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Abstract

Semiconductor nanowire lasers represent a promising frontier in optoelectronics, with greater
potential when coupled with embedded quantum wells. Their small dimensions enable efficient
light confinement and amplification, resulting in reduced threshold currents and the possibility
of on-chip integration. Integrating quantum wells within nanowires enables precise control over
emission wavelength and spectral characteristics due to the step-like density of states.

However, existing theoretical models struggle to incorporate both quantum confinement effects
and the nanowire cavity effects, hindering predictions of the nanowire laser behavior. Also, the
spontaneous emission coupling factor is often treated as a fitting parameter, limiting nanowire
laser optimization. This thesis addresses the challenges in the theoretical analysis of quantum
well nanowire lasers. We present a comprehensive laser model with three main components:
cavity simulations, dynamics of the optical processes, and laser rate equation analysis.

The primary contribution of this thesis revolves around the development of a formalism to
describe absorption and emission processes within quantum well nanowires. We start from
equations originally intended for bulk semiconductors and we further adapt them for quantum
wells. Our modifications not only consider the quantum confinement effect within quantum
wells but also encompass the integration of the effect of the nanowire cavity on absorption, gain,
and spontaneous emission rates. Furthermore, this thesis derives the equations to calculate the
spontaneous emission factor and the Purcell effect for quantum well nanowire lasers. One of the
advantages of our model is the absence of curve-fitting to experimental data to determine the
spontaneous emission factor. Instead, we employ β and the gain derived from our formulations
to solve the laser rate equations.

We implement our laser model to simulate a ten In0.2Ga0.8As/GaAs multiple quantum well
nanowire laser. Simulation results reveal that spontaneous emission is not a constant parameter
and it depends on carrier densities. As more carriers are excited into the conduction band, the
spontaneous emission factor increases. After reaching a maximum, it starts to decrease when
stimulated emissions take over. We also discuss the effect of the quantum well thickness and
the temperature on the spontaneous emission emission factor.

In summary, our simulations and theoretical framework comprehensively capture the dynamics
of nanowire lasers, shedding light on the complex interplay between absorption, gain, and
spontaneous emission rates. This thesis significantly advances our fundamental understanding
of MQW-nanowire lasers, offering a novel contribution to the theoretical groundwork necessary
to harness their unique properties across a wide array of applications.
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Chapter 1

Introduction

A laser, which stands for ”Light Amplification by Stimulated Emission of Radiation,” is a de-
vice that produces an intense, highly focused beam of coherent light through the process of
stimulated emission. Lasers are indispensable in the field of medicine and modern commu-
nication technologies. Among different types of lasers, semiconductor lasers have become a
cornerstone of modern technology due to their numerous advantages, including compact size,
energy efficiency, and precise wavelength control. The high demand for semiconductor lasers
has mainly been driven by their use in fields like telecommunications, medicine, and optical
data storage.

In recent years a notable shift has been towards even smaller and more efficient laser designs,
such as Vertical-Cavity Surface-Emitting Lasers (VCSELs), microdisk lasers, photonic crystal
cavities, and nanowire lasers. These micro and nanostructured lasers offer exceptional levels
of miniaturization and integration, making them ideal for emerging applications in optical
computing, on-chip data communication, and biosensing. They promise to further revolutionize
industries by enabling compact, high-performance devices that were previously unimaginable
with conventional semiconductor lasers.

Among semiconductor lasers, nanowire lasers display a variety of advantages for optoelectronic
devices, including low threshold, significant light absorption/extraction efficiency, and less tem-
perature sensitivity. By tailoring the nanowires’ shape, material, or dimensions, their properties
can be custom-fit to align with a range of applications. This has led to nanowires attracting
considerable research attention due to their capacity to minimize device size, enhance perfor-
mance, and provide unique capabilities [1]–[5].

Embedding quantum wells inside semiconductor nanowire lasers brings about several changes
in their characteristics, leading to improved performance and novel applications. One of the key
benefits is a reduction in the threshold current. This is the minimum current required to initiate
lasing action. Confining the carriers (electrons and holes) in quantum wells increases carrier
density and enhances recombination probability, which results in a lower threshold current for
lasing in quantum well nanowires [6], [7].

Moreover, quantum structures enable bandgap engineering, allowing for the tuning of emission
wavelengths in nanowire laser. By adjusting the quantum well thickness and composition, the
effective bandgap can be tailored to achieve desired emission wavelengths, making these lasers
highly versatile for various applications. Temperature stability is also enhanced when quantum
wells are embedded in the nanowire lasers [8]–[11].
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Optical gain is also increased in quantum well nanowire lasers compared to single nanowire
lasers. The quantum confinement effect leads to a step-like energy-independent density of states,
resulting in a higher optical gain. This characteristic can be beneficial in applications requiring
strong optical signals or amplification. In addition, embedding quantum wells within a nanowire
allows for the integration of compact, nanoscale semiconductor lasers in photonic circuits and
devices, which is particularly important for applications such as on-chip communication and
sensing [12]–[14].

Although semiconductor nanowire lasers are promising as ultrasmall and highly efficient coher-
ent light emitters, modeling nanolasers with quantum confinement is challenging because even
a slight change in the size of the gain medium, cavity dimensions, and where the gain material
placed inside the cavity can noticeably change the laser behavior.

Currently, theoretical models available for quantum well nanowire lasers don’t fully encapsu-
late their laser attributes and clarify the complex optical processes occurring within these laser
systems. A full analysis of nanowire geometry is necessary to analyze quantum well nanowire
lasers effectively. Additionally, accurately describing absorption, gain, and spontaneous emis-
sion rates in quantum wells demands a profound understanding of the dynamics seen in bulk
semiconductors. This understanding is essential for adapting equations to suit quantum well
nanowires.

Moreover, laser models fall short in capturing both the quantum confinement effect, resulting
from the thin quantum well layers, and the optical cavity effect, which arises from placing these
quantum wells inside the nanowires. The spontaneous emission factor (β) is one of the unknown
parameters in laser analysis. Parameter β determines the rate of spontaneous emissions into the
lasing mode divided by the total spontaneous emission rates. Calculating β requires complex
calculations of the optical processes within the laser. Therefore, β is typically treated as a
fitting parameter, by using experimental data in the simulations. However, this approach is
less than ideal because optimizing β can lead to lower thresholds and highly efficient lasers,
bringing us closer to achieving the ideal thresholdless laser.

Additionally, the Purcell factor, which measures the effect of the cavity on the spontaneous emis-
sion lifetime, is one of the key parameters in designing nanoscale lasers. However, conventional
methods for calculating the Purcell factor may not yield accurate results in lower dimensional
nanowire lasers due to the fact that the gain medium only exists in a small fraction of the
nanowire cavity. Lastly, laser rate equations, primarily designed for analyzing conventional
bulk semiconductors, need modification for lower-dimensional lasers, especially when the gain
material exists in a small fraction within the cavity.

This thesis aims to address these challenges in the theoretical analysis of multiple quantum well
(MQW)-nanowire lasers by developing a comprehensive laser model comprising laser cavity
simulations, modeling of laser gain and spontaneous emission dynamics, and rate equation
analysis. This thesis contributes to a deeper understanding of quantum well nanowire lasers
and lays the theoretical groundwork for leveraging their unique properties in various innovative
applications. In the next section, we will present a brief overview of each chapter along with
the research objectives.

1.1 Research Objectives and Overview

The objectives of this thesis are outlined as:
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• Develop the formalism to describe the absorption, gain, and spontaneous emissions within
the quantum well nanowire laser

• Incorporates the nanowire photonic density of states in the calculations of the gain and
the spontaneous emission rates

• Derive a theoretical framework to calculate the spontaneous emission factor

• Derive a theoretical approach to calculate the Purcell factor

• Investigate change in the laser characteristics when transitioning from the conventional
bulk semiconductor lasers to the quantum well nanowire lasers

• Investigate the behavior of the spontaneous emission factor with carrier density and time
in quantum well nanowire lasers

• Investigate the dependency of the Purcell factor on carrier density in quantum well
nanowire lasers

• Compare and validate our developed model with the experimental data.

Chapter 2 starts with an overview of lasers focusing on the semiconductor lasers. Then
we will delve into the fundamentals of lasers to build the groundwork understanding of laser
operation. Moreover, We discuss the advantages of incorporating lower-dimensional structures
as gain media within laser systems encompassing quantum wells, quantum wire, and quantum
dots. Additionally, we provide a brief overview of the current state of the art in the realm of
lower-dimensional semiconductor research.

Moving forward, we focus on the domain of nanowire lasers, where we examine the advantages
and challenges in the nanowire laser field. We also briefly explore the various fabrication tech-
niques. Moreover, we discuss the integration of lower-dimensional gain media within nanowires
leading to exceptionally low thresholds and high-efficiency lasers that can be tailored for specific
applications. This chapter concludes with our investigations on different laser rate equations
commonly employed to describe nanowire lasers, highlighting the associated challenges. Fi-
nally, we introduce our modified laser rate equations for analyzing quantum well nanowire
lasers, paving the way for a deeper exploration of their unique properties and applications.

Chapter 3 presents a set of formulations that we developed for modeling the intricate dynamics
of optical processes within a quantum well nanowire laser. First, we provide a detailed analysis
of absorption, gain, and spontaneous emissions occurring within a bulk semiconductor. Then
we will adapt these equations for quantum wells within a nanowire cavity. Our model goes
beyond the conventional consideration of quantum confinement effects on absorption, gain,
and stimulated emission rates; it also takes into account the impact of the optical cavity by
calculating the photonic density of states within the nanowire. This comprehensive approach
enables us to establish a mathematical framework capable of precisely determining the complex
dynamics of the optical processes within quantum well nanowire lasers. Furthermore, we derive
the equations to accurately compute the spontaneous emission coupling efficiency and the
Purcell factor in quantum well nanowire lasers. Our theoretical approach enhances our ability
to predict and optimize the performance of these nanoscale laser devices, ultimately contributing
to advancements in the field of nanophotonics.

Chapter 4 describes the computational methods and the numerical approaches that we use
to model the quantum well nanowire laser. We will present a comprehensive overview of the
implementation of the Finite Element Method (FEM), to simulate a nanowire laser cavity. By
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applying FEM, we aim to derive the eigenfrequencies of the nanowire and obtain its cavity-
related properties. We will discuss both two-dimensional (2D) and three-dimensional (3D)
cavity simulations. The 2D simulations will be used in studying the transverse modes of the
cavity and determining their corresponding effective mode indices. Concurrently, we use 3D
simulations to accurately visualize the longitudinal modes within the nanowire. These 3D
simulations enable us to calculate essential cavity parameters such as the confinement factor
(Γ), cavity quality factor (Q), and photon lifetime (τp). These parameters are used as inputs
to solve the laser rate equations.

Moreover, in Chapter 4 we will discuss how to use the fourth-order Runge-Kutta numerical
method to solve the laser rate equations. Laser rate equations describe the rate of change in
the carrier density and the number of photons with time and help us predict the laser’s behavior.
Furthermore, in this chapter, we validate our choice of computational methods and numerical
techniques by comparing our simulation results with experimental data. Comparison of our
simulations with real-world observations ensures the accuracy and reliability of our model.

In Chapter 5, we will use the theoretical framework developed in this thesis and presented in
Chapter 3 to investigate the dynamics of absorption, gain, and spontaneous emissions within
ten 19nm thick In0.2Ga0.8As/GaAs quantum wells nanowire laser reported in [7].

Our approach involves consideration of the photonic density of states within the nanowire,
enabling us to accurately predict the rates of stimulated emission and spontaneous emissions
within the quantum wells embedded within the nanowire. Our analysis extends to the calcu-
lation of the spontaneous emission factor and the Purcell factor. A central objective of this
chapter is to unveil the behavior of the spontaneous emission factor with carrier density and
time, a facet that has not been previously explored in the context of quantum well nanowires.
This distinction arises from the recognition that β is not a constant parameter in a laser; instead,
it undergoes changes over time and in response to carrier density variations, a phenomenon not
previously reported within quantum well nanowires.

Furthermore, we will apply the outcomes from our nanowire simulations and the optical pro-
cesses occurring within the quantum wells to solve the laser rate equations. Our ultimate goal is
to rigorously compare our results with existing models employed for solving these equations and
validate our findings by aligning them with experimental data. The outcomes of this chapter
advance our understanding of quantum well nanowire lasers and contribute to the refinement
of their theoretical framework, ensuring greater accuracy and applicability in practical laser
applications.

Chapter 6 summarises the key results and contributions of this thesis. Furthermore, it extends
its scope by delineating recommended avenues for the continuation and expansion of this work
in the foreseeable future, thereby providing valuable guidance to researchers in the field.

1.2 List of Publications

This thesis resulted in the following publications:

• Arti Agrawal, Parya Reyhanian, Charlene J. Lobo, and Christopher G. Poulton, “Com-
putational methods,” in On-Chip Photonics: Principles, Technology and Applications,
1st ed., A. Lakhtakia, A. Karabchevsky, and A. Choudhary, Eds. Elsevier, 2024, ch. 3.

• Parya Reyhanian, Charlene Lobo, Christopher. G. Poulton, and Arti Agrawal, “Impact
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of the Purcell and Spontaneous Emission Factors in Nanowire Lasers” in Conference on
Optoelectronic and Microelectronic Materials and Devices (COMMAD) 2022.

• Parya Reyhanian, Charlene Lobo, Christopher. G. Poulton, and Arti Agrawal, “A Nu-
merical Study on the impact of Purcell Effect and Spontaneous Emission Factor in Lower-
Dimension Semiconductor Nanolasers” in Conference on Optics, Photonics Quantum Op-
tics (COPaQ) 2022.

• Parya Reyhanian, Charlene Lobo, Christopher. G. Poulton, and Arti Agrawal, “A Theo-
retical Model to Analyse Multiple Quantum-disks Nanowire Lasers” in the 6th workshop
on Optics and Photonics: Theory and Computational Techniques (OPTCT) 2022.
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Chapter 2

Fundamentals of Semiconductor Lasers
and State of the Art

In 1917, Albert Einstein introduced the basics of amplifying radiation through stimulated
emission [15]. However, the practical application of this concept didn’t occur until 1952 when
Joseph Weber started developing an optical maser. An ”optical maser” is a term for ”microwave
amplification by stimulated emission of radiation,” which was an earlier version of the same
concept as laser but applied to microwaves instead of visible light. The first successful maser
was built in 1953 by the teams of Charles Townes, Nikolay Basov, and Aleksandr Prokhorov
[16]–[20].

”LASER” stands for the Light Amplification by Stimulated Emission of Radiation. Theodore
Harold Maiman was the first one to demonstrate the first functional ruby laser in 1960 [21]–
[23]. Maiman’s accomplishment triggered a series of advances in laser technology. The devel-
opment of lasers is considered one of the most significant breakthroughs of the century, playing
crucial roles in various industries such as optoelectronics, engineering, information technology,
medicine, and numerous scientific fields [24]–[31].

Stimulated emission is the fundamental phenomenon that lies at the heart of laser operation,
distinguishing lasers from other light sources. In this remarkable process, atoms or molecules in
an excited state interact with incoming photons, resulting in the emission of additional photons
that match in frequency and phase with the incident photons. This process creates a positive
feedback loop of photon stimulation and emission, with the end facets of the cavity ensuring
that only the photons matching the exact frequency and phase are allowed to propagate. The
photons amplify and build up, resulting in a coherent, intense laser beam that emerges through
the partially reflective end facets [32], [33].

At the core of the laser’s operation usually, there are three essential elements: the cavity,
gain medium, and the pump. As illustrated in Figure 2.1, the cavity consists of two partially
reflective facets, facing each other. This arrangement creates a confined space where light is
trapped and bounces back and forth. The gain medium lies between these reflective facets.
When an external energy source (the pump) is supplied to the gain medium, its atoms or
molecules are excited to higher energy states [33], [34].

Population inversion occurs when a higher number of atoms or molecules reside in higher energy
states than there are in lower energy states. A state of population inversion in the gain medium
is often achieved through the pump [33], [34].
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Figure 2.1: Schematic representation of a simple laser structure consisting of the optical cavity,
gain medium, and pump.

2.1 Fundamentals of Semiconductor Lasers

A semiconductor laser is a type of diode laser that uses a semiconductor material as the gain
medium. Semiconductor lasers play a significant role in optoelectronics. They are used in
various applications, from optical communications to optical memory storage systems, due to
their advantages over solid-state lasers, such as low cost, high efficiency, compact size, and
compatibility with modern electronics [34]–[36]. Semiconductor lasers are designed to operate
over a wide range of frequencies and they are mostly used in communications and control
applications to produce the input information signals transmitted through the optical fibers
[34], [37]–[39].

Semiconductor lasers are most popular due to their simple structure. As illustrated in Figure
2.2, layers of n-type and p-type semiconductor materials are carefully placed in a way that
the active layer, presented with a black color, is sandwiched between them. Conventional
semiconductor laser dimensions are typically in the order of a few hundred micrometers as
presented in Figure 2.2 [34].

When a forward bias voltage is applied across the p-n junction via the electrodes, shown with
blue color, electrons from the conduction band recombine with holes in the valence band. This
recombination releases energy in the form of photons, creating coherent light. This light is then
amplified as it bounces back and forth between cleaved end facets of the laser cavity, leading
to a powerful, focused laser beam [34].

Within a semiconductor, the electrons are distributed throughout the entire volume of the
crystal. Consequently, the wavefunctions of the electrons overlap, but due to the Pauli exclusion
principle, they are unable to occupy the same quantum state. Thus, each electron within the
crystal must be linked to a unique quantum state. In its isolated state, the atoms in the
semiconductor display similar electron configurations and electrons from different atoms could
potentially have the same energy states. When these atoms form a solid structure, interatomic
interactions come into play and split the energy levels leading to the formation of the conduction
and valence energy bands. As shown in Figure 2.3, these bands are separated by a bandgap
(Eg) where electron presence is prohibited [33].
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Due to the large number of atoms with different energy levels, each band offers a nearly con-
tinuous range of energy states. We show this continuous energy range with the gray color in
Figure 2.3. The highest energy band in the semiconductor, where electrons are completely
filled at 0 Kelvin, is called the ”valence band”. The higher band immediately above it, which
is either partially occupied or completely vacant, is called the ”conduction band”. [33].

𝑛

𝑝

Active region

End facet

Pump

Electrode

Output light

Figure 2.2: Schematic representation of a semiconductor laser structure. The active region
depicted as the black layer is located at the intersection of the p-type and n-type regions where
the current is flowing. The end facets form the resonant cavity and two electrodes are attached
to the top and the bottom of the structure to provide pumping.

The gain coefficient in the semiconductor lasers is quite large in comparison to the gas and
solid-state lasers and they are capable of operating at more than 50% efficiency [34]. the gain
coefficient in a typical semiconductor laser is in the order of 1000 per centimeter. In contrast,
the gain coefficient of a solid-state laser, such as a Neodymium-doped Yttrium Aluminum
Garnet (Nd: YAG) laser, is in the range of 0.1 to 10 per centimeter [40].

Semiconductor lasers also face a few challenges. For example, they don’t simply operate with
fundamental transverse electromagnetic mode (TEM00) and the field spot size is roughly in the
order of the free space wavelength. Given their limited dimensions, the emitted beam diverges
at angles of a few degrees, and owing to the uneven dimensions, the beam disperses unevenly
in two directions which leads to a broad linewidth.

Moreover, the range of optical frequencies over which oscillation can occur is exceptionally
wide when compared to solid-state lasers, leading to multimode oscillation. Such lasers require
large input currents and their operation generates heat, which can affect the efficiency and
lifespan. Therefore, cooling systems are needed to lower the device temperature [41], [42]. In
the following sections, we will discuss different components of the laser, starting with the pump.
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Figure 2.3: Schematic image of the conduction and the valence band in a bulk semiconductor.
The bandgap is presented as Eg.

2.1.1 Pump

In a semiconductor, the number of electrons that exist in the valence band is usually more than
the number of electrons in the conduction band. Thus, to start lasing, an external power supply
is used to excite the electrons from the valence band into the conduction band. The electrons
in the valence band absorb the incident energy and move to the conduction band. When the
number of excited electrons in the conduction band exceeds the number of electrons in the
valence band, population inversion is achieved. Electrons with higher energy levels eventually
lose their energy and drop to the valence band either via spontaneous or stimulated photon
emission. The wave passing through a collection of atoms in the state of population inversion
causes more stimulated photon emissions, and it is amplified.

There are two primary pumping mechanisms in semiconductor lasers: electrical pumping and
optical pumping. Each method has advantages and limitations, and the choice between them
depends on the desired laser application and performance requirements [43]–[45].

Electrical pumping is the technique employed in conventional semiconductor lasers, where cur-
rent is injected into the gain medium, resulting in the recombination of electron-hole pairs,
which contribute to the stimulated emission process. The efficiency of electrical pumping which
represents the percentage of the pump power that is able to interact with the gain medium is
near 100% [46].

In contrast, optical pumping involves the excitation of electrons in the semiconductor using an
external light source, such as another laser or a light-emitting diode (LED). When an external
light source is shined on the gain medium, the electrons in the valence band absorb the energy
of the incident photons and are excited into the conduction band. Optical pumping is often
used in more specialized lasers.

The efficiency of the optical pump is significantly low compared to electrical pumping. The
optical pump efficiency in a typical semiconductor laser is around 2-5% [47]. Improving the
absorption efficiencies is essential to increase the pumping efficiency and reduce the required
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pump power to achieve population inversion (threshold). Factors such as the pump light’s
polarization, wavelength, and spot size can affect absorption efficiency. The beam profile is
also a vital factor in ensuring that carriers are uniformly pumped throughout the active region
[48], [49]

2.1.2 Resonant Cavity

The cavity, often called the optical resonator, typically consists of two reflective surfaces at
both ends of the gain medium. Its primary purpose is to reflect and confine the light waves
between the end facets, allowing them to oscillate and gradually increase the intensity. The
end facets are partially transparent, enabling a portion of the amplified light to exit and form
the output laser beam [34].

The cavity design determines the emission wavelength by defining the allowed oscillation modes
within the resonator. Controlling the laser’s output wavelength, mode selection, and spectral
linewidth is possible by thoughtfully designing the cavity [50]. Efficient coupling between the
cavity and the gain medium is essential for optimal amplification and minimal losses. The
cavity’s geometry, size, and material composition influence the coupling efficiency [51].

Additionally, the end facets of the cavity must achieve the desired reflectivity and transmittivity
at the intended wavelength. The significance of the cavity design becomes increasingly evident
in the context of stabilizing compact and ultrafast lasers [52]–[56].

Optical parameters associated with the cavity are instrumental in laser behavior, such as the
confinement factor (Γ), mode volume (Vm), and the quality factor (Q). These factors are
essential for understanding the performance and behavior of laser systems and are crucial for
designing effective lasers tailored to specific uses, as will be discussed in the following sections.

2.1.3 Gain Medium

Gain is the amplification of optical power that the gain medium provides per unit length and
depends on the carrier density within the active region. The gain medium consists of a direct
bandgap semiconductor material, such as Gallium Arsenide (GaAs), Indium Phosphide (InP),
or their alloys such as InGaAs which facilitates the efficient recombination of electrons and
holes, resulting in light emission.

The properties of the gain medium determine key laser characteristics such as its threshold
current, output power, and spectral linewidth. Several parameters related to the gain medium
are used to analyze the performance of semiconductor lasers, such as the gain (g), transparency
carrier density (Ntr), and differential gain. The laser emits light when the carrier density exceeds
the transparency carrier density. The differential gain is the rate at which the gain increases
as more carriers are injected, dg/dN , and it is an essential parameter for understanding the
modulation properties and dynamics of semiconductor lasers [57], [58].

2.1.4 Optical Processes in Semiconductors

Interactions between incident photons and electrons within the conduction band, as well as
holes in the valence band, can occur through three distinct mechanisms:

Absorption: When a photon is absorbed by an electron in the valence band, the electron
gains energy and jumps to the conduction band as presented with a dash-dotted line in Figure
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Figure 2.4: The energy band diagram of the conduction and valence bands according to the
momentum (k) of electrons in a bulk semiconductor. Ec represents the energy at the bottom
of the conduction band, while Ev indicates the energy level at the top of the valence band. An
electron sitting in the E2 energy level in the conduction band can recombine with a hole in
the valence band at E1 energy level via spontaneous or stimulated emission and emit a photon
with energy equal to hv = E2 −E1, which is shown by the downward transition with the solid
line. Also, an electron in the valence band can absorb the energy equal to hv and move to the
conduction band as shown by the upward transition with a dashed-dotted line.

2.4. As there are no energy levels within the energy gap, the minimum energy required for this
transition should be larger than the energy of the bandgap Eg < hv.

The downward transition in Figure 2.4, happens when the electron in the conduction band loses
its energy and drops to the valence band by emitting a photon. The downward transition can
occur via either spontaneous or stimulated emission.

Spontaneous Emission: In quantum mechanics, spontaneous emission describes the process
wherein an electron drops from a higher energy level to a lower energy level and, in doing
so, emits a photon. The phenomenon is labeled as ”spontaneous” because it occurs without
any external intervention, exclusively due to the natural instability of the excited state. The
emitted photon carries away the energy difference between the two levels (E1 and E2), which
corresponds to its frequency (v), as given by the Planck-Einstein relation

E2 − E1 = hv. (2.1)

The photons resulting from the spontaneous emission within a material, are emitted in different
directions and wavelengths. The spontaneous emission lifetime is an important parameter
associated with this process. Spontaneous emission lifetime (τsp) is the average time that an
electron spends in the conduction band before it decays due to spontaneous emission. We will
discuss the spontaneous emission in great detail in section 2.2.5.

Stimulated Emission: The presence of an incident photon can prompt the de-excitation of an
electron from the conduction band to the valence band, resulting in electron-hole recombination.
The emitted photon maintains coherence with the incident photon.
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Conservation of energy and momentum must be satisfied to enable these three processes. Con-
servation of energy states that in photon absorption, there should be an available electron in
the valence band, while an unoccupied state must exist in the conduction band with the energy
difference equivalent to the photon’s energy as given in Equation 2.1. This should also be true
in the case of stimulated and spontaneous emissions when an electron in the conduction band
drops into a hole in the valence band.

The conditions governing absorption and emission processes also involve considerations of the
electron’s wave vector before and after the transition. The probability of the transition is
determined by a momentum matrix element. If k⃗2 and k⃗1 represent the wave vector of the
electron in the conduction band and in the valence band respectively, momentum conservation
dictates that [33]

ℏk2 − ℏk1 = ℏkp, (2.2)

Where kp is the momentum of the emitted photon.

Electrons in the conduction and valence bands exhibit much larger momentum than photons.
Typically, if a denotes the lattice constant of a semiconductor, then a is substantially smaller
than the wavelength (a << λ). Therefore, electrons possess significantly larger momentum than
photons. This condition essentially indicates that the electron’s momentum remains nearly
constant before and after the transition (k1 ≈ k2). This is referred to as the k-selection which
implies that the transition of the electrons between the conduction and the valence bands in
the k-space which is presented in Figure 2.4, should be a vertical transition [33].

In the following sections, we discuss the number of available electronic states in the conduction
and valence bands.

2.1.4.1 Electronic Density of States (DOS)

The joint electronic density of states (DOS) indicates the number of available states for an
interaction (absorption or emission) involving a photon of energy hv. From the conservation of
momentum, in the electron-hole recombination, the wave vectors k1 and k2 are almost equal to
each other. However, as presented in Figure 2.4, for the transition from E2 to E1, the electron
can have different values of k at energy level E2 and similarly a hole at energy level E1 can
have different k values. Therefore we can write the energy levels by considering their position
in the k axis as

E2(k) = Ec +
ℏ2k2

2m∗
e

, (2.3)

and

E1(k) = Ev −
ℏ2k2

2m∗
h

, (2.4)

where ℏ is the reduced Planck’s constant, and k is the wavenumber of the electron/hole. The
parameters m∗

e and m∗
h represent the effective mass of electrons in the conduction band and the

effective mass of holes in the valence band, respectively. The effective mass of electrons and holes
in a semiconductor describes how they behave within the crystal lattice of the semiconductor.
It represents the mass of these carriers as if they were free particles moving in a vacuum, taking
into account their interaction with the surrounding crystal structure. The effective mass is a
crucial parameter for understanding and predicting the electronic properties and mobility of
charge carriers in semiconductors. Using Equations 2.3-4,

hv = E2 − E1 = (Ec − Ev) +
ℏ2k2

2
(
1

m∗
e

+
1

m∗
h

) = Eg +
ℏ2k2

2m∗
r

, (2.5)

13



where m∗
r is the reduced mass of the electron and it is calculated as

1

m∗
r

=
1

m∗
e

+
1

m∗
h

. (2.6)

Equation 2.5 can be rewritten as

k2 =
2m∗

r

ℏ2
(hv − Eg). (2.7)

By substituting k2 in Equations 2.3 and 2.4, we obtain

E2 = Ec +
m∗

r

m∗
e

(hv − Eg), (2.8)

and

E1 = Ev −
m∗

r

m∗
h

(hv − Eg). (2.9)

It is obvious that there is a direct relationship between a photon with frequency v (or with
Energy (hv = E12 = E2 − E1)) in Equations 2.8-9.

The electronic density of states (DOS) is the parameter that counts all the possible pairs of
energy states per unit volume that exist in both the conduction band and the valence band.
The DOS in bulk semiconductors is obtained as [57]

ρr(E)dE =
1

2π2
(
2m∗

r

ℏ2
)3/2(E − Eg)

1/2dE, (2.10)

which can be written specifically as the density of electrons in the conduction band ρc and the
density of holes in the valence band ρv as

ρc(E2)dE2 = ρv(E1)dE1 = ρr(E)dE. (2.11)

The expression ρr(E)dE covers all the available pairs of energy states per unit volume that
exist in both the conduction band and the valence band within the energy range between E
and E + dE that can participate in an electron-hole recombination. However, the probability
of these states being empty or occupied is calculated by the Fermi functions.

2.1.4.2 Occupancy probability

The Fermi-Dirac function determines the probability of electrons occupying energy states at
level E as

f(E) =
1

1 + e(E−Ef )/kBT
, (2.12)

where Ef is the quasi-Fermi level, T is the temperature and kB is the Boltzmann constant.

When the temperature is around zero (T = 0 K), energy levels below Ef are fully occupied, while
those above it remain unoccupied. As temperature rises, the probability of electrons occupying
states above the Fermi level increases. Figure 2.5 presents the Fermi function distribution. At
the energy level Ef the occupancy probability is equal to 0.5.

Figure 2.5 shows that at absolute zero, the distribution behaves like a step function, with a value
of 1 for energies below the quasi-Fermi energy and 0 for energies above it. As the temperature
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Figure 2.5: Fermi-dirac function distribution with respect to the energy at temperature 0
Kelvin, 150 K, and 300 K. At temperature increases the Fermi function behaves smoother. At
temperatures near 0 K, the Fermi function is assumed to be a step function.

rises, the distribution becomes more smooth, compared to the sharp edges of the step function.
At thermal equilibrium, Equation 2.12 determines the likelihood of electrons occupying both
the conduction and valence bands, and as shown in Figure 2.6, the quasi-Fermi level Ef lies in
the middle of the bandgap.

When the gain medium is under the pump, the quasi-Fermi level Ef splits into two separate
quasi-Fermi levels as Fc and Fv describing the probabilities of electron and hole occupancy
within the conduction and valence bands, respectively. From Figure 2.6, you can see that as we
pump the gain medium, more and more electrons are excited. Therefore, Fc and Fv are pushed
further up in the conduction band and down into the valence band.

0.5

𝐸 𝐸
𝐸𝑐(𝑘)

𝐸𝑣(𝑘)

𝐹𝑐
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𝐸𝑔

𝐸𝑓 =
𝐸𝑔

2

Figure 2.6: Quasi-Fermi levels in both the conduction Fc and valence bands Fv for a semicon-
ductor under the pump. At thermal equilibrium, the quasi-fermi levels lie in the middle of the
bandgap Ef = Fc = Fv = Eg/2.
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We can then write the Fermi functions of the conduction and valence bands separately as

fc(E) =
1

1 + e(E−Fc)/kBT
, (2.13)

fv(E) =
1

1 + e(E−Fv)/kBT
, (2.14)

2.1.5 Absorption, Spontaneous and Stimulated Emissions

2.1.5.1 Einstein A and B coefficients

Interactions between the incident photons and electrons within the conduction band, as well
as holes in the valence band, can occur through three distinct mechanisms: absorption, spon-
taneous, and stimulated emission. In order to describe the rates of these optical processes
within a semiconductor, we start with the Einstein A and B coefficients and we first consider
transitions between discrete energy levels E1 and E2 as shown in Figure 2.7:

The rate of absorption transitions per unit volume is proportional to

1. The probability of a state at energy E1 being occupied (f1)

2. The probability of a state at energy E2 being empty (1− f2)

3. P (E21) which is is the number of photons per unit volume per unit energy at the transition
frequency v21 = E21/h

where f1 and f2 are the Fermi functions introduced in Equations 2.13-14. We note that P (E21)
is related to the Photonic Density of States (PDOS), Nph(E21), per unit volume via

P (E21) = Nph(E21)nph, (2.15)

where nph is the average number of existing photons at thermal Equilibrium according to Boson
statistics and it is obtained as [57]

nph =
1

eℏω/kBT − 1
. (2.16)

𝐸1 𝐸1 𝐸1

𝐸2 𝐸2 𝐸2

ℎ𝑣 ℎ𝑣 ℎ𝑣
ℎ𝑣

ℎ𝑣

a) b) c)
Absorption Spontaneous emission Stimulated emission

Figure 2.7: Simple representations of a) absorption, b) spontaneous emission, and c) stimulated
emission of a photon between discrete energy levels 1 and 2.

The rate of transitions from level 1 to level 2 per unit volume is given by [57]

Rabs
12 = B12P (E12)f1(1− f2), (2.17)
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where B12 is one of the Einstein coefficients.

The downward transitions can happen through two separate mechanisms, the stimulated and
spontaneous emission processes as presented in Figure 2.7. The stimulated emission depends
on the photon density P (E), and the spontaneous emission process does not. Therefore, we
introduce two rates as

Rstim
21 = B21P (E21)f2(1− f1), (2.18)

Rspon
21 = A21f2(1− f1), (2.19)

where B21, and A21 is the Einstein A and B coefficients.

When the system is at thermal equilibrium, the rate of change in the number of electrons
in level 2 is zero. Therefore the absorption rate is equal to the sum of the spontaneous and
stimulated emission rates as

Rabs
12 = Rstim

21 +Rspon
21 , (2.20)

B12P (E12)f1(1− f2) = B21P (E21)f2(1− f1) + A21f2(1− f1) (2.21)

If we rewrite Equation 2.21 according to A21, we obtain

A21 = [B12
f1(1− f2)

f2(1− f1)
− B21]P (E21). (2.22)

We now use Fermi-Dirac statistics for the energy levels 1 and 2 as

f1(E1) =
1

1 + e(E1−Ef )/kBT
, (2.23)

f2(E2) =
1

1 + e(E2−Ef )/kBT
, (2.24)

where Ef is the quasi-Fermi level and KBT is the Boltzmann energy. We then have

f1(1− f2)

f2(1− f1)
=

1 + e(E2−Ef )/kBT

1 + e(E1−Ef )/kBT
= e(E2−E1)/kBT . (2.25)

So from Equation 2.22, we obtain

A21 = (B12e
(E2−E1)/kBT − B21)P (E21). (2.26)

now we can rewrite P (E21) as

P (E21) = Nph(E21)nph = Nph(E21)
1

e(E2−E1)/kBT − 1
. (2.27)

From Equations 2.26 and 2.27, we get

A21

B12e
E21/KBT − B21

= P (E21) = Nph(E21)
1

eE21/kBT − 1
. (2.28)

The only way this can be true for all values of T is if

B12 = B21, (2.29)

and
A21

B21

= Nph(E21). (2.30)

From Equation 2.30, we can see that the A and B coefficients in the spontaneous and stimulated
emission rates are related to the available number of photonic densities of states.
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2.1.5.2 Absorption, stimulated and Spontaneous Emission Rates

In a semiconductor material instead of having a single discrete state, we are dealing with a
continuum of states in the conduction and valence bands. Also, the incident photons do not
have just a single energy and they spread over a certain energy range. The absorption rate
per unit volume is given by Equation 2.17. The net absorption independent of spontaneous
emission is

Rabs−net
12 = Rabs

12 −Rstim
21 = B21Nph(E21)(f1 − f2)nph. (2.31)

By integrating over the incident energy range, we obtain the net absorption as

Rabs−net
21 =

∫
B21Nph(E21)(f1 − f2)δ(E21 − E)nphdE, (2.32)

Where the delta function is added to describe only the transitions with energies equal to E21.e
spontaneous emission rate per unit volume for a discrete state is given by Equation 2.19 as

Rspon
21 = A21f2(1− f1). (2.33)

Using Equation 2.30, we can rewrite the spontaneous emission rate as

Rspon
21 = NphB21(E21)f2(1− f1). (2.34)

Similar to the net absorption, by integrating over the energies, we can rewrite the spontaneous
emission rate as

Rspon
21 =

∫
NphB21(E21)f2(1− f1)δ(E21 − E)dE. (2.35)

Similarly, the rate of stimulated emission is obtained by assuming that the stimulated emission
rate is equal to the net absorption rate when spontaneous emission is neglected.

Rstim
21 =

∫
B21Nph(E21)(f2 − f1)δ(E21 − E)nphdE. (2.36)

In Chapter 3, we will provide an in-depth exploration of optical processes in quantum-well
semiconductors. We will delve into detailed explanations of how to calculate the photonic
density of statesNph, coefficient B21, and how to incorporate the spontaneous emission linewidth
into the equations. Ultimately, we will derive a comprehensive expression for gain, absorption,
and the rate of spontaneous emission.

In the next section, we will discuss how semiconductor materials with different dimensions
have various optical characteristics. We also investigate the impact of using lower-dimension
semiconductors on the laser behavior when they are used as the gain medium.

2.2 Lower-dimensional Gain Media

With recent developments in the field of nanofabrication, we have witnessed a paradigm shift
towards favoring small-sized lasers. As technology advances, the demand for compact and
integrated solutions intensifies. Small lasers enable the creation of intricate and densely packed
optoelectronic circuits, where multiple components can coexist on a single chip.
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Simultaneously, it was realized that achieving superior device performance such as lower thresh-
old and higher coupling efficiency could be accomplished by reducing the size of the gain medium
to nanometer-scale in one or more directions. This discovery marked the inception of the field
of lower-dimensional semiconductor lasers, including innovations such as quantum-well (QW),
quantum-wire (QWR), and quantum-dot (QD) lasers.

When the thickness of the active medium is reduced to the order of the carrier de Broglie
wavelength (λ = h/p, p is the momentum), the motion of the carriers is confined in one or more
directions. The geometrical constraints impose boundaries on the motion of electrons, causing
them to adjust their energy levels in response to these constraints. This phenomenon is known
as the quantum confinement effect which plays a crucial role in defining the unique properties
of quantum wells, quantum wires, and quantum dot lasers [59].

As illustrated in Figure 2.8, a quantum well arises when the active medium is confined in a
single direction. This arrangement restricts the electrons and holes motion to a thin layer.
On the other hand, a quantum wire is referred to as a gain media with confinement in two
dimensions. Here, electron and hole movement is constrained to a narrow wire-like region. The
most intricate confinement scenario exists in the formation of quantum dots when the active
region is confined in all three dimensions. In a quantum dot, electrons and holes are confined
within tiny, isolated regions, yielding discrete atom-like energy levels.

Bulk Quantum-well
(Confinement in z-direction)

Quantum-wire
Confinement in z and y-directions

Quantum-dot
(confinement in all directions)

a)

c)

b)

d)

𝟑𝑫 𝑫𝑶𝑺𝐸
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Figure 2.8: Schematic representation of a) bulk, b) quantum-well, c) quantum wire, and d)
quantum dot gain media

As we reduce the size of the gain media from bulk to quantum well, quantum wire, or quantum
dot, the properties of the gain medium change significantly. In bulk semiconductors, the gain
media is a relatively thick layer of direct bandgap material with a 3D continuous parabolic
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DOS as presented in Figure 2.8a [57] and it is defined as

ρ3Dr (E)dE =
1

2π2
(
2m∗

r

ℏ2
)3/2(E − Eg)

1/2dE, (2.37)

In a quantum well structure, the continuous energy states in the conduction and the valence
bands are altered, transforming into discrete energy levels. Each energy level has a 2D density of
states equal to m∗

r

πℏ2 , which leads to a step-like DOS as illustrated in Figure 2.8b. The electronic
density of states in a quantum well is defined as

ρ2Dr (E)dE =
m∗

r

πℏ2Lz

dE, (2.38)

where m∗
r is the reduced mass of the electron, Lz is the thickness of the quantum well, and ℏ

is the reduced Planck’s constant.

In a quantum wire, carriers are confined in two dimensions and the carriers are free to move
only in one direction (1D) as shown in Figure 2.8c. Due to the confinement in two directions,
the electronic density of states in quantum wires lies between the continuous energy states of
bulk and the discrete energy states of quantum wells, and it is obtained as

ρ1Dr dE =
1

πLzLy

(
2m∗

r

ℏ2
)1/2

1√
E
dE, (2.39)

where Lz and Ly are the confined lengths of the quantum wire, m∗
r is the reduced mass of the

electron, and ℏ is the reduced Planck’s constant.

Finally, in a quantum dot, due to the confinement in all directions (0D), a quantum dot density
of states is similar to individual atoms or molecules, as shown in Figure 2.8d, and it is defined
as

ρ0Dr dE = 2δ(E)dE (2.40)

where δ(E) is the Dirac delta function.

Regarding material properties, bulk gain media have a continuous energy state distribution,
therefore carriers are able to interact within a broad range of frequencies which can result
in less control over the emission wavelength and broad emission linewidth. Quantum wells,
quantum wires, and quantum dots offer more control over the emission wavelength and improved
performance because of their modified DOS [60], [61].

2.3 Lower-dimensional Semiconductor Lasers

When such lower-dimensional gain media are embedded into a laser structure, they result in
superior lasing properties such as having a lower threshold and being less temperature sensitive.
This enhanced efficiency is mainly attributed to the higher concentration of carriers at the band
edges due to the quantum confinement effect in the gain medium. However, there are several
challenges in developing such lasers due to the complex physics and fabrication techniques
involved in the growth of uniform and homogeneous nanoscale gain media [59], [62]–[65].

2.3.1 Quantum-well Semiconductor Lasers

A schematic image of a quantum wells laser is shown in Figure 2.9a. In the quantum well laser,
a very thin (typically around 10-20nm) lower-bandgap active medium (well) is sandwiched
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Figure 2.9: Schematic representations of typical a) quantum-well, b) Quantum-wire or
nanowire, and c) quantum-dot Lasers.
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between two lattice-matched cladding layers (barriers) of higher-bandgap material, which are
n-doped and p-doped.

By sandwiching the active region between higher bandgap barriers, both electrons and holes are
confined along the z-direction, resulting in discrete energy levels. As shown in Figure 2.10, the
difference in the bandgap of cladding layers (barriers) and the active medium (well) creates a
potential well that traps the charge carrier in the well region. The cladding layers are p-doped
and n-doped to form a p-n junction, which allows the injection of electrons and holes into the
active medium. Moreover, the resonant cavity is formed by cleaving the end facets at the ends
of the structure perpendicular to the direction of propagation.

When the quantum well laser is under the pump, the p-n junction allows the injection of
electrons and holes in the active medium. Here an optical gain is achieved via a series of
stimulated emissions. this process is maximized when a high flux of photons sweeps an optical
cavity with a high carrier density.

Optical confinement is necessary to take place both in lateral and transverse directions (parallel
and normal to the junction). The dielectric constants of the layers are designed to confine the
electromagnetic field in the well. The refractive index of the well is larger than the refractive
index of the barriers and the cladding layers. This creates a structure similar to a slab waveguide
which confines the field in the lateral direction while the cavity provides the optical confinement
in the transverse direction.

The electromagnetic field partially leaks out and partially reflects back to the active medium
at the interfaces. The quantum confinement of the charge carriers combined with the optical
field confinement increases the probability of the interaction of the electrons and holes with
the photons, thus substantially decreasing the threshold current to the order of around tens of
milli-ampers enabling the laser to operate at room temperature.

Barrier Barrier

Well

Discrete energy levels

𝐸𝑐1
𝐸𝑐2

𝐸𝑣1
𝐸𝑣2

𝐸𝑔

Figure 2.10: Schematic representation of a quantum well structure including the barriers and
the well. The nanoscale thickness of the well, results in the quantum confinement effect resulting
in discrete energy levels.

2.3.1.1 State of the Art

Quantum well laser was proposed by Esaki and R. Tsu in 1969 [66], [67]. Quantum well lasers
with a sole active region are referred to as single quantum well (SQW) lasers, while those
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comprising multiple active regions are recognized as multiple-quantum-well (MQW) lasers. By
using the MQW structure, a higher proportion of carriers can be trapped in the active layers.
Therefore, the MQW laser has a lower threshold current and higher carrier density than the
SQW laser, which leads to better performance [68]

The most common semiconductor materials that are used to fabricate single/multiple quantum
well lasers are direct bandgap III-V semiconductors such as GaAs, InP, InGaAsP, AlGaAs,
GaInN, and GaN. Significant shifts in optical properties, presenting opportunities to enhance
laser design are achieved with different combinations and various strains within the band struc-
ture. Such semiconductors exhibit higher differential quantum efficiency as compared to regular
Double Heterostructure (DHS) lasers [68].

Multiple quantum well lasers (MQWL) were introduced when Fuji reported a low threshold
current density of 175 A/cm² with a 480 µm cavity length in a GaAs/AlGaAs graded refractive
index-separate confinement heterostructure (GRIN-SCH) laser [69]. Threshold currents as low
as 170 A/cm2 at 45K is achieved with InGaAsP/InP multiple quantum wells laser, which is
exceptionally smaller than the DHS lasers with threshold values around 1200 A/cm2 [59].

Extensive research is done to effectively manage strain within the band structure which shows
significant shifts in optical properties. This presents more opportunities to further enhance laser
design. Such nanolasers incorporate gain mediums like InxGa1−xAs with compressive strain,
while the barriers usually consist of GaAs [7].

Quantum well lasers are essential tools in telecommunications, optical networking, and spec-
troscopy. Furthermore, quantum well lasers drive advancements in emerging fields like quantum
information processing and on-chip photonics, highlighting their significance across an array of
applications that rely on efficient, tunable, and compact light sources.

However, the intricate process of material quality control presents its own set of challenges.
The fabrication of quantum well material laser structures necessitates precise control over epi-
taxial growth and layer thickness to ensure uniformity and consistent material properties. Any
deviations or defects during growth can lead to non-uniformities in the active region, impact-
ing gain and emission characteristics. Achieving high-quality material growth on a consistent
basis demands advanced techniques and robust quality control procedures, which often entail
complex and meticulous processes. These will be discussed further in section 2.9.2.

2.3.2 Quantum-wire Semiconductor Lasers

Figure 2.9b represents a schematic of a hexagonal semiconductor laser with a quantum wire
within a nanowire cavity The quantum wire laser is characterized by a transverse hexagonal
cross-section, with dimensions in the nanometer range along both y and z-directions. This
introduces the confinement of electrons and holes in two directions, contributing to the device’s
unique properties. The photons produced by electron-hole recombination bounce back and forth
between the two end facets of the nanowire, inducing the emission of additional photons from
the semiconductor material and amplifying the light intensity into a coherent, monochromatic
light beam.

A key point worth mentioning here is that regardless of their similar structures, a quantum
wire should not be mistaken for a nanowire. Quantum wires must have transverse dimensions
of less than 30nm for quantum confinement to appear. While even the smallest nanowires have
transverse dimensions of around 200nm [7]. One can consider the quantum wire as a special
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type of nanowire with transverse dimensions small enough that quantum confinement occurs.

The larger density of states within the quasi-one-dimensional (1D) quantum wire subbands
results in a higher differential gain and narrower line widths compared to the quantum well
lasers [70]. Furthermore, the smaller size of the quantum wire lasers along with increased gain
leads to the remarkably low threshold currents in the microampere current spectrum [71], [72].

2.3.2.1 State of the Art

The first demonstration of an ultra-low-threshold AlGaAs/GaAs quantum Wire-like laser was
presented by Hasegawa in 1994 [73] which had a threshold at around 10-16 mA. However, with
the advances in the field of design and fabrication, thresholds as low as 0.6 mA are also achieved
at room temperatures [74].

Quantum wire lasers benefit from their small dimensions, leading to reduced threshold currents
and enhanced energy efficiency. The confined geometry also aids in efficient carrier transport,
contributing to lower threshold currents [75]. However, the fabrication of quantum wire lasers
can be challenging due to the need for well-controlled and uniform wire-like structures. Tech-
niques such as selective-area growth or self-assembled growth can be employed [76].

2.3.3 Quantum-dot Semiconductor Lasers

Figure 2.9c is a schematic of a multiple quantum-dot laser in which quantum dots are embedded
inside a hexagonal nanowire cavity. The size of the quantum dots is usually from 2 to 10
nanometers in all directions. Due to their small dimensions, 3D confinement of electrons and
holes is achieved, leading to discrete energy levels and size-tunable emission spectra.

As shown in Figure 2.8c, in a quantum-dot laser, the quantum dots are embedded within another
semiconductor material (cladding layers). Cladding layers have a higher band gap compared to
quantum dots, and they play a critical role in the confinement of carriers (electrons and holes)
and optical modes. They act as a barrier preventing the carriers from escaping, increasing their
probability of recombining in the quantum dots and enhancing light emission efficiency.

2.3.3.1 State of the Art

Quantum dot lasers were originally proposed by Arakawa and Sakaki in 1982 [77], and later
validated in 1994 by Kirstaedter [78] and Mirin [79]. However, the first demonstrations of the
quantum dot laser required a large threshold power near 7.6kA/cm2 at 77K [80] which is even
higher than the threshold required for quantum well lasers.

The most common quantum dots are fabricated with In(Ga)As deposited on GaAs or InP
substrates and their operating range of frequency is between 1 µm to 1.8 µm [81]. However,
moving toward long wavelengths is quite challenging due to the crystal quality degrading and
the phase separation in quantum dot lasers. Thermal broadening is also one of the challenges
in the design and fabrication of quantum dot lasers.

With the advances in fabrication techniques, highly uniform quantum dots with high crystal
quality were grown that unlocked the possibilities for the exploration of the low threshold
quantum dot lasers (around 120 A/cm2 [78]) for near-infrared semiconductor lasers towards the
optical communication applications. These advantages manifest as ultralow threshold currents
[82], capability to operate in high-temperature [83], and higher gain suitable for applications
such as semiconductor optical amplifiers and mode-locked lasers [84].
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Furthermore, the inherent insensitivity of quantum dot lasers to crystalline defects enhances
their reliability and resilience, making them less susceptible to performance degradation caused
by imperfections in the material [85]. Quantum dot lasers are compatible with silicon inte-
gration. Their resilience to defects permits epitaxial integration on silicon substrates, which
holds great promise for the integration of lasers in silicon photonics integrated circuits (PICs).
Each of these characteristics stems from the distinct three-dimensional confinement of carriers
within quantum dots, leading to a delta-function-like density of states and inhomogeneously
broadened gain spectra [81].

The size, shape, and strain profile of a quantum dot can be altered mostly with material
selection, and growth conditions. Such modifications can result in significant changes in the
energy of band level, transition energies, and the available number of states in quantum dots
[86], [87]. This tunability allows for precise control over the emission wavelength, enabling the
lasers to emit light at specific frequencies within a wide spectral range.

One of the pivotal areas of exploration within this context revolves around the integration of
lower-dimensional gain media into nanowire structures. This endeavor represents a significant
advance, as it takes advantage of the unique properties of nanowires, such as their high surface-
to-volume ratio and enhanced carrier confinement, to create highly efficient and compact laser
sources. In section 2.7, we will delve into the exploration of incorporating lower-dimensional
gain media into nanowire structures, unraveling the potential benefits and technological ad-
vancements that this convergence can bring to the forefront of laser technology.

In the following section, we will delve into essential concepts that provide a foundation for
understanding laser behavior. We will address cavity-related parameters and those associated
with the gain medium. Moreover, we will investigate each of the parameters used to evaluate
laser characteristics.

2.4 Key Laser Properties

2.4.1 Threshold Condition

As discussed in section 2.2, for a gain medium to amplify the incident radiation via stimulated
emission, population inversion should be created. Such a medium acts as an amplifier for
frequencies falling within its linewidth when it is pumped. To generate stimulated emission,
the gain medium is placed within an optical cavity. A cavity in its simplest form consists of a
pair of reflective surfaces facing each other, forming a Fabry–Perot resonator as illustrated in
Figure 2.11.

Radiation that reflects back and forth between the reflective surfaces undergoes both amplifi-
cation from the active medium and losses due to mirror reflectivity and other scattering effects.
To maintain sustained oscillations within the cavity, the losses should be equal to the gain.
Thus, a minimum population inversion density is needed to overcome the losses, known as the
threshold population inversion.

To formulate an expression for the threshold condition, we consider a Fabry-Perot cavity with
lengths d, R1, and R2 being the reflectivities of the end facets as presented in Figure 2.11. Here,
α represents the overall loss mechanisms, including the scattering and diffraction loss due to
the finite size of the end facet, and the gain coefficient γ represents the amplification. When a
radiation beam with an initial intensity of I0 at the facet R1 propagates through the medium
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and reaches the second mirror, it experiences both amplification and attenuation by I0e
(γ−α)d.

The intensity of the beam upon reflection at the second mirror can be expressed as R2I0e
(γ−α)d.

After a second passage through the resonator and reflection at the first mirror, the radiation’s
intensity following one complete round trip is given by R1R2I0e

2(γ−α)d. Lasing is achieved when

R1R2I0e
2(γ−α)d ≥ 1 (2.41)

The equality sign represents the threshold condition of the laser when the gain is equal to the
loss. The carrier density corresponding to this condition is called the threshold population
inversion [88].

It is worth mentioning that before threshold, spontaneous emission and absorption are the
dominant optical processes within the laser. However, when the threshold condition is satisfied
the stimulated emission will take over, and lasing is achieved [88].

Another threshold definition given by Yamamoto [89] is where the rate of stimulated emission
equals the rate of spontaneous emission. The idea behind this approach lies in the fact that,
at this particular pump level, half of the emitted photons within the mode will produce a
coherent emission, while the other half will contribute noncoherently. As pumping intensity
increases, both coherence and quantum efficiency will experience swift enhancement due to the
substantial growth of stimulated emission. This definition of the threshold implies that the
average number of photons inside the cavity reaches unity at the threshold.

d

𝑅1 𝑅2

Gain medium with
Gain coefficient: 𝛾
Loss coefficient: 𝛼

𝐼0 𝐼0𝑒
𝛾−𝛼 𝑑

𝑅2𝐼0𝑒
𝛾−𝛼 𝑑𝑅2𝐼0𝑒

2 𝛾−𝛼 𝑑

𝑅1𝑅2𝐼0𝑒
2 𝛾−𝛼 𝑑

Figure 2.11: A typical Fabry-Perot cavity consisting of a pair of mirrors facing each other. The
active medium is placed inside the cavity (shown with grey color).

2.4.2 Quality Factor (Q) and Photon Lifetime (τp)

The quality factor (Q-factor) is a unitless parameter that describes the relationship between the
energy stored, and energy dissipated from the optical cavity. A higher Q value indicates a lower
rate of energy loss in relation to the energy stored within the resonator. Consequently, a high-Q
cavity can retain light for an extended duration before it escapes, providing more opportunities
for light to interact with the gain medium, leading to enhanced laser performance.
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The quality factor is defined as [88]

Q = ω
W (t)

−dW/dt
, (2.42)

where ω represents the angular frequency of the resonant mode of the cavity, W (t) is the energy
stored in the mode, and −dW/dt determines the rate of energy loss from the cavity.

The Q factor associated with the resonant mode’s linewidth is

Q =
v

∆v
, (2.43)

where v is the resonant frequency and ∆v is the emission linewidth.

High-Q cavities can produce laser beams with narrower line widths, which is particularly ben-
eficial in applications requiring precise spectral control. When designing laser cavities, it is
crucial to consider the quality factor as a parameter having a considerable impact on the laser
threshold.

Photon lifetime,τp, is a parameter directly linked to the quality factor. This measures the
average time a photon spends inside the laser cavity before it is emitted. It is fundamentally
related to the laser cavity’s loss mechanisms, including transmission losses through the laser
mirrors and scattering, and is calculated as [34]

τp =
Q

ω
. (2.44)

A short photon lifetime means that photons are quickly emitted from the cavity after their
creation. This can result in lower laser efficiency due to the fact that the cavity is not able to
properly store energy. Conversely, a long photon lifetime provides more time for the energy to
build up inside the cavity, resulting in a higher interaction between the photons and the active
medium, and potentially increasing the laser’s output power.

2.4.3 Linewidth

A key property of lasers is their ability to produce light in a narrow spectral frequency range.
The finite spectral range observed in a laser operating continuously within a single mode can be
attributed to two primary mechanisms. Firstly, external factors like temperature fluctuations
and vibrations can disturb the laser cavity, causing frequency changes in the oscillations and
leading to a limited spectral range [88]. The second, more fundamental mechanism governing
the laser’s ultimate spectral range is linked to the inherent occurrence of random spontaneous
emissions within the cavity [88].

The linewidth of the cavity corresponds to the frequency of the resonant mode divided by the
quality factor as [88]

δv =
v

Q
. (2.45)

When the laser operates below the threshold, due to the dominance of the spontaneous emission
process, the output light of the laser is relatively broad. As the laser approaches the threshold,
the linewidth gradually becomes narrower as stimulated emissions take over. Once the threshold
is achieved, the laser’s output light coherence from stimulated emitted photons results in a
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considerably narrower linewidth compared to its operation below the threshold. However, the
Schawlow-Townes limit offers a boundary for the minimum achievable linewidth of a laser’s
output. This limit defines the narrowest range of frequencies that a laser can emit while
maintaining a coherent and monochromatic beam as [40]

δv =
4πhv(δc)

2

Pout

, (2.46)

where δc is the FWHM of the linewidth in the passive cavity, v is the resonant frequency, and
Pout is the output power.

2.4.4 Confinement Factor (Γ)

The confinement factor,Γ, describes how much of the optical field is confined within the gain
medium. The confinement factor varies from zero to unity. A higher confinement factor in-
dicates a stronger interaction between the electromagnetic field and the gain medium, which
leads to enhanced performance in terms of the lasing threshold, modulation bandwidth, and
overall efficiency.

The confinement factor of the cavity is defined as the ratio of the electric field that overlaps
with the gain medium to the field in the entire geometry [34]

Γ =

∫
active−medium

||E⃗||2dV∫
All−domains

||E⃗||2dV
(2.47)

The confinement factor is primarily determined by the refractive index contrast between the
active region and the surrounding cladding layers. The larger the refractive index contrast, the
tighter the mode confinement and the higher the confinement factor. In a conventional bulk
semiconductor laser, the value of the confinement factor is typically equal to 1. However, in
lower-dimensional semiconductor lasers, the value of Γ is decreased to the order of 1-2% due to
the reduced size of the active region [6].

2.4.5 Transparency Carrier Density (Ntr)

Transparency carrier density determines the density of charge carriers within a semiconductor
material which leads to the material becoming optically transparent. This specific carrier
density signifies the point where the gain and loss mechanisms within the semiconductor are
almost equal to each other, resulting in reduced absorption and the initiation of laser emission.

It is worth mentioning that the transparency carrier density is not the same as the threshold
carrier density. While the two values are very close to each other, the transparency carrier
density is usually a bit smaller than the value of the threshold carrier density.

2.4.6 Spontaneous Emission Lifetime (τsp)

As discussed in section 2.2.4, spontaneous emission describes the process wherein an electron
spontaneously loses its energy in the form of a photon and drops from the conduction band
into the valence band.
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The photons resulting from spontaneous emission within a material, are often emitted in differ-
ent directions and wavelengths. Spontaneous emission lifetime (τsp) is the average time that an
excited electron spends at a higher energy level before it decays due to spontaneous emission.

According to the Purcell effect, spontaneous emission lifetime can be significantly affected when
the atom or molecule is placed within a cavity [90]. Therefore, the spontaneous emission lifetime
is described as the inverse of the sum of the spontaneous emission rates into the different modes
of the cavity (Ai) as [46], [89]

τsp =
1

ΣiAi

(2.48)

Spontaneous emission rates into the different modes of the cavity are related to the photonic
density of states in Equation 2.30. By considering all the resonant modes of the cavity and all
the available energy states within the conduction and valence band one is able to obtain the
spontaneous emission lifetime. We will discuss this further in Chapter 3.

The spontaneous emission lifetime is a crucial parameter in understanding the decay behavior of
excited states in various systems. It is directly related to the quantum mechanical probabilities
of transitions between energy levels and provides insights into the overall dynamics of the
system. In Chapter 3, we will discuss the spontaneous emission lifetime in lower-dimensional
lasers in great detail.

2.4.7 Spontaneous Emission Factor (β)

The spontaneous emission factor β is the spontaneous emission rate ratio into the lasing mode
(A0) divided by the total spontaneous emission rates [46]

β =
A0∑
i Ai

(2.49)

The parameter β provides an estimation of how much of the total spontaneous emissions couple
to the lasing mode. The spontaneous emission factor directly affects the coupling efficiency
of the laser and the pump power required to reach the lasing threshold. The value of the
parameter β varies from zero to unity. As the value of β gets closer to the unity, it means that
more spontaneous emissions couple to the lasing mode.

Although β equal to unity is not achievable, increasing the value of β brings us one step closer
to the ideal thresholdless laser, implying that less energy is required for the laser to begin
operating. The parameter β is particularly significant for lasers on the micro and nanoscale,
where managing energy efficiently is a high priority, and even a slight change in a parameter
leads to a noticeable change in the laser behavior. Moreover, the spontaneous emission factor
also shapes the laser’s noise profile, influencing aspects like the linewidth (FWHM) of the laser
emission.

For a bulk semiconductor laser, β can be calculated as [89]

β =
λ4

4π2V∆λϵ3/2
, (2.50)

where λ is the emission wavelength, V is the volume of the active medium, ∆λ is the linewidth,
and ϵ is the permittivity in the active medium.
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Free space photonic density of states is assumed to estimate β in Equation 2.50. However, when
a lower dimensional gain media is embedded inside the cavity, the effect of the cavity manifests
as an increase in the number of available photonic density of states, making it challenging to
express β as a straightforward equation.

As a result, in most laser analyses, β is treated as a fitting parameter which is determined
after the laser is fabricated and characterized. This approach restricts the opportunity for
laser optimization. Complex mathematical calculations are required to estimate β for lower
dimensional semiconductor lasers. We will propose an equation to calculate β in Chapter 3.

2.4.8 Purcell Factor Fp

The Purcell factor Fp quantifies the enhancement of a light-emitting system’s spontaneous
emission rate due to the presence of a resonant cavity. The Purcell factor Fp, is defined as the
ratio of the spontaneous emission rate inside the cavity to the rate in the absence of the cavity.
The conventional form of the Purcell factor is given by [90] as

Fp =
3

4π2

Q

Vm

(
λ

n
)3 (2.51)

where Q is the quality factor, Vm is the mode volume, λ is the resonant wavelength, and n is
the refractive index of the cavity.

In bulk semiconductor lasers, the Purcell factor is relatively small, and in most cases, is close
to unity. The spontaneous emission rate in bulk lasers is primarily determined by the radiative
recombination of electron-hole pairs within the active region, which can be relatively slow due
to extended carrier lifetimes.

However, Equation 2.50 is not valid in the case of lower-dimensional semiconductor lasers. This
is firstly due to the fact that the spontaneous emission lifetime in lower dimensional gain media
is affected by the size of the gain medium as will be discussed in Chapter 3. Secondly, the
spontaneous emission lifetime can be significantly decreased when the active region is located
inside a cavity that is smaller in size when compared to the cavity of the bulk semiconductor
lasers. In Chapter 3, we will investigate the effect of the Purcell factor in lower-dimensional
lasers.

2.4.9 Non-radiative Lifetime (τnr)

Non-radiative recombination processes refer to process where electrons and holes recombine
without emitting photons. This contrasts with radiative recombination, where electron-hole
recombination leads to photon emission [91].

Non-radiative processes are essentially energy losses since the energy from the recombination
is transferred to other forms, such as lattice vibrations or heat, rather than useful light output.
Non-radiative recombination can be categorized into different types, such as Auger recom-
bination and Shockley-Read-Hall (SRH) recombination [92], [93]. Auger recombination is a
three-particle process involving two carriers of one type (either two electrons or two holes) and
a single carrier of the opposite type. When an electron and hole recombine, the excess energy
is transferred to the third carrier, exciting it without emitting a photon [94], [95].

In SRH recombination, recombination occurs via defect states in the semiconductor’s bandgap.
A defect state first traps the electron or hole and then recombines with a carrier of the opposite
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type, releasing the energy as heat [96]–[99].

The non-radiative lifetime τnr is defined as the average time carriers exist before recombin-
ing non-radiatively through non-radiative processes [34], [57]. A longer non-radiative lifetime
implies carriers have more time to participate in radiative recombination, improving device
efficiency. Several factors, including material defects, contaminants, and temperature, can af-
fect the non-radiative lifetime. It’s important to suppress the non-radiative recombination (by
having large τnr) in order to boost laser performance. One approach to achieve this is through
careful material selection and semiconductor growth processes. Certain materials are inherently
less prone to non-radiative processes, while high-quality semiconductor growth techniques can
minimize defect states that facilitate SRH recombination.

Apart from material properties, the operation temperature can remarkably influence the non-
radiative recombination because non-radiative recombination processes often produce heat. In
lasers operating at cryogenic temperature, non-radiative recombinations are suppressed. In the
theoretical models, when the non-radiative lifetime is roughly a hundred times larger than the
spontaneous emission lifetime, it can be assumed that the non-radiative processes are neglected.

With a grasp of the fundamental principles behind semiconductor lasers and their operational
physics, the next section will delve into the latest developments in the field of semiconductor
lasers with low-dimension gain media.

2.5 State of the Art of Semiconductor Lasers

In this section, we will discuss the latest developments in the field of semiconductor lasers.
Since this thesis focuses on the behavior of nanowire lasers, we will present an extensive review
of the nanowire lasers and the challenges associated with them.

The first semiconductor laser was introduced in the 1960s, as a form of slab waveguide [100],
[101]. Since then, advances in the semiconductor laser field aimed at creating higher output
powers, more temperature stability, and compact sizes on the order of micro and nanometer
scales. In the field of optoelectronics, semiconductor lasers have an undeniable role in commu-
nication technology, serving as the light source for optical fiber communication systems [51].
Additionally, semiconductor lasers are also used in applications like laser printers [102], laser
TV [103], and medical applications such as plastic surgery, ophthalmology, and physical therapy
[104].

However, like any other technology, semiconductor lasers come with challenges. These lasers
require large input currents and their operation generates heat, which can affect their efficiency
and the lifetime of the laser. Achieving integrated photonics using Si as the substrate has always
been a challenge. The mismatch in crystal structure between standard III-V semiconductors
(such as GaAs, InP) and Si has hindered the direct growth of high-quality III-V semiconductor
films on Si using various growth methods [105]. Additionally, issues related to beam quality,
divergence, and coherence can limit their use in certain applications. Sensitivity to external
factors, such as temperature fluctuations and current variations, necessitates careful design and
control of the laser system [64].

The reduction in size has been achieved through the continuous introduction of new laser
cavities.[64], [105]. This resulted in the emergence of innovative device types like vertical-cavity
surface-emitting lasers (VCSEL) [106], [107], microdisk lasers [108], [109], photonic crystal lasers
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[110], [111], and semiconductor nanowire lasers [112], [113]. The schematic representations of
these lasers are presented in Figure 2.12.

a) b)

c) d)

Figure 2.12: Schematic representation of a) VCSEL [114], b) microdisk [115], c) photonic crystal
cavity [116], and d) nanowire lasers [117].

VCSELs bring about a significant size reduction, reducing the overall device volume by at least
a factor of ten compared to conventional semiconductor lasers and they are one of the most
energy-efficient types of semiconductor lasers [105]. VCSELs typically have diameters ranging
from 2µm to 10µm and a combined thickness of Distributed Bragg Reflectors (DBRs) spanning
5µm to 10µm [105]. However, due to the limitations in effectively dissipating heat through the
thick DBR mirrors and the confined lateral confinement within VCSEL structures, VCSELs
face difficulties in meeting the persistent demands for on-chip applications [118]–[120].

Microdisk lasers originated from using a self-supporting piece of semiconductor material that
harnessed whispering-gallery modes [121]. The large difference in refractive indices between
the semiconductor and air allows optimal mode confinement without needing DBRs [122].
Microdisk devices typically have diameters ranging from 3µm to 5µm and are about one-micron
thick [105].

Photonic crystal lasers are energy-efficient due to their small optical mode volumes. The distinct
feature of photonic crystal lasers is having a very low threshold [123]. The overall dimensions
of photonic crystal structures are around 10µm in diameter or side length [124], [125].

Semiconductor nanowires provide notably enhanced mode confinement compared to typical
double-heterostructure designs [126]. When both ends of these nanowires are exposed to air, a
unique configuration emerges that combines a formation of the laser cavity and the gain medium
simultaneously which is an ideal combination for shrinking the laser size [127]. Nanowire laser
dimensions are usually between 200-500nm in diameter and a few microns in length [112]. An
additional advantage of nanowire lasers lies in their material and bandgap flexibility, enabling
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lasing at wavelengths that are hard to achieve using either the microdisk or photonic crystal
methods [105].

Achieving size reduction while maintaining a high energy efficiency requires a comprehensive
strategy that encompasses design of the cavity and gain medium. Decreasing the dimensionality
of the active region from bulk to quantum wells, quantum wires, and quantum dots enhances the
population of electrons and holes within a specific energy range. The combination of nanoscale
cavities such as nanowires with lower-dimensional gain media creates the smallest and most
efficient lasers.

2.6 Semiconductor Nanowire Lasers

2.6.1 Advantages and Challenges

The field of semiconductor nanowire lasers began to take shape when room-temperature ultra-
violet lasing was demonstrated in self-organized Zinc oxide (ZnO) nanowire arrays [127]. The
study of semiconductor nanowire lasers has expanded significantly since its beginning in 2001
[128], with researchers exploring various material systems and cavity configurations. A key goal
has been to develop the tiniest photonic lasers, pushing the limits of laser miniaturization.

Additionally, scientific exploration is being directed toward improving nanowire lasers by low-
ering their lasing threshold, thus increasing their operational efficiency and stability. An im-
portant goal is the ability to merge nanowire lasers with silicon platforms, facilitating easy
integration with current semiconductor technologies and setting the stage for creating sophis-
ticated optoelectronic devices [112], [129].

Semiconductor nanowire lasers have been explored across various material systems, with early
demonstrations employing III-V and II-VI semiconductor nanowires [130]–[132]. Room-temperature
lasing via optical pumping has been achieved in GaN, CdS, and ZnO nanowires due to their
strong exciton binding energy and high material gain at room temperature [133]–[135]. These
innovative efforts, spearheaded by researchers from the chemistry and materials fields, inspired
optoelectronics and semiconductor laser experts to develop nanowire lasers using III-V semi-
conductors [115], [133], [136]–[138]. The nanowire field advancements in time is presented in
Figure 2.13.

However, realizing room-temperature lasing in III-V semiconductor nanowire lasers presented
challenges, primarily because of material quality issues and competing nonradiative recombina-
tion processes such as Auger recombination. Overcoming these obstacles demanded persistent
research and development, ultimately taking several years to achieve room-temperature III-V
semiconductor nanowire lasers successfully by the combination of quantum confinement effects,
improved heat dissipation, and precise material engineering [6], [139]–[141].

Since then, advances in material synthesis and fabrication techniques have significantly im-
proved the performance of these nanowire lasers, leading to broader applicability and potential
integration with existing optoelectronic devices and systems [47], [139], [142]–[146].

The experimental successes in the early days of nanowire lasers spurred interest in developing
lasers capable of covering a more extensive range of wavelengths. By utilizing ternary and qua-
ternary alloys in the construction of nanowires, the laser emission wavelength can be adjusted
simply by altering the alloy composition, thus expanding the range of applications. In recent
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studies, scientists have demonstrated nanowire lasers capable of emitting red and green light
by modifying the alloy composition within a single nanowire [147], [148].

Figure 2.13: Timeline featuring several significant instances of lasing in single semiconductor
nanowires. Reprinted from [149]

The successful lasing experiments in single-phase semiconductor nanowires encouraged re-
searchers to investigate more advanced nanowire structures, which led to a significant devel-
opment in this field: embedding single quantum-well (SQW)/quantum-dot (SQD) or multiple
quantum-wells (MQW)/quantum-dots (MQD) inside the nanowires. These include core-shell,
radial, and axial heterostructures, which enable the creation of nanowire lasers with quantum-
confined active regions [64], [150]–[152]. Early quantum-well and quantum-dot nanowire laser
demonstrations were realized using III-N heterostructure nanowires.

MQW/MQD nanowire lasers offer several advantages over their SQW/SQD counterparts be-
yond the increased density of available energy states for electron-hole recombination, which
results in more efficient lasing [153]–[155]. MQW/MQD nanowire lasers also display enhanced
gain and a broader gain spectrum compared to SQW/SQD lasers. This allows for better wave-
length tunability, which is crucial for applications in wavelength-division multiplexing (WDM)
systems and other areas requiring broad wavelength coverage. The spatial separation of the
quantum wells/dots also contributes to better thermal stability and lower lasing thresholds
[156], [157]. This separation helps to reduce the impact of nonradiative recombination processes
and minimizes self-heating effects, which are common issues in single quantum well/quantum
dot lasers. Altering the compositions of the MQW/MQDs embedded in the nanowire allows for
lasing at different wavelengths. This versatility has opened up new possibilities for applications
in telecommunications, sensing, and medicine [6], [158], [159].

34



2.6.2 Design and Fabrication Techniques

Semiconductor nanowire lasers are essential components in various photonics applications. The
two common configurations for these lasers—horizontal or vertical with respect to the sub-
strate—present unique benefits and challenges, and the choice between them often depends on
the application and available fabrication techniques.

In the more commonly used horizontal configuration of nanowires on substrates, as shown
in Figure 2.14a, the end facets of the nanowire form a Fabry-Perot cavity. The large contrast
between the refractive index of the air (equal to unity) and the nanowire (typically around 3.6 for
GaAs) creates a highly reflective cavity. The basic working principle relies on the phenomenon
of multiple-wave interference. Light entering the cavity bounces back and forth between the
two mirrors, creating a series of reflections that constructively interfere when the optical path
length equals an integer multiple of the light’s wavelength. This constructive interference leads
to very high intensity, or resonance, at specific frequencies, allowing the cavity to act as a
selective filter.

This setup offers several advantages, such as a reduced lasing threshold due to the high reflec-
tivity at both end facets and effective coupling of laser emissions to nanophotonic or plasmonic
waveguides. However, there is a significant challenge: the growth substrate usually differs from
the low-index substrate used in optoelectronic or photonic device fabrication. Therefore, trans-
ferring and precisely placing the nanowires on the low-index substrate can be complex. This
process often requires advanced nanofabrication techniques and specialized transfer equipment,
such as electron-beam or nano-imprint lithography. These are high-tech procedures that require
precision and can be time-consuming and costly.

On the other hand, the vertical configuration involves growing the nanowires upright on the
substrate as presented in Figure 2.14b. This setup is more compact, making it particularly suit-
able for integration with silicon substrates, a key requirement for on-chip photonic integration
where space is at a premium. However, this arrangement has a downside: the low refractive
index contrast at the nanowire/substrate interface hinders the nanowire’s ability to function
as a proper F-P cavity. The electromagnetic field in this configuration tends to leak into the
substrate at the nanowire/substrate end facet.

Nanowire

Air

Substrate

Air

Nanowire

Substrate

a) b)

End facets End facets

Figure 2.14: a) Horizontal and b) vertical nanowire configurations on the substrate

One method to provide optical feedback in the vertical configuration involves integrating a sin-
gle nanowire into a defect within a photonic crystal cavity. In this arrangement, the nanowire
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functions as the gain medium (the material that amplifies the light), while the photonic crys-
tal provides the cavity necessary for lasing. This approach requires precise nanofabrication
techniques to create the photonic crystal and accurately position the nanowire.

Researchers have grown nanowire lasers directly on silicon substrates by employing these meth-
ods [160]. This has improved performance characteristics, such as enhanced wavelength tun-
ability ranging from 400nm to 1.5 µm [148], decreased lasing thresholds, and increased thermal
stability (maintaining performance at high temperatures). Nanowire lasers can now be used
in various fields, including on-chip photonic integration, optical communications, sensing, and
energy harvesting. As research progresses and new configurations and fabrication techniques
are developed and optimized, we can expect further advances in the performance of nanowire
lasers and their integration with different platforms. These advances will ultimately contribute
to the development of next-generation photonic devices and systems, enabling faster, more
efficient, and versatile optical technologies [47], [113], [161].

Fabrication of nanowire lasers involves several methods that include chemical vapor deposition
(CVD), metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE),
and vapor-liquid-solid (VLS) growth. These methods will be briefly discussed in the following
subsections.

2.6.2.1 Chemical Vapour Deposition (CVD)

Chemical Vapour Deposition (CVD) is the most widely used method for growing semiconductor
nanowires. The process starts by heating a substrate in a reaction chamber to a specific temper-
ature. Next, volatile precursors—chemicals that contribute atoms to the growing nanowire—are
introduced into the chamber as vapor. These precursors react with each other or decompose
on the heated substrate, resulting in nanowire growth. The growth rate, and therefore the
length and thickness of the nanowire, can be controlled by adjusting parameters such as the
temperature, pressure, and concentration of the precursors.

Different nanowires, including those made from silicon, germanium, and various III-V semi-
conductors, can be grown using this method. CVD is versatile, relatively straightforward, and
compatible with existing semiconductor manufacturing processes. However, it requires a high
degree of control over the reaction conditions and gas flow, making it technically challenging
[162]–[167].

In CVD, the primary challenge lies in controlling the uniformity of the nanowire growth. The
temperature, pressure, and gas flow rates must be precisely controlled. Additionally, the choice
of precursor chemicals can greatly affect the properties of the resulting nanowires, so careful
selection and handling of these precursors are necessary. Contamination is another concern, as
unwanted particles in the reaction chamber can be incorporated into the growing nanowires,
affecting their properties.

2.6.2.2 Metal-Organic Chemical Vapor Deposition (MOCVD)

Metal-Organic Chemical Vapour Deposition (MOCVD) is a variation of CVD that uses metal-
organic compounds as precursors. These compounds contain metals bonded to organic groups
and can be used to deposit a wide range of semiconductors. MOCVD involves heating a
substrate in a reaction chamber and introducing precursor gases like CVD.

The precursors decompose or react on the substrate, leaving a deposit forming on the nanowire.
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The reaction can be enhanced by using a catalyst, which lowers the energy barrier for the
reaction and allows the nanowire to grow at a lower temperature. MOCVD offers several
advantages over other methods, such as the ability to grow high-quality, high-purity nanowires
and the ability to control the composition and structure of the nanowires with a high degree of
precision. [141], [143], [168]–[176].

While MOCVD provides greater control over the composition and structure of nanowires, it
also introduces some challenges. The metal-organic precursors used in MOCVD are often quite
sensitive and can decompose at room temperature or in the air, making them difficult to handle.
Additionally, MOCVD processes typically require a higher temperature than CVD, which could
lead to unwanted diffusion or alloying in the substrate or among different elements within the
nanowires.

2.6.2.3 Molecular Beam Epitaxy (MBE)

Molecular Beam Epitaxy (MBE) is another method for growing semiconductor nanowires. In
MBE, beams of atoms are generated from solid or liquid sources and directed onto the growth
substrate under ultra-high vacuum conditions. These atoms then react with each other to form
a crystalline layer. MBE offers a high degree of control over the growth process, allowing for
the fabrication of nanowires with complex structures and compositions.

This technique allows for the creation of nanowires with tailored dimensions and compositions
for fabricating nanowires with embedded quantum wells and quantum dots, thus achieving
quantum confinement effects. By carefully controlling the growth parameters, such as temper-
ature and material flux, MBE can produce uniform quantum well and quantum dot structures
within the nanowires [177]–[179].

It is particularly useful for growing nanowires from precursors that don’t readily form volatile
compounds, as required for CVD and MOCVD. MBE offers excellent control over the growth
process, but it also presents its own set of challenges. The requirement for a high-vacuum
environment makes MBE a complex and energy-intensive process. The process is also much
slower than CVD and MOCVD, which can be a drawback for large-scale production. [180]–
[184].

2.6.2.4 Vapour-Liquid-Solid (VLS) Growth

Vapour-Liquid-Solid (VLS) growth is often used to grow semiconductor nanowires. In VLS,
a tiny droplet of metal, often gold, is deposited on a substrate. This metal droplet acts as a
catalyst. When exposed to a vapor of the desired semiconductor material, the metal droplet
absorbs the vapor and forms a liquid eutectic alloy.

As more vapor is absorbed, the liquid becomes supersaturated, resulting in the precipitation of
the excess as a solid nanowire that grows out of the catalyst particle. VLS growth can produce
high-quality nanowires, but controlling the size and placement of the metal droplets that act
as catalysts can be challenging.

These droplets often need to be deposited using techniques such as electron-beam lithography,
which can be time-consuming and expensive. The choice of metal for the droplet is also critical,
as different metals can influence the growth rate and properties of the nanowires. Furthermore,
the metal catalyst may introduce impurities into the nanowires, affecting their optical and
electrical properties [185]–[190]
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One of the most significant challenges in all these methods is aligning and positioning the
nanowires after growth. For many applications, the nanowires must be arranged in specific
patterns or orientations, which can be difficult to achieve. Various techniques have been devel-
oped to address this, such as using electric or magnetic fields to guide the nanowires, but these
add further complexity to the fabrication process. Despite these challenges, the fabrication
methods for nanowire lasers have seen substantial advances over the years. Continued research
and development in this field will overcome these obstacles, leading to more efficient, reliable,
and cost-effective manufacturing processes for nanowire lasers.

2.6.3 Applications

To effectively develop semiconductor nanowire lasers, it is essential to determine their possible
applications and optimize relevant performance parameters. Biological sensing has been one of
the primary applications of nanowires. Their small dimensions allow for applications such as
in cellular endoscopy, as Peidong Yang’s group illustrated in 2011 [187].

Wu’s 2018 proposal for intracellular nanowire laser applications showcased their potential in
pH sensing due to the nonlinearity and sensitivity of lasers to their dielectric environment.
Important factors for biological applications include small size, biologically inert materials, and
visible wavelength lasing [126], [191]–[199].

Recent advances in growth techniques have sparked renewed interest in integrating nanolasers
with heterogeneous substrates for on-chip photonic circuitry applications. The emergence
of novel photonic architectures has increased the demand for coherent light sources in next-
generation photonic computing.

Consequently, research into nanowire lasers that can be directly grown on silicon or optical
waveguides has flourished. The capacity for heteroepitaxial growth with strain relief has intro-
duced a third category of nanowire laser applications. These involve creating high-quality light
sources using innovative materials like aluminum nitride or hybrid perovskites and integrating
established materials such as indium gallium arsenide with more affordable substrates.

This has facilitated the development of deep-UV emitters and telecommunication-wavelength
lasers. In the case of telecommunication-wavelength lasers, many research groups have focused
on growing lasers on silicon or waveguides. Achieving single-mode, narrow linewidth, precise
wavelength, high total power, and low-threshold operation is essential for these applications
[171], [200]–[209].

In the forthcoming chapter, we will delve into the numerical approach and computational
methodologies employed to explore the intricate behavior of lower-dimensional semiconductor
lasers. We will start with the cavity simulations, delving into the fundamental aspects of laser
cavities and their impact on device performance. Progressing further, we will delve into the
intricate optical phenomena that arise within lower-dimensional gain media, shedding light
on the complex interactions shaping laser behavior. Ultimately, our discussion will end with
the analysis of laser rate equations, offering insight into the dynamic processes governing the
operation of these sophisticated laser systems.
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2.7 Laser Rate Equations

Laser rate equations are two interconnected differential equations that describe the interactions
between photons and carriers within a semiconductor laser. By solving the laser rate equations
we will be able to obtain the change in both carriers and photons with time along with the
relationship between the input pump power versus the laser output power. In this section,
we will investigate different forms of laser rate equations and their limitations. At the end,
we will present the laser rate equations that we believe are best suited for lower-dimensional
semiconductor lasers.

Different forms of laser rate equations exist in the literature to describe the behavior of semi-
conductor lasers. Starting with the bulk semiconductor laser[89] and nanopillars [47] to the
lower dimensional semiconductor lasers such as multiple quantum well/dots embedded inside
the nanowires[6], [117], [140].

The rate equations used by [6] to describe a quantum dots nanowire laser are

dN

dt
= σp(t)− ΓAtotN − N

τnr
− AcavityS(N −Ntr), (2.52)

dS

dt
= ΓAcavityS(N −Ntr) + βAtotN − S

τp
. (2.53)

and the rate equations used by [117] for investigating a plasmonic nanowire laser are

dN

dt
= σp(t)− AtotN − N

τnr
− ΓAcavityS(N −Ntr), (2.54)

dS

dt
= ΓAcavityS(N −Ntr) + βAtotN − S

τp
, (2.55)

in which N is the number of carriers, S is the number of photons, τnr is the non-radiative
lifetime, Ntr is the transparency carrier density, and σ is the pump efficiency. The overall
carrier decay rate, Atot, is assumed to be approximately equal to the sum of Acavity and A0 as

Atot = Acavity + A0 (2.56)

The equations above tend to describe the modification of spontaneous emission rates due to the
presence of the cavity using the Purcell factor as a separate parameter in the rate equations.
However, by comparing them in addressing the effect of the Purcell factor, we encounter a few
challenges.

First, A0 represents the rate of carrier decay into free space. Acavity denotes the rate of carrier
decay into the cavity mode, and it’s calculated as the product of the Purcell factor, F , and A0.
However, there is no information on how the Purcell factor is calculated.

Second, the use of confinement factor Γ is completely inconsistent. In Equations 2.52-53, the
confinement factor is used in the total carrier decay rate term (ΓAtotN) while Equations 2.54-55
uses the confinement factor in the term describing the stimulated emission (ΓAcavityS(N−Ntr)).

In order to come up with our own rate equations that are suitable for quantum well nanowire
lasers, we go through individual optical processes within the laser and present a theoretical term
to describe it. First, we start with the pump. Since in the lower dimensional semiconductor
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lasers, we are dealing with the cavities in the micro/nanometer regime, it is very challenging to
attach the electrodes to achieve electrical pumping. Therefore most of these lasers are pumped
optically. The incident pump power is presented as P , and the energy of a pump photon is
ℏω. Since the spot size of the pump laser is usually larger than the laser being pumped, all of
the pump power is not able to interact with the carriers. Therefore, we introduce a term η to
represent the pump efficiency. Finally, since we want to write the rate equations in terms of
per unit volume, we divide the term describing the pump by V which represents the volume
of the gain medium inside the cavity. All of this creates the first term of the rate equations
(ηP/hvV ) which describes the rate of carriers being excited to the conduction band per unit
time per unit volume.

In the next step, we will describe the spontaneous emission rate. As mentioned in section
2.2.4, the spontaneous emissions usually are emitted with different wavelengths and in different
directions. The total spontaneous emission rate is obtained by the carrier density divided by
the spontaneous emission lifetime (N/τsp). A fraction of these spontaneous emissions are able
to couple with the lasing mode of the cavity while some of them are emitted into the free space.
Therefore, we can write the rate of spontaneous emissions into the lasing mode as βN/τsp and
the rate of the spontaneous emissions that don’t couple into the lasing mode as (1 − β)N/τsp.
It is obvious that the sum of these two terms should be equal to the total spontaneous emission
rate.

As mentioned in section 2.4.8, non-radiative processes are referred to as different processes
that do not result in a photon emission. The rate of non-radiative emissions obtained using
the non-radiative emission lifetime (τnr) which is the average time it takes for a carrier to
decay due to each of the non-radiative recombination processes. Auger recombination is one
of the non-radiative processes which is more dominant compared to the others. If one is able
to estimate the carrier decay rate due to the Auger recombination process, we can present the
process in separate terms as CN3 [47].

The stimulated emission term is obtained from the gain model. The gain model is developed
from the gain spectrum of the material which will be extensively investigated in Chapter 4.
The gain model describes the behavior of the gain medium as a function of carrier density
(g(N)). However, one important factor to be considered here is that in the case of lower
dimensional semiconductor lasers, the gain medium only exists in a small fraction within the
cavity. Therefore, not all the electromagnetic field inside the cavity is able to interact with the
gain medium. Therefore, we introduced the parameter (Γ) to take this into account.

The same processes will appear in the rate equation for the rate of change in the number of
photons. However, the term photon lifetime (τp) is added to this rate equation in order to
consider the rate of the photons escaping the cavity.

Using all the information mentioned above, we propose our modified laser rate equations as

dN

dt
=

ηP

hvV
− (

1− β

τsp
+

β

τsp
)N − N

τnr
− Γg

S

V
, (2.57)

dS

dt
= ΓgS +

βNV

τsp
− S

τp
, (2.58)

where N is the carrier density, and S is the number of photons inside the cavity. The parameter
η is the fraction of pump power that is able to interact with the carriers, hv is the energy of the
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pump photon, V is the volume of the active region, τsp is the spontaneous emission lifetime,
β is the spontaneous emission factor, τnr is the non-radiative recombination lifetime, g is the
active medium’s gain, and τp is the photon lifetime.

The confinement factor in Equations 2.57 and 2.58 is calculated from three-dimensional simu-
lations of the electromagnetic field in the cavity using Equation 2.47. The confinement factor
here shows how much of the electric field can interact with the gain medium and depends on
the location where the gain medium is placed within the cavity. A detailed discussion of the
calculations of the confinement factor using 3D electromagnetic field simulations is presented
in section 4.2.3.2

Diffractive effects occur when light encounters obstacles or apertures. When light encounters
such obstacles, it bends, spreads, and creates intricate light patterns which is called diffrac-
tion. Diffractive behavior is influenced by the material properties of the cavity and surrounding
medium. Therefore, variations in refractive index, absorption coefficients, and dispersion prop-
erties of materials should be taken into account.

Moreover, the interaction between the laser cavity and surrounding structures or interfaces can
impact diffractive effects. Interfaces between nanowires, nanopillars, and substrates can intro-
duce scattering or phase changes, leading to additional diffractive phenomena. These effects are
particularly pronounced in sub-wavelength structures such as nanowires and nanopillars, where
the dimensions of the structures are in the order of the wavelength of light, and diffraction
patterns can significantly influence the behavior of the light.

In our laser model and simulations, we use three-dimensional eigenfrequency analysis to find
the resonant modes and the electromagnetic field patterns within the laser cavity. This analysis
takes into account the change of refractive index across the gain medium, cavity, and substrate,
as well as the surrounding environment (air).

Additionally, our FEM simulations take some diffractive effects into account due to the hexag-
onal shape of the nanowire and nanopillar cavities. The hexagonal geometry introduces diffrac-
tion phenomena at each side, influencing the propagation and distribution of light within the
cavity.

However, in our simulations, we make some simplifying assumptions as we assume uniformity in
the cavity and the gain medium, neglecting impurities and irregularities that might exist at the
interfaces between the nanowire or nanopillar and the gain medium and the substrates. Con-
sequently, our results may not fully capture the diffraction effects that might arise from waves
encountering obstacles or discontinuities within the structure. This simplification allows us to
focus on the fundamental behavior of the light in the laser cavity under idealized conditions.

In Chapter 4, we will explain how we intend to employ the finite element method to simulate the
laser’s resonant cavity. The optical characteristics. We will also present an extremely detailed
examination of the gain medium, aiming to accurately capture its response when subjected to
pumping in Chapter 3.
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Chapter 3

Formalism of Emission and Absorption
Processes in Semiconductor Nanowires

3.1 Introduction

This chapter presents the formulation we have developed for modeling the dynamics of optical
processes in a quantum well nanowire laser. Our formalism represents a significant advancement
in describing the absorption, gain, and spontaneous emissions within quantum well nanowire
lasers. We start with a detailed examination of the absorption, gain, and spontaneous emissions
taking place within a bulk semiconductor. Subsequently, we modify the equations that were
initially developed for bulk semiconductors to make them applicable to quantum wells. Our
formalism offers a comprehensive and step-by-step discussion and derivations of the rates of
the optical processes. This level of detail provides a deeper understanding of the underlying
mechanisms governing the behavior of quantum well nanowire lasers, which was previously
lacking in the literature.

Our approach follows the derivations given in [57], departing from his calculations in section 3.3,
where we consider the photonic density of states in a nanowire. This model goes beyond merely
accounting for how quantum confinement affects absorption, gain, and stimulated emission
rates; we also consider the influence of the cavity. Unlike conventional approaches that only
account for free-space spontaneous emission, neglecting the cavity effect by assuming the free-
space photonic density of states and Purcell factor equal to unity, our formalism incorporates
both the nanowire and free-space photonic density of states in the calculation, leading to higher
rates of spontaneous emissions.

A key novelty of our formalism lies in deriving the equations to calculate the spontaneous
emission factor (β) and the Purcell factor (FB). Unlike existing literature, which often treats
these parameters as constants and estimates them by fitting the experimental data into the
simulations, our formalism demonstrates how these factors depend on material composition
and cavity geometry as well as carrier density and temperature. This insight provides a deeper
understanding of the relationship between these crucial parameters and enables more precise
predictions of laser performance.

Moreover, our formalism enables us to incorporate a dynamic spontaneous emission into laser
rate equation analysis. This approach sheds light on how the coupling of spontaneous emissions
to the lasing mode changes over time during laser operation. By capturing this temporal aspect,
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our formalism provides a more comprehensive understanding of the dynamics of quantum well
nanowire lasers and opens avenues for optimizing their performance in practical applications.

An interesting element of our formulation is that we do not fit the experimental data in our
simulations to calculate β. We obtain the output number of photons by solving the laser rate
equations using β and the gain that we develop in this chapter. Our formalism provides an
easy method to calculate β directly from material and cavity parameters, which will help to
predict laser performance.

3.2 Absorption, Gain, and Spontaneous Emission Spec-

trum in a Bulk Semiconductor

In a semiconductor, interactions between incident photons and electrons in the conduction band,
as well as holes in the valence band, can occur through three distinct mechanisms: absorption,
spontaneous emission, and stimulated emission. To obtain the rates of these optical processes,
we begin our analysis by considering transitions between discrete energy levels E1 and E2, as
depicted in Figure 3.1.

𝐸2

𝐸1

ℎ𝑣

𝐸21 = 𝐸2 − 𝐸1

ℎ𝑣 ℎ𝑣 = 𝐸21

Figure 3.1: Absorption and emission of a photon between energy levels E1 and E2. The energy
of the photon is equal to the energy difference between the two levels hv = E2 − E1.

The rate of absorption from energy level E1 to the energy level E2 depends on

1. The probability of a state at energy E1 being occupied which we denote as (f1)

2. The probability of a state at energy E2 being empty which we denote as (1− f2)

3. The number of photons per unit volume per unit energy at the transition frequency
v21 = E21/h

where E21 = E2 − E1, h is the Planck’s constant, and f1 and f2 are the Fermi functions
introduced in Equations 2.13-2.14.

We show the number of photons per unit volume per unit energy at E21 with P (E21). The
parameter P (E21) is related to the Photonic Density of States (PDOS) as

P (E21) = Nph(E21)nph (3.1)

where nph is the average number of existing photons at thermal equilibrium, and Nph(E21) is
the photonic density of states per unit volume.
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According to Boson statistics nph is [57]

nph =
1

ehv/kBT − 1
(3.2)

where kB is the Boltzmann’s constant, and T is the temperature.

We now follow the argument due to Einstein in which the rate of absorption from level 1 to
level 2 per unit volume can be written as

Rabs
12 = B12P (E12)f1(1− f2) (3.3)

where B12 is the Einstein B coefficient and describes the rate of the absorption [57]. We will
determine the B coefficient in section 3.2.2.

Similarly, the rate of stimulated and spontaneous emission per unit volume are then

Rstim
21 = B21P (E21)f2(1− f1) (3.4)

and
Rspon

21 = A21f2(1− f1) (3.5)

where B21, and A21 are the Einstein B and A coefficients describing the rates of stimulated
and spontaneous emissions [57]. Since the photons emitted via the spontaneous emissions are
independent of any influence from the existing photons, P (E21) does not appear in Equation
3.5.

At thermal equilibrium, the absorption rate equals the sum of the rates of spontaneous and
stimulated emission. Therefore we have

Rabs
12 = Rstim

21 +Rspon
21 (3.6)

Using Equations 3.3-3.5, we rewrite Equation 3.6 as

B12P (E12)f1(1− f2) = B21P (E21)f2(1− f1) + A21f2(1− f1) (3.7)

If we rewrite Equation 3.7 to find A21, we obtain

A21 = [B12
f1(1− f2)

f2(1− f1)
− B21]P (E21) (3.8)

We now use Fermi-Dirac statistics for the electrons at energy level E2 and the holes at energy
level E1 as

f1(E1) =
1

1 + e(E1−Ef )/kBT
(3.9)

f2(E2) =
1

1 + e(E2−Ef )/kBT
(3.10)

where Ef is the quasi-Fermi level and kBT is the Boltzmann energy. We then have

f1(1− f2)

f2(1− f1)
=

e(E2−Ef )/kBT

e(E1−Ef )/kBT
(3.11)

Equation 3.11 can be simplified to

f1(1− f2)

f2(1− f1)
= e(E2−E1)/kBT (3.12)
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By substituting Equation 3.12 into Equation 3.8, we obtain

A21 = (B12e
(E2−E1)/kBT − B21)P (E21) (3.13)

Using Equation 4.1-4.2, we can rewrite P (E21) as

P (E21) = Nph(E21)
1

e(E2−E1)/kBT − 1
(3.14)

where we replaced the hv in Equation 3.2 by E21 = E2 − E1.

From Equations 3.13 and 3.14, we get

P (E21) =
A21

B12e
E21/KBT − B21

(3.15)

The only way this can be true for all values of T is when

B12 = B21 (3.16)

and
A21

B21

= Nph(E21) (3.17)

Equations 3.16-3.17 describe the relationship between the rates of absorption, stimulated, and
spontaneous emissions within a semiconductor. Equation 3.17 helps us to write the rate of
spontaneous emission in terms of B21 and the photonic density of states (Nph(E21)). Therefore,
we can simplify the equations and compare the rate of spontaneous emissions with the absorp-
tion and stimulated emission. In the next section, we will obtain the rates of optical processes
within the semiconductor using Equations 3.16-3.17.

3.2.1 Absorption, Stimulated, and Spontaneous Emission Rates

The absorption rate per unit volume is given by Equation 3.3. The net absorption independent
of spontaneous emission is

Rabs−net
12 = Rabs

12 −Rstim
21 (3.18)

By using Equations 3.3, and 3.4 we have

Rabs−net
12 = B21P (E21)(f1 − f2) (3.19)

From Equation 3.1, we can rewrite the net absorption rate as

Rabs−net
12 = B21Nph(E21)(f1 − f2)nph (3.20)

In a semiconductor material, we have a continuous electronic density of states (DOS) in both
the conduction and valence bands which we have shown with the light and dark gray colors
in Figure 3.2. Also, carriers are able to interact with the photons within a specific range of
energies. Therefore, by integrating the net absorption in Equation 3.20 over all the possible
energies that are able to interact with the carriers, the net absorption per unit volume is defined
as

Rabs−net
12 =

∫ ∞

0

B21Nph(E21)(f1 − f2)δ(E21 − E)nphdE (3.21)

Where the delta function only accounts for the transitions with energies equal to E21. The

45



Conduction band
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𝐸

𝑘

Figure 3.2: Continuous electronic density of states in the conduction band (light gray color)
and in the valence band (dark grey color) in a bulk semiconductor.

spontaneous emission rate per unit volume for a discrete state is given by Equation 3.5. Using
Equation 3.17, we can rewrite Equation 3.5 as

Rspon
21 = NphB21(E21)f2(1− f1) (3.22)

Similar to the net absorption, by integrating over the energies that carriers can interact with,
we can obtain the spontaneous emission rate as

Rspon
21 =

∫ ∞

0

B21Nph(E21)f2(1− f1)δ(E21 − E)dE (3.23)

The rate of stimulated emission is obtained by assuming that the stimulated emission rate is
equal to the net absorption rate when spontaneous emission is neglected. Therefore, we can
write the rate of stimulated emission using Equation 3.21. However, one should keep in mind
that stimulated emission occurs from E2 to E1, so the term (f1 − f2) in Equation 3.21 will be
replaced by the term (f2 − f1). The rate of stimulated emission per unit volume is given as

Rstim
21 =

∫ ∞

0

B21Nph(E21)(f2 − f1)δ(E21 − E)nphdE (3.24)

Now that we have derived the net absorption, spontaneous, and stimulated emission rates by
considering all the possible energies with which the carriers are able to interact, in the next
section we will consider the continuous electronic states within the conduction and valence band
to derive the total rates of the optical processes.

3.2.1.1 Absorption Rate in k⃗ Space

We introduce the rate of one single absorption from energy level E1 to energy level E2 per unit
volume as

rabs,single12 = B12Nph(E12)(f1 − f2)δ(E12 − E) (3.25)

Equation 3.25 shows the absorption rate between two discrete energy levels, E1 and E2, from
an incident photon with energy E. The delta function accounts for the transitions only with
energy equal to E12 = |E1 − E2| as discussed in Equation 9.2.26b in [57].
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The delta function ensures that energy is conserved precisely during the transition. However,
in practical scenarios, energy levels are not perfectly discrete due to various broadening mecha-
nisms, such as thermal vibrations, impurities, and other interactions within the material. These
mechanisms cause the energy levels to have a finite linewidth, leading to a broadening of the
spectral lines. As a result, the delta function, which represents an idealized scenario of exact
energy conservation, is replaced by a Lorentzian function in practice.

Using Equation 3.25, the net absorption rate in Equation 3.21, can be rewritten as

Rabs−net
12 =

∫ ∞

0

rabs,single12 nphdE (3.26)

From Figure 3.2 we can see that in a bulk semiconductor, there is a continuous spectrum of
states in both the conduction and valence bands, presented with light and dark gray colors,
where a single electron can absorb energy and move from the valence band into the conduction
band.

By scanning over all of these continuous electronic states in the conduction and valence bands
with wavevectors k⃗a and k⃗b for r

abs,single
12 as shown in Figure 3.3, we obtain the net absorption

rate per unit volume per unit energy as

rabsnet(E) = 2
∑
k⃗a

∑
k⃗b

rabs,singleab (E) (3.27)

where we have added 2 to account for electron spin degeneracy.

Using Equation 3.25 in Equation 3.27, we get

rabsnet(E) = 2
∑
k⃗a

∑
k⃗b

NphBab(fb − fa)δ(Eb − Ea − E) (3.28)

where B12 is replaced by Bab to account for the rate of transition from the conduction band
with wavevector k⃗a into the valence band with wavevector k⃗b instead of discrete energy levels
of 1 and 2. fa and fb are the fermi functions describing the probability of electronic states in
the band structure with wavevectors k⃗a and k⃗b being occupied.

Since E which is the energy at which carriers can interact with photons does not depend on k⃗a
or k⃗b, we can take Nph(E) out of the sum in Equation 3.28

rabsnet(E) = 2Nph(E)
∑
k⃗a

∑
k⃗a

Bab(fb − fa)δ(Eb − Ea − E) (3.29)

As mentioned before, electrons within the semiconductor are capable of interacting with photons
within a spectral range of energies. The absorption spectrum within ∆E is defined as

α ·∆E =
number of photons absorbed/volume/s

number of photons injected/area/s
(3.30)

where α is the absorption coefficient.

The numerator in Equation 3.30 is the number of photons absorbed per unit volume per unit
time in the spectral width, ∆E, and it is obtained as

number of photons absorbed/volume/s = nphr
net
abs(E)∆E (3.31)
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Figure 3.3: Conduction and valence band structures in k⃗ space.

The denominator of Equation 3.30 is the number of carriers injected per unit area per unit time
and it is obtained as

number of photons injected/area/s = P (E)
c

n
(3.32)

where P (E) which is the number of photons per unit volume per unit energy at the energy E.

So, we write Equation 3.30 as

α ·∆E =
nphr

net
abs(E)∆E

P (E) c
n

(3.33)

Using Equation 3.1 we get

α ·∆E =
nphr

net
abs(E)∆E

Nphnph(c/n)
(3.34)

and therefore, the absorption spectrum per unit volume per unit energy is

α(E) = 2
n

c

∑
k⃗a

∑
k⃗b

Bab(fb − fa)δ(Eb − Ea − E) (3.35)

Equation 3.35, describes the rate of absorption when not only all the electronic states within the
conduction and valence bands are taken into account but also, the spectral range of frequencies
in which the electrons can interact with incident photons are considered. Now that we have
calculated the absorption rate, we will look into the spontaneous emission rate.

3.2.1.2 Spontaneous Emission Rate in k⃗ Space

Similar to the absorption, in this section we are going to obtain the rate of spontaneous emission
by taking all the electronic states in the conduction and valence band into account. The
spontaneous emission rate per unit volume for a discrete state is given by Equation 3.23 when
all the energies that carriers are able to interact with are considered.

Now we define the rate of a single spontaneous emission from energy level E2 into the energy
level E1 per unit volume as

rspon,single21 = NphB21(E21)f2(1− f1)δ(E21 − E) (3.36)
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If we rewrite Equation 3.23 in terms of a single spontaneous emission in Equation 3.36, we get

Rspon
21 =

∫ ∞

0

rspon,single21 (E)dE (3.37)

A single spontaneous emission with energy (E) can occur from any of the continuous electronic
states in the conduction and valence bands. Therefore, we integrate over all the electronic
states to obtain the spontaneous emission rate of a single spontaneous emission rspon,single21 as

rspon(E) = 2
∑
k⃗a

∑
k⃗b

rspon,singleab (E) (3.38)

Using Equation 3.36 we get

rspon(E) = 2
∑
k⃗a

∑
k⃗b

NphBabfa(1− fb)δ(Ea − Eb − E) (3.39)

Now that we obtained the spontaneous emission rate over the electronic states, we will inves-
tigate Bab in the following subsection.

3.2.2 Einstein B Coefficient

The parameter Bab describes the stimulated emission rate from an electron with wavevector k⃗a
in the conduction band to a hole in the valence band with wavevector k⃗b. Bab is given in [57]
as

Bab =
2π

ℏ
| < a| − eA0

2m0

ê · p⃗|b > |2 (3.40)

where a is the initial state of the carrier, b is the final state of the carrier, A0 is the electro-
magnetic vector potential amplitude, m0 is the free mass of an electron, ê is the electric field
polarization, and p⃗ is the dipole operator between the electron and hole.

This expression does not take the conservation of momentum into account. As discussed in
section 2.2.4, we apply the conservation of momentum which states that the wavevector of the
carrier before and after transition should be almost equal to each other (k⃗a ≈ k⃗b). Therefore
we get

Bab =
2π

ℏ
| < a| − eA0

2m0

ê · p⃗|b > |2δk⃗a,k⃗b (3.41)

Equation 3.41 can be rewritten as

Bab =
2π

ℏ
e2A2

0

4m2
0

|ê· < a|p⃗|b > |2δk⃗a,k⃗b (3.42)

If we define the momentum matrix element as the rate of electron and hole recombination
between electronic states with wave vectors k⃗a and k⃗b as

p⃗ab =< a|p⃗|b > (3.43)

Then we have
|ê· < a|p⃗|b > |2 = |ê · p⃗ab|2 (3.44)

49



Bab in Equation 3.42 becomes

Bab =
π

�
e2A2

0

4m2
0

|ê · �pab|2δ �ka, �kb
(3.45)

where the A0 is the electromagnetic vector potential arising from a single photon in a volume
V0, which we think of as some volume contained within the active region, as shown in Figure
3.4

Volume 𝑉0

Figure 3.4: Schematic image of the volume of the cavity, active region, and volume V0

Expression for A0 can be derived by considering the energy arising from a single photon in a
box of volume V as

A2
0 =

2�
n2ε0ω

1

V
(3.46)

where V is the volume of the active region.

By substituting A0 in Equation 3.45 we get

Bab =
π

�
e2

2m2
0

2�
n2ε0ω

1

V
|ê · �pab|2δ �ka, �kb

(3.47)

Equation 3.47 simplifies to

Bab =
πe2

m2
0cε0nω

c

n

1

V
|ê · �pab|2δ �ka, �kb

(3.48)

We then define C0 as

C0 =
πe2

ncε0m2
0ω

(3.49)

where e is the electron charge, ε0 is the vacuum permittivity, m0 is the free mass of the electron,
and � represents the reduced Planck’s constant.
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We can also rewrite C0 in terms of energy by substituting ω with E/ℏ as

C0 =
πe2

ncϵ0m2
0(E/ℏ)

(3.50)

Substituting C0 in Equation 3.48 gives us

Bab = C0
c

n

1

V
|ê · p⃗ab|2δk⃗a,k⃗b (3.51)

Now that we have obtained the coefficient Bab, we can continue the derivations of the sponta-
neous emission rate in Equation 3.39. By substituting Equation 3.51 in 3.39, we get

rspon(E) = 2NphC0(E)
c

n

1

V

∑
k⃗a

∑
k⃗b

|ê · p⃗ab|2δk⃗a,k⃗bfb(1− fa)δ(Eb − Ea − E) (3.52)

We introduce Ecv as the energy difference between the conduction band and the valence band
at k⃗a which is presented in Figure 3.5. Ec(k⃗a) and Ev(k⃗b) represent the energy of the conduction
and valence bands, respectively. Also by taking advantage of the fact that the transition of an
electron from the conduction band into a hole in the valence band can take place when k⃗a = k⃗b,
we can write Ecv(k⃗) as

Ecv(k⃗a) = (Ea − Eb)|k⃗a=k⃗b
= Ec(k⃗a)− Ev(k⃗b). (3.53)

Also, we define the interband momentum matrix element as

p⃗cv = p⃗ab(k⃗a, k⃗b)|k⃗a=k⃗b
(3.54)

𝐸𝑐(𝑘𝑎)

𝐸 Conduction band 

Valence band 

𝐸𝑣(𝑘𝑎) 𝑘

𝐸𝑐𝑣(𝑘𝑎)

Figure 3.5: Schematic image of the difference in the energy of the conduction and valence band
Ecvwith respect to the wavevector k⃗

.

The Fermi-functions of the conduction and the valence band are defined as

fc = fb(k⃗a) =
1

1 + e(Ec(k⃗a)−Ef )/KBT
(3.55)
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fv = fa(k⃗a) =
1

1 + e(Ev(k⃗a)−Ef )/KBT
(3.56)

We can rewrite the spontaneous emission rate in Equation 3.52 in terms of Ecv in Equation
3.51, p⃗− cv in Equation 3.52, and the Fermi functions in Equations 3.55-3.56 as

rspon(E) = 2Nph(E)C0(E)
c

n

1

V

∑
k⃗a

|ê · p⃗ab|2fc(1− fv)δ(Ecv − E) (3.57)

So far we derived the spontaneous emission rate from all the electronic states in k-space with
energy E. For a more accurate description of the optical processes, we will add the intra-band
transitions which refer to the transitions within the conduction or valence bands that provide
the carriers into the band edge before the inter-band transition as shown in Figure 3.6. Intra-
band transitions represent the scattering relaxations that result in the linewidth broadening.
Therefore, when scattering is included, the delta function is replaced by a Lorentzian as [57]

Intraband transition

Interband transition

Conduction Band

Valence Band

𝐸𝑐(𝑘)

𝐸𝑣(𝑘)

𝑘

𝐸

Figure 3.6: Intra-band transition in the conduction band of a semiconductor
.

δ(Ecv − E) ⇒ γ/2π

(Ecv − E)2 + (γ/2)2
= L(Ecv − E) (3.58)

where γ is related to the intraband scattering lifetime (τin) as

γ =
2ℏ
τin

(3.59)

by substituting Equation 3.58 in Equation 3.57, we get

rspon(E) = 2Nph(E)C0(E)
c

n

1

V

∑
k⃗a

|ê · p⃗ab|2fc(1− fv)L(Ecv − E) (3.60)

Equation 3.60 gives us the rate of spontaneous emissions by taking a sum over all the possible
electronic states in the conduction and valence bands. However, since in a bulk semiconductor
we are dealing with the continuum of electronic states in the conduction and valence bands, we
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can replace the sum with an integral. If we assume that all three sides of the active region are
equal to L, we can replace the sum with integral as

1

V

∑
k⃗a

=
1

L3

∑
k⃗a

(3.61)

Equation 3.61 can be rewritten as

1

L3

∑
k⃗a

=
1

(2π)3

∑
k⃗a

(
2π

L
)3 (3.62)

for a bulk semiconductor with the length L on three sides, we should have standing waves
between the extremes. Therefore, the wavevectors in the x,y, and z directions are

∆kx =
2π

L
(3.63)

∆ky =
2π

L
(3.64)

∆kz =
2π

L
(3.65)

Using Equations 3.63-3.65, we rewrite Equation 3.62 as

1

(2π)3

∑
k⃗a

(
2π

L
)3 =

1

(2π)3

∑
k⃗a

∆k (3.66)

Finally, we can replace the sum in Equation 3.66 with three integrals in all directions as

1

(2π)3

∑
k⃗a

∆k =
1

(2π)3

∫ ∫ ∫
dk⃗ (3.67)

By replacing the sum with the integral in Equation 3.60, the spontaneous emission rate is
written as

rspon(E) = 2Nph(E)C0(E)
c

n

1

V

1

(2π)3

∫ ∞

0

|ê · p⃗cv|2fc(1− fv)L(Ecv − E)dk⃗ (3.68)

We seek to write all the optical process rates in terms of the energy rather than the wavevector.
Therefore, in the following section, we will investigate how to replace k⃗ with the energy of the
conduction and valence bands.

3.2.3 Electronic DOS and Computation of Absorption, Gain, and
Spontaneous Emission in a Bulk Semiconductor

As mentioned above, we want everything in the integral of Equation 3.68 to depend on energy
rather than wavevector, so in this section, we would like to change variables from k⃗ to Ecv. If
we assume that the bottom of the conduction band is at Eg and the top of the valence band
sits at zero, we can write

Ec(k) = Eg +
ℏ2

2m∗
e

k2 (3.69)
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Ev(k) = − ℏ2

2m∗
h

k2 (3.70)

where m∗
e is the effective mass of the electron in the conduction band, and m∗

h is the effective
mass of holes in the valence band.

Using Equations 3.69 and 3.70 in Equation 3.53 gives us

Ecv(k) = Eg + (
ℏ2

2m∗
e

+
ℏ2

2m∗
h

)k2 (3.71)

We show the m∗
r as the reduced mass of the electron which is obtained as

1

m∗
r

=
1

m∗
e

+
1

m∗
h

(3.72)

By substituting Equation 3.72 in Equation 3.71, we rewrite Ecv as

Ecv(k) = Eg +
ℏ2

2m∗
r

k2 (3.73)

In a 3D geometry, we can write dk⃗ in spherical coordinates as∫ ∫ ∫
dk⃗ =

∫ 2π

0

∫ π

0

∫ ∞

0

k2dθkdϕkdk (3.74)

By assuming all the values for dθk and dϕk, Equation 3.74 becomes∫ 2π

0

∫ π

0

∫ ∞

0

k2dθkdϕkdk = 4π

∫ ∞

0

k2dk (3.75)

In a bulk semiconductor, we are dealing with a 3D geometry. However, this step will be different
in the 2D geometry of the quantum wells.

From 3.73, we obtain k as

k =

√
2m∗

r

ℏ2
(Ecv − Eg) (3.76)

Differentiating Equation 3.73 gives us

dEcv =
ℏ2

m∗
r

√
2m∗

r

ℏ2
(Ecv − Eg)dk (3.77)

By substituting Equation 3.76 in Equation 3.77, we get

dEcv =
ℏ2

m∗
r

kdk (3.78)

Therefore,

k2dk = (
2m∗

r

ℏ2
(Ecv − Eg))

1

ℏ2
m∗

r

√
2m∗

r

ℏ2 (Ecv − Eg)
dEcv (3.79)

Equation 3.79 is simplified as

k2dk =
1

2
(
2m∗

r

ℏ2
)3/2

√
(Ecv − Eg)dEcv (3.80)
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We introduce ρr(Ecv) as the 3D joint density of electronic states (DOS)

ρr(Ecv) =
1

2π2
(
2m∗

r

ℏ2
)3/2

√
(Ecv − Eg) (3.81)

Using DOS in Equation 3.80, we get

k2dk = π2ρr(Ecv) (3.82)

Hence by applying Equations 3.77 and 3.82 to Equation 3.68, the spontaneous emission spec-
trum becomes

rspon(E) = Nph(E)C0(E)
c

n

∫ ∞

Eg

ρr(Ecv)|ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv (3.83)

Now that we can calculate the rate of spontaneous emission by considering all the electronic
states, we go back to Equation 3.37 and include all the considerations of all the photon energies
to obtain the total spontaneous emission rate as

Rtotal
spon =

∫ ∞

0

dE

∫ ∞

Eg

Nph(E)C0(E)
c

n
ρr(Ecv)|ê · p⃗cv|2fc(1− fv)

γ/2π

(Ecv − E)2 + (γ/2)2
dEcv (3.84)

Equation 3.84 gives us the total spontaneous emission rate within a bulk semiconductor. This
includes spontaneous emissions with all the possible frequencies and electronic states. However,
some of these spontaneous emissions couple to the lasing mode of the cavity, while some can
either couple to the other existing cavity modes or they will be emitted into the free space.
From the total spontaneous emission rate, we will be able to calculate β and the Purcell factor
in a laser system.

To compute the total absorption, we continue from Equation 3.35 by substituting Bab in Equa-
tion 3.51. Therefore, the absorption rate per unit volume is given as

α(E) = 2
n

c

∑
k⃗a

∑
k⃗b

C0
c

n

1

V
|ê · p⃗ab|2δk⃗a,k⃗b(fa − fb)δ(Eb − Ea − E) (3.85)

for a direct transition where ka = kb, we have

α(E) = 2C0
1

V

∑
k⃗a

|ê · p⃗cv|2(fv − fc)L(Ecv − E) (3.86)

where we replace the delta function with the Lorentzian. We now assume the 3D space to
replace the sum over the wavevectors with the integral over all the electronic states following
Equations 3.63-3.67 and Equations 3.77-3.81. We obtain

1

V

∑
k⃗a

→ 1

2

∫ ∞

Eg

ρr(Ecv)dEcv (3.87)

By using Equation 3.87 in Equation 3.86, we rewrite the absorption rate as

α(E) = C0

∫ ∞

Eg

ρr(Ecv)|ê · p⃗cv|2(fv − fc)L(Ecv − E)dEcv (3.88)
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The parameter α describes the rate of electrons absorbing the incident energy and moving
from the valence band into the conduction band. Gain is the reverse of this process where the
same electrons will lose their energy by emitting a photon and drop back to the valence band.
Therefore, we can write that the gain as

g(E) = −α(E) = C0

∫ ∞

Eg

ρr(Ecv)|ê · �pcv|2(fc − fv)L(Ecv − E)dEcv (3.89)

Now that we learned and fully understand how the optical processes occur within a bulk
semiconductor inside a cavity we also derived the total rate of absorption, gain, and spontaneous
emission rates, in the next section we will modify these equations to describe the behavior of
a single quantum well inside a cavity. Please note that we will discuss the photonic density of
states Nph(E) in more detail in Chapter 5.

3.3 Optical Processes within a Quantum-well Inside the

Nanowire

In this section, we will discuss the optical processes within a quantum well when it is placed
inside an optical cavity as shown in Figure 3.7. Equations 3.1-3.60 discuss the processes in a
general form. Therefore they will hold true for both bulk and quantum well semiconductors.
As we move from bulk to quantum well structure, instead of having continuous energy states
in the conduction and valence bands, we will have discrete energy levels. This will introduce
changes in the electronic density of states, Fermi functions, and wavevectors.

Nanowire Cavity

Quantum-well

Figure 3.7: Schematic image of a quantum well inside an optical cavity
.

The confined thickness of the quantum well will apply some restrictions on how much the
wavevectors are able to expand. Due to the very small length of the active region, let’s say
in the z-direction, the wavevector �k is only capable of expanding along the x and y-directions
while remaining constant in the z-direction as shown in Figure 3.8. Equation 3.67 replaces the
sum of the wavevectors with integral over the 3D bulk active medium to include all the possible
electronic states. However, this replacement of the sum with integral for the 2D quantum well
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gains medium is obtained as
1

V

∑
k⃗a

=
1

LzL2

∑
k⃗a

(3.90)

Equation 3.90 can be rewritten as

1

LzL2

∑
k⃗a

=
1

Lz(2π)2

∑
k⃗a

(
2π

L
)2 (3.91)

The term (2π/L)2 is Equation 3.91 can be replaced by ∆kt as

1

Lz(2π)2

∑
k⃗a

(
2π

L
)2 =

1

Lz(2π)2

∑
k⃗a

∆kt (3.92)

where kt denotes the transverse wavevector in the x and y directions, Lz is the thickness of the
quantum well, and L is the length of the active region in the x and y directions.

Figure 3.8: Allowed momentum vectors in a quantum well semiconductor. The solid dots
represent the allowed states. Reprinted from [34].

The sum in Equation 3.92 is replaced by integrals in two directions as

1

Lz(2π)2

∑
k⃗a

∆kt →
1

Lz(2π)2

∫ ∫
dk⃗t (3.93)

By replacing the sum with the integral in Equation 3.60, the spontaneous emission rate is
written as

rspon(E) = 2Nph(E)C0(E)
c

n

1

Lz(2π)2

∫ ∫
dkt|ê · p⃗ab|2fc(1− fv)L(Ecv − E) (3.94)

Now, as mentioned in section 2.3, in a quantum well the continuous electronic states collapse
into the discrete energy levels due to the quantum confinement effect. Two discrete energy
levels in the conduction and valence band in a quantum well are presented in Figure 3.9. It can
be seen in Figure 3.9 that the first energy level of the conduction in a quantum well lies above
the bandgap energy Eg.

Similarly, the top of the first energy level in the valence band lies below zero. This means that
the prohibited bandgap in the quantum well is larger than what it would be in the bulk form.
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Since in a quantum well we have discrete energy bands, photon emission from the conduction
band into the valence band also can occur via certain energies corresponding to the difference
between the two specific bands. In Figure 3.9, for two energy levels in the conduction and
valence bands, four types of transition can occur which we show as Ecvnm. The subscripts n
and m correspond to the number of energy levels in the conduction and valence band in which
the transition is happening. For example, we show the energy of a transition from the second
energy level in the conduction band to the first energy level of the valence band as Ecv21.

E

k

Conduction band

Valence band

−
𝐸𝑔

𝑛 = 2

𝑛 = 1

𝐸𝑐1

𝐸𝑐2

𝐸𝑣1
𝐸𝑣2

𝑛 = 2
𝑛 = 1

𝐸𝑐𝑣21𝐸𝑐𝑣22 𝐸𝑐𝑣12
𝐸𝑐𝑣11

Figure 3.9: Two discrete energy levels of the conduction band and the valence band in a
quantum well structure.

Similar to the approach we took in the bulk semiconductor, we seek to write Equation 3.94 in
terms of Ecv instead of the transverse wavevector.

We can write the energy in the conduction and valence bands for discrete energy levels of the
quantum well as

Ec(kt) = Ecn +
ℏ2

2m∗
e

k2
t (3.95)

Ev(kt) = Evm − ℏ2

2m∗
h

k2
t (3.96)

where Ecn and Evm are the bottom and top of the nth discrete energy level in the conduction
and the top of the mth energy level in the valence band of the quantum well, respectively. The
parameter kt represents the transverse wavevector.

By using Equations 3.95 and 3.96 in Equation 3.53, we get

Ecv(kt) = Ecn +
ℏ2

2m∗
e

k2
t − Evm +

ℏ2

2m∗
h

k2
t (3.97)
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Substituting Equation 3.72 in Equation 3.97 we get

Ecv(kt) = Ecn − Evm +
ℏ2

2m∗
r

k2
t , (3.98)

where m∗
r is the reduced mass of the carriers.

By rearranging Equation 3.98 we write the wavevector kt according to the energy Ecv as

k2
t =

2m∗
r

ℏ2
(Ecv − Ecn + Evn) (3.99)

In 2D geometry we have ∫ ∫
dk⃗t =

∫ 2π

0

∫ ∞

0

ktdkt = 2π

∫ ∞

Eg

ktdkt (3.100)

We can rewrite the rate of the spontaneous emission in Equation 3.94 as

rspon(E) = 2Nph(E)C0(E)
c

n

1

(2π)2Lz

∫ ∞

Eg

2π|ê · p⃗cv|2fc(1− fv)L(Ecv − E)ktdkt (3.101)

If we write ktdkt in terms of Ecv using Equation 3.99, we can obtain the spontaneous emission
rate as

rspon(E) = Nph(E)C0(E)
c

n

∑
n,m

m∗
r

πLzℏ2

∫ ∞

Eg

|ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv (3.102)

Now we introduce ρ2Dr which is the electronic density of states in a quantum well with the
thickness of Lz as

ρ2Dr =
m∗

r

πLzℏ2
(3.103)

Therefore Equation 3.102 is obtained as

rspon(E) = Nph(E)C0(E)
c

n

∑
n,m

ρ2Dr ℏ2
∫ ∞

Eg

|ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv (3.104)

From Equation 3.103, it can be seen that the density of states in a quantum well is energy-
independent. The discrete electronic density of states in the quantum well results in a step-like
form of the density of states. The independence of the DOS to energy allows manipulation of
the electronic properties and tuning of the emission wavelength by altering the thickness of the
quantum wells. Figure 3.10 presents a comparison between the continuous density of states in
a bulk semiconductor and this step-like density of states in a quantum well.

Similar to the spontaneous emission rate, by substituting Equation 3.103 and taking a sum over
all the discrete energy levels in the conduction and valence bands the absorption in Equation
3.88 becomes

α(E) = C0(E)ρ2Dr
∑
n,m

∫ ∞

Eg

|ê · p⃗cv|2(fv − fc)L(Ecv − E)dEcv (3.105)

The gain is obtained from the negative of the absorption in Equation 3.105 as

g(E) = C0(E)ρ2Dr
∑
n,m

∫ ∞

Eg

|ê · p⃗cv|2(fc − fv)L(Ecv − E)dEcv (3.106)
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2D Quantum-well

𝐸

𝜌𝑟
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Figure 3.10: Comparison between the electronic density of states ρr in a bulk semiconductor
with a quantum well.

where,

fc(Ecv) =
1

1 + e
(Ecn+

m∗
r

m∗
e
(Ecv−Ecn+Evn)−Fc)/KBT

(3.107)

and

fv(Ecv) =
1

1 + e
(Evn−m∗

r
m∗

h
(Ecv−Ecn+Evn)−Fv)/KBT

(3.108)

represent the Fermi functions of the quantum well in the conduction and valence bands respec-
tively.

From Figure 2.6, we can see that when the system is at thermal equilibrium, the quasi-Fermi
levels lie in the middle of the band gap Fc = Fv = Ef . However, achieving a population inversion
requires exciting the electrons into the higher energy states. Once the electrons are excited into
the conduction band, the quasi-Fermi levels are pushed further into the band structures.

Fc rises above the middle of the band gap, and Fv falls below it. The quasi-Fermi levels are not
fixed and can be influenced by the pump power. As we introduce more pumping energy, more
carriers will be excited in the system.

Available carrier densities (number of carriers per unit volume) directly influence the position
of the quasi-Fermi levels. If more electrons are available to move into the conduction band, Fc

will be at a higher energy level. Conversely, if fewer electrons are available, Fc will be lower.
The same applies to Fv but in relation to the number of holes.

As we discussed before, The electronic density of states (DOS) determines the number of
states filled by the carriers. If we consider that the laser operates at low temperatures, the
Fermi functions can be considered step functions. In this case, the number of carriers in the
conduction band assuming all of the states between Ecn and Fc are filled is given as [34]

Ne =

∫ Fc

Ecn

ρe(E)dE (3.109)
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Therefore, for a given electron density Ne, the quasi-Fermi level Fc can be easily calculated.
The quasi-Fermi-level Fc and Fv are obtained as

Fc = Ecn +
Ne

ρe
, (3.110)

Fv = Evn − (
Nh

ρh
). (3.111)

where ρe and ρh are the density of electrons in the conduction band and the density of holes in
the valence band, respectively. We will discuss about the quasi-Fermi levels more in Chapter
5.

Using the quasi-Fermi levels in Equations 3.110-3.111, we solve the gain spectrum equation in
4.106 which enables us to generate multiple gain spectra for various carrier densities.

3.3.1 Spontaneous Emission Lifetime

In bulk semiconductor materials, the spontaneous emission lifetime is typically governed by the
material’s intrinsic properties. However, as the dimensions of the semiconductor shrink to the
nanoscale, the spontaneous emission lifetime typically decreases. This is primarily attributed
to the influence of quantum confinement effects. Also, when such lower dimensional gain media
is placed inside the cavity, the spontaneous emission lifetime decreases even more due to the
Purcell effect.

We calculate the spontaneous emission lifetime of a quantum well inside a nanowire laser from
integrating over energies in the spontaneous emission rate of Equation 3.104 as

1

τsp
= Rspon(E) =

∫ ∞

0

dE

∫ ∞

Eg

Nph(E)C0(E)
c

n
ρ2Dr |ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv (3.112)

Figure 3.11 represents the terms fc(1− fv), and ρr in Rspon. For simplicity, if we consider that
ρrfc(1− fv) varies sufficiently quickly near a value E0, then we can assume that∫ ∞

Eg

ρrfc(1− fv)dEcv = Nc (3.113)

where Nc is the total number of carriers per unit volume that can be matched with a hole.

Therefore the spontaneous emission lifetime can be simplified to

1

τsp
=

∫ ∞

0

Nph(E)C0(E)
c

n
|ê · p⃗cv|2

γ/2

(E0 − E)2 + (γ/2)2
dE, (3.114)

where γ is the FWHM of the spontaneous emission spectra, Nph is the photonic density of
states, E0 is the energy of the emitted photon, |ê · pcv|2 is the momentum matrix element, and
n is the refractive index of the active medium.

The density of photonic states Nph is a fundamental concept in our calculations that plays a
crucial role in understanding the behavior of light inside the nanowire cavity. The Nph describes
the number of available optical states per unit volume per unit frequency within the nanowire
that can be occupied by the photons.
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In a three-dimensional (3D) free space, the density of photonic states is given by

N fs
ph (E) =

8πn3E2

h3c3
(3.115)

The photonic density of states Nph inside an optical cavity undergoes significant modifications
compared to the density of states in free space. An optical cavity confines and traps light within
its end facets, leading to forming standing waves and discrete resonant modes, resulting in a
modified Nph that strongly influences light-matter interactions, emission properties, and device
performance. We compute Nph in Chapter 5.

3.3.2 Purcell Factor

Inside an optical cavity, the Nph consists of a series of spectra each corresponding to a resonant
mode of the cavity. These modes are linked to the geometry and optical properties of the cavity,
such as its size, shape, and refractive index. Each resonant mode has its own characteristics
such as frequency, and quality factor.

When a quantum well, is placed within the cavity, its spontaneous emission rate is strongly
influenced by the Nph at the emission wavelength. The enhanced Nph inside the cavity in-
creases the probability of spontaneous emission into the resonant modes, leading to accelerated
spontaneous emission decay rates.

This phenomenon, known as the Purcell effect enables efficient coupling of spontaneous emis-
sions to the cavity mode. We calculate the Purcell factor as the ratio of the total spontaneous
emission rate within the nanowire to the total spontaneous emission rate into the free space as

𝐸0

𝜌𝑟(𝐸𝑐𝑣)
𝑓𝑐(1 − 𝑓𝑣)

𝑅𝑠𝑝𝑜𝑛

𝐸𝑐𝑣

Figure 3.11: Rspon in Equation 3.112 as a function of Ecv. The term ρr is shown with a blue
color, and fc(1− fv) is shown with a green color near a value E0.

Fp =

∫∞
0

dE
∫∞
Eg

Nph(E)C0(E) c
n
ρ2Dr |ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv∫∞

0
dE

∫∞
Eg

N fs
ph (E)C0(E) c

n
ρ2Dr |ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv

, (3.116)

where Nph is the photonic density of states within the cavity, calculated as

Nph = N c
ph(E) +N fs

ph (E), (3.117)

where N c
ph represents the photonic density of states of the modes of the nanowire cavity while

N fs
ph is the free space density of photonic states.
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3.3.3 Spontaneous Emission Factor

The photonic density of states inside an optical cavity can be further engineered by tailoring
the cavity design and optical properties. Controlling Nph enables the optimization of cavity
performance for specific applications.

Incorporating the parameter Nph in the calculations not only allows for the estimation of the
spontaneous emission lifetime inside the nanowire but also provides valuable insights into the
calculations of the spontaneous emission factor β of the laser.

By considering Nph, it becomes possible to assess the rate of spontaneous emission into the
lasing mode of the cavity relative to the total rate of spontaneous emission into all modes of
the cavity as well as into free space. We calculate β from the spontaneous emission rate.

Using Equation 3.112, we derive β as

β =
Rj

spon

Rtotal
spon

=

∫∞
0

dE
∫∞
Eg

N j
ph(E)C0(E) c

n
|ê · pcv|2ρr(Ecv)fc(1− fv)

γ/2
(Ecv−E)2+(γ/2)2

dEcv

(Σi

∫∞
0

dE
∫∞
Eg

N i
ph(E)C0(E) c

n
|ê · pcv|2ρr(Ecv)fc)(1− fv)

γ/2
(Ecv−E)2+(γ/2)2

dEcv

+

∫ ∞

0

dE

∫ ∞

Eg

N fs
ph (E)C0(E)

c

n
|ê · pcv|2ρr(Ecv)fc(1− fv)

γ/2

(Ecv − E)2 + (γ/2)2
dEcv)

(3.118)

Understanding the spontaneous emission factor β is crucial for optimizing the performance
of lasers. A high value of β indicates efficient light emission within the nanowire, where a
large fraction of spontaneous emission is directed into the desired lasing mode. This leads to
improved laser efficiency, lower threshold currents, and higher output power. Conversely, a low
value of β suggests inefficient emission, with a significant portion of the spontaneous emission
dissipating into other modes or escaping into free space. This knowledge helps guide design
choices and allows for optimizing nanowire parameters to achieve higher β values and improved
device performance.

Now that we know how all of the parameters in the laser rate equations are calculated, we will
apply our laser model to simulate some of the laser structures in the literature for validation
and benchmarking.

3.4 Validation

To validate our incorporation of the photonic density of states (PDOS) with practical examples,
we investigate [210], which includes PDOS in the calculations of gain and spontaneous emis-
sion rates, considering both homogeneous and inhomogeneous broadening effects in different
nanopillar lasers. The PDOS per unit angular frequency (ρ(ω)) is calculated using

ρ(ω) =
2

π∆ωcav

(3.119)

for a narrow emitter and broad cavity, and

ρ(ωcav) ≈ δ(ω − ωcav) (3.120)

for a broad emitter and narrow cavity, where ∆ωcav is the cavity linewidth. The paper specifies
that the quality factor Q is 235, and it operates at a wavelength of 1.55µm, which corresponds
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to the angular frequency of
ωcav ≈ 1.216× 1015rad/s (3.121)

Thus, the cavity linewidth ∆ωcavis approximately 5.17× 1012rad/s.

The photonic density of states (PDOS) is then

ρ(ω) ≈ 1.231× 10−13(rad/s)−1 (3.122)

To compare this with our calculations for the photonic density of states in the nanopillar
reported in [57], we convert these values from angular frequency to energy (J). Therefore, the
photonic density of states per unit of energy is

ρ(E) = 1.166× 1021(J)−1 (3.123)

Also, in our derivation, we have used the photonic density of states per unit energy per unit
volume. So, here we divide this with the effective volumes reported in the paper for two different
nanopillars:

For Veff = 0.3µm3:
ρ(E) ≈ 2.332× 1039(J.m3)−1 (3.124)

For Veff = 0.0025µm3:
ρ(E) ≈ 4.664× 1041(J.m3)−1 (3.125)

Comparing these values with our photonic density of states in Figure 5.4, ranging from 0.1 ×
1040 − 2.75× 1040(J.m3)−1 we can see that they are in the same range and comparable to each
other.

Similar to [210], [211] also discusses the photonic density of states for infinitely extended
nanowire arrays in gain and spontaneous emission rate calculations using theoretical and com-
putational methods. Maxwell’s equations are solved using the Finite Element Method (FEM)
to determine the local density of photon states (LDOS) within nanowire arrays, considering
different line widths. They also plot the spectral PLDOS, normalized to the LDOS of free space,
ranging from 0.4-2. [212] calculates PDOS by Finite Element Method (FEM). The PLDOS is
computed for various heights within the unit cell. Due to the C4 symmetry of the unit cell, the
x-PLDOS and y-PLDOS are identical upon rotation by 90 degrees and log10LDOS is plotted
ranging from -1-3.

In the next step, in order to validate the calculations of the gain model developments, we
simulate the In0.15Ga0.85As nanopillar laser with a GaAs shell reported in [47], and shown in
Figure 3.12. We compare the obtained results with the ones reported in the paper to validate
our model.

The gain model is usually obtained by plotting the maximum of each gain spectra versus its
corresponding carrier density. The gain model forms the stimulated emission term in laser rate
equations. Linear and logarithmic gain models are two distinct approaches to modeling the
behavior of the active medium under the pump.

The laser output is directly proportional to the input in the case of the linear gain model. In
other words, if you double the input, the output also doubles. This is useful in systems where
a direct and proportional relationship is expected between input and output.

On the other hand, a logarithmic gain model describes a situation where an incremental change
in the input leads to a proportional change in the output on a logarithmic scale. This is often
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Figure 3.12: Schematic image of the In0.15Ga0.85As nanopillar with a GaAs shell. Reprinted
from [47].

found in systems where the output changes exponentially with input. The common form of the
linear and logarithmic gain models is illustrated as [34]

g(N) = g0(N −Ntr) (3.126)

g(N) = g0ln(
N +Ns

Ntr +Ns

), (3.127)

where Ntr is the transparency carrier density, g0 is the parameter representing the absorption
in the gain medium, and Ns is the parameter added to avoid the situation in which ln( N+Ns

Ntr+Ns
)

is equal to unity.

Table 3.1: Material characteristics of In0.15Ga0.85As [47]

Paramater Value
m∗

e 0.062m0 kg [57]
m∗

h 0.5m0 kg [57]

Ep((ê · pc,v)2 = m0Ep

3
) 25.18ev [47]

Eg 1.306ev [57]
τin 40fs [47]
n 3.7[57]
T 4K

Using the material parameters tabulated in Table 3.1, and the band diagram presented in
Figure 3.13, we solve Equation 3.89 for different carrier densities, as presented in Figure 3.14.
By comparing our obtained results with the gain spectrums reported in [47], we can observe
that the results almost match each other, which validates our numerical approach to calculate
the gain spectrum of the material.

The gain spectrum is ultimately influenced by the confinement factor Γ during the laser opera-
tion. This influence is illustrated by the term Γg(N) in the laser rate equations 2.57 and 2.58.
The confinement factor indicates how much of the electromagnetic field is confined within a
specified volume, such as the cavity formed by the nanopillar. It is important to note that
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𝐸𝑣

𝐸𝑔 = 1.306 𝑒𝑉

Conduction band

Valence band

Figure 3.13: Energy band diagram of In0.15Ga0.85As nanopillar

a) b)

Figure 3.14: Gain spectra for various carrier densities using material parameters in Table 3.1.
a) Gain spectrum obtained from our calculations, and b) The gain spectrum reported in [47].
The gain spectrum is represented in relation to the energy from the band edge.
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Γ and g(N) are two distinct quantities: g(N) represents the material gain, depending on the
carrier density N and intrinsic properties of the gain medium, while Γ is a factor indicating
the degree of field confinement. While Γ affects the overall gain, it does not alter the material
gain g(N) itself. Instead, Γ and g(N) combine to give the overall gain Γg(N) experienced by
the laser.

It is also essential to distinguish between the confinement and overlap factors. Confinement
factor Γ indicates how much of the electromagnetic field is confined in the cavity volume, while
the overlap factor represents the portion of the electromagnetic field overlapping with the gain
medium. In the bulk In0.15Ga0.85As nanopillar laser, where the gain medium also serves as the
cavity, the confinement factor and overlap factor are equal to each other, both having a value
of unity. However, within a quantum well nanowire laser, since the nanowire volume is larger
than the quantum wells volume, the Nanowire’s confinement factor is not equal to the overlap
factor. Therefore, in Chapter 5, for the quantum well nanowire laser, we will use the value of
the overlap factor of 0.0341 for Γ.

In Figure 3.14, we plot the gain spectrum g(N), the material gain, without the effect of the
confinement factor Γ. The impact of Γ will be applied later when solving the laser rate equa-
tions. In the context of quantum well nanowire lasers, where the gain medium occupies only
a small portion of the cavity, the location of the quantum wells inside the nanowire becomes
critically important. Failure to place them where the electromagnetic field is maximized may
result in laser underperformance, as the maximum gain achievable may not be attained.

The gain spectra plot lets us calculate the maximum gains versus their corresponding carrier
densities and develop the gain model. The logarithmic gain model for In0.15Ga0.85As nanopillar
is obtained, as shown in Figure 3.15. When we compare the results we obtained with the gain
model mentioned in [47], we find that they are identical, which validates our numerical method
used in calculating the gain model. Both the gain spectra and the logarithmic gain model,
which is derived from our formalism, are very close to the results reported by Chen in [47].
This means that our model is able to accurately capture the behavior of the optical processes
within a semiconductor.

Moreover, the maximum of the gain spectrums is between 1.306-1.456 eV, indicating that the
maximum gain frequency coincides with the laser emission frequency. Therefore, our calcula-
tions confirm that this In0.15Ga0.85As nanopillar laser benefits from the maximum gain.

3.5 Conclusion

In this chapter, we started by presenting a detailed discussion of the intricate optical processes
taking place within a bulk semiconductor laser and we derived the equations describing ab-
sorption, gain, and spontaneous emission processes from the first principles. By introducing
the photonic density of states in the calculations, we were able to capture the influence of the
nanowire cavity on the rates of these optical processes.

Then we adapted the conventional semiconductor laser equations to describe the optical pro-
cesses within a quantum well embedded inside a nanowire cavity. These modifications enable
us to accurately calculate the gain and the spontaneous emission process. We also developed
the equations to calculate the spontaneous emission factor and the Purcell factor in quantum
well nanowire lasers. This theoretical foundation is essential for advancing our understanding
of the quantum well laser’s behavior and performance.
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a) b)

𝑔 𝑁 = 𝑔0 log
𝑁+𝑁𝑠

𝑁𝑡𝑟+𝑁𝑠

𝑔0 = 2200 1/𝑐𝑚
𝑁𝑡𝑟 = 3 × 1017 1/𝑐𝑚3

𝑁𝑠 = 4 × 1017 1/𝑐𝑚3

Figure 3.15: Logarithmic material gain model. a) the Gain model obtained from our calcula-
tions, and b) The gain model reported in [47].

To validate our theoretical framework for calculating the spontaneous emission factor in quan-
tum well nanowire lasers, we can rely on both theoretical approaches and experimental data.
Firstly, we can refer to relevant literature, such as [210] and [213], which investigate the spon-
taneous emission factor in nanopillar and quantum-dot nanocavity lasers, respectively. These
studies derived equations similar to those in our theoretical framework, providing initial vali-
dation of our approach.

Secondly, comparing our simulation results with the calculations in [47] for optical processes
within the In0.15Ga0.85As nanopillar laser, allows for direct validation. By recreating the gain
spectrum of the In0.15Ga0.85As nanopillar using our formalism and comparing our simulation
results with the results reported by Chen, we establish a benchmark for our theoretical frame-
work.

Thirdly, by recreating the gain spectrum of the In0.15Ga0.85As nanopillar using our formal-
ism and comparing our simulation results with the results reported by Chen, we establish a
benchmark for our theoretical framework. Also, as discussed in Chapter 5, the peak of the
spontaneous emission factor (0.0098) obtained from simulations closely aligns with the esti-
mated value of 0.01 for β, derived from fitting the experimental data. This serves as strong
evidence supporting the accuracy of our theoretical framework.

Furthermore, analyzing the L-L curve plot obtained from solving laser rate equations with β as a
function of carrier density offers another checkpoint for verification. As the simulated L-L curve
plot aligns well with the experimental data presented in Chen’s paper [47], it further confirms
the reliability of our theoretical framework. This consistency between simulation predictions
and experimental observations validates the derived equations and their ability to accurately
capture the behavior of quantum well nanowire lasers.
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Chapter 4

Computational Methods

4.1 Introduction

Our laser model consists of three main steps, namely cavity simulations, gain analysis, and
solving the laser rate equations.

For the cavity simulation, we will discuss the Finite Element Method (FEM) in section 4.2.1.
Then we will discuss how to implement FEM to simulate a nanowire laser cavity and obtain its
eigenfrequencies along with the cavity-related parameters. We perform both two-dimensional
(2D) and three-dimensional (3D) cavity simulations, each offering a unique understanding of
the behavior of the nanowire laser. The 2D simulations in section 4.2.1 will be used to study
the transverse modes of the cavity, and their corresponding effective mode indices. We will also
use the 3D simulations to accurately visualize the longitudinal modes of the nanowire. Using
3D simulations also enables us to calculate the cavity-related parameters such as confinement
factor (Γ), cavity quality factor (Q), and photon lifetime (τp).

For solving the laser rate equations, we will discuss the fourth-order Runge-kutta numerical
method in section 4.3. Also, We validate our choices of computational and numerical methods
by comparing our simulation results with the experimental data.

4.2 Cavity Simulations

In the cavity simulations, our objective is to obtain the longitudinal and transverse modes of the
nanowire laser. Once we have identified these modes, we will seek to calculate the parameters
that are used in the laser rate equations.

Longitudinal modes are standing waves along the optical axis of the laser and they determine
the frequencies at which the laser can oscillate, while transverse modes describe the intensity
distribution of the laser beam’s cross-section. To simulate the nanowire cavity, we will employ
Finite Element Method (FEM) in COMSOL Multiphysics to solve Maxwell’s equations which
describe the electric field behavior within the lasers.

4.2.1 Finite Element Method (FEM)

Finite Element Method (FEM) was first established in the 1950s to assist in aircraft design and
analysis [214], [215]. Its versatility, multifaceted approach, and adaptability have collectively
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positioned it as an invaluable tool with countless applications. This capability has expanded
FEM’s usage beyond aircraft design into fields such as structural engineering, heat transfer,
and fluid dynamics [215]. Its reach now extends beyond these spheres, making contributions in
the optics and photonics sectors [216]–[220].

The finite-element method primarily consists of the following steps:

1. Breaking down the structure of interest into smaller elements or domains.

2. Describing the unknown solution (such as a field) with an interpolation function using
values at the vertices or nodes of these elements.

3. Combining the equations for each element to create global matrix equations.

4. Solving the overall system of equations.

The core concept behind FEM is to break down a problem into smaller elements reducing
the overall complexity into more digestible sections as shown in Figure 4.1. Discretization, a
critical component of FEM, involves dividing the problem area into a set of simpler elements.
The choice of element shape, size, and quantity depends on the problem’s complexity level.

Figure 4.1: Schematic image of the transverse cross-section of a circular nanowire representing
the discretization of the problem domain into smaller elements and domains in FEM.

In two-dimensional simulations, the most basic geometric unit used is the triangle as shown in
Figure 4.2. However, more complex shapes such as triangles with curved sides and four-sided
polygons can also be used. The same principle applies to three-dimensional problems. For
three-dimensional problems, the basic finite element is the tetrahedron, with straight or curved
sides as shown in Figure 4.3.

Complex geometry, varying material properties, and sophisticated boundary conditions often
necessitate smaller elements, or specifically designed shapes to capture the problem’s complex-
ities accurately by taking into account that any intersection between two elements should be at
an edge or a vertex and each element should contain only one homogeneous medium. Usually,
the size of the individual element is not a crucial factor. However, in the domains where there
are substantial field variations, a large number of smaller elements should be allocated.

In the FEM, an interpolation function, often a polynomial, is used to solve the desired equation
to estimate an unknown field ϕ. At any given node within an element, the interpolation
function estimates the value of the unknown field. The field value is represented as ϕi, where
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Figure 4.2: Triangle element shape used in two-dimensional problems in FEM. Reprinted from
[221].

Figure 4.3: Tetrahedron element shapes with straight and curved sides used in three-
dimensional problems in FEM. Reprinted from [221].
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’i’ corresponds to each node within the element. It’s worth noting that different interpolation
functions may be employed for each element. The unknown field in an element is defined as

ϕe =
m∑
i=1

Niϕi, (4.1)

where m is the total number of nodes within an element, Ni is the interpolation function, and
ϕi is the field at node i.

In our FEM simulation, the unknown field is the electromagnetic field (E⃗). Since the electric
field is continuous across elements, the interpolation function has to be continuous as well. Also,
the electric field is differentiable, therefore the interpolation function should be differentiable
as well.

The degree of the polynomial, be it linear, quadratic, cubic, etc., usually corresponds with the
approximation’s accuracy. Higher degrees allow for capturing more complex behaviors with
higher accuracy. The interpolation function needs to maintain continuity within the element.
This continuity ensures that we can estimate the unknown field at any location within the
element. Additionally, if adjacent elements share a node, the field will be continuous at the
boundary as well. One can choose the different shapes and sizes for the elements to match the
shape of the problem area. These elements collectively create a mesh, which can be a mix of
small and big elements to make calculations faster and more efficient. This means using finer
elements where precision is needed and larger elements in other areas.

The interpolation functions conform to the mathematical rules for each small part of a larger
problem. We solve these smaller parts one by one and then combine their solutions to obtain the
overall solution. The most efficient approach is to create a global matrix from all the equations
that encompass all these smaller parts. This approach ensures that the solution works well
within each part and smoothly connects them.

In the next step, the equations describing the field within each element (such as Equation 4.1)
are assembled into a global matrix, which captures the interactions and constraints between
all elements and nodes within the entire domain. The global matrix system will have a degree
that is equal to or multiple times the number of nodes in the domain, which is expressed as
follows [221]:

[A] · [x] = [b] (4.2)

where [A] is the global matrix, [x] is the vector of unknown field, and [b] is the source vector.

Every line in the global matrix satisfies the requirements dictated by Maxwell’s equations and
the suitable boundary conditions. With effective techniques for solving these sets of equations
and the computational power of modern computers, one can apply FEM to solve challenging
problems without requiring a significant budget. In the following sections, we will present a
detailed step-by-step approach to implementing FEM to obtain the transverse and longitudinal
modes of a circular nanowire.

4.2.2 Two-dimensional Simulations

The first step in the design of a nanowire laser is two-dimensional simulations which provide
insights into the transverse modes of the cavity and their corresponding effective mode indexes.
By examining the relation between the nanowire’s diameter and the effective mode index,
designers can determine the number of guided modes and select the optimal nanowire diameter.
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This knowledge facilitates the decision-making process in choosing between a single-mode or
multi-mode laser configuration.

In two-dimensional simulations, we treat the nanowire as a waveguide. Also, we assume that
the length of the waveguide goes to infinity. In 2D mode analysis, we solve the Helmholtz
equation, which describes the mode propagation in the structure to determine the effective
mode index (neff ) of waveguide structures as

∇2E + k0
2n2E = β2E (4.3)

Where ∇2 represents the Laplacian operator defined as ∇2 = ∂2

∂x2 +
∂2

∂y2
, E is the electric field

of the guided mode, k0 is the free-space wavenumber given, n is the refractive index of the
waveguide material, and β is the propagation constant of the mode. By solving this equation
in COMSOL we can find neff , which is related to the propagation constant β and the free-space
wavenumber k0 as

neff =
k0
β

(4.4)

In the following, we will use a 300nm circular GaAs nanowire laser surrounded by air which is
shown in Figure 4.4 as an example. The refractive index of the GaAs nanowire is assumed to
be 3.6 at 959nm, while the refractive index of the air is equal to unity. Figure 4.5 presents the
simulation setup that we use to model the nanowire. Perfectly Matched Layers (PML) serve
as absorbing boundary conditions to effectively dampen outgoing waves, preventing artificial
reflections in the problems involving open domains or unbounded structures. In the frequency
domain, the PML introduces a complex-valued coordinate transformation to the designated
area, effectively ensuring absorption while maintaining a specific wave impedance, thereby
eliminating reflections at the interface.

GaAs Nanowire

Air

Figure 4.4: Schematic image of a 300nm circular GaAs nanowire laser surrounded by air.
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As illustrated in Figure 4.5, we employ Perfectly Matched Layers (PML) at the edges of the
simulation window in order to absorb the outgoing electromagnetic waves efficiently, preventing
field reflections. The purpose of the PML is to simulate a domain with infinite cross-section.
There are three important numerical choices that might change the outcomes of the simulations
if they are not chosen wisely. First is the thickness of the PML, second is the distance of the
PML from the nanowire, and third is the number of elements in the mesh. If these three
parameters are not chosen properly, one might notice some variation in the results. Therefore
we will perform convergence tests to make sure that our numerical choices are chosen in a way
that the desired simulation accuracy is achieved.

𝑃𝑀𝐿

𝑁𝑎𝑛𝑜𝑤𝑖𝑟𝑒

𝐴𝑖𝑟

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑀𝐿: 200𝑛𝑚

1.4𝜇𝑚 300𝑛𝑚

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒
𝑓𝑟𝑜𝑚 𝑃𝑀𝐿

Figure 4.5: Schematic image of the transverse cross-section of the 300nm diameter circular
GaAs nanowire surrounded by air in 2D simulation set-ups.

In the first step, we perform the convergence test for the HE11 mode on the thickness of the
PML. In the convergence test, we plot the variation in the effective mode index versus different
thicknesses of the PML. The neff describes the propagation speed of an optical mode within
the nanowire, compared to the speed of light in a vacuum. In the two-dimensional transverse
simulations, the effect of the length of the nanowire is neglected and the nanowire is treated
similarly to a waveguide. In Figure 4.6, we can see that after a certain optimum point, there
is no noticeable change in the value of the neff . When the thickness of the PML is larger than
160nm, the change in the neff is less than 1%. Therefore, we consider this value optimal for
achieving the desired accuracy and we select a PML width of 200nm throughout the simulations.

During the second step, we keep the PML thickness constant at 200nm and we change the
distance between the PML layer and the nanowire, examining the impact of distance on neff

for the HE11 mode. From Figure 4.7, it is clear that for distances larger than 350nm, the change
in neff is negligible. Therefore, we chose the value of 500nm for the distance from PML in the
rest of the simulations.

The size of the elements in the simulations significantly influences the precision and computa-
tional efficiency of the simulated outputs. Figure 4.8a presents the 2D simulation domain with
a mesh consisting of 770 elements while Figure 4.8b presents a mesh with 4232 elements. In
the convergence test on the number of mesh elements, we set the PML thickness at 200nm and
the distance from PML at 500nm, while changing the number of elements in the mode analysis.
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Figure 4.6: Evaluating neff against PML thickness to identify the most suitable PML thickness
in 2D nanowire simulations.

Figure 4.7: Evaluating neff against the distance of the nanowire from PML to identify the
most suitable distance of the PML from the nanowire in the simulations.
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As discussed in section 4.2.1, as the number of mesh elements increases, the mesh is finer and
the simulation is more capable of adequately sampling the field under investigation.

a) b)

Figure 4.8: Impact of the size of the elements on the mesh in 2D simulations. a) presents the
mesh with 770 elements, b) presents the mesh with 4232 elements.

Figure 4.9 portrays the convergence test plot, demonstrating the relationship between the
number of mesh elements and the value of neff for the HE11 mode. The convergence plot
indicates that, at the optimum number of 1000 elements the variation in neff becomes negligibly
small, signaling the convergence in accuracy.

By using the optimum values of PML thickness, distance from PML, and the number of mesh
elements, we obtain a series of modes characterized by distinct field profiles and corresponding
values of neff . In the following section, we will delve into the distinctive patterns of electro-
magnetic field distribution across the nanowire structure associated with each of these modes.

Figure 4.9: Comparing the number of elements with neff to identify the ideal mesh size in the
simulations.
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4.2.2.1 Field Distributions in Transverse Modes of the Cavity

The modes of the cavity are categorized into four types: Transverse Electric (TE), Transverse
Magnetic (TM), Hybrid Electric (HE), and Hybrid Magnetic (EH) modes. The six different
transverse modes in the circular GaAs nanowire of Figure 4.5 are presented in Figure 4.10. We
also show the direction of the electric field with the black arrows, which assists in the mode
classification. We discuss different mode classifications in the following:

When the electric field component parallel to the direction of propagation is zero, the mode is
referred to as the Transverse Electric (TE) mode. The intensity of the electric field for the TE01

mode in a circular GaAs nanowire is presented in Figure 4.10a. Conversely, Transverse Magnetic
(TM) modes manifest where the magnetic field is entirely transverse, with the magnetic field
component parallel to the propagation direction equal to zero. The intensity field distribution
of the TM01 mode is presented in Figure 4.10b.

Meanwhile, Hybrid modes are more intricate, having both the electric and magnetic field com-
ponents parallel to the propagation direction. These modes are referred to as hybrid modes
because neither the electric nor the magnetic field is entirely transverse. Hybrid Electric (HE)
modes exist when the electric field is stronger than the magnetic field. Likewise, Hybrid Mag-
netic (EH) modes encompass electric and magnetic field components in the propagation direc-
tion, while the magnetic field is more dominant than the electric field. The HE11a and HE11b

modes are the fundamental modes of the circular nanowire with the largest values of the ef-
fective mode index. Figure 4.10 presents the first eight guided modes of the circular GaAs
nanowire surrounded by air at an operation wavelength of 959nm.

Hybrid modes are frequently encountered in confined cavities or irregular or asymmetric waveg-
uides where the waveguide’s geometric structure prevents the existence of either TE or TM
modes. If we assume that the length of the nanowire is along the z-direction, we can summarise
the mode classification as

• TE modes: Ez = 0, Hz ̸= 0

• TM modes: Hz = 0, Ez ̸= 0

• HE modes: Ez > Hz

• EH modes: Hz > Ez

Moreover, the modes are assigned with two different numbers for classification. The first number
signifies half of the number of changes occurring in the field in the azimuthal direction, while
the second number denotes the number of maximum field intensities when going from the center
of the nanowire to the edge or corner. As an example, consider the mode TE01, as illustrated in
Figure 4.10a. In this case, there are no variations in field intensity along the azimuthal direction,
thus the first number is zero. However, when moving from the center of the nanowire toward
the edge, we once cross a maximum field intensity. Consequently, this mode is classified as
TE01. The subscript a and b in the mode classification defines the direction of the polarization.
When the mode is polarised along the x-direction it is classified as a. Similarly, if it is polarised
along the y-direction it is classified as b.

4.2.2.2 Diameter versus Effective mode index

After obtaining the transverse modes of the cavity, we change the nanowire’s diameter and plot
the effective mode index versus the diameter, to identify the region where the nanowire will
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Figure 4.10: Electric field intensity of different transverse modes in the 300nm GaAs nanowire
presenting a) TE01, b) TM01, c) HE11a, d) HE11b, e) HE21a, f) HE21b, g) EH11a, h) EH11b modes.
The direction of the Electric field is presented with black arrows for each mode.
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operate as a single-mode laser.

It is shown in Figure 4.11 that as we increase the diameter of the nanowire, more transverse
modes emerge. The fundamental transverse mode, HE11, possesses the largest effective mode
index. It is shown that for nanowires with diameters less than 200nm, the nanowire cavity
only supports HE11 modes. At the diameters larger than 200nm the cavity will support the
mode TE01 as well. As the diameter of the nanowire increases, the number of modes within
the nanowire increases. If the nanowire cavity supports multiple modes, identifying which one
of these modes will lase is of great importance. In the following section, we will explain how
2D simulations can be used to predict the lasing mode.

Figure 4.11: Effective mode index versus the nanowire diameter to identify the precise nanowire
diameter conducive for single-mode operation.

4.2.2.3 Predicting the Lasing Mode

When the diameter of a laser is large enough that it supports more than one mode, identifying
which mode is the lasing mode might be quite challenging. This becomes more evident when
the number of guided modes is large. Two-dimensional simulations may also be utilized as an
analytical tool for predicting the lasing mode of nanowire lasers when multiple transverse modes
are guided. To obtain the lasing mode, we change the operating frequency in our simulations
and obtain the effective mode index of each transverse mode. Then we solve

2Lneff = Nλ, (4.5)

where L corresponds to the length of the cavity, neff is the effective mode index, N denotes
the integer number of half wavelengths, and λ designates the wavelength. The modes which
have the integer number of half wavelengths along the length of the nanowire can oscillate.

Usually, the oscillating modes within the nanowire are obtained from the 3D eigenfrequency
analysis. However, solving Equation 4.5 gives us a rough prediction of the wavelengths in
which each transverse mode might lase. This possible lasing wavelengths for different modes is
obtained from the intersections as shown in Figure 4.12.
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For a nanowire with a diameter of 250nm, and length of 2µm, the prospective lasing modes
can be identified at the points of intersection between the plots for each mode presented as
solid colored lines and the plots indicating the integer multiple of the half wavelength, depicted
by dotted black lines in Figure 4.12. From this plot, we learn that the nanowire can only lase
with HE11 mode at three distinct wavelengths of 775nm, 815nm, and 845nm. while the same
nanowire will lase with TE01 mode at 760nm, 790nm, and 827nm.

Figure 4.12: Plot of 2Lneff versus Nλ, showing the intersections of the dotted black lines with
colored lines to identify the lasing mode of a 250nm diameter and 2µm length GaAs nanowire
laser.

4.2.3 Three-dimensional Simulations

After identifying the guided transverse modes of the nanowire and their effective mode indices
a three-dimensional (3D) simulation setup is used to identify the longitudinal modes of the
nanowire and calculate its optical properties. Longitudinal modes determine the resonant
frequencies of the nanowire and present the electric and magnetic field distributions across its
length. Moreover, 3D simulations are valuable in providing an accurate estimation for cavity-
related parameters such as cavity quality factor (Q), confinement factor (Γ), and modal volume
(Vm).

The wave equation for electromagnetic eigenfrequency analysis in three dimensions (3D) is
based on Maxwell’s equations. In the frequency domain, the wave equation is a fundamental
equation that is solved to determine the resonant frequencies as

∇× (∇× E⃗) = ω2µϵE⃗ (4.6)

where E is the electric field, ω is the angular frequency, ϵr is the relative permittivity, and µ is
the relative permeability.

The wave equation describes the behavior of electric and magnetic fields in the structure.
These equations are solved alongside appropriate boundary conditions and material properties,
allowing the software to find solutions in the form of eigenfrequencies.
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A big difference between 2D and 3D simulations is that the number of mesh elements in the
3D environment is significantly higher than in the 2D environment. Therefore, 3D simulations
demand more memory space for storing detailed mesh data and it extends the duration of the
simulation. It is of utmost importance to obtain an appropriate balance between accuracy and
computational resource considerations in order to ensure efficient and effective simulations.

Our simulation setup in the 3D environment is shown in Figure 4.13 for the same 300nm
diameter nanowire surrounded by the air used in the previous section with the GaAs nanowire
having the refractive index of 3.6 at 959nm. The refractive index of the air around the nanowire
is unity.

𝑥
𝑦

𝑧

a)

PML

Air

GaAs Nanowire

Figure 4.13: Schematic for simulation set-ups of a 300nm diameter and 2µm length circular
GaAs nanowire in the rectangular 3D environment.

4.2.3.1 Convergence tests, and Benchmarking

Similar to the 2D environment, the convergence tests check the independence of the simulation
results from the numerical choices, such as how thick the Perfectly Matched Layers (PML) are,
the distance of the nanowire from the PML, and how many mesh elements to be used. With
these checks, we can feel more confident that our simulations are accurate. The convergence
tests on the thickness of the PML, distance from the PML, and the number of mesh elements
for the HE11a mode with the resonant frequency of 381.2THz are presented in Figures 4.14-4.16.

When we shift from two-dimensional (2D) to three-dimensional (3D) simulation environments
using the Finite Element Method (FEM), there’s a significant change in the number of mesh
elements required to accurately model the nanocavity. In 2D simulations, we typically work
with mesh elements around 1000, as shown in Figure 4.9. However, when we move to the
more complex 3D environment, the number of mesh elements increases significantly due to the
additional dimension. In 3D simulations, the mesh can grow to include 50000 elements, or
even more, as depicted in Figure 4.16. The number of mesh elements is chosen based on the
convergence tests, as discussed in sections 4.2.2 and 4.2.3.1. This increase in the number of
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mesh elements becomes necessary to accurately capture the details and spatial complexities of
the three-dimensional laser structure.

The increased number of mesh elements enhances the accuracy of the simulation by providing
a finer resolution of the spatial distribution of the electromagnetic fields within the nanocavity.
However, this improvement in accuracy comes at the cost of increased computational demands.
Specifically, the time required to run the simulation increases substantially when transitioning
from 2D to 3D. While our 2D simulations with 1000 mesh elements take around 5 minutes to
compute, the 3D simulations with 50000 mesh elements take around one hour to run.

Figure 4.14: Convergence tests focusing on the numerical selections of the Perfectly Matched
Layer (PML) thickness in the 3D simulations.

Figure 4.15: Convergence tests focusing on the numerical selections of the distance of the
nanowire from the PML in the 3D simulations.

From Figures 4.14-4.16, we choose the distance from PML in the 3D simulations equal to 500nm.
The thickness of the PML is chosen to be 200nm, with a number of elements close to the 50000.
All of the converged values are chosen in a way that the change in the eigenfrequency values is
less than 1% and the desired accuracy is achieved.
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Figure 4.16: Convergence tests focusing on the numerical selections of the number of mesh
elements in the 3D simulations.

4.2.3.2 Longitudinal Modes and Cavity-Related Parameters

Eigenfrequency analysis in the frequency domain is used to identify the longitudinal modes of
the nanowire. Figure 4.17 illustrates four of these longitudinal modes along with their corre-
sponding resonant frequencies and electric field distributions along the length of the nanowire.
The complex eigenfrequencies are directly associated with the field which attenuates within
the PML. The quality factor of the cavity is also tied to these complex eigenfrequencies: a
small imaginary part in the eigenfrequency suggests low loss whereas a larger imaginary part
of eigenfrequency values indicates higher losses.

It is important to note that the 3D eigenfrequency analysis will give all the possible solutions
for the resonant modes. Nevertheless, although some of these modes can create a standing
wave along the length of the nanowire, they may not be the guided modes in the nanowire laser
due to their small neff . Crossing out of such modes is possible due to the assistance of the 2D
simulation results. When neff is greater than the refractive index of the surrounding medium
(here equal to unity for air), the mode is assumed to be guided. However, when the nanowire
is placed on a substrate, guided modes are the ones with neff larger than the refractive index
of the substrate.

For each of the resonant cavity modes, by considering the position of the gain medium inside
the nanowire, we are able to calculate the confinement factor Γ, Quality factor Q, and the
photon lifetime τp, respectively as

Γ =

∫ ∫ ∫
Gain−medium

||E⃗||2dxdydz∫ ∫ ∫
All−Domains

||E⃗||2dxdydz
, (4.7)

Q =
Re(Eigenfrequency)

2× Im(Eigenfrequency)
. (4.8)

τp =
Q

2πf
(4.9)

where τp is the photon lifetime, and f is the resonant frequency.
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𝐻𝐸11 d) 𝑇𝐸01

Figure 4.17: 3D simulation results of the 300nm diameter, and 2µm long GaAs nanowire laser
to obtain including resonant frequency and field intensity of a) EH11, b) HE21, HE11, and
TE01 modes.
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Given that the electric field profile is different for each mode, we will observe different values
for Γ and Q. These parameters will be used as the inputs for laser rate equations analysis.

To ensure the precision of the results of our simulations using FEM in COMSOL Multiphysics
software, we compare our findings using with existing simulation results in the literature, such
as Chen’s work [47]. For instance, in Chapter 5, we replicate the study on an In0.15Ga0.85As
nanopillar laser and find TM61 resonant mode around 921nm. This is consistent with the results
obtained by Chen through FDTD simulations. This agreement between different simulation
techniques, such as FDTD and FEM further validates the accuracy of the approach.

Additionally, we can verify our COMSOL simulation results with experimental data to build
more confidence in the results. In Chapter 5, we also model the In0.2Ga0.8As nanowire laser,
identifying the HE11b mode as the lasing mode at 959nm, which agrees with the experimental
measurements reported in [7]. Matching simulation results with experimental data provides a
direct comparison between theoretical predictions and real-world observations.

Moreover, consistency between 2D and 3D simulations in identifying guided modes within
the nanocavities and conducting convergence tests in sections 4.2.2 and 4.2.3 across different
dimensions ensures that the results remain stable and are not overly influenced by numerical
choices. In our 2D simulations, convergence tests were conducted to evaluate the effective mode
index (neff ) against the PML thickness, the distance of the PML from the Nanowire, and the
number of elements in the mesh, as shown in Figures 4.6 through 4.8. From the analysis of the
plots, we can see that after reaching specific points—200nm for PML thickness, 500nm for the
distance of the nanowire from PML, and 1000 mesh elements—the variation in (neff ) becomes
negligible, indicating that these parameters are optimal for achieving accurate simulations.
These optimized settings allowed for the consistent identification of distinct field profiles and
their corresponding values across different modes.

Similarly, in our 3D simulations, convergence tests are done on the same parameters, as illus-
trated in Figures 4.14 through 4.16. Based on the Figures, we determined that the optimal
settings for the 3D simulations are a distance of PML from the nanowire of 500nm and PML
thickness of 200nm, with approximately 50,000 mesh elements. These tests ensure that for the
chosen range of values of the simulation parameters, the effective mode indices and the resonant
frequencies are converged and do not change by more than 1%, indicating that the results are
robust and not significantly affected by the numerical choices made.

Conducting these convergence tests in both 2D and 3D simulations is crucial for validating
the accuracy and stability of our COMSOL simulations. By systematically ensuring that our
simulation parameters are converged, we can be confident that our simulations accurately reflect
the physical phenomena being modeled. This process ensures that our findings are reliable and
can be trusted for further analysis and applications.

4.3 Runge-Kutta Implementation

The purpose of this section is to numerically solve the laser rate equations to obtain the behavior
of the carrier density and photons with time. This enables us to plot the L-L curve, which
determines the relation between the laser output versus the input power. From the L-L curves,
we predict the laser threshold and the spontaneous emission coupling efficiency.
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The laser rate equations are

dN

dt
=

ηP

hvV
− (

1− β

τsp
+

β

τsp
)N − N

τnr
− Γg

S

V
, (4.10)

dS

dt
= ΓgS +

βNV

τsp
− S

τp
, (4.11)

The fourth-order Runge-Kutta method is a numerical technique for solving ordinary differential
equations [222]. Here we present the general form of the fourth-order Runge-Kutta method:

If for an unknown function y that is time dependent the differential equation is given as

dy

dt
= f(t, y), (4.12)

where
y(t0) = y0 (4.13)

we can obtain the next value of y from the previous value of y for a step size h on time as

k1 = hf(t0, y0), (4.14)

k2 = hf(t0 +
h

2
, y0 +

k1
2
), (4.15)

k3 = hf(t0 +
h

2
, y0 +

k2
2
), (4.16)

k4 = hf(t0 + h, y0 + k3), (4.17)

By calculating the coefficients k1 − k4, we can obtain the value of y(t1) as

y(t1) = y(t0) +
1

6
(k1 + 2k2 + 2k3 + k4). (4.18)

When applying the Runge-Kutta method to solve the laser rate equations, we use two separate
sets of Runge-Kutta equations. One set will be dedicated to the differential equation related
to carrier density (N), while the other set will address the differential equation for the number
of photons (S). Therefore we can write the rate equations as

dN

dt
= f1(t, N, S), (4.19)

f1(t, N, S) =
ηP

hvV
− (

1− β

τsp
+

β

τsp
)N − N

τnr
− Γg

S

V
, (4.20)

dS

dt
= f2(t, N, S), (4.21)

f2(t, N, S) = ΓgS +
βNV

τsp
− S

τp
. (4.22)

where N is the carrier density, and S is the number of photons inside the cavity. The parameter
η is the fraction of pump power that is able to interact with the carriers, hv is the energy of the
pump photon, V is the volume of the active region, τsp is the spontaneous emission lifetime,
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β is the spontaneous emission factor, τnr is the non-radiative recombination lifetime, g is the
active medium’s gain, and τp is the photon lifetime.

There are six steps in solving the rate equations that are listed below. The coefficients K1−K4

belong to the differential equation in 4.20, while the coefficients L1 −L4 are for the differential
equation 4.22. For a starting point of t(i), N(i), and S(i) we have

K1 = f1(t(i), N(i), S(i)), (4.23)

L1 = f2(t(i), N(i), S(i)), (4.24)

K2 = f1(t(i) +
h

2
, N(i) +

hK1

2
, S(i) +

hL1

2
), (4.25)

L2 = f2(t(i) +
h

2
, N(i) +

hK1

2
, S(i) +

hL1

2
), (4.26)

K3 = f1(t(i) +
h

2
, N(i) +

hK2

2
, S(i) +

hL2

2
), (4.27)

L3 = f2(t(i) +
h

2
, N(i) +

hK2

2
, S(i) +

hL2

2
), (4.28)

K4 = f1(t(i) + h,N(i) + hK3, S(i) + hL3), (4.29)

L4 = f2(t(i) + h,N(i) + hK3, S(i) + hL3), (4.30)

Coefficient K and L are defined as

K =
h

6
(K1 + 2K2 + 2K3 +K4) (4.31)

and

L =
h

6
(L1 + 2L2 + 2L3 + L4) (4.32)

Therefore the next step in the time which is presented with t(i+ 1) is obtained from Equation
4.33. Also, N(i+1), and S(i+1) are the carrier density and the number of photons at t(i+1)
and are calculated using Equations 4.34 and 4.35.

t(i+ 1) = t(i) + h, (4.33)

N(i+ 1) = N(i) +K, (4.34)

S(i+ 1) = S(i) + L. (4.35)

In the following section, we will solve different rate equations using the Runge-Kutta method
to validate our approach. Also, we will investigate the different outcomes from solving the laser
rate equations and investigate the impact of different parameters such as the quality factor on
the threshold and the spontaneous emission coupling efficiency.

4.3.1 Solving Laser Rate Equations for Different Semiconductor Mi-
cro and Nano-cavity Lasers

Solving the laser rate equation gives us the number of the carriers and the photons with time.
By plotting the input power versus the output power of the laser, we will be able to obtain
the L-L curve. The L-L curve will give us the value of the threshold pump power and the
spontaneous emission coupling efficiency. In the next section, we will simulate e bulk GaAs
microcavity laser to investigate behavior of the the carrier density and number of photons with
time. Also, we will plot the L-L curves to obtain the threshold.
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4.3.1.1 GaAs Microcavity Semiconductor Laser

In order to validate our choice of the numerical method, first, we solve Equations 4.10-4.11, using
the fourth-order Runge-Kutta method with values tabulated in Table 4.1 for the microcavity
semiconductor laser in [89] which is presented in Figure 4.18. After solving Equations 4.10-4.11,
we plot the number of photons versus time as presented in Figure 4.19.

Figure 4.18: Schematic image of the microcavity laser. Reprinted from [89].

Table 4.1: Laser Rate Equation Parameters [46]

Paramater Value
γ
τsp 1ns
τnr 0.01ns
Ntr

V 10−15cm3

λ 1µm

From Figure 4.19 we can see that when the number of photons inside the cavity is less than
unity, the losses outweigh the gain. At this point, the laser operates below the laser threshold,
indicating that spontaneous emission is the dominant process. However, the losses and the
gain balance out as the number of photons inside the cavity approaches unity. Upon crossing
the threshold energy within the laser cavity builds up significantly, with stimulated emission
becoming the dominant process. This results in a rapid spike and subsequent oscillations in
the photon response, which is shown in Figure 4.19, signaling the threshold.
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Figure 4.19: Change in the number of photons with time below, at, and above the threshold.

This sudden change signifies the transition from the sub-threshold to the supra-threshold
regime. Gradually, the system stabilizes as the laser operation evolves toward a steady-state
condition.

The rate equations 4.10-4.11 are fundamental to understanding the dynamics of a laser system,
particularly in describing the temporal evolution of carrier density N and photon density S.
These equations can be used to determine the lifetime or excitation timescale with respect to
Figure 4.19. The key factor in this context is the laser’s net gain, Γg, which dictates how
quickly the photon density S increases once the threshold is crossed. When Γg exceeds the
photon decay rate (1/τp), the number of photons rapidly increases, marking the onset of lasing
and resulting in a sharp slope in Figure 4.19. This slope reflects the rapid rise in photon density
and indicates the excitation timescale.

After solving the laser rate equations, the injected current can be plotted against the number
of photons inside the laser cavity to create the laser’s L-L curve. In Figure 4.20a, we present
the L-L curve that was obtained from the numerical solution Equations 4.10-4.11 using the
fourth-order Runge-Kutta method for values of β changing from 10−5 − 100.

Figure 4.20 shows a clear relationship between β and the laser’s performance. As β increases,
both the threshold current and the height of the kink in the L-L curve decrease significantly.
Reducing the threshold current and kink height with increasing β implies that more sponta-
neous emissions are coupling into the lasing mode. This increase in the coupling enhances the
stimulation process, thereby reducing both the threshold current required for lasing and the
height of the kink which ultimately leads to a more efficient lasing process.

By comparing our simulation results with the data presented in Figure 4.20b, we establish that
our simulated results match the reported values in [46]. This comparison serves as a validation
of the numerical method we have employed, as well as the accuracy of our assumptions and
models incorporated in the laser rate equations. In order to validate our laser model for smaller
semiconductor laser structures, in the next section, we simulate the nanopillar laser reported
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in [47] to investigate the laser behavior.

a)

b)

Figure 4.20: The Light-Light (L-L) curve for a semiconductor laser. a) The curve obtained
from our numerical simulation using the Runge-Kutta method to solve the laser rate equations.
b) The L-L curve as reported in the study by Bjork et al. (1991) [46]. Comparison between the
simulation results and the reported data to check the validity and accuracy of our numerical
approach for solving the laser rate equations.

After validating our numerical method using the GaAs microcavity laser with DBR cavity in
[89], we simulate a nanopillar In0.15Ga0.85As laser where it is much smaller than the one in [89]
in size and its shape is much closer to a nanowire laser.

4.3.1.2 In0.15Ga0.85As nanopillar Semiconductor Laser

In this step, by employing the parameters tabulated in Table 4.2, we solve laser rates of Equa-
tions 4.10-4.11 and investigate the nanopillar laser shown in Figure 4.21 which is reported in
[47]. By plotting the carrier and photon density with time, the gain-switching effect can be
visualized as the jump in the value of both carrier and photon densities below and after the
threshold.
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Figure 4.21: Schematic image of the In0.15Ga0.85As nanopillar grown vertically on the silicon
substrate. Reprinted from [47]

In Figures 4.22a and 4.22b, the temporal response of carrier and photon densities is depicted
below the threshold, at the threshold, and above the threshold. The distinction between the
response below the threshold (where the system behaves linearly) and above the threshold
(where the nonlinear effect becomes noticeable) is particularly noteworthy.

An additional aspect apparent in the figure is the phenomenon of gain switching, a crucial
element in the operation of lasers. Gain switching arises from the dynamic interplay between
the carrier and photon densities and signifies a shift in the gain state due to population inversion.
The number of carrier and photon densities versus time in Figure 4.22 reveals that a marked
jump in the photon density becomes apparent when the laser crosses the threshold. This sharp
increase can be seen as a reflection of the stimulated emission process, which greatly amplifies
the number of photons within the laser cavity.

Table 4.2: Laser Rate Equation Parameters [47]

Parameter Value
A 1.43×108s−1

τsp 4 ns
C 3.5 ×10−30cm6.s
ng 4.2
Γ 1
Ns 4×1017cm−3

g0 2200 cm−1

Ntr 3×1017cm−3

V 6 ×10−13cm3

η 2.5%

After solving the rate equations, we investigate the effect of changing the quality factors, as
demonstrated in Figure 4.23. The Q-factor measures the energy losses in the cavity. A higher
Q-factor corresponds to lower losses, meaning the energy is stored better in the system over
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a)

b)

Figure 4.22: The change of the a) carrier and b) photon densities with time below the threshold,
at the threshold, and above the threshold.

time. It is evident from the plots that as the quality factor increases, photon lifetime increases
as well. Therefore, higher values of the quality factor are desirable.

Consequently, a longer photon lifetime, triggered by a higher quality factor, implies minimizing
losses within the cavity. This phenomenon can be interpreted as the cavity becoming increas-
ingly efficient at retaining and building up energy. This effect directly influences the interaction
between carriers and photons within the active medium. When cavity losses are reduced and
photon lifetime increases, the light within the cavity has more opportunities to interact with
the active medium. This promotes the critical lasing process of stimulated emission.

The laser threshold tends to decrease as the quality factor increases. This is because the efficient
energy buildup in the cavity, due to reduced losses and increased photon lifetime, enables the
necessary condition of population inversion to be achieved more easily. Hence, less pump power
is needed to achieve lasing.

4.4 Conclusion

In this chapter, we have embarked on the exploration of the various stages involved in accurately
modeling a laser. We started by introducing the FEM as an approach for simulating the
laser cavity, which enables the determination of parameters associated with the cavity. Then
we discussed the step-by-step approach to implementing FEM in the 2D and 3D simulation
environment to determine the transverse and longitudinal modes of the nanowire. We also
presented the equations for calculating the nanowire optical properties such as the confinement
factor, and quality factor.
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Figure 4.23: The L-L curve obtained for different values of quality factors with a) our numerical
simulations, and b) data reported in [47].

Finally, we discussed the fourth-order Runge-Kutta method as our numerical choice of method
to solve the laser rate equations. We also validated and benchmarked our theoretical model
and simulation results by analyzing different laser structures in [47], [89] and comparing the
simulation results with the outcomes reported in these papers.
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Chapter 5

Lasing Dynamics and Characteristic
Parameters of Nanopillar and
Quantum-well Nanowire Lasers

5.1 Introduction

In this chapter, first, we will present an application of our formalism by simulating the behavior
of an In0.15Ga0.85As nanopillar laser, which belongs to the category of bulk semiconductor
microcavity lasers as reported in [47]. Once we examine the laser characteristics and validate
our simulation results through comparison with experimental data, we will move from the
study of bulk nanopillar lasers to quantum well nanowire lasers. This provides us with a deeper
understanding of how laser properties change from bulk to quantum wells.

In the next step, we will implement the formalism we developed for quantum well nanowire
lasers into action. Building on the concepts discussed in Chapters 3 and 4. Our focus is to
model the ten In0.2Ga0.8As/GaAs quantum wells nanowire laser, which is reported in [7]. To
accomplish this, we will utilize both full three-dimensional (3D) and two-dimensional (2D)
simulations of the nanowire to gain a comprehensive understanding of how the nanowire’s
geometry affects its optical properties.

Within this context, we will apply the theoretical framework introduced in Chapter 3 to explore
how absorption, gain, and spontaneous emissions take place within the 19nm thick quantum
wells when placed inside the nanowire. Furthermore, we will integrate the results obtained
from the nanowire simulations and the optical processes within the quantum wells to solve the
laser rate equations. We will then compare our results with previous models used to solve
these equations and validate our findings by cross-referencing them with experimental data.
This investigation will enhance our understanding of the nanowire laser’s performance and
demonstrate the accuracy of our theoretical framework.

5.2 In0.15Ga0.85As Nanopillar Laser

In order to validate our formalism and our laser model in different types of lasers, in this section
we are going to simulate the In0.15Ga0.85 nanopillar laser reported in [47]. This In0.15Ga0.85
nanopillar laser is a bulk microcavity semiconductor laser. The gain spectrum simulations for
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this nanopillar laser are obtained using our formalism in section 3.4 using the bulk electronic
density of states in Equation 3.81. Also, we discussed solving the laser rate equations to
obtain the threshold of this nanopillar laser using β = 0.01 which is obtained by fitting the
experimental data to the simulations in section 4.3.1.2. In this section, we will implement the
Finite Element Method in order to simulate the electromagnetic field within the nanopillar.
Figure 5.1 presents a schematic image of the nanopillar laser. A hexagonal 330nm nanopillar
laser with a height of 3µm is grown vertically on the silicon substrate.

𝟑𝛍𝐦

Bulk 𝐈𝐧𝟎.𝟏𝟓𝐆𝐚𝟎.𝟖𝟓𝐀𝐬 Nanopillar

GaAs Shell

𝑥
𝑦

𝑧

Growth direction
along z-axis

𝟑𝟑𝟎𝐧𝐦

𝟓𝟎𝟎𝐧𝐦

𝟑𝛍𝐦

Figure 5.1: Schematic image of the In0.15Ga0.85As nanopillar grown vertically on the silicon
substrate.

5.2.1 Nanopillar Electromagnetic Field Simulations

We use the Finite Element Method to simulate the electromagnetic field within the nanopillar
using a similar approach discussed in section 4.2.3. Using the 3D nanopillar simulation setup
in Figure 5.2 with a PML thickness of 200nm, distance from PML equal to 500nm, and 72822
mesh elements, we perform the eigenfrequency analysis in the frequency domain to obtain the
electromagnetic field within the nanopillar.

The 3D eigenfrequency analysis of the nanopillar laser gives us the resonant modes of the
nanopillar listed in Table 5.1. The experimental data in [47], reports the emission frequency
of the laser at 325 THz. Using the 3D eigenfrequency analysis, we observe that around the
emission frequency, TM61 with the frequency at 324.54 THz has the highest quality factor equal
to 4779. Therefore, we predict that this mode is most likely the lasing mode of the nanopillar.
This agrees with the results reported in [47]. One can see the electric field intensity profile of the
TM61 mode in Figure 5.3. In the follwing section, we will use the results of our 3D nanopillar
simulations and the resonant modes listed in Table 5.1 to obtain the photonic density of states.

5.2.2 Photonic Density of States (PDOS) of the In0.15Ga0.85 Nanopil-
lar Laser

The photonic density of states within the nanopillar determines the number of available states
at particular energies that photons can couple with them, per unit volume.
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Figure 5.2: Schematic image of the cross-section from the 3D simulation setup in xy-plane for
the In0.15Ga0.85As nanopillar grown vertically on the silicon substrate.
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Figure 5.3: Electric field intensity of the TM61 mode within the In0.15Ga0.85As nanopillar.
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Table 5.1: Resonant modes of the nanowire obtained from 3D eigenfrequency simulations

Modes Frequency
(THz)

Quality factor

TE49a 323.14 THz 64.34
TE49b 323.16 THz 63.88
TE61a 323.27 THz 2962.3
TE61b 323.27 THz 2964.7
TE49a 323.81 THz 69.19
TE49b 323.81 THz 69.25
TE25a 324.02 THz 51.46
TE25b 323.02 THz 53.75
TE52a 324.55 THz 1148.0
TE52b 324.55 THz 1148.7
TM61 324.62 THz 4779.9
TE37 324.67 THz 135.40
TE01 324.96 THz 70.69
TM62 325.27 THz 2708.3
TM63 326.37 THz 1512.3
TE63a 326.53 THz 640.94
TE63b 326.53 THz 641.12
TE18a 326.96 THz 99.80
TE18b 326.96 THz 99.82
TE61 327.32 THz 9842.2
TM64 327.92 THz 921.14
TE62 327.97 THz 4005.8
TE38a 328.38 THz 96.58
TE38b 329.05 THz 174.15
TE63 329.06 THz 1975.5
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We use the spectrum of the twenty modes listed in Table 5.1 to obtain the nanopillar PDOS
(NNP

ph ) in Figure 5.4. The spectrum for each mode is given by a Lorentzian function which is
related to the linewidth of the modes within the nanopillar as

NNP
ph (E) =

m∑
j=1

1

V

γj/2π

(E − Ej)2 + (γj/2)2
(5.1)

where Ej is the central energy of the jth resonant mode of the nanopillar, V is the volume of
the nanopillar, m is the number of resonant modes within the nanopillar, and γ is the linewidth
of each mode of the nanopillar. The linewidth of each mode is obtained as

γj =
Ej

Qj

(5.2)

where Qj is the quality factor of each mode.

Figure 5.4: Spectra of the twenty modes of the nanopillar listed in Table 5.1 around laser
emission energy(colored lines) and the nanopillar photonic density of states represented with
black color.

The photonic density of states (Nph) is obtained from the sum of the free space PDOS and the
spectra of the resonant modes within the nanopillar as

Nph = N fs
ph +NNP

ph (5.3)

The free space PDOS is given as [57]

N fs
ph =

8πn3E2

h3c3
, (5.4)
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where n is the refractive index of the gain medium, h is Planck’s constant, and c is the speed
of light.

From Equation 5.3 we know that the total PDOS is obtained from the sum of the nanopillar
PDOS and the free space PDOS. Figure 5.5 presents free space PDOS with a blue line, and
the total PDOS with a black line. In the following section, we will use the PDOS to obtain the
spontaneous emission rate and calculate β.

Figure 5.5: N fs
ph (blue dotted line) PDOS and Nph (black line) in the nanopillar.

5.2.3 Spontaneous Emission Factor β in the In0.15Ga0.85 Nanopillar
Laser

By using the In0.15Ga0.85As material characteristics in Table 3.1, and photonic density of states
simulation results in section 5.2.2, we solve Equation 3.118 to calculate the spontaneous emission
factor (β). The spontaneous emission factor for the In0.15Ga0.85As nanopillar lasers is presented
in Figure 5.6.

From Figure 5.6 we can see that for low carrier densities, β remains almost constant at a value
of 0.0028. When the carrier density is larger than 1×1022m−3, β gradually increases. However,
when the carrier density is between 1 × 1023 − 1 × 1024m−3, β dramatically rises and reaches
to 0.0092. For large carrier densities, β decreases to around 0.001.

For carrier densities close to the intrinsic carrier density β almost remains constant. As the
carrier density increases, we will have an increase in the β for carrier densities between the
transparency carrier density and the threshold. After that, by increasing the carrier densities,
the spontaneous emission factor will decrease and the photons emitted from the spontaneous
emission process, will either couple to other nanowire modes or most likely emitted into free
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Figure 5.6: β versus carrier density for the In0.15Ga0.85As nanopillar laser.

space. The spontaneous emission rate into the free space is more dominant compared to the
spontaneous emission rate into the other modes of the nanowire.

Spontaneous emission factor is treated as a fitting parameter in [47] and it is reported as
a constant value equal to 0.01. Comparing the value of β with the β obtained from our
formalism, our formalism predicts that β changes with carrier density and presents a mechanism
to calculate it. we can see that the maximum of our β reaches 0.0098 which is very close to the
fitted value which validates our formalism for bulk semiconductors. In the following section,
we will use the gain model that we developed in Section 3.4 and β obtained in this section to
solve the laser rate equations to obtain the laser threshold and compare the simulation results
with the experimental data to further validate our model for bulk semiconductor lasers.

5.2.4 Laser Rate Equation Analysis

In this section, we will use the gain model that we obtained from our formalism and presented
in Figure 3.15 to solve the laser rate Equations 3.35-3.36 and we compare the results with
experimental data to validate our laser model. One of the advantages of our model is that we
don’t use the logarithmic fitting function in the form of Equation 3.120. We directly use the
gain model from our formalism in the laser rate equations. We solve the laser rate equations
using the parameter in Table 4.2 except for the parameters g0, Ntr, and Ns as they are related to
the gain fitting function. Figure 5.7 presents the L-L curve of the nanopillar laser for Q = 206.
Here we first plotted the L-L curve using our formalism for gain and β. This plot is shown
with the red line in Figure 5.7. Then, we plotted the L-L curve using β = 0.01 to study how
the L-L curve is different when β is a constant value. This plot is shown with the black line.
Finally, to validate our laser model we compare our simulation results with the L-L curve plot
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for Q = 206 reported in the [47]. This plot is presented with the blue line.

𝛽 = 0.01

𝛽 = 𝐹𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑚

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑝𝑙𝑜𝑡

Figure 5.7: L-L Curve plots for In0.15Ga0.85As nanopillar laser for Q = 206 obtained for a)
β = 0.01 (black line), b) β and gain from our formalism (red line), and the experimental plot
(blue line)

Figure 5.7 shows that below the threshold, the L-L curve obtained from our formalism has
smaller values compared to the scenario when β = 0.01. This is explained using the Figure
5.47. Low pump powers are not able to excite a high carrier density into the conduction
band. Therefore, for low pump powers, the β from our formalism is 0.0028. However, as
the pump power increases, β increases as well, and for the values near the threshold (N =
1 × 1023 − 1 × 1024m−3) the red and black plots get closer to each other. From Figure 5.6
we can see that for all of the carrier densities, β from our formalism is always less than 0.01.
That’s why the red plot is below the black plot where the changes in β with carrier density
are neglected. For large pump powers, the stimulated emission dominates laser emission. From
Figure 5.7 we notice that for Q = 206, our formalism is also able to predict the laser threshold
accurately which further validates our gain model.

Similar arguments can be used to describe the laser behavior for Q = 412 in Figure 5.8. The
same behavior is also observed when we use Q = 412. The L-L curve plot from our formalism
has smaller values below the threshold when the spontaneous emission process is dominant. By
comparing Figure 5.7 and 5.8 we can see that as the quality factor increases, the nanopillar
threshold decreases while the height of the kink in the L-L curves increases.

The simulation of the In0.15Ga0.85As nanopillar laser enabled us to validate both our theoretical
framework and the accuracy of our laser model, particularly in the context of bulk nanocav-
ity lasers. Having established the foundation, the subsequent section of our study extends and
builds upon our understanding of bulk laser behavior and move from the study of bulk nanocav-
ity lasers to the quantum well nanowire lasers. This helps us to gain a deeper understanding of
how laser properties evolve and how the laser’s behavior transforms when we move from bulk
nanopillar laser to quantum well nanowires.
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𝛽 = 0.01

𝛽 = 𝐹𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑚
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Figure 5.8: L-L Curve plots for In0.15Ga0.85As nanopillar laser for Q = 412 obtained for a)
β = 0.01 (black line), b) β and gain from our formalism (red line), and the experimental plot
(blue line)

This transition from conventional bulk semiconductor lasers to quantum well (QW) nanowire
lasers leads to key changes in laser characteristics that support the wider use of QW nanowire
lasers. These key changes are summarized as follows:

Quantum Confinement Effects: Bulk semiconductor Lasers operate in a three-dimensional
structure with a large gain medium in terms of volume; carriers can move freely within the bulk
gain medium with a continuous parabolic electronic density of states, while in QW nanowire
laser, the small thickness of the QWs, carriers can move in two directions, and we have confine-
ment in one direction. This leads to discrete energy levels and a step-like electronic density of
states. The quantum confinement effect causes a higher probability of recombination at these
levels and more efficient population inversion at lower thresholds, making the lasing process
more efficient compared to bulk lasers, where the carriers are distributed over a broader range
of energy states [223].

Enhanced Material Gain: This increase in the gain occurs because the quantum confinement
in QW nanowire lasers leads to discrete energy levels and the step-like electronic density of
states, which result in a higher probability of electron-hole recombination at specific energies,
thereby increasing the material gain. In the gain spectrum of the material, where the x-axis
represents energy and the y-axis represents gain, this quantum confinement effect results in
a sharper and higher peak compared to bulk lasers. Also, the gain model of the material is
obtained by plotting the maximum of the gain spectrum at different carrier densities. Since the
peak height in the gain spectrum of a QW laser is higher than that of a bulk nanowire laser, this
results in a larger gain model. For example, the peak of the gain spectrum in a GaAs nanowire
laser reached 2000cm−1, while the maximum of the gain spectrum in a GaAs/AlGaAs multiple
QW nanowire laser is around 3700cm−1 [149], illustrating the superior gain characteristics due
to the enhanced electron-hole recombination efficiency in QW nanowire lasers.
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Larger spontaneous emission factor: In bulk semiconductor lasers, the spontaneous emis-
sion coupling factor (β) is relatively low because the active region is large, and spontaneous
emission occurs in all directions. However, the quantum confinement effect in the quantum wells
combined with the optical confinement in the nanowire ensures efficient interaction between the
gain medium and optical modes, which directs a larger proportion of spontaneous emission into
the lasing mode, resulting in a higher β factor. For example, in the GaAs nanowire laser in
[149], the spontaneous emission factor is 0.015, while in the multiple GaAa/AlGaAs nanowire
laser β is 0.03.

Reduced threshold pump power: The reduction in threshold pump power is directly linked
to the step-like density of states resulting from quantum confinement. The efficient population
inversion in QW nanowire lasers reduces the number of carriers required to achieve lasing,
thus lowering the threshold pump power [223]. In contrast, nanowire lasers without QWs have
continuous energy states similar to the bulk, and require a higher pump power to achieve the
same level of population inversion, resulting in a higher threshold current. For instance, the
threshold pump power of the GaAs nanowire laser is reported as 177µJcm−2 per pulse, while the
threshold pump power of the GaAs/AlGaAs multiple QW nanowire laser is around 110µJcm−2

per pulse [149].

Non-radiative Recombination rates: QW nanowire lasers exhibit lower non-radiative re-
combination rates due to the enhanced carrier confinement and their nanoscale dimensions.
Localized electrons and holes in discrete energy states reduce the probability of non-radiative
recombinations. For instance, in the nanowire lasers discussed in [149], the GaAs nanowire
without quantum wells exhibits a non-radiative lifetime of 0.44ns, whereas the GaAs/AlGaAs
quantum well nanowire laser shows a longer non-radiative lifetime of 5ns. This longer non-
radiative lifetime in the QW nanowire laser results in a reduced rate of non-radiative recombi-
nation.

Wavelength tunability: In bulk semiconductor lasers, the emission wavelength is mainly
determined by the bandgap of the gain medium, which is a fixed property of the material. This
means the laser can only emit at wavelengths close to this bandgap energy. In contrast, QW
nanowire lasers offer a remarkable degree of wavelength tunability by altering the thickness
of the QWs. Changing the QW thickness modifies the energy levels of the confined carriers,
as shown in Figure 5.38, effectively shifting the emission wavelength. Thinner QWs result in
higher energy transitions (shorter wavelengths), while thicker wells have lower energy transitions
(longer wavelengths). This design flexibility allows the QW nanowire lasers to produce a wide
range of emission wavelengths, enhancing the versatility and functionality of these lasers across
different applications. For example, in [158], it is shown that by adjusting the number and
thickness of InGaN/GaN QWs in GaN nanowires, the lasing emission could be tuned across a
broad spectrum from 365 to 494 nm.

Temperature sensivitty: Increases in temperature lead to a broadening of energy states,
which can destabilize the lasing process by shifting the emission wavelength and reducing gain
[224]. However, in QW nanowire lasers, the discrete energy levels remain relatively stable
with temperature changes, maintaining the efficiency of the lasing process even at elevated
temperatures. This stability is crucial for applications requiring consistent performance over a
wide temperature range. III-V QW nanowire lasers featuring quantum-confined active regions
have been developed in [140], [159], offering improved temperature stability compared to their
bulk counterparts.
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5.3 Ten In0.2Ga0.8As/GaAs Quantum-well Nanowire Laser

Figure 5.9 provides a visual representation of the ten In0.2Ga0.8As/GaAs quantum well nanowire
laser studied in [7]. A single 2.2µm height hexagonal GaAs nanowire with 200nm diameter is
grown vertically on a SiO2(285nm)/Si substrate with growth direction along the z-axis. Ten
19nm thick In0.2Ga0.8As/GaAs quantum wells (shown with green color) are embedded inside
the nanowire. Quantum wells are located at 1.2µm from the bottom of the nanowire. However,
the nanowire is peeled off from the substrate and placed horizontally on the substrate for lasing
measurements.

We will apply our laser model to simulate the nanowire laser laid horizontally on the Silica
substrate, as shown in Figure 5.9 in three main steps:

1. Classical simulations of the electromagnetic field within the nanowire

2. Analysis of absorption, gain, and spontaneous emission dynamics

3. Laser rate equation analysis

In the following sections, we will explore each of these steps in detail, starting with the electro-
magnetic field simulations inside the nanowire.

5.4 Nanowire Electromagnetic Field Simulations

In the field simulations section, we implement Finite Element Method (FEM) in COMSOL
Multiphysics software to model the nanowire as discussed in section 4.2. Our objectives are
to obtain the transverse and longitudinal modes of the nanowire and identify the lasing mode.
Then we will calculate optical parameters such as the quality factor, confinement factor, and
the photonic density of states. We first start with the two-dimensional nanowire simulations.

5.4.1 Two-dimensional Simulations

The objective of the two-dimensional simulations is to obtain the transverse modes of the cavity
and calculate their corresponding effective mode indices. Here, we assume that both the length
of the nanowire and the substrate are infinitely large. With this assumption, we can treat
the nanowire as a waveguide. The two-dimensional simulation setup is presented in Figure
5.10. This configuration is obtained by taking a transverse cross-section from the middle of the
nanowire laser lying on the substrate when the quantum wells are excluded. We choose the
refractive index of the GaAs nanowire, SiO2(285nm)/Si substrate, and air to be equal to 3.6,
1.45, and unity, respectively.

Perfectly Matched Layers (PML) are placed at the boundaries of our simulation setup to simu-
late the air surrounding the nanowire as a domain with an infinite cross-section. Their function
is to absorb any outgoing electromagnetic waves efficiently, preventing field reflections.

5.4.1.1 Convergence Tests for 2D Simulations

By performing the convergence test following the procedures outlined in Chapter 4, we can use
the results depicted in Figure 5.11 to choose an appropriate PML thickness in our simulations.
This figure represents the convergence test on how the thickness of the PML affects neff . Our
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Figure 5.9: Schematic image of a hexagonal GaAs nanowire studied in [7], with the height of 2.2
and 200 nm diameter a) grown vertically on a SiO2(285 nm)/Si substrate, b) laid horizontally for
lasing measurements. Ten In0.2Ga0.8As/GaAs quantum wells are embedded inside the nanowire
as presented with a green color.
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Figure 5.10: Schematic representation of the transverse cross-section of the 200nm hexagonal
GaAs nanowire lying on the SiO2(285nm)/Si substrate.

simulation results indicate that when the PML thickness exceeds 150nm, the changes in the
neff is less than 1%. We chose a PML thickness of 200nm in the two-dimensional simulations.

Similarly, the convergence test on the distance of the nanowire from PML in Figure 5.12 reveals
that the value of the neff will be converged when the distance of the nanowire from PML is
larger than 300nm. We chose the distance of 400nm in the 2D simulations.

The last convergence test involves determining the optimal number of mesh elements. Figure
5.13 represents the change in the neff with the number of elements within the mesh. As
demonstrated in Figure 5.13, once the number of mesh elements surpasses 3000, the variation
in neff remains below the 1%. Consequently, we have selected the number 3274 as the suitable
number of elements for our mesh.

5.4.1.2 Guided Transverse Modes of the Nanowire

Once we ensured that our simulation results had converged, we plot neff against the nanowire
diameter to determine the number of guided transverse modes. We consider guided modes for
the GaAs nanowire lying on the SiO2(285nm)/Si substrate are the modes with neff larger than
the substrate (1.45).

In Figure 5.14, we increase the nanowire’s diameter from 150nm to 400nm and plot the corre-
sponding neff values for each mode. When the GaAs nanowire has a diameter between 160nm
and 240nm, only the HE11a and HE11b modes are guided within the nanowire. These modes
are the fundamental modes of the hexagonal nanowire. However, as we increase the nanowire’s
diameter to 240nm, TE01 mode also appears. When the nanowire’s diameter increases even
more, higher-order modes will be guided within the nanowire.

As illustrated in Figure 5.14, for diameters less than 240nm, the nanowire operates as a single-
mode cavity. Lasers with single-mode cavities offer significant advantages as they efficiently
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Figure 5.11: Evaluating neff against the thickness of the PML to identify the appropriate PML
thickness in the simulations.

Figure 5.12: Evaluating neff against the distance of the nanowire from PML to identify the
appropriate distance of the nanowire from PML in the simulations.
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Figure 5.13: Evaluating neff against the number of mesh elements to identify the appropriate
number of mesh elements in the simulations.

channel all emitted photons into a single-lasing mode. Such lasers exhibit lower thresholds
and higher spontaneous emission coupling efficiencies compared to multi-mode lasers. When
multiple modes coexist within the laser, operational efficiency decreases as energy disperses
among several resonant modes.

Since the GaAs nanowire that we investigate in this chapter has a diameter of 200nm, only
the HE11a and HE11b modes with neff equal to 2.0335 and 1.9546, respectively will be guided.
It’s worth mentioning that as the nanowire’s diameter increases, although higher-order modes
appear within the nanowire, their corresponding neff values consistently remain lower than
the fundamental modes (HE11a and HE11b). The field intensity profile of the modes HE11a and
HE11b is presented in Figure 5.15. We have shown the direction of the electric field field with
the red arrows. When the electric field is polarised along the z-axis, we classify the modes as
HE11a, and when it is polarized along the y-axis, we have the mode HE11b.

In the next subsection, we will perform three-dimensional nanowire simulations to identify the
lasing mode of the nanowire, and field distribution along the length of the nanowire. We will
also calculate the cavity-related parameters.

5.4.2 Three-dimensional Simulations

In the two-dimensional simulations, we neglected the length of the nanowire and the substrate
in order to obtain the guided transverse modes of the nanowire. However, the length of the
nanowire is one of the most important factors in laser operation which determines the emission
frequency and nanowire’s spectral characteristics. A longer nanowire supports a wider range
of modes, each corresponding to a different wavelength, while a shorter cavity has fewer lon-
gitudinal modes. If the length of the nanowire is very small, it might not be able to support
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Figure 5.14: neff versus the diameter of the nanowire to determine the number of guided
transverse modes in the nanowire.
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Figure 5.15: Electric field intensity distribution of the HE11a and HE11b modes. The polarization
of the electric field is shown by red arrows. HE11a is polarised along the z-axis while HE11b is
polarised along the y-axis.
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any resonant mode. Therefore in this section, we will add another dimension to our previous
simulations which represents the length of the nanowire.

Three-dimensional simulations give us the resonant frequencies of the nanowire. Using 3D
simulations, we seek to determine which one of the transverse guided modes is the lasing mode.
Also, 3D simulations enable us to accurately calculate the confinement factor and the quality
factor for each resonant mode within the nanowire.

The 3D simulation environment is presented in Figure 5.16. A cross-section in the xz plane
of Figure 5.16 is presented in Figure 5.17 to show a better view of the 3D simulation setups.
We used to perform eigenfrequency analysis to obtain the resonant modes of the nanowire. We
use Finite Element Method (FEM) to perform eigenfrequency analysis to obtain the resonant
modes of the nanowire.

GaAs Nanowire

𝑆𝑖𝑂2/𝑆𝑖 Substrate

Figure 5.16: Three-dimensional simulation setup of the 200nm diameter hexagonal GaAs
nanowire with the length of 2.2µm lying down on a SiO2(285nm)/Si substrate.
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Figure 5.17: Schematic image of the 3D simulation setup for 2.2µm GaAs nanowire with 200nm
diameter lying on the SiO2(285 nm)/Si substrate.
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5.4.2.1 Convergence Tests for 3D Simulations

Just as we performed convergence tests for the 2D simulations, we will apply similar tests
to the three-dimensional simulations. This involves convergence tests on the thickness of the
PML, the distance between the nanowire and the PML, and the number of mesh elements to
ensure that our selection of simulation parameters is well-considered. When the variation in
eigenfrequency is below 1%, we consider the simulation parameters as converged.

Figure 5.18 presents the convergence test on the thickness of the PML. From Figure 5.19, we
choose the value of 200nm for the PML thickness in the 3D simulations. From the convergence
test on the distance of the nanowire from the PML in Figure 5.20, we can see that to achieve
the desired accuracy in the 3D simulations distances larger than 450nm are required. We chose
500nm for the distance of the nanowire from the PML in our 3D simulations.

Figure 5.18: Thickness of the PML against eqigenfrequency of the HE11b mode to identify the
suitable PML thickness in 3D simulations.

One of the significant differences between the 2D and 3D simulations is the number of mesh
elements. In 3D simulations, due to the additional dimension, the number of mesh elements
is substantially larger compared to their 2D environment. Therefore, potentially longer simu-
lation times are needed when transitioning from 2D to 3D simulations. From Figure 5.20, we
can see that any number of mesh elements larger than 31000 should be enough for accurate
eigenfrequency results. We chose 35000 elements for the mesh in our 3D simulations.

5.4.2.2 Resonant Modes of the Nanowire

Eigenfrequency analysis in the frequency domain results in a set of solutions representing the
resonant modes that can exist within the nanowire laser. We present the list of eigenfrequencies
obtained from our 3D simulations in Table 5.2. These modes are characterized by having an
integer number of half wavelengths along the length of the nanowire. Figure 5.21 represents a
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Figure 5.19: Distance of the nanowire from PML against eqigenfrequency of the HE11b mode
to identify the suitable distance in 3D simulations.

Figure 5.20: The number of mesh elements against eqigenfrequency of the HE11b mode to
identify the suitable number of mesh elements in 3D simulations.
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Table 5.2: Resonant modes of the nanowire obtained from 3D eigenfrequency simulations

Modes Frequency
(THz)

Quality factor

HE11a 267.73 THz 13.556
HE11b 276.7 THz 15.993
HE11a 282.09 THz 26.122
TM01 288.32 THz 5.49
HE11b 289.04 THz 29.803
TE01 291.38 THz 5.0267
HE11a 295.49 THz 39.171
TE01 295.87 THz 5.61
TE01 298.89 THz 6.47
HE11b 301.10 THz 45.221
TE01 306.11 THz 9.34
HE11a 308.34 THz 59.432
HE11b 312.94 THz 99.559
TE01 316.69 THz 14.61
HE11a 321.17 THz 81.321
TM01 323.35 THz 5.27
HE11b 325.06 THz 73.459
TE01 329.48 THz 24.20
HE11a 334.29 THz 69.615
HE11b 337.59 THz 83.122
TE01 342.77 THz 38.23
HE11a 347.66 THz 75.586
HE11b 350.49 THz 89.856
HE11a 361.43 THz 83.539
HE11b 363.83 THz 95.485
HE11a 375.61 THz 84.236
HE11b 377.61 THz 98.014
HE11a 389.97 THz 84.790
HE11b 391.78 THz 98.980

cross-section in the xz-plane in the 3D simulations of the nanowire cavity at y=0, in which the
x-axis aligns with the nanowire optical axis, for four distinct eigenfrequency solutions, around
312THz, derived from our 3D simulations. From Table 5.1 and Figure 5.21a-d, we can see
that TE01 mode is among the modes appearing in the 3D simulation results. The electric
field intensity distributions of the TE01 modes in Figure 5.21a and Figure 5.21d shows us that
most of the field is leaking into the air and the substrate. This agrees with the two-dimensional
simulations which we obtained neff of around 1.32 for the TE01 mode. As discussed before, since
neff is smaller than the refractive index of the substrate (1.45), this mode is not guided. The
loss in the nanowire structure is directly related to the imaginary part of the eigenfrequency. A
larger value of the imaginary part in the eigenfrequency means that the loss is high as well. This
confirms the 2D results as well indicating that this nanowire is not able to support higher-order
modes due to the large losses.

From the band diagram of the In0.2Ga0.8As/GaAs quantum well in Figure 5.24 which we will
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Figure 5.21: Four resonant mode as the solutions from our 3D Eiegenfrequency analysis for a)
TE01, HE11b, HE11a, and TE01 modes. The inset figures represent the field in the transverse
cross-section of the nanowire for each mode. Although TE01 appears in the results, it is not
considered a guided mode due to its large losses.
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discuss in section 5.5, we can see that the photons emitted from the ground state transitions
have a frequency between 304THz and 319THz. Using the list of all the eigenfrequency solutions
in Table 5.2, we can see that these photons can couple to either the HE11a mode with resonant
frequency of 308.34THz or the HE11b mode at 312.94THz. The quality factor for the HE11a

mode is 59.432 while the quality factor of the HE11b is 99.559. The mode with the higher
quality factor has a better chance to lase. Therefore, from the 3D eigenfrequency simulations,
we predict the HE11b mode as the lasing mode of the In0.2Ga0.8As/GaAs nanowire laser. The
experimental data in [7] states that the lasing mode is the HE11b at the emission frequency of
312THz. This agrees with our 3D simulation results where we identified the HE11b resonant
mode at 312.94THz as the lasing mode of the quantum wells nanowire. Therefore, in the
following sections, we will consider the HE11b mode of Figure 5.21c as the lasing mode of the
nanowire with its unique optical properties calculated in subsection 5.4.2.3.

5.4.2.3 Quality factor (Q) and the Confinement factor (Γ)

The quality factor for each mode of the nanowire is calculated from

Q =
real(Eigenfrequency)

2Imaginary(Eigenfrequency)
(5.5)

the Quality factor for the HE11b is obtained as 99.559 from the 3D simulations. The quality
factor is used to calculate the photon lifetime τp in the laser rate equations.

The confinement factor determines how much of the field is concentrated within the gain
medium. In order to calculate Γ, we integrate the field in all directions within the gain medium
and divide it by the integration of the field in all domains as

Γ =

∫
Gain medium

||E⃗||2dV∫
All domains

||E⃗||2dV
(5.6)

We calculate the confinement factor of the HE11b mode is near 0.0341. Confinement factor will
be used in the laser rate equations which we will discuss in section 5.6.

5.4.2.4 Calculating the Photonic Density of States (PDOS) of the Nanowire

The PDOS given by Nph(E) in nanowires determines the number of photon states available
at a particular energy, per unit volume. It characterizes the spectral distribution of photons
within the nanowire. The PDOS depends on the nanowire geometry, composition, and spectral
linewidth of the resonant modes. Considering the PDOS in the analysis of the absorption, gain,
and spontaneous emission dynamics enables us to incorporate the effect of the nanowire cavity
on the carrier-photon interaction within the quantum wells. The photonic density of states in a
nanowire is different from free space PDOS and the PDOS for a semiconductor bulk material.

The free space photonic density of states describes the number of states that are available in
the absence of any material medium (i.e., in vacuum or free space). The bulk PDOS refers to
the distribution of the photonic states within a bulk semiconductor material. It accounts for
the fact that in such semiconductors, the number of photonic states is different from that in free
space due to the material’s properties. The nanowire PDOS describes the number of available
photonic density of states within the nanowire which is specific to the nanowire geometry and
the dimensions.
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The photonic density of states (Nph(E)) consists of the sum of the free space photonic density

of states (N fs
ph ), and the photonic density of states within the nanowire (NNW

ph ) as

Nph(E) = N fs
ph +NNW

ph . (5.7)

PDOS of the nanowire is obtained from the spectrum of each mode of the nanowire cavity. The
spectrum for each mode is defined by a Lorentzian function which is related to the linewidth
of the modes within the nanowire using Equation 5.1.

Using the 3D nanowire simulations, the spectra of the twenty modes of the nanowire cavity
around the emission energy (E = 2.0736 × 10−19) are obtained from the values in Table 5.2.
The spectra for the cavity modes are shown with the colored solid lines in Figure 5.22. The
NNW

ph is obtained from the sum of the colored spectra, which is shown as the black spectra in
Figure 5.23.

Figure 5.22: Spectra of the twenty-eight modes of the nanowire around emission energy (colored
lines) and the nanowire photonic density of states represented with the black color.

However, as mentioned above, this total photonic density of states is the sum of the nanowire
photonic density of states and the free space photonic density of states. The free space PDOS
is shown with a solid green line, the nanowire PDOS is shown with a solid blue line, and the
total PDOS for the nanowire is represented with a solid black line in Figure 5.23.

The Nph(E) captures the effect of the nanowire cavity on the carrier-photon interaction dy-
namics where a photon within a nanowire laser is capable of either being emitted to free space
or coupling into one of the resonant modes of the nanowire cavity. Considering the total PDOS
in analyzing the dynamics of the absorption, gain, and spontaneous emission results in a higher
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Figure 5.23: Photnic density of states of the modes of the GaAs nanowire (solid green line),
free space (dashed blue line), and the total photonic density of states (solid back line)

rate of carrier-photon interactions compared to the scenario where only the free space PDOS
is assumed. One of the most important advantages of our model is the full examination of the
PDOS in comparison to the previous models where only the free space PDOS is considered
[57], [89].

5.5 Analysis of Absorption, Gain, and Spontaneous Emis-

sion Dynamics

In this section, we will examine the dynamics associated with absorption, gain, and sponta-
neous emission processes within the 19nm In0.2Ga0.8As/GaAs quantum wells acting as the gain
medium. We will use the material parameters reported in [47], [57] and the photonic density
of states obtained in the nanowire simulations section 5.4.2.4.

This analysis will provide insights into how these processes take place within the laser and
enable us to estimate the spontaneous emission coupling efficiency and the Purcell factor.
Furthermore, we develop a gain model of the In0.2Ga0.8As/GaAs quantum wells, which will be
used later in the laser rate equations analysis. The gain model describes how the active medium
will act under the pump. The gain model will also help us to identify at which wavelength the
gain is maximized. If the frequency in which the gain is at its maximum coincides with the
lasing frequency, the maximum number of photon emissions can be achieved.

The first step in the analysis of the dynamics of absorption, gain, and spontaneous emissions,
is to obtain the band diagram of the quantum wells. Using the material characteristics of
In0.2Ga0.8As tabulated in Table 5.3, the energy band diagram of the QW is plotted in Figure
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5.24. The bandgap of the In0.2Ga0.8As at 5K is equal to 1.2380ev [57]. We define all the energies
with respect to the top of the valence band so that the top of the valence band lies at the energy
level equal to zero and the bottom of the conduction band is located at the energy level equal
to the bandgap (Eg). In this case, we calculated the first three energy levels of the conduction
and valence bands as

Ec1 = Ec +
[ℏ( π

Lz
)]2

2m∗
e

= 1.2557ev, (5.8)

Ev1 = Ev −
[ℏ( π

Lz
)]2

2m∗
h

= −0.0028ev. (5.9)

Ec2 = Ec +
[ℏ( 2π

Lz
)]2

2m∗
e

= 1.3086ev, (5.10)

Ev2 = Ev −
[ℏ( 2π

Lz
)]2

2m∗
h

= −0.0113ev. (5.11)

Ec3 = Ec +
[ℏ( 3π

Lz
)]2

2m∗
e

= 1.3969ev, (5.12)

Ev3 = Ev −
[ℏ( 3π

Lz
)]2

2m∗
h

= −0.0253ev. (5.13)

where Lz is the thickness of the quantum wells, m∗
e is the effective mass of electrons in the

conduction band, m∗
h is the effective mass of the holes in the valence band, and ℏ is the reduced

Planck’s constant. The material characteristics of the In0.2Ga0.8As are given in Table 5.3. Ec

and Ev are obtained by assuming that the top of the valence band (Ev) sits at the zero energy
level and the bottom of the conduction band (Ec) sits at the energy level equal to the Eg in
the bulk form.

The fourth energy level of the conduction band is

Ec4 = Ec +
[ℏ( 4π

Lz
)]2

2m∗
e

= 1.5205ev, (5.14)

However, as shown in Figure 5.24, this energy level is larger than the bandgap of the GaAs
barriers (1.519ev). Therefore only three energy levels can exist within the In0.2Ga0.8As/GaAs
quantum well. In the next step, by using the band diagram of Figure 5.24, we will investigate
the gain spectrum analysis of a single quantum well inside a nanowire cavity.

Table 5.3: Material characteristics of In0.2Ga0.8As [47], [57]

Parameter Value
m∗

e 0.059m0 kg [57]
m∗

h 0.370m0 kg [57]

Ep((ê · pc,v)2 = m0Ep

3
) 25.18ev [47]

Eg 1.2380ev [57]
τin 40fs [47]
n 3.6[57]
T 5K
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Figure 5.24: Energy band diagram of a single In0.2Ga0.8As/GaAs quantum well with a thickness
of 19nm with three energy levels in the conduction and the valence bands.

5.5.1 Dynamics of the Absorption, and Gain in a single In0.2Ga0.8As/GaAs
Quantum-well

The objective of this section is to calculate the gain spectrum, and the spontaneous emission
rate using the outcomes of the nanowire simulations along with the material parameters in
the literature. By solving the gain equation in 5.16, we will obtain the gain spectrum of a
single 19nm In0.2Ga0.8AS/GaAs quantum well. The joint density of states in Equation 5.16 will
present the effect of the quantization in the quantum well. Moreover, by calculating the total
spontaneous emission rates for a quantum well within a nanowire cavity, we will be able to
perform a comprehensive analysis of the dynamics of the spontaneous emissions and calculate
the spontaneous emission coupling efficiency in the nanowire laser.

A detailed discussion on the formulation of the absorption and gain processes within a quantum
well is presented in Chapter 3. We obtain the absorption and the gain spectrum in Equations
3.105-3.106 as

α(E) =
∑
n,m

C0(E)ρ2Dr

∫ ∞

Eg

|ê · p⃗cv|2(fv − fc)L(Ecv − E)dEcv, (5.15)

and

g(E) = −α(E) =
∑
n,m

C0(E)ρ2Dr

∫ ∞

Eg

|ê · p⃗cv|2(fc − fv)L(Ecv − E)dEcv, (5.16)

where |ê · p⃗cv|2 is the momentum matrix element, Ecv is the energy difference of the conduction
and the valence band, ρ2Dr is the joint electronic density of states in the quantum well, fc, and
fv are the Fermi functions. The parameter C0 is a constant coefficient which is given as

C0 =
πe2

ncϵ0m2
0(E/ℏ)

. (5.17)

The joint electronic density of states in a quantum well with the thickness of Lz is

ρ2Dr =
m∗

r

πLzℏ2
. (5.18)
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Finally, the Fermi functions in a quantum well are

fc(Ecv) =
1

1 + e
(Ecn+

m∗
r

m∗
e
(Ecv−Ecn+Evn)−Fc)/kBT

, (5.19)

and

fv(Ecv) =
1

1 + e
(Evm−m∗

r
m∗

h
(Ecv−Ecn+Evm)−Fv)/kBT

, (5.20)

where Ecn represents the minimum energy level of the nth band in the conduction band and Evm

is the maximum of energy level of the mth band in the valence band. The quasi-Fermi levels
of the conduction and valence bands are Fc and Fv, respectively. When the laser is under the
pump, the electrons within the valence band absorb the energy of the incident photons and are
excited into the conduction band. As more and more carriers are excited into the conduction
band, the quasi-Fermi levels Fc and Fv are pushed up in the conduction band and down in the
valence band.

As shown in the band diagram of the In0.2Ga0.8AS/GaAs quantum well in Figure 5.24, based
on the number of carriers excited into the conduction band, Fc can have any value between
1.2557ev and 1.480ev. Similarly, Fv can have any value between −0.0028ev and −0.0386ev.
The upper bound of the Fc and the lower bound of Fv are calculated when the transition energy
is equal to the bandgap of the GaAs (1.519ev).

Figure 5.25 represents the electronic density of states and the energy levels in the conduction
and valence bands in the quantum well. An example of the quasi-Fermi levels in the conduction
and in the valence bands is presented with green dashed and dotted lines. If we assume that Fc

is somewhere between Ec1 and Ec2, carriers will fill all the electronic states in the first energy
level of the conduction band. When all the electronic states within the first energy level are
occupied, carriers will start to fill out the electronic states in the second energy level. A similar
process is true for the holes in the valence band. In quantum well nanowire lasers, the emitted
photons are from the transition between the first energy levels in the conduction and valence
bands.

The carrier density in the first energy level of the conduction band in a quantum well is calcu-
lated as [57]

N =

∫ Fc

Ec1

ρe1fc(Ecv)dEcv (5.21)

where ρe1 is the density of electrons in the first energy level of the conduction band which is
given as

ρe1 =
m∗

e

πℏ2Lz

(5.22)

By using Equation 5.21, we can solve the gain spectrum in Equation 5.16 for different carrier
densities. In order to solve Equation 5.16, we should calculate the momentum matrix element |ê·
p⃗cv| of the transitions. The momentum matrix element in a bulk semiconductor doesn’t depend
on the polarization of the field (ê). The momentum matrix element for bulk semiconductors is
given by Chuang in [57] as

|x̂ · p⃗cv| = |ŷ · p⃗cv| = |ẑ · p⃗cv| = M2
b =

m0Ep

6
(5.23)
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Figure 5.25: Electronic density of states for the electron in the conduction band (ρ2De ) and the
holes in the valence band (ρ2Dh ) with three discrete energy levels in a quantum well.

However, in a quantum well, the momentum matrix element depends on the polarization of the
field. In a general form, when the thickness of the quantum well is along the z-direction, a TE
field is polarized along the x or y-directions. Momentum matrix element |ê · p⃗cv| is given as [57]

< |ê ·Mc−hh| >=
3

4
(1 + cos2θ)M2

b

< |ê ·Mc−lh| >= (
5

4
− 3

4
cos2θ)M2

b

(5.24)

where Mc−hh and Mc−lh represent the momentum matrix element for transitions from the
conduction band into the heavy-holes and light-holes, respectively. A TM field is polarized
along the z-direction and |ê · p⃗cv| is obtained as [57]

< |ê ·Mc−hh| >=
3

2
sin2θM2

b

< |ê ·Mc−lh| >=
1

2
(1 + cos2θ)M2

b

(5.25)

The conservation rule dictates that for transitions from the conduction band into both heavy
and light holes, we have

< |ê ·Mc−hh| > + < |ê ·Mc−lh| >= 2M2
b (5.26)

In the electromagnetic field simulations presented in Figure 5.15, for our ten, In0.2Ga0.8As/GaAs
quantum well nanowire laser, the HE11b lasing mode is polarized along the y-direction perpen-
dicular to the optical axis of the nanowire. Therefore, we are dealing with a situation similar
to the TE polarized field in Equation 5.24. We calculate the momentum matrix element as

< |ŷ ·Mc−hh| > + < |ŷ ·Mc−lh| >= 2M2
b (5.27)
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Using the momentum matrix element in Equation 5.27, we solve Equation 5.16 to plot the gain
spectrum. Figure 5.27 presents the gain spectra of the In0.2Ga0.8AS/GaAs quantum well when
the carrier density is between N = 1019m−3, and N = 10× 1025m−3. From Figure 5.27, we can
see that when the carrier density is around the intrinsic carrier density N = 1019m−3, the gain
spectrum has negative values. This means that in this case, the quantum well will absorb the
incident light. Therefore, instead of gain, we will have absorption. As more carriers are excited
into the conduction band, the gain spectrum will rise to the positive values.

In order to obtain the full gain term in the laser rate equations, we plot the maximum of each
gain spectrum in Figure 5.26 versus their corresponding carrier density to obtain the gain model
in Figure 5.27. The peak of the gain spectra in Figure 5.26 is very close to the energy of the
emitted photons from the laser supporting our assumption that the photons emitted from the
first energy levels are most likely to couple to the lasing mode while the photons emitted from
the higher energy levels will either couple to the resonant modes of the nanowire with higher
oscillation energy or they will be lost into the free space.

By comparing the gain spectrum of the bulk In0.15Ga0.85As in Figure 3.14, with the gain spec-
trum of the In0.2Ga0.8AS/GaAs quantum well in Figure 5.26, we can see that the bulk gain
spectrum is broader. This means that the carriers and photons are able to interact in a broad
range of frequencies. On the other hand, we have a narrower gain spectrum in the quantum
wells, where only specific energy transitions are allowed.

Figure 5.26: Gain spectrum of the 19nm In0.2Ga0.8As/GaAs quantum well when only the
transition between the first energy levels is considered.

Each line in the gain spectra plot in Figure 5.26, corresponds to a specific carrier density. If
we plot the maximum of each gain spectrum versus the carrier density, we can develop the
logarithmic gain model which creates the stimulated emission term in the laser rate equations.
In the previous models [47], the logarithmic gain model of Figure 5.27 is fitted in Equation 5.28
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Figure 5.27: Gain model of the 19nm In0.2Ga0.8As/GaAs quantum well when only the transition
between the first energy levels is considered.

to build the logarithmic gain model.

g(N) = g0ln(
N +Ns

Ns +Ntr

)F (5.28)

Fitting equations, while a common practice in laser analysis and modeling, is not always the
ideal approach. The logarithmic gain model in bulk semiconductors can be fitted to Equation
5.28 with good accuracy. However, as the thickness of the quantum wells decreases, the arc in
the logarithmic gain model of Figure 5.27 tends to become less apparent and the gain changes
almost linearly by increasing the carrier density. Therefore, Equation 5.28 will not serve as an
ideal form to present the gain in ultra-thin quantum wells and this will decrease the accuracy
of the results. However, since we will not use any fitting parameters in the gain model, our
simulation results will not suffer from gain model fitting challenges. In section 5.6, we will use
the gain model that we developed from our formulations to solve the laser rate equations and
to obtain the L-L curves.

5.5.1.1 Spontaneous Emission Rate, and the Spontaneous Emission Lifetime

In this section, our objective is to calculate the spontaneous emission spectrum of the 19nm
In0.2Ga0.8AS/GaAs nanowire when it is placed inside the nanowire. We will also calculate
the spontaneous emission lifetime τsp which will be used in the laser rate equations. In the
last step of this section, we obtain the total spontaneous emission rates. Obtaining the total
spontaneous emission rates enables us to investigate β and the Purcell factor in the ten-quantum
well nanowire laser.

When the quantum wells are placed inside a nanowire, the total spontaneous emission rate is
increased compared to the scenario in which quantum wells are investigated in free space. This
is due to the Purcell factor. In section 3.2.3, we obtained the total spontaneous emission rate
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of a quantum well within the nanowire in Equation 3.84 as

Rspon =

∫ ∞

0

dE

∫ ∞

Eg

Nph(E)C0(E)
c

n
ρ2Dr |ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv (5.29)

The spontaneous emission spectrum of the quantum well is

rspon(E) = Nph(E)C0(E)
c

n
ρ2Dr

∫ ∞

Eg

|ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv (5.30)

Figure 5.28 shows the normalized spontaneous emission spectrum of the In0.2Ga0.8AS/GaAs
quantum well within the nanowire for the carrier density of N = 3× 1024m−3. To compare our
proposed model with the previous ones which only consider N fs

ph , we also present the normalized
spontaneous emission spectrum with free space PDOS. By comparing the two spontaneous
emission spectrums in Figure 5.28, we can see that the spontaneous emission rate is significantly
higher for all transition energies.

Figure 5.28: Spontaneous emission spectrum obtained from solving Equation 5.30 with the total
PDOS (solid black line) and the free space PDOS (solid blue line) for the In0.2Ga0.8As/GaAs
quantum well inside the nanowire.

We calculate the spontaneous emission lifetime of around 0.2ns using

1

τsp
=

∫ ∞

0

Nph(E)C0(E)
c

n
|ê · p⃗cv|2

γ/2

(E0 − E)2 + (γ/2)2
dE ≈ 0.2ns, (5.31)

where Nph is the photonic density of states, E0 is the energy of the emitted photon, |ê · pcv|2
is the momentum matrix element, and n is the refractive index of the active medium. γ is
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the FWHM of the spontaneous emission spectra, and it is related to the intraband transition
lifetime as discussed in Equations 3.59. E0 is the emission energy and it is obtained as

E0 = h = 2.0737× 10−19J (5.32)

where h is Planck’s constant and f is the resonant frequency of the lasing mode.

5.5.1.2 Spontaneous Emission Factor

The spontaneous emission factor is the ratio of the rate of spontaneous emissions into the lasing
mode to the total spontaneous emission rates. In section 3.3.4, we derived the mathematical
equation to calculate the spontaneous emission factor in a quantum well inside the nanowire as

β =
Rj

spon

Rtotal
spon

=

∫∞
0

dE
∫∞
Eg

N j
ph(E)C0(E) c

n
|ê · pcv|2ρr(Ecv)fc(1− fv)

γ/2
(Ecv−E)2+(γ/2)2

dEcv

(Σi

∫∞
0

dE
∫∞
Eg

N i
ph(E)C0(E) c

n
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(5.33)

If we take a close look at Equation 5.33, we can see that the denominators contain integrals over
the free space spontaneous emission spectrum and the spontaneous emission spectrum obtained
with the nanowire PDOS. The spontaneous emission spectrum of the free space is obtained by
using free space PDOS in Equation 5.30, while the nanowire spontaneous emission spectrum
is obtained when we use the nanowire PDOS in Equation 5.30. Therefore, β can be calculated
by taking the area under the curve for rfsspon, r

NW
spon, and rjspon which represent the spontaneous

emission rate into the free space, into all modes of the cavity, and then into the lasing mode.

Figure 5.29 represents the spontaneous emission spectrum of the free space, nanowire, and lasing
mode, respectively for different carrier densities. The area under the red curve is divided by the
sum of the areas under the black and the blue curves in Figure 5.29 gives us the spontaneous
emission factor β. However, in our investigations, we noticed that β changes by increasing the
carrier density. This means that the rate of spontaneous emissions changes with the carrier
density.

To investigate how the spontaneous emission factor depends on the carrier density we plot
the β against N as shown in Figure 5.30. When the carrier density is close to the intrinsic
carrier density, β = 0.0379. However, as the carrier density increases, the spontaneous emission
increases until it reaches a maximum of 0.0746, and then β starts to decrease for carrier densities
larger than 6.13× 1023(m−3).

The decrease in β for high carrier densities can be traced back to the spontaneous emission
spectra in Figure 5.29, where the spontaneous emission spectrum broadens with increasing
carrier density. However, the change in the spontaneous emission spectrum of the lasing mode
(rjspon) is very small compared to the change in the free space and nanowire spontaneous emission
spectrums (rfsspon and rNW

spon). This signifies that above the threshold, most spontaneous emissions
fade into the free space, and the majority of the remaining ones couple into the non-lasing optical
modes of the nanowire. Consequently, the number of spontaneous emissions contributing to
the lasing mode decreases compared to lower carrier densities, where fewer modes are involved.
This indicates that for higher carrier densities, the spontaneous emissions are more likely to
either couple to the other modes of the nanowire or be emitted into free space.
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Figure 5.29: Spontaneous emission spectrum obtained from solving Equation 5.30 with the free
space PDOS (solid black line), the nanowire PDOS (solid blue line), and the lasing mode PDOS
(solid red line) for different carrier densities.
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Given the definition of the spontaneous emission factor β, which is the ratio of the area under
the spontaneous emission spectrum for the lasing mode to the sum of the areas under the
spectra for the free space and nanowire modes, this spectral redistribution becomes critical. At
higher carrier densities, the area under the spontaneous emission spectrum for the lasing mode
does not increase as much as the total area under the spectra for the free space and nanowire
modes. This disproportionate increase in the denominator of the β equation leads to a sharp
decrease in β at N > 1024m−3.

From Figure 5.29 we saw that the spontaneous emission spectrum broadens as the carrier
density increases. This results in the decrees in the β in Figure 5.30 due to the fact that
with increasing the number of carriers, the transitions occur with higher energy levels. The
spontaneous emissions with higher energies shift the spontaneous emission spectrums to the
right indicating the existence of the spontaneous emissions that are spread in a larger energy
spectrum.

Additionally, once the threshold is crossed, stimulated emissions begin to dominate the lasing
process. Stimulated emission depletes the carrier population more efficiently, reducing the
availability of carriers for spontaneous emission into the lasing mode.

Thus, the sharp drop in β for N > 1024m−3 is primarily due to the increased spectral broadening
of the free space and nanowire modes, which diverts more spontaneous emissions away from
the lasing mode. This effect, combined with the dominance of stimulated emissions at high
carrier densities, results in a reduced fraction of spontaneous emissions contributing to the
lasing mode, leading to the observed decrease in β.

Figure 5.30: Spontaneous emission factor β versus carrier density N for three energy levels in
In0.2Ga0.8As/GaAs quantum well nanowire.

In the previous laser models, Yamamoto proposed a mathematical approach to estimate β in
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the bulk semiconductor lasers [89] in Equation 2.50 as

β =
λ4

4π2V∆λϵ3/2
(5.34)

Moreover, even for the bulk semiconductor lasers, he assumes the free space photonic density of
states in the β calculations. The outcome of the equation proposed by Yamamoto is only able
to predict the value of the spontaneous emission at low carrier densities as a constant value.
However, our proposed theoretical approach not only considers the quantum confinement effect
in the quantum wells but also includes the effect of the nanowire cavity on the spontaneous
emission rates. Moreover, our simulations reveal the pulsed shape of the spontaneous emission
factor with respect to the carrier density which we report for the first time in the quantum well
nanowire laser analysis.

Comparing the value of β, which is obtained from our calculations, with the value of β which
is obtained by fitting the experimental data, we notice that for the low carrier densities (below
1023m−3) spontaneous emission factor in the quantum well nanowire laser is close to 0.04 which
is larger than the typical spontaneous emission factor in the bulk microcavity semiconductor
lasers in which β is close to 0.01 [47].

Understanding the change in the spontaneous emission factor (β) with carrier density and
time is helpful in developing high-performance quantum well nanowire lasers. Given that both
transparency and threshold carrier density are determined by the quantum well thickness,
understanding the dependency of β on carrier density offers invaluable guidance in determining
the optimum QW thickness. For example, from Figure 5.41, we can determine the optimum
QW thickness of 11.8nm for the 200nm diameter nanowire with 2.2µm length. This insight
enables researchers to strategically adjust the quantum well thickness to achieve maximum
spontaneous emission coupling efficiency.

Also, the calculations in Section 5.5 offer insights into determining the discrete energy levels
across various quantum well thicknesses, enabling the design of lasers with targeted wavelength
outputs and high spontaneous emission coupling efficiency.

The investigations in Chapter 5 also provide insights into how β changes with operating tem-
perature, offering valuable data for predicting spontaneous emission coupling efficiency under
different thermal conditions. For example, in Figure 5.50, we demonstrate that when the QW
nanowire laser operates at a low temperature of 5K, the maximum spontaneous emission cou-
pling efficiency is around 0.07. However, as the operating temperature increases to 300K, β
decreases to approximately 0.056. This decrease indicates that higher temperatures reduce
the efficiency of spontaneous emission coupling, likely due to increased non-radiative recom-
bination. By understanding this temperature dependence, laser designs can be optimized to
minimize performance losses at higher operating temperatures.

Moreover, the choice of pump mechanism and pump power is also important in this context.
By carefully selecting the pumping mechanism and adjusting the pump power, the laser can
operate at an optimal carrier density where β is at its peak. For example, by using Figure 5.40,
we can see that the pump power should be able to excite 1023-1024 m−3 carrier densities to
ensure that the maximum number of spontaneous emissions are directed into the lasing mode,
which consequently leads to a lower threshold.

Furthermore, understanding the temporal dynamics of β, as shown in Figures 5.34 and 5.35,
enables the design of lasers with faster modulation speeds under pulsed operation. By analyzing
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the transient responses, designers can optimize the laser structure to achieve faster modulation
speeds, which is essential for high-speed data transmission and communication applications.

5.5.1.3 Purcell Factor

As discussed in section 3.3.2, the Purcell factor determines how much the spontaneous emission
lifetime is decreased when the quantum well is placed within the nanowire, and it is crucial
in laser design, particularly in lower-dimensional nanolasers, where optimizing light emission
efficiency is of great importance. Adjusting and optimizing the Purcell factor enables us to
control how the electromagnetic field within the laser cavity and the gain medium interact.
Maximizing this factor in nanolasers leads to higher spontaneous emission rates and shorter
spontaneous emission lifetimes, which is achieved by adjusting nanowire geometry and material
composition [225].

Changing the nanowire’s geometry, both in diameter and length, affects the photonic density of
states and, consequently, the total spontaneous emission rates in Equation 5.35. Therefore. by
optimizing the Purcell factor, we can maximize the number of spontaneous emissions coupling
into the lasing mode. This yields lower threshold lasers with a larger spontaneous emission
factor (β), which leads to the reduced height of the kink in the L-L curves plot. However,
common nanowire lasers often overlook this optimization potential, treating the Purcell factor
as a constant, usually set to unity, as observed by [6], [117].

Moreover, the Purcell factor also impacts the 3dB direct modulation bandwidth of the nanowire
lasers, impacting the laser’s overall efficiency [226] and optimization of this factor is essential
for achieving peak modulation responses, which enhances the operational dynamics of nanowire
lasers across various applications ranging from telecommunications to medical devices.

Understanding the dependency of the Purcell factor on carrier density helps to improve the
design of more efficient quantum well nanowire lasers by adjusting both nanowire structure
and carrier injection mechanisms to maximize spontaneous emission rates within the nanowire
cavity. Manipulating the carrier density injection enables the nanowire laser to operate at
carrier densities in the range where the Purcell factor is maximized. This control enhances laser
efficiency and reduces threshold currents and higher spontaneous emission coupling efficiency,
making quantum well nanowire lasers more suitable for integration into photonics and optical
communication systems. Furthermore, leveraging the Purcell factor’s dependency on carrier
density improves the quantum efficiency of these lasers, resulting in increased output power
and decreased energy consumption.

We calculate the Purcell factor (Fp) from the ratio of the total spontaneous emission rate within
the nanowire to the total spontaneous emission rate into free space as

Fp =

∫∞
0

dE
∫∞
Eg

Nph(E)C0(E) c
n
ρ2Dr |ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv∫∞

0
dE

∫∞
Eg

N fs
ph (E)C0(E) c

n
ρ2Dr |ê · p⃗cv|2fc(1− fv)L(Ecv − E)dEcv

, (5.35)

Similar to the β, the Purcell factor changes with carrier density. Figure 5.31 presents the change
in the Purcell factor (Fp) with the increase in the carrier density.

To explain the behavior of the Purcell factor we again go back to Figure 5.29. The Purcell factor
is the ratio of the area under the sum of the black and blue curves to the area under the black
curve. For low carrier densities, Fp is close to 1.4505. Except for the small peak of the Purcell
factor at carrier density near N = 6.13 × 1023m−3, the value of 1.4505 is among the highest
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Figure 5.31: Purcell factor (F ) versus carrier density N for three energy levels in
In0.2Ga0.8As/GaAs quantum well nanowire.

values of Fp. This is due to the fact that when the carrier densities are low, the spontaneous
emission spectrum is narrow. Therefore, the total spontaneous emission rate divided by the
spontaneous emission rate in free space is large.

Although both the black and blue spectra change by increasing the carrier density, the change
in the free space spontaneous emission spectrum rfsspon is more than the amount of change in
the nanowire spontaneous emission spectrum (rNW

spon). As the number of carriers increases, the
broadening of the free space spontaneous emission spectrum is quite large compared to the
nanowire spontaneous emission spectrum. Therefore, the change in the numerator of Equation
5.35 gets smaller and smaller, and the Purcell factor decreases. From Figure 5.31, we can see
that the decrease in the Purcell factor by increasing the carrier density is not linear. When
the spontaneous emission is at its maximum, this means the laser is experiencing the shortest
spontaneous emission lifetime achievable for the lasing mode. We should keep in mind that
since (Nph(E)) in the numerator of Equation 5.35 includes (N fs

ph ), the Purcell factor is always
larger than the unity.

In the next step of our laser model, by using the results obtained from nanowire simulations
and the examinations of the behaviors of gain and spontaneous emissions, we will solve the
laser rate equations to obtain the nanowire laser characteristics such as the threshold and the
coupling efficiency.

5.6 Laser Rate Equation Analysis

In the final step of our laser model, we will solve the laser rate equations to obtain the output
number of photons per pulse versus the input pump fluence. Building upon the results acquired
in the previous two steps, we will solve Equations 5.36-5.37 to predict the threshold and the
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spontaneous emission coupling efficiency of the ten quantum wells nanowire laser. This analysis
will yield crucial information about the laser’s operation and performance.

The laser rate equations are

dN

dt
=

ηP (t)

hvV
− (

1− β(N)

τsp
+

β(N)

τsp
)N − N

τnr
− Γvgmg(N)

S

V
, (5.36)

dS

dt
= Γvgmg(N)S +

β(N)NV

τsp
− S

τp
, (5.37)

where N is the carrier density, and S is the number of photons inside the cavity. The parameter
η is the fraction of pump power that is able to interact with the carriers, hv is the energy of the
pump photon, V is the volume of the active region, τsp is the spontaneous emission lifetime,
β is the spontaneous emission factor, τnr is the non-radiative recombination lifetime, g is the
active medium’s gain, τp is the photon lifetime, m is the number of quantum wells, and vg is the
group velocity. The laser is optically pumped with an 800nm pulsed laser with a pulse width
of 35fs. We assume that the pump pulse has a Gaussian shape as

P (t) = P0e
−t2

∆t2 , (5.38)

where P0 peak power of the pulse, and ∆t is the pulse width. The pump pulse is presented
in Figure 5.32 when P0=1Watt. By using the parameters Tabulated in Table 5.4, we solve

Figure 5.32: Pump pulse with the pulse width of 35fs.

the laser rate equations. First, we use the gain model that we developed in section 5.5.1 and
presented in Figure 5.26 along with β in Figure 5.30 to solve the laser rate equations using the
fourth-order Runge-Kutta method.

By solving the laser rate equations with the parameters in Table 5.4 and the spontaneous
emission factor which depends on the carrier density and is obtained from our theoretical
calculations, we get the black plot in Figure 5.33.

In order to compare the L-L curves obtained from our formalism with the L-L curve when β is
treated as a constant value of 0.0397, we again solve the laser rate equations using β = 0.0397

131



Table 5.4: Laser Rate Equation Parameters

Parameter Value
η 0.0132
V 6.5943× 10−21 m3

τsp 0.2ns
τnr 1× 10−5 s
Γ 0.0341
τp 5.0877× 10−14 s
vg 8.1081 m/s
n 3.7
m 10

and plot the pump fluence versus the number of photons per pulse the blue plot in Figure 5.33.
We chose the value of 0.0397 for β to solve the laser rate equations with a constant value based
on Figure 5.30 at low carrier densities near the intrinsic carrier density (10193m−3).

Figure 5.33: Pump Fluence versus the number of photons per pulse obtained by solving the
laser rate equations.

From Figure 5.33, we can see that at low pump powers, when the pump is not strong enough
to excite a large number of carriers into the conduction band, the two black and blue plots
overlap. This indicates that at low carrier densities, the value of the spontaneous emission is
very close to 0.0397. In order to better investigate why the L-L curve plot from our formalism
has larger values compared to the scenario where β is constant, we plot the carrier density
versus time for two example points in the L-L curves. The first point is at a pump power
of 0.0302µJ/cm2 which is well below the threshold as presented in Figure 5.34. In the pump
power as small as 0.0302µJ/cm2, we can see that the peak of the carrier density in Figure 5.34,
is around 9× 1022m−3 and the number of photons per pulse is around 0.006. At the maximum
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carrier density, we can see in Figure 5.22 that the value of β is at the edge of the rising point.
Figure 5.34c shows that β starts to increase with the increase in the carrier density. Reaching
the maximum of 0.0427 before dropping.

One of the most important factors that should be noticed is that due to the pulsed shape of
the pump laser, the output of the nanowire laser is also in the pulsed shape. In each pulse, the
carrier density rises from the intrinsic carrier density of 10191/m3 with time, reaches a maximum
value, and then drops to the values close to the intrinsic carrier density again. Therefore, we
also expect that β also increases with the increase in the carrier density with time, reaches a
maximum, and drops down to the values near 0.0397.

Figure 5.34: Outcomes of the laser rate equations for a) carrier density versus time, b) number
of photons versus time, c) β versus carrier density, and d) β versus time at pump fluence=0.0302
µJ/cm2.

The second point is almost in the middle of the split between the black and the blue plots in
Figure 5.33 with the pump power at 0.1219µJ/cm2 as shown in Figure 5.35. We can see that
the peak of the carrier density is higher at larger pump power compared to Figure 5.34. This
is due to the fact that higher pump power is able to excite more carriers from the valence band
into the conduction band. Higher peaks of the carrier densities will also result in an increase
in the spontaneous emission coupling efficiency. When the maximum carrier density reaches
around 3.8 × 1023m−3. At this carrier density, the spontaneous emission factor reaches 0.065
which is quite large compared to 0.0397, and then starts to decrease with the decrease in the
carrier density.
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Temporal responses of the carrier densities, number of photons per pulse, and β in Figures
5.34 and 5.35 indicate that as the pump power increases, more spontaneous emissions couple
to the lasing mode. This leads to a larger number of output photons per pulse in the black
plot of the L-L curve in Figure 5.33 and results in the split between the plots for the β as a
function and β as a constant. The split between the two lines reaches its maximum at the
pump fluence of 0.15µJ/cm2 which corresponds to the maximum value of β at carrier densities
around 6.13 × 1023m−3. In high pump powers, the carrier density is large, therefore from the
spontaneous emission plot in Figure 5.30, we can see that the spontaneous emission coupling
efficiency is at its minimum. Also, above the threshold, since the number of stimulated emissions
is very large compared to the number of spontaneous emissions, the difference in the black and
the blue plot in Figure 5.33 becomes negligible and the two plots once again overlap.

Figure 5.35: Outcomes of the laser rate equations for a) carrier density versus time, b) number
of photons versus time, c) β versus carrier density, and d) β versus time at pump fluence=0.1219
µJ/cm2

5.6.1 Comparison between the Experimental Data and the Simula-
tion Results

In this section, we compare the experimental data with our simulation results to validate our
laser model. The inset of Figure 5.36 represents the experimental data reported in [7]. The
experimental nanowire laser threshold is around 1.6µJ/cm2. However, we obtain the threshold
value of 1µJ/cm2 for the nanowire laser. The gap between the simulated and experimental
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threshold values for the nanowire laser can be caused by the idealized conditions assumed in
the simulation.

In our simulations, we assumed that the non-radiative recombination lifetime (τnr) is sufficiently
long so as not to significantly impact the lasing behavior. Given that the laser was operating at
a very low temperature of 5K, this assumption is quite reasonable. At such low temperatures,
non-radiative processes are typically suppressed [224], and spontaneous emission dominates,
making the influence of non-radiative recombination minimal.

However, although the impact of the non-radiative processes is small, incorporating it into the
model leads to more realistic results. Especially when the operating temperature increases,
the non-radiative recombination lifetime becomes a significant factor in lasing performance.
For example, in the work by Bjork [46], it was demonstrated that when the non-radiative
lifetime is approximately 100 times longer than the spontaneous emission lifetime (τsp), such as
τnr=10−9s and τnr=10−7s, the impact of non-radiative recombination on the laser’s performance
is negligible. When the non-radiative lifetime is shorter or comparable to the spontaneous
emission lifetime, non-radiative recombination becomes a critical factor that must be considered.

Bjork’s study further indicates that when non-radiative recombination dominates below the
lasing threshold, it can significantly affect the laser’s characteristics. Specifically, it can shift
the threshold current from approximately it can shift the threshold current from approximately
0.001mA to 0.1mA, and the height of the kink in the L-L curve can increase to twice what it
would be when non-radiative recombination is negligible.

We assumed a non-radiative lifetime of τnr=10−5 seconds, which is long enough to consider the
non-radiative losses negligible compared to the τsp=0.2ns in our model. However, if we were to
measure the non-radiative lifetime experimentally at 5K and incorporate this experimentally
determined value into our model, the simulation results would likely agree more closely with
the experimental data.

Surface recombination occurs when charge carriers recombine non-radiatively at the surface
of a semiconductor, often due to surface states—energy levels within the bandgap caused by
disruptions like dangling bonds, defects, and impurities. This process is exacerbated by factors
such as oxidation, surface roughness, and a high surface-to-volume ratio in nanostructures,
which can be detrimental to the performance of optoelectronic devices like lasers [227]. For
example, with a surface recombination velocity of 1000m/s, the threshold current for a quantum
well laser diode in [227] was calculated to be around 1.1mA at a cavity length of 3µm. However,
by reducing the surface recombination velocity to 100m/s, the threshold current significantly
drops to 0.11mA under the same conditions.

The study also discusses how a lower surface recombination velocity leads to a higher spon-
taneous emission coupling efficiency. For instance, with a surface recombination velocity of
1000m/s, the quantum efficiency reaches about 50%. When the surface recombination velocity
is reduced to 100m/s, the quantum efficiency improves significantly, reaching 74%. By perform-
ing additional experiments to accurately measure the surface recombination rate in our QW
nanowire laser, we can incorporate this data into our laser rate equations to better reflect the
impact of surface states on the threshold and spontaneous emission coupling efficiency.

Currently, the tolerance in our laser model is around 37%, indicating the degree of variation
between the model’s predictions and experimental data. To reconcile the difference between
our simulation results, which calculate a laser threshold of around 1µJ/cm2, and the experi-
mental results showing a threshold of 1.6µJ/cm2, considering factors like surface recombination,
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non-radiative lifetimes, and defects can bring these results closer. By incorporating accurate
measurements of these recombination rates and adjusting the model parameters accordingly,
we can reduce this tolerance and improve the model’s accuracy.

Figure 5.36: Comparing the experimental data [7] with our simulation results to validate our
laser model.

In order to further investigate the behavior of the spontaneous emission factor, in the next step
we will investigate the effect of the thickness of the quantum well and the temperature on the
spontaneous emission coupling efficiency and the gain spectrum.

5.7 Spontaneous Emission Factor and Gain for Different

Quantum-well Thicknesses and Temperatures

In Chapter 3, we derived the spontaneous emission rate for a quantum well nanowire laser from
the first principles. Building upon the theoretical framework of Chapter 3, we implemented our
theoretical approach to calculate the spontaneous emission factor for 19nm thick quantum well
lasers. We also showed that β is not a constant parameter as reported in the previous models
[47], [89] and it depends on the carrier density. Now, in order to build a deeper understanding of
the behavior of β we will consider different thicknesses of the In0.2Ga0.8As/GaAs quantum wells
within the same 200nm hexagonal GaAs nanowire with the length 2.2µm which we simulated
in section 5.3. It is worth mentioning that the optical properties of the nanowire cavity such
as the guided modes, photonic density of states, and quality factors will remain the same as in
section 5.3. The only parameter changing in the simulations is the thickness of the quantum
wells.

By solving Equation 5.16 using material parameters in Table 5.3, we plot the gain spectrum for
different quantum wells with thicknesses between 10nm to 30nm for a constant carrier density
of N = 1 × 1024m−3. From Figure 5.37 we can see that as the thickness of the quantum wells
increases, the maximum of the gain spectra plots will decrease while the gain spectrum broadens
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and shifts to the left as well. The 10nm quantum well has the sharpest and the highest peak.
This is due to the discrete electronic density of states. By changing the thickness of the quantum
wells the position of the first subbands will also change due to the quantum confinement effect.
As you can see in Figure 5.38, for the quantum well thickness of 10nm the energy levels sit
at higher energy values compared to the 15nm quantum well. Also, the photon emitted from
the first energy levels in the 10nm quantum well (1.3119ev) has higher energy compared to the
15nm quantum well (1.2708ev). As the well becomes thinner, the energy difference between
these subbands increases, leading to sharper transitions between energy states and emission
peaks at larger energy. For example, from Figure 5.39, we can see that in thicker quantum
wells, the energy levels are more closely spaced. This results in a broader range of energy
levels where carriers can exist, making broader gain spectra. The shift in the transition energy
is depicted by the term fc(Ecv) − fv(Ecv) in Equation 5.16. Figure 5.39 shows the shift of
the transition energy to the smaller values (to the left) as the thickness of the quantum wells
increases.

Figure 5.37: Gain spectrum for In0.2Ga0.8As/GaAs quantum wells with thicknesses from 10nm
to 30nm.

Now we will solve Equation 5.33 to obtain the spontaneous emission factor for different quantum
well thicknesses. Figure 5.40 presents β against carrier density for different quantum well
thicknesses. We can see that as the thickness of the quantum well increases, β will increase
for quantum wells with a thickness between 10nm to 12nm. However, quantum wells larger
than 12nm β start to decrease, and a peak will appear. As the thickness of the quantum wells
increases, we can see that we get closer to the shape of the β in the bulk laser presented in 5.6.
The interesting point out here worth mentioning is how the shape of the β for thin quantum
wells is different from the thick quantum wells and the bulk.

From Figure 5.40, we can see that there is a big jump in the plots for β between 10nm to 12nm.
In order to take a closer look at the β for thicknesses between 10nm to 12nm, we will add more
plots in that region. Figure 5.41 presents β for quantum well thicknesses between 10-12nm.
Here we can see that as the thickness of the quantum wells increases from 10nm to 12nm, the
spontaneous emission factor increases until it reaches the maximum of around 0.097 when the
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Figure 5.38: Energy band diagram in 10nm and 15nm In0.2Ga0.8As/GaAs quantum wells.

Figure 5.39: The term (fc − fv) in Equation 5.16 for gain.
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Figure 5.40: Spontaneous emission factor (β) versus carrier density for quantum well thicknesses
between 10nm to 30nm.

quantum well thickness is 11.8nm. For quantum wells larger than 11.8nm, the spontaneous
emission factor decreases, and with increasing the carrier density, a peak will appear. This is
very useful because, from this figure, we can identify the optimum quantum well thickness of
11.8nm for this specific nanowire cavity.

To better visualize the change in β with both carrier density and the quantum well thickness, we
use a 3D plot with carrier density along the x-axis, quantum well thickness along the y-axis, and
β along the z-axis. Figures 5.42-5.43 both present the 3D representations of the spontaneous
emission factor. The only difference in the plots is the linear and logarithmic scaling in the
carrier density. We can see that the maximum beta is achieved when the thickness of the
quantum well is around 11.8nm at carrier densities between 1 × 1023 − 1× 1024m−3.

We also show the top view of the 3D Figures 5.42-5.43 with carrier density and thickness of
the quantum wells in the x and y axis, respectively while β is presented with different colors in
Figure 5.44. The blue color spectrum shows the small values of β while the orange and yellow
colors show the large values of β. We can see that beta for quantum well thicknesses between
10nm-14nm has the highest values when carrier density is between 1×1023−1×1024m−3. The
maximum β is achieved at the thickness of 11.8nm.

The effect of quantum well thickness on β can be explained in the spontaneous emission spec-
trum for different thicknesses of quantum wells at specific carrier densities. Figures 5.45-5.47
present the spontaneous emission spectrum for quantum well thicknesses of 10nm, 11.8nm, and
19nm at different carrier densities. From Figure 5.45, we can see that when the quantum well
thickness is at 10nm, the spontaneous emission spectra are very narrow and sharp for both the
free space and the nanowire modes. Also, we can see that the lasing mode is well-located within
the spectrum. Therefore, a larger ratio of the spontaneous emission is capable of coupling to
the lasing mode. However, as the carrier density increases, the free space and the nanowire
mode spectra broaden which results in a decrease in the β for larger carrier density values.
between 1 × 1024 − 1 × 1025m−3 we have the largest amount of change in the spontaneous

139



Figure 5.41: Spontaneous emission factor (β) versus carrier density for quantum well thicknesses
between 10nm to 12nm.

Figure 5.42: Spontaneous emission factor (β) versus carrier density (linear scale), and quantum
well thicknesses.
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Figure 5.43: Spontaneous emission factor (β) versus carrier density (logarithmic scale), and
quantum well thicknesses.

Figure 5.44: Spontaneous emission factor (β) versus carrier density (logarithmic scale), and
quantum well thicknesses from the top view of Figure 5.44.
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emission spectra. Similar behavior is observed for the 11.08 and 19nm thick quantum wells in
Figure 5.46-5.47.

It is worth mentioning that in 19nm thick quantum well, at low carrier densities the spontaneous
emission spectrum of the lasing mode is very small. This means that at low carrier densities,
the spontaneous emission spectrum of the lasing mode is not completely located within the
spontaneous emission spectra of the free space (black plot), and nanowire modes (blue plot).
However, as the carrier density increases, due to the broadening of the spontaneous emission
spectra, the lasing mode spectrum falls within the black and red plots at carrier density around
1 × 1024. This means that more and more spontaneous emissions are coupling to the lasing
mode and this results in the peak in the spontaneous emission spectrum versus carrier density
in Figure 5.40.

After investigating the effect of the quantum well thickness on the gain and β, in the following,
we will investigate the effect of the temperature. In order to obtain the effect of the temperature
on the gain, we plot the gain spectrum of the 19nm thick In0.2Ga0.8As/GaAs quantum well for
different temperatures ranging from 5K to 300K for carrier density of 1 × 1024 in Figure 5.48.

Here we can see that by increasing the temperature, the peak of the gain spectrum of the 19nm
thick quantum well decreases. That’s due to the fact that as the temperature increases the
Fermi functions is smoother. In Equation 5.16 we can see that the gain depends on the Fermi
functions with the term fc−fv. The decrease in the Fermi functions will therefore result in the
decrease of the peak in the gain spectrum compared to low temperatures where Fermi functions
almost act like step functions. Figure 5.49 presents the Fermi functions at temperatures 5K,
100K, 200K, and 300K. We can see that as the temperature increases, Fermi functions fc and fv
get smoother. Therefore, at higher temperatures instead of the Fermi functions having values
close to the unity for temperatures near 0K at the transition energy, they will have smaller
values between 0-1.

In the next step, we solve Equation 5.33 to obtain β with different temperatures varying from
5K to 300K for the 19nm thick In0.2Ga0.8As/GaAs quantum well in Figure 5.50. Here we
can see that as the temperature increases the spontaneous emission constantly decreases until
the peak of the beta completely disappears. The smaller number of carriers means that there
will be less number of spontaneous emissions which can couple to the lasing mode. Also,
higher temperatures lead to increased carrier scattering and phonon-assisted processes, causing
a broader energy distribution of electrons and holes within the quantum wells. Moreover, in
high temperatures larger number of carriers are lost due to the non-radiative processes and
this reduces the population inversion and diminishes the rate of spontaneous emission. This
decrease in the spontaneous emission rate, results in a smaller probability of the spontaneous
emissions coupling to the lasing mode and smaller values of β.

In this section, we investigated the effect of the quantum well thickness and the temperature on
the gain and the spontaneous emission spectrum. By plotting β versus different thicknesses of
the quantum wells, we can identify the optimum quantum well thickness for a specific nanowire
cavity to maximize the spontaneous emission coupling efficiency. Also, we understood how β
decreases as the temperature increases, and the peak in β versus carrier density disappears at
high temperatures.
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Figure 5.45: Spontaneous emission spectrum for 10nm thick In0.2Ga0.8As/GaAs quantum well.
The black plot presents the free space spontaneous emission spectrum, the blue plot shows the
nanowire spontaneous emission spectrums obtained using the NNW

ph , and the red plot presents
the spontaneous emission of the lasing mode.

143



Figure 5.46: Spontaneous emission spectrum for 11.8nm thick In0.2Ga0.8As/GaAs quantum
well. The black plot presents the free space spontaneous emission spectrum, the blue plot
shows the nanowire spontaneous emission spectrums obtained using the NNW

ph , and the red plot
presents the spontaneous emission of the lasing mode.
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Figure 5.47: Spontaneous emission spectrum for 19nm thick In0.2Ga0.8As/GaAs quantum well.
The black plot presents the free space spontaneous emission spectrum, the blue plot shows the
nanowire spontaneous emission spectrums obtained using the NNW

ph , and the red plot presents
the spontaneous emission of the lasing mode.
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Figure 5.48: Gain spectrum of the 19nm thick In0.2Ga0.8As/GaAs quantum well at different
temperatures ranging from 5K-300K.

Figure 5.49: Fermi functions fc and fv at different temperatures ranging from 5K-300K.
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Figure 5.50: Spontaneous emission factor (β) for the 19nm thick In0.2Ga0.8As/GaAs quantum
well at different temperatures ranging from 5K-300K.

5.8 Bending Effects in Nanowire Lasers

Nanowire bending is also observed in [158] within MQW core/shell nanowire structures con-
taining 13 and 26 quantum wells (QWs) and is strongly associated with the non-uniform shell
coating and high indium (In) content. These structures feature a GaN core surrounded by
InGaN/GaN MQW shells, as depicted in the schematic image of Figure 5.51a, with shell thick-
ness varying significantly across different facets—approximately 65 nm on the 1101 facets and
around 10 nm on the 0001 facet, as shown in Figure 5.51b. This non-uniformity induces differ-
ential strain, particularly on the thicker facets. This strain is a result of the lattice mismatch
between the GaN core and the InGaN quantum wells, which in turn leads to the mechani-
cal bending of the nanowires, as illustrated in Figure 5.51c, despite dislocation-free growth of
highly uniform InGaN/GaN quantum wells.

The bending becomes more pronounced as the In content increases due to the greater lattice
mismatch between the GaN core and the InGaN QWs. Interestingly, this bending does not
prevent the nanowires from lasing, demonstrating effective waveguiding within the nanowire
structure. Additionally, by varying the In content in the quantum wells, the emission wave-
length of the optically pumped lasers can be tuned across a wide range, from 383 nm (UV
region) to 478 nm (visible region). This wavelength tunability is directly related to the In com-
position in the quantum wells, with higher In content resulting in longer emission wavelengths.

In our 3D simulations of the quantum well nanowire laser, ten highly uniform In0.2Ga0.8As/GaAs
quantum wells within the nanowire cannot change the optical properties of the nanowire owing
to the small number of QWs. Thus, we have focused solely on simulating the GaAs nanowire
laser to obtain the optical properties of the nanowire cavity. However, the alternating layers of
GaN and InGaN can be incorporated easily into our 3D simulation setup within the nanowire.
By accurately defining the material properties specific to InGaN with varying indium content,
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we could use 3D simulations to model the strain distribution along the nanowire’s length and
cross-section. By varying the indium content in the simulations, we can directly observe the
change in the electromagnetic field distribution and the optical properties of the laser in the
regions with high indium content, resulting in strain differences that lead to bending.

a) b) c)

Figure 5.51: a) A schematic representation of a multi-quantum well (MQW) nanowire, along
with an enlarged cross-sectional view of a nanowire facet, illustrates the InGaN/GaN MQW
structure. In this depiction, the InGaN layers are shown in yellow, b)dark-field cross-sectional
STEM image of a 26MQW nanowire structure, captured along the [1120] zone axis, clearly
shows the core/shell interface highlighted by dashed lines. In the inset, the corresponding
electron diffraction pattern is indexed for the [1120] zone axis, and c) photoluminescence images
of GaN/In0.05Ga0.95N (left) and GaN/In0.23Ga0.77N (right) MQW nanowire structures highlight
the bending effect. Reprinted from [158].

5.9 Conclusion

In this chapter, we presented simulation results of an In0.15Ga0.85As nanopillar laser to validate
our model for bulk semiconductors as well. By computing the gain spectrum, gain model, and
the L-L curves of the bulk In0.15Ga0.85As using material parameters, we validated our model
for bulk semiconductors.

In the next step, we used our three-step laser model in order to investigate the laser properties
of the ten In0.2Ga0.8As/GaAs quantum well nanowire laser. Through extensive simulations,
we uncover insights into nanowire laser characteristics and how they can be optimized. One
intriguing finding relates to the behavior of the spontaneous emission factor in relation to the
number of carriers. At low carrier densities, β is small. However, as the carrier density increases,
to the order of N = 1× 1023 − 1× 1024m−3, β increases until it reaches a maximum, and then
it starts to decrease for large carrier densities. When we use β from our formalism to solve
the laser rate equations, we can see that below the threshold, when the spontaneous emission
process is dominant, we observe that the difference between using different βs appears. Above
the threshold, stimulated emissions take over, causing a decrease in the spontaneous emission
factor.

Then we investigated the effect of the quantum well thickness and the temperature on the
spontaneous emission factor and the gain. From investigations on the β against quantum well
thickness, we were able to identify the optimum quantum well thickness value to have the
highest spontaneous emission coupling efficiency. We also observed that as the thickness of
the quantum well increases, the peak of the gain decreases while the gain spectrum broadens,
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and the peak shifts to the left. Moreover, by increasing the temperature, the peak of the gain
decreases constantly. Similar behavior is also observed in β. As the temperature increases, β
decreases until, for temperatures larger than 200K, the peak in β disappears.

It’s important to elaborate on how the validation of our findings with experimental data has
significantly advanced our understanding of quantum well (QW) nanowire lasers and how this
can lead to the fabrication of more efficient devices.

The step-by-step formalism developed in Chapter 3 provides a detailed derivation of the optical
processes within QW nanowire lasers, distinguishing their behavior from conventional bulk
semiconductor lasers. This formalism, which includes the photonic density of states (PDOS)
within the nanowire cavity, captures the complex interplay between absorption, gain, and
spontaneous emission rates—an aspect often overlooked in existing literature. By incorporating
the PDOS, our approach addresses a critical gap in current theoretical models, enabling a more
comprehensive understanding of optical dynamics, as detailed in Equations 3.104-3.106, for
gain and spontaneous emission rates.

The detailed computational method outlined in Chapter 4 for 2D and 3D modeling of the
nanowire cavity dimensions using finite element method (FEM) provides a systematic way to
design the cavity for optimal performance. For example, Figure 4.14 illustrates the region for
selecting the nanowire diameter in which the cavity would guide a single mode, offering a focused
beam with higher spatial coherence compared to a multimode laser. Also, Sections 4.2.2.3 and
4.2.3.2 offer guidance on how to identify the lasing mode in case of having a multimode nanowire
cavity in 2D and 3D simulation setups, respectively. Moreover, discussions on the convergence
tests in Figures 4.6 through 4.16 demonstrate how to choose simulation parameters and the
boundary conditions to achieve reliable simulation results.

The derivation of the spontaneous emission factor (β) and the Purcell effect in Equations 3.116
and 3.118 allows for the prediction and optimization of these factors before laser fabrication.
Unlike conventional approaches where β is determined post-fabrication through fitting exper-
imental data, our method enables its calculation based on the material parameters and the
nanowire’s dimensions, which is crucial for designing lasers with lower thresholds and higher
spontaneous emission coupling efficiency.

For example, in Figure 5.30, we demonstrate that β reaches a peak at around threshold carrier
density before decreasing as stimulated emission processes begin to dominate. By identifying
this peak, we can strategically select an optimum pump mechanism that operates at the carrier
density where β is maximized. When β is at its maximum, the laser operates under conditions
where the highest number of spontaneous emissions couple into the lasing mode. This coupling
is directly linked to achieving a lower laser threshold because, below the threshold, spontaneous
emission processes are dominant. Therefore, maximizing the coupling of spontaneous emissions
to the lasing mode minimizes the pump power required to achieve lasing.

Furthermore, our analysis of quantum well thickness and temperature effects on β, as shown
in Figures 5.42 and 5.50, demonstrates how these factors directly influence β. These insights
enable the precise selection of QW thickness and operating temperature to maximize β and
improve laser performance. For instance, in Section 5.7 Figure 5.41, we identify that the
optimum QW thickness for a 200nm diameter hexagonal GaAs nanowire with a length of 2.2µm
is 11.8nm which provides the highest β values. Our simulations also showed how temperature
variations affect β, with lower temperatures generally resulting in higher β due to reduced
phonon interactions, as depicted in Figure 5.50.
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Comparing our simulated L-L curves in Figure 5.36 with experimental data not only shows good
agreement in predicting laser thresholds and the shape of the L-L curves but also demonstrates
the significance of using a dynamic β, where β depends on the carrier density in solving the
laser rate equations of 5.36 and 5.37. Specifically, when comparing the L-L curves obtained
using a dynamic β to the one using a constant β in Figure 5.33, a clear difference emerges.
The maximum difference between the black and blue curves occurs around a pump power of
around 0.25 µJ/cm2, corresponding to a difference of 0.0367 in β between the two curves at
this pump power. This insight underscores the importance of accounting for the dependence of
β on carrier density to achieve more accurate modeling and optimized laser performance.
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Chapter 6

Conclusions and Future Work

In this dissertation, we presented an exploration of semiconductor lasers, with a particular focus
on quantum well nanowire lasers and the development of a theoretical framework for modeling
the dynamics of the optical processes in quantum well nanowire lasers. Our formulation unveiled
insights into the design, simulation, and novel understanding of the spontaneous emission factor.
In this concluding chapter, we will summarize the key findings and contributions of this work,
discuss their implications, and outline potential directions for future research.

6.1 Key Reseach Results

The main contribution of this thesis is to develop the formulation to describe emission and
absorption processes in semiconductor nanowires. By investigating the optical processes within
a bulk semiconductor, we adapt the equations for quantum wells by considering the changes in
the optical characteristics due to the quantum confinement effect in quantum wells. We then
added the effect of the nanowire cavity on the absorption gain, and spontaneous emission rates
when the quantum well is placed within a nanowire in Chapter 3. This thesis also proposes
the theoretical equations to calculate the spontaneous emission factor and the Purcell effect for
quantum well nanowire lasers.

A key element of our formulation is that we do not fit the experimental data in our simulations
to calculate β. We solve the laser rate equations using β and the gain that we develop from
our formulations. Our formalism provides an easy method to calculate β directly from material
and cavity parameters which will help to predict laser performance.

The simulations of the ten In0.2Ga0.8As/GaAs quantum well nanowire in Chapter 5 revealed that
when we incorporate the photonic density of states in the equations describing the dynamics
of the optical processes, higher rates for spontaneous emission is obtained compared to the
literature where only free space photonic density of states is considered.

Also, the simulations based on our developed model reveal that the spontaneous emission factor
is not a constant value like usually reported in the literature, and it depends on the carrier
density. By plotting the carrier density versus β, we were able to report the pulse shape of the
spontaneous emission against time and carrier density. The spontaneous emission factor remains
constant for low carrier densities. However, as the pump power increases, β will increase to a
maximum around the threshold carrier density and the decrease again for the carrier densities

151



above the threshold. This behavior is not reported in the previous models of the quantum well
nanowire lasers to the best of our knowledge.

We also investigated the effect of the temperature and the quantum well thickness on the gain
and β. Our simulation results show that by increasing the quantum well thickness from 10nm
to 11.8nm, the spontaneous emission factor increases constantly, after reaching a maximum
of 0.094 for 11.8nm it starts to decrease as the carrier density increases. This finding is quite
interesting because it can predict the optimum thickness of the quantum well within a nanowire
to obtain the highest spontaneous emission coupling efficiency. Also, we investigated the effect
of the temperature on the spontaneous emission factor. Our simulation results reveal that as
temperature increases the β gradually decreases. for temperature larger than 200K, the peak
in the β almost fades away.

Our simulations and theoretical framework effectively capture the laser dynamics, providing an
understanding of the interplay between absorption, gain, and spontaneous emission rates. This
thesis contributes to the fundamental understanding of MQW-nanowire lasers.

6.2 Future Work

In the course of this research, we have contributed to advancing our understanding of quantum
well nanowire lasers, their behavior, and their potential applications. However, as with any
scientific endeavor, there remain promising avenues for future exploration and innovation. In
the following sections, we outline several compelling directions for future work in the field of
nanowire lasers.

1. Effect of the nanowire geometry on the spontaneous emission factor and Pur-
cell effect

To investigate the effect of the nanowire geometry on the spontaneous emission factor and
Purcell effect, we can change the nanowire’s geometry, such as its length and diameter,
which can alter the resonant modes of the nanowire along with its optical properties such
as quality factor, and the confinement factor in Equations 5.5 and 5.6, respectively.

These changes in geometry ultimately lead to the change in the photonic density of states
(Nph(E)) in the rate of optical processes occurring within the nanowire. Specifically,
the modifications in the photonic density of states due to the altered geometry directly
influence the spontaneous emission rates and, consequently, the spontaneous emission
factor in Equation 5.33 and the Purcell factor in Equation 5.35. When the geometry of the
nanowire is adjusted, the resonant modes can either enhance or inhibit the spontaneous
emission, depending on how well the modes overlap with the gain medium.

The Purcell effect relates to the decrease in the spontaneous emission lifetime within the
QWs when they are placed in the nanowire cavity. The Purcell factor depends on both
the quality factor of the resonant modes and their effective mode volume. Therefore, by
changing the nanowire’s diameter and length, the quality factor and mode volume are
modified, which also changes the Nph(E), leading to the change in the Purcell factor. A
higher quality factor and smaller mode volume typically lead to a higher Purcell factor,
reducing the spontaneous emission lifetime.

Consequently, adjusting the nanowire geometry enables us to control and optimize the
photonic density of states, thereby maximizing the spontaneous emission and Purcell
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factors. For future studies, exploring the dependency of both the spontaneous emission
and the Purcell factors on nanowire geometry is a promising area. This research could
lead to improved designs for nanowire-based photonic devices, offering better control over
light-matter interactions at the nanoscale.

2. Effect of dimensionality on the Purcell effect

Investigating the effect of different quantum well thicknesses on the spontaneous emission
and Purcell factors represents another significant area of research. To discuss the effect of
dimensionality on the Purcell effect, we can vary the thickness of QWs. Altering the QW
thickness will change the electronic density of states (ρ(Ecv)) in the absorption, gain,
and spontaneous emission rates within the QW nanowire laser in Equations 5.16 and
5.30. The thickness of the QWs determines where the energy levels exist within the band
diagram and the number of energy levels present. Thinner QWs have fewer energy levels,
resulting in a narrower gain and spontaneous emission spectrum with higher peaks.

By adjusting the thickness of the QWs, we can effectively control the energy levels, which
in turn shifts the laser emission wavelength. This allows for designing QW nanowire lasers
tailored to emit at specific wavelengths suitable for particular applications. For instance,
fine-tuning the QW thickness can provide the necessary control in optoelectronic devices
where precise wavelength emission is critical.

As mentioned above, changing the QW thickness affects the electronic density of states
and consequently influences the spontaneous emission and Purcell factors. Therefore, we
can identify the optimal QW thickness for a given nanowire dimension by exploring how
these factors change with varying QW thicknesses and picking the optimum value where
the spontaneous emission factor is maximum. This approach enables the design of QW
nanowire lasers with customized emission properties optimized for specific applications.
Future studies focusing on the relationship between QW thickness and the spontaneous
emission and Purcell factors will further enhance our ability to engineer nanoscale pho-
tonic devices with precise control over their optical characteristics.

3. Implementing the quantum well nanowire model, developed in this thesis, to
the more complex structures

The quantum well nanowire model developed in this thesis can be implemented to inves-
tigate more complex laser structures. For example, it can be applied to nanowire lasers
with both radial and axial QWs, as reported in [153], where it is unclear whether lasing
is achieved through the radial or axial QWs. This uncertainty challenges understanding
and optimizing the lasing mechanisms within such structures.

By employing our theoretical model, we can investigate the lasing properties of radial and
axial QWs separately. This involves simulating the nanowire cavity’s optical characteris-
tics along with the absorption, gain, and spontaneous emission rates coming from either
radial or axial QWs, considering the specific geometry and arrangement of the QWs. By
comparing the simulation results of the L-L curves with the experimental measurements,
we can identify which type of QW (radial or axial) contributes the most to the lasing
process.

The ability to differentiate the contributions of radial and axial QWs allows for a more
detailed understanding of the lasing mechanisms in complex QW nanowire structures.
This insight can guide the design and optimization of nanowire lasers. For instance, if the
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model indicates that radial QWs contribute more significantly to lasing, future designs can
focus on optimizing the radial QWs’ properties, such as their thickness and composition,
to achieve better lasing efficiency.

Furthermore, this approach enables the exploration of hybrid QW nanowire structures
where both radial and axial QWs are engineered to work simultaneously. Understanding
the individual and combined effects of these QWs on the lasing properties can develop
more sophisticated and efficient nanowire lasers.

4. Modify the mathematical framework proposed in this thesis for Quantum wire
and quantum dot nanowire lasers

The step-by-step approach of our formalism presented in Chapter 3 comprehensively dis-
cusses how confinement in one direction (in the QWs) is incorporated into the formalism
of the bulk gain medium to the QWs. This methodology serves as a foundational guide
for extending the formalism to quantum wires (QWRs) and quantum dots (QDs), which
exhibit confinement in two and three dimensions, respectively.

To adapt the equations for QWRs and QDs nanowire lasers, one should also begin with
the bulk equations. Similar to the approach we presented for QWs, it is necessary to
consider the impacts of the constrained geometry on the wavevectors and the electronic
density of states. For quantum wires, confinement in two directions leads to a series of
one-dimensional subbands in the electronic density of states. Similarly, confinement in
all three directions results in discrete energy levels for quantum dots. Our formalism
specifically highlights where and why the confinement effects alter the equations. For
example, in QWs, confinement affects the in-plane wavevectors and leads to quantized
energy levels perpendicular to the well plane. For QWRs, this confinement would extend
to two dimensions, affecting the wavevectors in both confined directions and resulting in
a series of quantized subbands. For QDs, the complete three-dimensional confinement
results in discrete energy levels, transforming the density of states into a set of delta
functions.

By clearly identifying these points of modification, our formalism paves the way for devel-
oping the mathematical framework for quantum wire and quantum dot nanowire lasers.
This step-by-step approach ensures a consistent transition from bulk to low-dimensional
gain media, maintaining the physical principles while addressing the unique character-
istics of the change of material properties, such as gain and spontaneous emission rates
when moving from bulk to quantum wires and quantum dots. By following the formal-
ism developed in this thesis, one can effectively extend the model for quantum wire and
quantum dot lasers, thereby broadening the applicability and impact of the theoretical
framework.
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[133] S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “Gan nanowire lasers with
low lasing thresholds,” Applied Physics Letters, vol. 87, no. 17, p. 173 111, 2005.

[134] A. Pan, R. Liu, Q. Yang, et al., “Stimulated emissions in aligned CdS nanowires at room
temperature,” The Journal of Physical Chemistry B, vol. 109, no. 51, pp. 24 268–24 272,
2005.

[135] D. Vanmaekelbergh and L. K. Van Vugt, “Zno nanowire lasers,” Nanoscale, vol. 3, no. 7,
pp. 2783–2800, 2011.

[136] H.-C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-
growth oriented zno nanowires,” Journal of Applied Physics, vol. 97, no. 6, p. 064 315,
2005.

[137] R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire
optical cavities,” Nano letters, vol. 5, no. 5, pp. 917–920, 2005.

161



[138] M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in
nanowires: Observation of the transition from amplified spontaneous emission to laser
oscillation,” Applied Physics Letters, vol. 93, no. 5, p. 051 101, 2008.

[139] D. Saxena, S. Mokkapati, P. Parkinson, et al., “Optically pumped room-temperature
gaas nanowire lasers,” Nature photonics, vol. 7, no. 12, pp. 963–968, 2013.

[140] D. Saxena, N. Jiang, X. Yuan, et al., “Design and room-temperature operation of
GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano letters, vol. 16, no. 8,
pp. 5080–5086, 2016.

[141] H. Kim, W.-J. Lee, A. C. Farrell, et al., “Monolithic ingaas nanowire array lasers
on silicon-on-insulator operating at room temperature,” Nano letters, vol. 17, no. 6,
pp. 3465–3470, 2017.

[142] A. Chin, S. Vaddiraju, A. Maslov, C. Ning, M. Sunkara, and M. Meyyappan, “Near-
infrared semiconductor subwavelength-wire lasers,” Applied Physics Letters, vol. 88,
no. 16, p. 163 115, 2006.

[143] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial
core- shell nanowire lasers,” Nano letters, vol. 9, no. 1, pp. 112–116, 2009.

[144] Z. Wang, B. Tian, M. Paladugu, et al., “Polytypic inp nanolaser monolithically inte-
grated on (001) silicon,” Nano letters, vol. 13, no. 11, pp. 5063–5069, 2013.

[145] B. Mayer, D. Rudolph, J. Schnell, et al., “Lasing from individual gaas-algaas core-shell
nanowires up to room temperature,” Nature communications, vol. 4, no. 1, p. 2931, 2013.

[146] Q. Gao, D. Saxena, F. Wang, et al., “Selective-area epitaxy of pure wurtzite inp nanowires:
High quantum efficiency and room-temperature lasing,” Nano letters, vol. 14, no. 9,
pp. 5206–5211, 2014.

[147] Z. Liu, L. Yin, H. Ning, Z. Yang, L. Tong, and C.-Z. Ning, “Dynamical color-controllable
lasing with extremely wide tuning range from red to green in a single alloy nanowire
using nanoscale manipulation,” Nano letters, vol. 13, no. 10, pp. 4945–4950, 2013.

[148] A. Pan, W. Zhou, E. S. Leong, et al., “Continuous alloy-composition spatial grading and
superbroad wavelength-tunable nanowire lasers on a single chip,” Nano letters, vol. 9,
no. 2, pp. 784–788, 2009.

[149] D. Saxena, “Design and characterisation of iii-v semiconductor nanowire lasers,” Ph.D.
dissertation, The Australian National University (Australia), 2017.
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