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Abstract

The Google Earth Engine (GEE) was used to investigate the performance of

the Global Land Data Assimilation System (GLDAS) soil temperature

(ST) data against observed ST from 13 synoptic stations over a semiarid region

in Iran. Three-hourly ST data were collected and analyzed in two depths (0–
10 cm; 40–100 cm) and 5 years. In each depth, GLDAS-Noah ST data were

evaluated for daily minimum, maximum, and average ST (i.e., Tmin, Tmax, and

Tavg). Based on the correlation coefficient, Kling–Gupta Efficiency, and Nash–
Sutcliffe Efficiency the overall performance of the GLDAS-Noah is 0.96, 0.66,

and 0.79 for Tmin; 0.97, 0.84, and 0.89 for Tavg; and 0.95, 0.89, and 0.89 for Tmax,

respectively in the first layer. Likewise, 0.97, 0.85, and 0.86 for Tmin; 0.97, 0.77,

and 0.80 for Tavg; and 0.97, 0.69, and 0.69 for Tmax are obtained in the second

layer. However, there is a significant negative bias which tends to underesti-

mate ST in the two investigated layers, given by an average bias over all the

stations analyzed of �24%, �12%, and �5% for Tmin, Tavg, and Tmax in the first

layer, and average bias of �8%, �13%, and �17% for Tmin, Tavg, and Tmax in

the second layer. This study reveals that GLDAS-Noah-derived ST can be used

in arid regions where little or no observation data is available. Moreover, GEE

performed as an advanced geospatial processing tool in regional scale analysis

of ST in different layers.

KEYWORD S

GLDAS-Noah, Google Earth Engine, semiarid region, soil temperature, synoptic station

Received: 11 August 2023 Revised: 26 June 2024 Accepted: 27 June 2024

DOI: 10.1002/met.2221

Meteorological Applications
Science and Technology for Weather and Climate

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Author(s). Meteorological Applications published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.

Meteorol Appl. 2024;31:e2221. wileyonlinelibrary.com/journal/met 1 of 17

https://doi.org/10.1002/met.2221

https://orcid.org/0000-0003-4394-1970
mailto:akbariinbox@yahoo.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/met
https://doi.org/10.1002/met.2221
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmet.2221&domain=pdf&date_stamp=2024-07-29


1 | INTRODUCTION

Soil temperature (ST) is essential in energy balance appli-
cations such as land surface modeling (LSM), numerical
weather forecasting, agricultural activities, and long-term
climate prediction. ST is also required for estimating most
belowground ecosystem processes, including root growth
and respiration, decomposition, and nitrogen mineraliza-
tion. In addition, ST is an essential factor in agriculture
and treatment of organic waste due to its close relation-
ship to the growth of biological organisms (Ozgener
et al., 2013). ST is similarly a key player in natural heat-
ing/cooling buildings systems, such as ground source
heat pumps, earth-air heat exchangers for agricultural
buildings as well as for agricultural greenhouse systems
(Faridi et al., 2019; Mihalakakou, 2002). According to
Cohen and Fielding (1979), another significant applica-
tion of ST is to predict the frost depth of underground
pipelines. The depth of ST measurement depends on the
specific application (Holmes et al., 2008).

ST plays a key control on the transport and fate of
contaminants in soils. However, unlike other hydro-
meteorological parameters such as air temperature and
precipitation, ST is rarely measured regularly. In many
regions, historical ST databases have been compiled from
meteorological networks but have limited spatial resolu-
tion. For instance, only 13 synoptic stations record the ST
at standard depths in the Khorasan Razavi province.
Given the large area of Khorasan Razavi (128,420
sq. km), the in situ measurements are inadequate to
accurately depict the spatial variability of the minimum,
maximum, and average ST. Similar issues regarding data
scarcity have been reported by Li et al. (2020) in other
regions. The main reasons for the lack of spatial observa-
tions are that the measurement of ST at different depths
is expensive and often difficult (Napagoda & Tilakar-
atne, 2012).

As soil temperature strongly depends on meteorologi-
cal variables (i.e., solar radiation, air humidity, atmo-
spheric pressure, temperature, precipitation, sunshine
hours, and wind speed), several methods have been
developed based on these input variables (Chow
et al., 2011; Li et al., 2020; Ozgener et al., 2013), including
empirical models (Bond-Lamberty et al., 2005), analytical
models (Badache et al., 2016), numerical models (Gao
et al., 2016), machine learning algorithms (Zeynoddin
et al., 2020), and methods based on remote sensing tech-
nology. Empirical equations do not have reasonable pre-
diction power due to their simple structure, while
analytical and numerical models are challenging to use
because of their complexity and vast data demand (Xing
et al., 2018). Given the growing availability of earth
observation technologies, the space-based remote sensing

methods have the potential to offer a very significant con-
tribution to large-scale monitoring of ST (WMO, 2018). A
simple, physically based model that can calculate rela-
tively accurate near-surface (0–10 cm, 40–100 cm) ST
profiles from a single observation can be a valuable tool
for many environmental modeling applications. As
reported by Holmes et al. (2008), earth observation tech-
nologies such as MODIS, AMSR-E, ENVISAT-AATSR,
SSM/I, and TRMM-TMI provide LST products over most
of the earth.

Despite the existence of many studies on ST predic-
tion, the analysis of ST data derived from the Global
Land Data Assimilation System (GLDAS) in Iran is still
rare. GLDAS is a joint effort by the National Aeronautics
and Space Administration (NASA), the National Oceanic
and Atmospheric Administration (NOAA), and the
National Centers for Environmental Prediction (NCEP)
(Rodell et al., 2004). It ingests satellite and ground-based
observational data products using advanced land surface
modeling (LSM) and data assimilation techniques to gen-
erate optimal fields of land surface states and fluxes
(Rodell et al., 2004). The GLDAS drives multiple offline
LSMs and integrates a vast quantity of observation-based
data. Furthermore, it is implemented globally at high
spatial resolutions (1 to 2.5 km), producing results in
near-real-time (NASA, 2021). High-quality global land
surface simulation is achieved using land surface models
while minimizing errors by directing the models with
observation-based data and satellite land data assimila-
tion techniques. GLDAS is a joint effort by NASA,
NOAA, and NCEP (Rodell et al., 2004). According to Rui
and Beaudoing (2018), the GLDAS performs based on
four LSM approaches, including the Community Land
Model (Dai et al., 2003), Variable Infiltration Capacity
(VIC) (Liang, 1994), Noah (Ek et al., 2003), and MOSAIC
(Koster & Suarez, 1996).

In recent years, machine learning models have been
applied by some researchers to predict soil moisture and
ST at different depths. For instance, Afandi et al. (2022)
applied Artificial Neural Network (ANN) for the predic-
tion of temperature at 2-m depth, Li et al. (2022) used
Random Forest (RF) and Support Vector Regression
(SVR) for the prediction of soil moisture and ST, while
Samadianfard, Ghorbani, and Mohammadi (2018)
applied an hybrid ANN for forecasting soil temperature
at multiple-depths and later applied Wavelet neural net-
works and gene expression programming models for pre-
diction of short-term ST at different depths
(Samadianfard, Asadi, et al., 2018). In the same line of
research, Bayatvarkeshi et al. (2021) used complementary
machine learning models for the prediction of ST from
air temperature features in diverse climatic conditions.
Datta and Faroughi (2023) combined a structural
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equation model and an ANN for the estimation of surface
soil moisture. Wang et al. (2023) constructed a structural
equation model coupled with an artificial neural network
for soil moisture inversion. Last but not least, Shamshir-
band et al. (2020) applied support vector machines and
multilayer perceptron for predicting ST at different
depths. It should be noted that machine learning models
calibrated for a given study area cannot be used for
other regions without recalibration, which can limit
applicability.

Though previous work on applications and analysis
of GLDAS-based ST has been carried out over parts of
Asia (Wang, Cui, et al., 2016) and over South Asia (Yang
et al., 2020; Yang & Zhang, 2018), none of the selected
observational networks in these studies were located in
the Middle East and West Asia. Therefore, this is the first
study on the validation of GLDAS-based ST over the Mid-
dle East, with a specific focus on semiarid areas in Iran.
Due to the unique properties of GLDAS data at the global
scale, the accuracy of the data needs to be evaluated at
local and regional scales before its potential use in future
practical applications. In recent years, there has been an
increasing interest in using cloud computing tools and
reanalysis of data. In this study, we utilize the Google
Earth Engine (GEE) platform to evaluate the accuracy of
the GLDAS-based ST reanalysis dataset against the in situ
measurements across a significant agricultural zone in
northeastern Iran. The GEE combines a multi-petabyte
catalog of satellite imagery and reanalyzed data with
planetary-scale analysis capabilities. It has been used to
detect changes, map trends, and quantify differences on
the Earth's surface. This research benefits from the use of
GEE because of its data coverage for this large region,
extensive reanalyzed data such as GLDAS products gen-
erated from different LSMs, high speed, intensive proces-
sing capacity, advanced raster processing tools. GEE is
now available free for academic and research use.

2 | STUDY AREA

The Khorasan Razavi province is located in the northeast
of Iran in central Asia and extends within the 33–38� N
and 56–62� E, covering a total area of 117,200 km2. Agri-
culture is one of the main pillars of economic develop-
ment in this region and considering the importance of ST
on plant growth and photosynthesis process, it is worth
using the GLDAS products to determine the temporal
and spatial variation of ST in this region. The soil texture
in this region is classified as loam, silt loam, silty clay
loam, clay loam, and sandy loam. More than 90% of agri-
cultural soils in Khorasan-Razavi province are classified
in these five texture classes. The mean annual rainfall is

approximately 250 mm, and the average annual tempera-
ture is 14�C. Based on the Köppen climate classification,
the climate of most of Khorasan Razavi is classified as
semiarid or arid (Araghi et al., 2017). The province's
highest elevation found at Mount Shirbad in the Binalud
mountain range north of Neishabour, has an altitude of
3303 m, which contrasts to the lowest elevation of 235 m,
in the Sarakhs plain close to the border of Iran and
Turkmenistan, (Ashraf et al., 2011). The location of the
study area and the corresponding synoptic stations are
shown in Figure 1, and a step-by-step methodology and
workflow is presented in Figure 2.

3 | MATERIALS AND METHODS

Three-hourly observed ST data for 5 years, from January
2008 to December 2012, were collected from 13 synoptic
stations and analyzed statistically using time series analy-
sis, specifically for the applicability of least squares
regression methods. The validity of the linear regression
model was carried out using analysis of variance
(ANOVA) of observed data in all the stations based on
the indicators of Durbin (1971), Durbin and Watson
(1992), and tests of normality (Shapiro & Wilk, 1965)
using the Statistical Package for the Social Sciences
(SPSS) software. Due to the low significance level
obtained (less than 5%), the assumption of normality was
confirmed with a 95% probability.

Further investigation using residual statistics
resulted in a constant variance that fulfils the other con-
dition for acceptance of an ordinary linear regression
model. Runs-test for residuals also confirmed that the
time series are random and first-order autocorrelation
does not exist.

3.1 | Ground-based observation soil
temperature data

The ground-based data used in the current study were
collected from synoptic stations in Khorasan Razavi prov-
ince and managed by the Islamic Republic of Iran Meteo-
rological Organization (IRIMO). The data from all the
stations are standardized based on the World Meteorolog-
ical Organization (WMO) guidelines, and ST is recorded
at depths of 5, 10, 20, 50, and 100 cm below the ground
surface. The ST were measured at 03:00, 09:00, and 15:00
Greenwich Mean Time (GMT) on a daily step. To evalu-
ate the GLDAS-derived ST products, quality checks were
conducted for time series data from the 13 synoptic sta-
tions to identify possible random or systematic errors.
Among the 13 stations listed in Table 1, ST2 and ST3 did
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not meet the quality check criteria due to missing records
in the time series. Therefore, ST2 and ST3 were excluded
from further analysis.

3.2 | Global Land Data Assimilation
System-based ST time series

The GLDAS-2.1 dataset is the newest reprocessed dataset
covering the period 2000–present (Rui &
Beaudoing, 2019), and is archived and distributed by the
Goddard Earth Sciences (GES) Data and Information Ser-
vices Center (DISC). The GLDAS-2.1 is simulated with
the Noah model and forced using the global meteorologi-
cal forcing dataset from Princeton University and
observation-based datasets. The GLDAS-2.1 uses the
MODIS-based land surface parameter datasets and
includes initialization of soil moisture over deserts.
GLDAS-2.1 products are provided with two resolutions of
1� � 1� and 0.25� � 0.25� and extend from the year 2000
to the present with approximately 1.5-month latency, and
are updated monthly.

The ST data from GLDAS were collected for a period
of 5 years, from January 2008 to December 2012, using
the GEE. The GEE is increasingly recognized as a power-
ful worldwide platform for remote sensing data and a fast
computation and visualization system for global-scale
geospatial analysis with an extensive scientific data cata-
log (Gorelick et al., 2017; Kumar & Mutanga, 2018). The
GEE provides tools for collecting, retrieving, and analyz-
ing remotely sensed and processed data from different
sources, including GLDAS. Essential characteristics of
the GLDAS data are provided in Table 2.

The average layer ST is the depth-averaged tempera-
ture beneath the soil surface for that specified layer. The

FIGURE 2 Methodology and workflow of this study.

FIGURE 1 Location of the study area and synoptic stations employed for this research.
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number of vertical layers for ST in different GLDAS-
LSMs is shown in Table 3 (NASA, 2021).

This study evaluated the accuracy of the GLDAS-2.1
Noah 3-hourly 0.25� � 0.25� ST product, named hereafter
as GLDAS-Noah, using observed ST.

3.3 | Evaluation approach

The 3-hourly GLDAS-Noah soil temperature data are pro-
vided as averaged values for specific soil profile depths,

including 0–10, 10–40, 40–100, and 100–200 cm. For the
evaluation of the product, the GLDAS-Noah ST values
were obtained for each synoptic station using its geo-
graphic coordinates. To enable comparison with observa-
tions, and given that the GLDAS-Noah ST are averaged
soil profile values (i.e., 0–10 cm), the observed ST corre-
sponding to 5 and 10 cm depths, and also 50 and 100 cm,
were averaged to generate new time series to compare
with the GLDAS-Noah ST at 0–10 and 40–100 cm soil
depths respectively. This is based on the approach pro-
posed by Wang et al. (2018). The evaluation was under-
taken separately for 03:00, 09:00, and 15:00 GMT, which
can be assumed to represent the daily minimum, maxi-
mum, and average soil temperature values. Several statisti-
cal metrics were employed to evaluate the performance of
GLDAS-Noah ST against the observational data.

3.4 | Statistical metrics

The statistical-based metrics used to evaluate the accu-
racy of the GLDAS ST dataset, include correlation

TABLE 1 Synoptic stations used in this research for the evaluation of soil temperature.

aID Name Latitude (�N) Longitude (�E) Time periods Elevation (m)

ST1 Dargaz 37.47 59.25 2008–2012 514

ST2 Quchan 37.07 58.50 2008–2010 1287

ST3 Sarakhs 36.53 61.17 2008–2011 235

ST4 Golmakan 36.48 59.28 2008–2012 1176

ST5 Neyshabour 36.27 58.80 2008–2012 1213

ST6 Mashhad 36.23 59.63 2008–2012 999

ST7 Gonabad 34.35 58.68 2008–2012 1056

ST8 Sabzevar 36.20 57.65 2008–2012 962

ST9 Fariman 35.58 59.83 2008–2012 1460

ST10 Torbat Heydarieh 35.33 59.22 2008–2012 1451

ST11 Torbat Jam 35.27 60.58 2008–2012 950

ST12 Kashmar 35.27 58.47 2008–2012 1110

ST13 Khaf 34.58 60.15 2008–2012 998

aLocation of stations are shown by station ID in Figure 1.

TABLE 2 Basic characteristics of the Global Land Data

Assimilation System data.

Contents
Water and energy budget
components, forcing data

Latitude extent �60� to 90� N

Longitude extent �180� to 180� E

Spatial resolution 0.25�, 1.0�

Temporal
resolution

3-hourly or monthly

Temporal coverage 2000 to present for the 0.25� data

Dimension 1440 (longitude) x 600 (latitude) for the
0.25� data

Origin (1st grid
center)

(179.875� W, 59.875� S) for the 0.25� data

Land surface
models

CLM 2.0 (1.0�)
MOSAIC (1.0�)
NOAH 2.1 (1.0�)
VIC water balance (1.0�)
NOAH 2.1 (0.25�)

TABLE 3 Available land surface models and supporting

vertical layers in Global Land Data Assimilation System.

Model Vertical layers

CLM (10 layers) 0–0.018, 0.018–0.045, 0.045–0.091, 0.091–
0.166, …, 2.296–3.433 m.

Mosaic (3 layers) 0–0.02,0.02–1.50, and 1.5–3.50 m.

Noah (4 layers) 0–0.1, 0.1–0.4, 0.4–1.0, and 1.0–2.0 m.

VIC (3 layers) 0–0.1, 0.1–1.6, and 1.6–1.9 m.
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coefficient (R), mean error (ME), relative bias (RBIAS),
root mean square error (RMSE), Kling–Gupta efficiency
(KGE), and Nash–Sutcliffe efficiency (NSE), were used to
evaluate the accuracy of the GLDAS ST dataset. The NSE
and KGE are normalized statistics that determine the rel-
ative magnitude of the residual variance compared to the
measured data variance of time series (Nash &
Sutcliffe, 1970). They are commonly used to assess the
predictive power of hydrological time series. However, it
can also be used to quantitatively describe the accuracy
of model outputs for other time series than discharge
such as nutrient loadings and soil temperature (Tabari
et al., 2015). The R is used to assess the strength and
direction of the linear relationships between pairs of
variables. A higher R value represents more minor differ-
ences between the observed data and the fitted values.
The RMSE provides an estimate of how far the predicted
values deviate, on average, from the actual values in the
time series. RMSEs values of 0 indicate a perfect fit and
the values less than half the standard deviation of the
measured data indicate low reliability and unsatisfactory
results (Singh et al., 2004). ME refers to the average of all
the errors in a dataset and, hence, it reflects uncertainty
in measurements or the difference between the predicted
(in this case, the GLDAs values) and the observed values.
Likewise, RBAIS also quantitatively estimates the system-
atic percentage error. From this performance indicator,
the direction of uncertainties can be identified, such as
whether the simulation is over or underestimated. NSE
varies between �∞ and 1. These indices have been

widely used in previous studies (Akbari et al., 2017;
Nashwan et al., 2020; Shirmohammadi-Aliakbarkhani &
Akbari, 2020; Thiemig et al., 2013). The equations and
optimal values for each of the indicators are provided in
Table 4. More details and information can be found in
Nash and Sutcliffe (1970), Gupta et al. (1999), and Mor-
iasi et al. (2007).

4 | RESULTS AND DISCUSSION

4.1 | GLDAS-Noah ST for the 0–10 cm
layer

A linear relationship was obtained between the GLDAS-
derived ST and ground observation time series for the
two soil layers (0–10 cm, 40–100) and for the maximum
(Tmax), minimum (Tmin), and average (Tavg) values. Scat-
tergram was used to evaluate the accuracy of the GLDAS
data visually and presented in Figure 3, in which “Sta”
indicates observed ST values and GLDAS corresponds to
GLDAS-Noah derived ST values. The number of data in
the time series, the correlation coefficient, the linear
equation, and the station ID are reported in each Scatter-
gram. The values of the correlation coefficient reflect a
robust linear relationship between the two datasets in the
first layer (0–10 cm) and correspond to the ranges of
0.92–0.98, 0.90–0.98, and 0.94–0.98 for Tmin, Tmax, and
Tavg, respectively. Results from the Scattergram indicate a
high accuracy of the applied model for ST prediction.

TABLE 4 Utilized metrics for statistical evaluation of Global Land Data Assimilation System-derived soil temperature in this study.

Statistic indices Equations Optimal value

R

R¼
1
N

Pn
i¼1

TStaÞi� TGLDASðð Þ TStaÞi� TStaðð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1

TGLDASÞi� TGLDASð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1

TStaÞi� TStaðð Þ2
r�s 1

ME
ME¼ 1

N

Pn
i¼1

TGLDASð Þi� TStað Þi
� � 0

RBIAS

RBIAS¼
Pn
i¼1

TGLDASð Þi� TStað Þið ÞPn
i¼1

TStað Þi

0

RMSE
RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1

TGLDASð Þi� TStað Þi
� �2s

0

KGE
KGE¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC�1ð Þ2þ β�1ð Þ2þ γ�1ð Þ2

q
β¼ TGLDAS

TSta
γ¼ CVGLDAS

CVSta

1

NSE

NSE¼ 1�
Pn
i¼1

TStað Þi� TGLDASð Þið Þ2Pn
i¼1

TStað Þi�TStað Þ2

0
B@

1
CA

1

Note: where TGLDAS refers to predicted ST, TSta refers to observed ST, and n refers to the number of samples.
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FIGURE 3 Scattergram visually displays the relationship between the observed and Global Land Data Assimilation System-derived soil

temperature (Tavg, blue; Tmax, black; and Tmin brown) for the first layer (0–10 cm) at the stations ST1, ST4-ST6. Scattergram visually displays

the relationship between the observed and GLDAS-derived ST (Tavg, blue; Tmax, black; and Tmin brown) for the first layer (0–10 cm) at the

stations ST7-ST12. Scattergram visually displays the relationship between the observed and GLDAS-derived ST (Tavg, blue; Tmax, black; and

Tmin brown) for the first layer (0–10 cm) at the station ST13.
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To quantify GLDAS-Noah data accuracy with respect
to the observation values, additional statistical metrics,
including ME, RBIAS, RMSE, KGE, and NSE, were
applied and are displayed in Table 5. GLDAS-Noah ST in
the 0–10 cm profile showed an acceptable level of accu-
racy when compared to the observed ST data. In the stud-
ied stations, the values of ME varied from �5.71 to
�1.96, RMSE from RBIAS from �33% to �15%, KGE
from 0.44 to 0.88, and NSE from 0.62 to 0.89 for Tmin.
The negative RBIAS values indicated that the GLDAS-
Noah soil temperature overestimated observed minimum
ST in all stations.

Table 5 shows the results from the evaluation of
GLDAS-Noah ST at 09:00 GMT (taken as a proxy for
Tmax) in the 0–10 cm vertical layer. Considering the find-
ings obtained for all the stations, ME ranges from �1.79
to 2.69�C, RBIAS from �7% to 13%, RMSE from 2.25 to
5.74�C, KGE from 0.85 to 0.93, and NSE from 0.75 to 0.97
for Tmax. Likewise, ME ranges from �5.71 to �1.96 C�,
RBIAS from �33% to �15%, RMSE from 3.4. to 6.34�C,
KGE from 0.85 to 0.93, and NSE from 0.75 to 0.97 for
Tmin. The RBIAS values showed that GLDAS-Noah Tmax

was either underestimated or overestimated. However,
the evaluation indices, specifically NSE and KGE,
showed an enhanced performance of GLDAS-Noah ST
for Tmin at depths of 0–10 cm for the investigated period
from 2008 to 2012.

Likewise, the evaluation of ST at 15:00 GMT (proxy
for Tavg) in the 0–10 cm profile is also presented in
Table 5. Based on the findings obtained in the stations
studied, ME varied from �5.35 to �0.96, RBIAS from
�24% to �5%, RMSE from 2.11 to 6.00�C, KGE from 0.44
to 0.80, and NSE from 0.62 to 0.89. The RBIAS values
revealed that the GLDAS-based ST (Tavg) was overesti-
mated in all stations. However, based on the KGE and
NSE indices, Tavg is simulated with an acceptable level of
accuracy by GLDAS-Noah in the 0–10 cm layer at
15:00 GMT.

As indicated in Table 5, the overall performance of
GLDAS-Noah for prediction of Tmin over the study area is
0.96, �24%, 0.66, and 0.79 based on the correlation coeffi-
cient, RBIAS, KGE, and NSE, respectively. The values for
Tavg are 0.97, �12%, 0.84, and 0.89; and for Tmax are 0.95,
5%, 0.89, and 0.89, correspondingly, which indicates a sig-
nificant positive correlation between the observed and
simulated time series with the lowest bias for Tmax and
highest bias for Tmin. According to Maggioni et al. (2022),
there is no fixed threshold limit for RMSE, but it is always
better to obtain an RMSE value as low as possible. In this
case, relatively high RMSE values are due to the retrieval
methods, the Noah land surface model tends to underesti-
mate downward longwave radiation from its forcing data,
and also instrumental error which are associated to the
observations data (Wang, Li, et al., 2016).

FIGURE 4 Box plot of Tmax,

Tmin, and Tavg and their position to

the optimal values (red dashed line)

based on CC, ME, PBIAS, RMSE,

KGE, and NSE for GLDAS-derived

ST in the first layer (0–10 cm).
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FIGURE 5 Scattergram visually displays the relationship between the observed and Global Land Data Assimilation System-derived soil

temperature (Tavg, blue; Tmax, black; and Tmin brown) ST1, ST4-ST8 for the first layer (40–100 cm) at the stations. Scattergram visually

displays the relationship between the observed and GLDAS derived ST (Tavg, blue; Tmax, black; and Tmin brown) for the second layer (40–
100 cm) at the stations ST9-ST13.
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Box and Whisker plots were used to illustrate the
summary results of the correlation. Optimal values are
shown with a red dashed line for each metric. The scatter
plots for the statistical metrics in the first layer (0–10 cm)
are presented in Figure 4.

Based on the box plots presented in Figure 4, pre-
dicted Tmax shows a closer tendency to the optimal values
for NSE, KGE, RMES, and ME in the first soil layer (0–
10 cm). In this case, minimum relative bias is obtained
for Tmax.

4.2 | GLDAS-Noah ST for the
40–100 cm layer

The results for the GLDAS-Noah ST in 40–100 cm layer are
presented in Figure 5 and Table 6. Similar to the first layer,
a linear relationship was established between the GLDAS
and the ground observation time series for Tmax, Tmin, and
Tavg in the second layer. Surprisingly, a slightly better corre-
lation was found between the two time series with values
in the range of 0.96–0.98, 0.94–98, and 0.96–0.98 for Tmin,
Tmax, and Tavg, respectively, for the second layer.

These findings demonstrated excellent performance
of the GLDAS-Noah for the simulation of ST at 03:00
GMT (Tmin) in the 40–100 cm soil layer (Table 6). In the
studied stations, ME ranged from �4.54 to 0.10, RMSE
from 1.45 to 6.72�C, RBIAS from �21% to �10%, KGE
from 0.71to 0.95, and NSE from 0.74 to 0.95. Similar to

the results from the first layer, the negative RBIAS values
in all the stations indicated that the GLDAS-Noah overes-
timated ST in the second layer. Table 6 also reveals inter-
esting results of GLDAS-Noah ST at 09:00 GMT (Tmax)
for the 40–100 cm soil layer. According to the ME metric,
simulated ST errors varied between �7.05 and �1.73,
RBIAS varied between �29% and �10%, RMSE varied
between 2.80 and 8.93�C, KGE varied between 0.52 to
0.80, and NSE varied between 0.38 to 0.83. The RBIAS
values showed that GLDAS-Noah Tmax was overesti-
mated in the second layer in all stations. However, the
primary evaluation indices, specifically NSE and KGE,
revealed a good agreement between the observed and
simulated ST in all stations except ST12, with the lowest
NSE (0.38) for the investigated 2008–2012 period.

A final evaluation was conducted on the time series
at 15:00 GMT (Tavg) in the 40–100 cm layer, with ME ran-
ged from �5.80 to �0.84, RBIAS from �26% to �5%,
RMSE from 1.94 to 7.81�C, KGE from 0.61 to 0.88, and
NSE from 0.59 to 0.91. RBIAS values revealed that the
GLDAS-based ST (Tavg) was overestimated in all stations.
However, based on the KGE and NSE indices, simulated
Tavg values from GLDAS-Noah at 15:00 GMT in the 40–
100 cm layer were found to have an acceptable level of
accuracy.

The overall performance of GLDAS-Noah for simula-
tion of Tavg over the study area is 0.97, �13%, 0.77, and
0.80 based on the correlation coefficient, RBIAS, KGE,
and NSE, respectively, which indicates an accurate

FIGURE 6 Box plot of Tmax,

Tmin, and Tavg and their position to

the optimal values (red dashed

line) based on CC, ME, PBIAS,

RMSE, KGE, and NSE for Global

Land Data Assimilation System-

derived soil temperature in the

second layer (40–100 cm).
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simulation of GLDAS-Noah for average daily ST in the
second layers (40–100 cm).

As evident in Figure 6, predicted Tmin shows a closer
proximity to the optimal values for NSE, KGE, RBIAS,
RMES, and ME in the second soil layer (40–100 cm).

4.3 | Spatio-temporal variation of ST
over the study area

Considering the strong correlation between the two time
series, an interesting result emerges from the analysis of

the spatial-temporal variation of ST over the investigated
area with the 0.25*0.25 grid resolution. Using GEE and
the Quantum Geographic Information System (QGIS)
software, the ST map for the Tmin, Tmax, and Tavg was
developed for the two investigated layers. The role of
Tmax and Tmin is critically important in many applica-
tions, specifically in agriculture and civil engineering
projects.

Figure 7 shows the spatial variation of annual Tmax

for the 0–10 cm layer, over the Khorasan Razavi region
during the investigated time period. (i.e., for the years
2008, 2009, 2010, 2011, 2012, and 2008–2012).

FIGURE 7 (a) Spatio-

temporal variation of maximum

soil temperature (ST) for the first

layer depth 0–10 cm. (b) Spatio-

temporal variation of maximum ST

for the second layer depth 40–
100 cm over the study area.
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It is evident in Figure 7 that the maximum tempera-
ture in the south of the Khorasan Razavi region is much
higher than in the northwest, with roughly a 16�C differ-
ence. Tmax tends to increase from the south to the north
of Khorasan Razavi region. Figure 8 presents the spatial
variation of annual Tmax in the second layer (40–100 cm),
over Khorasan Razavi region during the investigated time
period. As illustrated in Figure 8, the same trend is
observed for the second layer with values in the range
18.92–36.06�C.

5 | CONCLUSION

We have evaluated the GLDAS-Noah soil temperature at
the depths of 0–10 cm and 40–100 cm within the soil pro-
file layers, comparing it with observed ST data at 03:00,
09:00, and 15:00 GMT in north-eastern Iran from January
2008 to December 2012 by utilization of GEE as a web-
based data storage platform and data processing tools.
The results demonstrate the promising utility of
GLDAS-Noah in regions with limited observational data.

FIGURE 8 (a) Spatio-

temporal variation of minimum

soil temperature (ST) for the first

layer depth 0–10 cm. (b) Spatio-

temporal variation of minimum ST

for the second layer depth 40–
100 cm over the study area.
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Notably, the study reveals that the accuracy of GLDAS-
Noah ST is higher in shallower layers compared to deeper
layers, where accuracy is lower, particularly for Tmax.
Although accuracy is slightly better for Tmin, a significant
negative bias leads to an overestimation of ST in the two
examined soil layers.

The analysis indicates an average bias of �24%,
�12%, and �5% for Tmin, Tavg, and Tmax, respectively, in
the first layer, and an average bias of �8%, �13%, and
�17% for Tmin, Tavg, and Tmax, respectively, in the second
layer over the study period. Despite this bias, a close cor-
relation is observed between GLDAS-Noah and observed
ST, underscoring the algorithm's reliability for simulating
ST in arid regions with limited observation data crucial
for landscaping and construction, where soil temperature
and moisture levels are pivotal. In addition, ST has signif-
icant effects in chemical and biological processes which
take place in soils of study area. This includes seed germi-
nation, bugs and microbes, plant and animals that live in
the environment. Furthermore, the method proves cost-
effective and offers enhanced spatiotemporal coverage for
the Tmin, Tavg, and Tmax over the whole study area.

The study also highlights the advantage of GEE,
which significantly simplifies visualizing, manipulating,
and editing, more than 30 years of historical imagery and
reanalyzed datasets suitable for soil studies. It serves as a
favorable platform for satellite-based soil research, partic-
ularly in evaluating GLDAS products. While this study
focused on GLDAS-Noah LSM, it suggests future investi-
gations to assess the performance of other LSMs, includ-
ing CLM, Mosaic, and VIC, in arid regions.
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