patterns. The X-
axis corresponds to the minimum support thresholds.
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Fig. 10. Varying min sup for TCAS dataset

From the results, for most cases generators can be mined
with similar or better efficiency than closed patterns. This is
despite the fact that the number of generators is larger than
the number of closed patterns. Note that it is not the case that
a larger number of patterns always corresponds to a longer
running time (see also study in [16]). Although there are more
generators than closed patterns, due to the effectiveness of
the pruning strategy generator mining algorithm can complete
faster than closed pattern mining algorithm does. Generator
and closed pattern mining are aimed at different types of
patterns, hence it is not our primary purpose here to beat the
efficiency of mining closed iterative pattern by a large factor.

The more important result that we can observe from Fig-
ures 8, 9 & 10 is that the runtime sum of mining iterative
generators and closed patterns is much less than the time
of mining the full set of frequent patterns. This result is
significant because we can gain much efficiency to form repre-
sentative rules by mining both iterative generators and closed
patterns, instead of mining the full set of frequent patterns.
That is, to eventually find representative rules, mining both
iterative and closed patterns is effective, otherwise one would
need to mine the full set of frequent patterns which might be
very large in size and which might take a prohibitively long
time.

For example, on the TCAS dataset, the iterative generator
miner was able to run even at the lowest possible support
threshold (at 1 instance) and finished within 14 minutes. On
the other hand, the algorithm mining all frequent patterns did
not stop with excessive runtime (> 6 hours) even at a relatively
high support threshold of 867. In general for all datasets, even
at very low support, generator miner was able to complete
within less than 14 minutes.

7 CASE STUDY

For comparison and continuity purposes, we experimented
with the case study on the transaction component of JBoss
Application Server (JBoss AS) originally reported in [9].
The purpose of this case study is to show the usefulness
of the mined generators in supplementing closed patterns in
generating useful rules describing behaviors of the transaction
sub-component of JBoss AS.

The JBoss trace set contains 28 sequences of a total of
2551 events and an average of 91 events. The longest trace
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Connection Set Up 
1. TransactionManagerLocator.getInstance 
2. TransactionManagerLocator.locate 
3. TransactionManagerLocator.tryJNDI 
4. TransactionManagerLocator.usePrivateAPI 
Tx Manager Set Up 
5. TxManager.begin 
6. XidFactory.newXid 
7. XidFactory.getNextId 
8. XidImpl.getTrulyGlobalId 
Transaction Set Up 
9. TransactionImpl.associateCurrentThread 
10. TransactionImpl.getLocalId 
11. XidImpl.getLocalId 

 
Transaction Set Up (Con’t) 
12. LocalId.hashCode  
13. TransactionImpl.equals 
14. TransactionImpl.getLocalIdValue 
15. XidImpl.getLocalIdValue 
16. TransactionImpl.getLocalIdValue 
17. XidImpl.getLocalIdValue 
Transaction Commit  
18. TxManager.commit 
19. TransactionImpl.commit 
20. TransactionImpl.beforePrepare 
21. TransactionImpl.checkIntegrity 
22. TransactionImpl.checkBeforeStatus 
 

 

Transaction Commit (Con’t) 
23. TransactionImpl.endResources 
24. TransactionImpl.completeTransaction 
25. TransactionImpl.cancelTimeout 
26. TransactionImpl.doAfterCompletion 
27. TransactionImpl.instanceDone 

Transaction Dispose 
28. TxManager.releaseTransactionImpl 
29. TransactionImpl.getLocalId 
30. XidImpl.getLocalId 
31. LocalId.hashCode 
32. LocalId.equals 

 

 

Fig. 11. Longest mined rule (32 events) from JBoss transaction component – read from top-to-bottom, left-to-right

is of 125 events. There are 64 unique events. Each event
corresponds to an invocation of a method call. Using min sup
of 65%, the closed iterative pattern and iterative generator
mining algorithms take the same time (29s) to complete. Using
min conf of 95%, the rule generation process is completed
within 1s. The algorithm mining all frequent patterns does
not complete even after running for more than 8 hours and
produces more than 5 GB of patterns.

We perform the following post-processing steps:

1. Density. Filter away rules whose number of unique
events is < 80% of its length.

2. Ranking. Order the rules according to their lengths
and support values

3. Rule subsumption. Only report a mined rule R =
rule(G,C), if there does not exist another mined rule
R′ = rule(G′,C ′) where G′ v G and C ′ w C.

Steps 1 and 2 is performed early before the patterns are
composed into rules by filtering and sorting generators and
closed patterns. After the rules are generated, step 3 is per-
formed. The rules are grouped into rule-groups. A rule group
corresponds to a closed pattern and a set of generators related
to it. There are 87 rule groups mined.

After running the closed pattern mining algorithm, we found
at least 5 interesting specifications corresponding to software
behavioral patterns:

C1 〈Connection Set Up Evs, TxManager Set Up Evs,
Transaction Set Up Evs, Transaction Commit Evs,
Transaction Disposal Evs〉

C2 〈Connection Set Up Evs, TxManager Set Up Evs,
Transaction Set Up Evs, Transaction Rollback Evs,
Transaction Disposal Evs〉

C3 〈Resource Enlistment Evs, Transaction Execution Evs,
Transaction Commit Evs, Transaction Disposal Evs〉

C4 〈Resource Enlistment Evs, Transaction Execution Evs,
Transaction Rollback Evs, Transaction Disposal Evs〉

C5 〈Lock-Unlock Evs〉
These patterns correspond to closed patterns of longest

length and highest support. Note that the each “Evs” cor-
responds to a series of events. The longest pattern C1 is
composed of 32 events. In addition to the closed patterns, with
the mining of generators, we are also able to describe pre-

condition events that underlie the long pattern hence forming
a rule. Important minimal pre-condition events for each of the
5 patterns (Ci is paired with Gi) are as follows:

G1 〈TxManager.Commit〉
G2 〈TransactionImpl.rollbackResources〉
G3 〈TransactionImpl.enlistResource, TxManager.Commit〉
G4 〈TransactionImpl.enlistResource,TransactionImpl.-

rollbackResources〉
G5 (a) 〈lock〉 and (b) 〈unlock〉
With these minimal pre-conditions, the mined specifications

are more complete. Each of them is a rule stating what series
of events happen after, before and in-between the minimal pre-
conditions. For example, for the shortest rule involving lock
and unlock, the rule group mined is able to say dually that:
(1) when lock is acquired, lock must be released, (2) when
lock is released, lock must be acquired before. Also, consider
the longest rule mined. These are 5 minimal pre-conditions.
These are marked with red dashed-boxes in Figure 7.

Furthermore, since generators can be a combination of
events, as are the cases with pre-conditions G3 and G4 above,
mined specifications can describe the series of events that must
happen in between the pre-condition’s constituent events. The
specification rule(G4,C4) describes 24 other events that are
bound to occur with likelihood more than 95% when two
events enlistResource and rollbackResources are called.
One of these events occur before enlistResource, nine oc-
cur in between the two events, and 14 others occur after
rollbackResources.

8 CONCLUSION

In this paper, we propose a novel algorithm to mine iterative
generators as a step forward in developing data mining tools
addressing the needs of software engineers. We also introduce
a novel concept of representative rules expressing forward,
backward and in-between temporal constraints. These rules
characterize many real-world constraints including those found
in software specifications. These rules can be mined scalably
by pairing iterative generators with closed iterative patterns.

To mine generators, we first construct a novel compact
lattice representing frequent approximate patterns referred to
as Equivalent P rojected-database-based Approximate Pattern
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Lattice, shortened as PAL. We propose a novel method in-
volving a synergy of depth- and breadth-first search to mine
generators.

We build PAL depth-first and employ redundant search
space traversal efforts by detection of equivalent sub-lattices
considering the semantics of iterative patterns. Next, we utilize
a breadth-first traversal strategy on the compact lattice while
performing: (1) Computation of real pattern support, (2) Iden-
tification of generators, and (3) Pruning of sub-search-spaces
containing non-generators via a novel pruning property.

The extensive performance study conducted shows that the
algorithm can run efficiently at low support thresholds, large
number of sequences and reasonably long sequences on 10
synthetic and 2 real benchmark datasets with similar or better
efficiency as closed iterative patterns. Since we need both
generators and closed patterns to form representative rules, it
is important that the two algorithms’ efficiencies are similar. A
case study on traces of JBoss AS shows how mined iterative
generators can be merged with closed iterative patterns to form
representative rules shedding light on software design.

As future work, we plan to further improve the efficiency
of the mining algorithm and conduct more case studies.
We also plan to supplement our mining engine with a tool
for visualization and editing of mined patterns and rules,
integrated to a standard software development platform e.g.
Eclipse [39]. It would be interesting to extend the study to
mine for representative rules involving disjunction, to mine
from a database of sequences of transactions and to consider
incremental mining.
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