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Abstract

Natural language processing (NLP) models have advanced significantly and are widely

used in applications like sentiment analysis, translation, and chatbots. However, they are

vulnerable to adversarial attacks, threatening their reliability and real-world adoption.

This thesis examines the vulnerabilities of sequence-to-sequence and classification mod-

els and introduces techniques for creating effective, imperceptible adversarial examples.

The Hybrid Attentive Attack (HAA) method crafts subtle adversarial examples in Neural

Machine Translation by focusing on semantically relevant words. The Fraud’s Bargain

Attack (FBA) uses randomization to improve adversarial example selection for classifiers

via the Word Manipulation Process (WMP) and the Metropolis-Hasting sampler. Two

algorithms, Reversible Jump Attack (RJA) and Metropolis-Hasting Modification Reduc-

tion (MMR), enhance search space and balance changes with attack success. This thesis

demonstrates the proposed methods’ effectiveness through extensive experiments.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have demonstrated remarkable success across vari-

ous applications, such as image classification within the Computer Vision (CV) domain

[24, 29, 74], and text recognition in the field of Natural Language Processing (NLP)

[9, 26]. However, recent research has exposed a significant vulnerability of DNNs to

adversarial attacks, where the input data is deliberately altered to deceive the model

[19, 46, 67, 77]. Adversarial attacks in Computer Vision (CV) can have serious con-

sequences, such as causing self-driving cars to misidentify objects or bypass facial re-

cognition systems. Similarly, researchers have shown that NLP models are also highly

vulnerable to adversarial attacks [32, 67, 87, 90]. Adversarial attacks in NLP can also

cause serious consequences, such as spreading fake news, manipulating online reviews,

or causing chatbots to produce harmful responses. Although several attack strategies have

gained great success in terms of tampering with the models, the study of adversarial at-

tacks in NLP is still in its early stages, and further research is needed to develop effective

defense mechanisms to mitigate their impact.
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1.1 Background

Adversarial attacks have been a crucial area of research in NLP, as they can help

improve the security and reliability of text-based systems. These attacks have significant

implications for security and privacy, as attackers can use adversarial examples to evade

text-based security systems, impersonate other users, or manipulate the outcome of nat-

ural language-based decision-making systems. The inception of text-based attacks can

be traced back to 2016, when Papernot et al. [62] conducted a study on the resilience of

Recurrent Neural Networks (RNNs) when processing sequential data. In their research,

Papernot et al. [62] conclusively demonstrated that RNNs could be completely deceived

by making minor alterations to an average of nine words in a 71-word movie review, thus

compromising the accuracy of sentiment analysis tasks. In this section, we’ll first categor-

ize adversarial attacks in NLP into character-level, word-level, sentence-level, and multi-

level, highlighting the effectiveness of word-level attacks. We will discuss why word-level

attacks are preferred, considering their balance between detectability and impact. Then,

we’ll delve into the specifics of how these attacks operate on both sequence-to-sequence

and classification models, illustrating their methodologies and effects on these types of

NLP models.

1.1.1 Attacking Units of NLP Models

Character-level attacks involve the manipulation of individual characters and punc-

tuation marks. These attacks can include character deletion, character insertion, and char-

acter substitution. One of the most common techniques used in character-level attacks

is the edit distance method, which calculates the number of character-level modifications

required to transform the original input into an adversarial example.

Word-level attacks are more sophisticated and involve the manipulation of words

using techniques such as insertion, removal, substitution, or switching. These techniques

are often used to modify critical or influential words in the text, making them particularly

effective in attacking NLP models. For example, attackers may try to insert or substitute
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negative words in a positive review to manipulate the sentiment analysis system.

Sentence-level attacks are less common, but they involve the insertion, removal, or

paraphrasing of entire sentences in the text. These attacks can be challenging to imple-

ment, as they require maintaining the coherence and flow of the text while modifying

its meaning. One of the most common techniques used in sentence-level attacks is the

translation-based method, which involves translating the original text into another lan-

guage and then back into the original language with modified sentences [16]. Further-

more, multi-level attacks combine techniques from the previous levels of attacks to craft

more effective adversarial examples. For example, attackers may use a combination of

character-level and word-level attacks to generate more potent adversarial examples that

can evade detection by defense mechanisms.

Word-level adversarial attacks are often regarded as optimal in NLP due to their

unique combination of imperceptibility, effectiveness, and linguistic naturalness. These

attacks provide a sweet spot between detectability and impact; they are subtle enough

to avoid immediate detection yet effective enough to alter a model’s output signific-

antly. Unlike character-level attacks that might introduce conspicuous spelling mistakes

or sentence-level attacks that could drastically change the text’s overall structure, word-

level modifications are more discreet but still impactful [51]. Moreover, the key strength

of word-level attacks lies in their ability to maintain the natural flow of language. By sub-

stituting words with synonyms or similar-meaning terms, the original sentence structure

and coherence remain largely intact. This subtlety makes it challenging for both humans

and automated detection systems to identify the alterations, as they do not notably deviate

from standard language usage. Collectively, these factors contribute to the widespread

view of word-level attacks as the most efficient and practical form of adversarial attack in

NLP, offering an effective blend of stealth, impact, and applicability.
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1.1.2 Word-level Attacks to Sequence-to-sequence and Classification

Models

Word-level adversarial attacks in NLP target sequence-to-sequence models by subtly

altering specific words in the input text, which can dramatically change the output while

keeping the overall structure and meaning intact [78]. These attacks are effective because

sequence-to-sequence models, used in tasks like machine translation and text summariz-

ation, heavily rely on the context provided by each word. Techniques such as synonym

replacement, homophone substitution, and word insertion or deletion are commonly used

to manipulate the model’s output. Executing these attacks requires a deep understanding

of the model and language, aiming to alter the output significantly while maintaining a

semblance of the original text [93]. This area has been the focus of various studies, under-

scoring the need for more resilient models against such subtle yet impactful word-level

adversarial tactics.

Following the discussion on adversarial attacks targeting sequence-to-sequence mod-

els, it’s crucial to examine how similar strategies impact classification models in NLP.

These models, designed for tasks like sentiment analysis, spam detection, and topic cat-

egorization, are susceptible to word-level adversarial attacks that can skew their classific-

ation outputs. In these attacks, subtle manipulations in the input text, such as replacing

key words with synonyms or semantically similar terms, can lead to misclassification.

For instance, altering a few words in a product review could change a sentiment analysis

model’s output from positive to negative. The challenge in executing these attacks lies

in modifying the text enough to affect the classification result while keeping the changes

inconspicuous [43, 90]. Such attacks highlight the vulnerabilities in classification models

and emphasize the importance of enhancing their robustness to maintain accuracy and

reliability in real-world applications.

In this thesis, we introduce a novel algorithm, Hybrid Attentive Attack (HAA), de-

signed to target neural machine translation (NMT) systems, a widely-used variant of

sequence-to-sequence models. Additionally, we present two sophisticated algorithms

aimed at compromising textual classifiers: the Fraud’s Bargain Attack (FBA) and the
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Reversible Jump Attack with Modification Reduction (RJA-MMR). These algorithms are

meticulously crafted to navigate and manipulate the complex landscapes of NMT and

textual classification models, showcasing innovative approaches in the field of adversarial

machine learning.

1.2 Research Objectives

i Perform textual attack to generate semantic preserving text adversarial examples to

Neural Machine Translation models, a type of sequence-to-sequence model.

ii Design a performance-boosting textual attack to the NLP classifier by utilizing the

sampling methods to pose thrilling attacks via removing, inserting and substituting

words.

iii Conduct studies of generating successful adversarial attacks to textual classifiers with

minor modification rates based on the random sampling method.

1.3 Summary of Research Findings

We summarize the methodology and research findings of this thesis as below:

1. In this thesis, we first propose HAA, which selects influential words by both translation-

specific and language-centered attentions and substitutes them with semantics-preserved

word perturbations via pre-trained models.

2. We then propose Fraud’s Bargain Attack (FBA) utilizing a stochastic process called

the Word Manipulation Process (WMP), which considers word substitution, inser-

tion, and removal strategies to generate potential adversarial candidates. The FBA

employs the Metropolis-Hasting algorithm to select the best candidates based on a

customized acceptance probability, which minimizes semantic deviation from the

original sentences.
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3. We then introduce Reversible Jump Attack (RJA) with Metropolis-Hasting Modi-

fication Reduction (MMR) to enhance the robustness of classifiers. RJA causes

NLP classifiers to be at risk by using the Reversible Jump technique to randomly

select the number of altered words, the words to be altered, and their replacements

for each input. MMR, on the other hand, is a customized algorithm that aims to im-

prove the imperceptibility of the attack, particularly by reducing the modification

rate.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2: This chapter presents a survey of adversarial machine learning on the

textual attacks, separately.

• Chapter 3: This chapter presents the Hybrid Attentive Attacks to Neural Machine

Translations and the experimental evaluation results.

• Chapter 4: This chapter presents the Fraud’s Bargain Attacks to texutal classifiers

and reports the experimental validation results.

• Chapter 5: This chapter presents Reversible Jump Attack with modifications reduc-

tion to generate context-aware text examples and report the experimental results.

• Chapter 6: This chapter concludes this thesis and highlights several future research

directions.
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Chapter 2

Literature Review of Adversarial

Textual Attack

Deep Neural Networks (DNNs) have seen a surge in popularity due to significant ad-

vancements in Artificial Intelligence (AI) and the advent of high-performance computing

platforms. Yet, despite their prowess, these models remain susceptible to attacks using ad-

versarial samples. These are maliciously crafted data points which, though only slightly

altered from the original input, can deceive the model into making incorrect predictions.

This concept is central to adversarial learning, a technique that deliberately supplies mis-

leading input to challenge and probe models. With the increasing emphasis on creating

adversarial images and mounting concerns about model security, adversarial learning in

the domain of Natural Language Processing (NLP) has garnered substantial attention. In

this literature review, our focus will be on exploring research about textual adversarial

attacks.

In this chapter, we review the representative character-level (Section 2.2), word-level

(Section 2.3), sentence-level (Section 2.4) attacks and the challenges (Section 2.5).

25



CHAPTER 2. LITERATURE REVIEW

2.1 Overview of Adversarial Textual Attack

Despite their advanced capabilities, modern NLP models remain vulnerable to ad-

versarial examples—subtly modified inputs that, while imperceptible to humans, can de-

ceive the algorithm into erroneous behavior [93]. Such adversarial instances have been

documented across various domains, including textual classification[1, 77, 90], speech

recognition[3], and neural machine translation [6, 13, 78], among others. Beyond the

evident security concerns they pose, these adversarial examples underscore crucial gaps

in our comprehension of contemporary machine-learning methodologies.

Unlike computer vision models, NLP models inherently operate on discrete, semantically-

rich, and readily perceptible input. Given this distinction, our exploration will focus on

textual attacks based on the granularity of input units rather than specific attacking meth-

ods. We will delve into attacks at the character, word, and sentence levels, as well as

multi-level attacks. However, a detailed examination of multi-level attacks will be lim-

ited, as they essentially combine the strategies of the first three levels. The subsequent

bullet points will highlight the primary aspects of each level of attack:

• Character-level: At this level, individual characters, including punctuation, are ma-

nipulated—whether removed, inserted, or replaced—to craft adversarial examples

that a language model can still process. Techniques often draw upon gradient-based

methods inspired by computer vision attack strategies.

• Word-level: This level encompasses four primary text manipulation methods: word

insertion, removal, switching, and substitution. Typically, the focus is on pinpoint-

ing and manipulating words that have a significant influence on model interpreta-

tion. Recognizing these pivotal words and determining how to alter them is critical

for the success of these attacks.

• Sentence-level: Attacks at the sentence level commonly involve inserting, remov-

ing, or paraphrasing entire sentences. There’s an emerging trend of leveraging text-

generation techniques to craft these adversarial examples.

26



CHAPTER 2. LITERATURE REVIEW

• Multi-level: As the name suggests, multi-level attacks integrate strategies from the

character, word, and sentence levels to form a comprehensive attack approach.

In addition to unit-level attacks, textual attacks can be broadly classified into two

categories based on the degree of access and understanding the attack possesses regarding

a language model’s structure and parameters: white box and black box [93].

• White-Box Attacks: For these attacks to be carried out, the adversary must have

full, unrestricted access to the classifier model [20]. This encompasses not just the

model’s overarching architecture but also its intricate details like weights, biases,

and gradient information. With such a profound understanding of the model’s work-

ings, the attacker can exploit specific vulnerabilities, making these types of attacks

particularly potent and potentially more damaging. Since they can pinpoint and

leverage weak spots directly, white-box attacks often lead to higher success rates.

• Black-Box Attacks: Reflecting a majority of real-world attack scenarios, black-box

attacks operate under the assumption that the attacker does not have detailed in-

sights into the model’s architecture, weights, or training process [20]. Their know-

ledge is generally confined to the model’s inputs and outputs. Despite this informa-

tional limitation, attackers can still be astutely strategic. By iteratively querying the

model and observing its responses, they can glean insights into its behavior, thereby

crafting adversarial inputs that might cause the model to err or malfunction.

Both white-box and black-box attacks emphasize the urgent need for durable de-

fense mechanisms in the realm of machine learning. White-box attacks, armed with an

intimate understanding of a model, target specific vulnerabilities, offering an in-depth

perspective on potential weak points. Conversely, black-box attacks highlight the over-

arching threats from adversaries operating with only peripheral, constrained knowledge

of a model. Despite this, in real-world settings, it is the black-box attacks that often

pose a greater concern, given that attackers usually don’t have access to proprietary or

safeguarded machine learning architectures. Yet, the role of white-box attacks remains

pivotal. They not only offer critical insights into potential model vulnerabilities but also
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set the groundwork that enhances the efficacy of black-box strategies. This foundational

understanding allows adversaries to mount more impactful attacks, even with scant model

details [13]. Throughout this review, our exploration of attack strategies will span various

unit levels, intertwining discussions on both white-box and black-box approaches.

2.2 Character Level Attack

As highlighted in the preceding bullet points, character-level attacks encompass

strategies that involve the insertion, modification, swapping, or removal of characters,

numbers, or special symbols. In 2016, Papernot et al. [62] pioneered white-box attack

strategies at the word level, garnering significant interest from researchers in the language

modeling domain. Table 2.1 offers a comprehensive overview of the character-level at-

tacks, which will be the focus of our discussion in this section.

Table 2.1: Character level attack with applications

Year Reference Attack Type Application
2017 Hosseini et al. [27] White & Black box Classification
2017 Belinkov and Bisk [2] Black box Machine Translation
2018 Gao et al. [16] Black box Classification
2019 Gil et al. [18] Black box Classification

The Perspective API, jointly developed by Google and Jigsaw, was designed to

identify toxicity in comments. Nevertheless, in 2017, Hosseini [27] exposed vulnerab-

ilities in Google’s Perspective API, illustrating that its detection mechanism could be

circumvented through basic input alterations. Rather than employing a systematic ap-

proach, Hosseini primarily altered toxic words by introducing subtle changes such as

inserting a dot (.) or a space between characters or swapping adjacent characters. These

tweaks significantly reduced the toxicity score assigned by the API. Some of these ad-

versarial examples are illustrated in Figure 2.2. At a high level, their techniques included

controlled adversarial methods designed to mask specific words during translation and

targeted methods that either introduced or accentuated particular words. The strategies

employed gradient-based optimization and manipulated the text through four primary op-
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erations: insertion, character swapping, character replacement, and deletion. For black-

box attacks, characters were randomly selected for the prescribed modifications.

Original Phrase (Toxicity Score) Original Phrase (Toxicity Score)

Climate change is happening and it’s not
changing in our favor. If you think differ-
ently you’re an idiot. (84%)

Climate change is happening and it’s not
changing in our favor. If you think differ-
ently you’re an idiiot. (20%)

They’re stupid, it’s getting warmer, we
should enjoy it while it lasts (86%)

They’re st.upid, it’s getting warmer, we
should enjoy it while it lasts (2%)

They are liberal idiots who are uneducated
(90%)

They are liberal i.diots who are
un.educated (15%)

idiots. backward thinking people. nation-
alists. not accepting facts. susceptible to
lies. (80%)

idiiots. backward thinking people. nation-
aalists. not accepting facts. susceptible to
1.lies. (17%)

They are stupid and ignorant with no class
(91%)

They are st.upid and ig.norant with no
class (11%)

It’s stupid and wrong (89%) It’s stuipd and wrong (17%)

If they voted for Hilary they are idiots
(90%)

If they voted for Hilary they are id.iots
(12%)

Anyone who voted for Trump is a moron
(80%)

Anyone who voted for Trump is a mo.ron
(13%)

Screw you trump supporters (79%) S c r e w you trump supporters (17%)

Table 2.2: Illustration of the Attack Targeting the Perspective Toxic Detection System.
The phrases listed in the initial column of the table have been selected from examples
available on the Perspective website.

Belinkov [2] delved into the domain of character-based neural machine translation.

Their approach was distinct in that they did not leverage gradients. Instead, their fo-

cus was on bolstering model robustness, employing two primary strategies: the use of

structure-invariant word representations and training on noisy texts. Their investigations

revealed that models anchored in character convolutional neural networks could adeptly

learn representations that were resilient to an array of noise types. Their methodology for

generating adversarial examples tapped natural and synthetic noise sources. For natural

noise, they curated and extracted errors from various datasets, subsequently replacing the

accurate words with these erroneous variants. Regarding synthetic noise, they applied

methods such as character swapping, internal word character randomization (excluding
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Figure 2.1: The diagram illustrates how the token “favorite” is scored in the input se-
quence “ This is definitely my favorite restaurant.” Various scoring methods, including
Replace1, Temporal Head, and Temporal Tail, involve subtracting the prediction score of
the red section from the prediction score of the green section for this token.[16]

the initial and final characters), complete character randomization, and character substitu-

tion based on keyboard proximity. To provide specifics, the authors introduced strategies

such as swapping adjacent letters within words, a common mistake in rapid typing, re-

arranging internal characters of words while preserving the first and last letters, fully

randomizing word characters, and substituting characters with their immediate keyboard

neighbors. These techniques, when applied to words of different lengths, can create an-

omalies, thereby challenging the standard patterns a system is trained to identify.

Gao [16] introduced the DeepWordBug algorithm, specifically designed to induce

minute perturbations in text inputs, effectively causing deep-learning classifiers to mis-

classify them within a black-box environment. Central to their approach was identifying

pivotal words ripe for modifications that would lead to the targeted misclassification. To

this end, they devised four scoring functions, each meticulously designed to discern these

words without necessitating insight into the model’s parameters or architecture. The scor-

ing functions were titled Replace-1 Score (R1S), Temporal Head Score (THS), Temporal

Tail Score (TTS), and Combined Score (CS). The initial trio of functions, R1S, THS, and

TTS, is elucidated in Figure 2.1. The final function, CS, uniquely amalgamates both THS

and TTS. Drawing on insights from these bidirectional measures, it provides a more com-

prehensive assessment of a word’s significance through its encompassing context. For

their empirical studies, the authors leaned on the CS function, given its demonstrably su-

perior efficacy. Once pivotal words were discerned, a series of token alterations—Swap,

Substitution, Deletion, and Insertion—were employed to manipulate the identified critical

tokens.
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Gil et al. [18] adeptly adapted a white-box attack technique for black-box applica-

tions. By creating adversarial examples utilizing a white-box method, they subsequently

trained a neural network model to emulate this process. Precisely, the generation of ad-

versarial examples via the HotFlip method was assimilated into a neural network. This

newly evolved model was christened as DISTFLIP. A notable merit of their methodo-

logy was its independence from the optimization process, thereby accelerating the gener-

ation of adversarial examples. Representative adversarial samples from their work can be

viewed in Table 2.3.

Table 2.3: Examples of sentences attacked by DISTFLIP-10 and The Google Perspective
toxicity score before and after the attack.

Original Adversarial Google
score

decline=I don’t fucking think so decline=I don’t vucking think so 0.79→0.07

its an AP article you asshole, how
is it not neutral???

its an AP article you assnole, how
is it not neutral???

0.96→0.48

I think the 1 million sales is total
bullshit though.

I think the 1 million sales is total
bullshkt though.

0.79→0.07

do not know juden! silence is
golden juden, now shut up.

do not know juden! silence is
golden juden, now xhjt up.

0.69→0.37

This article sucks . . WOO WoO
WO000000

This article xuxks . . WOO woo
w000000o

0.93→0.22

Also bring back the brendle art-
icle you piece of shit.

Also bring back the brendle art-
icle you pkece of xhkt.

0.98→0.32

to be driven away and die to be driven away and dke 0.82→0.32

2.3 Word Level Attack

Unlike character-level attacks, word-level assaults can be subtler, often eluding hu-

man detection even upon meticulous examination of the entire context. This subtlety

can make them potentially more damaging than their character-level counterparts. In this

section, we delve into various word-level attack strategies, the nuances of which are sum-

marized in Table 2.4
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Table 2.4: Word level attack with applications.

Year Reference Attack Type Application
2016 Papernot et al. [62] White box Classification
2017 Samanta and Mehta [71] White box Classification
2017 Liang et al. [46] White&Black box Classification
2018 Kuleshov et al. [40] White box Classification
2018 Li et al. [44] White box Classification
2018 Alzantot et al. [1] Black box Classification
2019 Jia et al. [32] Black box Classification
2020 Li et al. [45] Black box Classification
2019 Ren et al. [67] Black box Classification
2020 Jin et al. [33] Black box Classification
2020 Garg and Ramakrishnan [17] Black box Classification
2020 Zang et al. [90] Black box Classification
2020 Zhang et al. [92] Black&White box Classification

2020 Cheng et al. [6] Black box
Machine translation
& Summarization

2020 Tan et al. [78] Black box
Machine translation
& Summarization

2021 Li et al. [43] Black box Classification
2021 Yoo and Qi [89] Black box Classification

The paper by Papernot et al. [62] is credited as the first to create adversarial ex-

amples for texts. They employed a computational graph unfolding method to calculate

the forward derivative and, with its assistance, the Jacobian can be calculated for further

applications. This approach is used to generate adversarial examples via the Fast Gradi-

ent Sign Method (FGSM). In their process, the words selected for substitution are chosen

randomly, resulting in sentences that don’t retain their original meaning or grammatical

correctness. Two types of attacks were proposed: adversarial samples and adversarial

sequences. For adversarial samples, they utilized an equation inspired by computer vis-

ion attacks. In this equation, the adversarial example is crafted from a legitimate sample,

with a permutation added to it. The goal is to find the smallest perturbation that causes a

change in the model’s output. For adversarial sequences, however, the output of a Recur-

rent Neural Network (RNN) is a sequence, not a category, making the previous equation

unattainable. They proposed a modified equation where the adversarial example is ob-

tained by adding the smallest perturbation that keeps the difference between the model’s

output on the adversarial sequence and the adversarial target within an acceptable error
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limit. Finally, they apply the FGSM to approximate the adversarial sequence equation.

They do this by linearising the model’s cost function around its input and choosing a per-

turbation using the gradient of the cost function with respect to the input itself. The size

of the perturbation is controlled by a hyper-parameter.

Samanta and Mehta [71] introduced a model designed to alter a text classification

label with the smallest number of changes. This model operates by either adding a new

word, deleting an existing one, or replacing one. Initially, the model identifies the words

that significantly contribute to the classifier’s performance. A word is considered highly

contributive if its removal significantly impacts the class probability. To replace words, a

pool of potential substitutes is created, comprising synonyms, meaningful words created

from typos, and genre-specific words. The model then manipulates these words using

three specific strategies. The first strategy involves removing words. Specifically, the

model checks if the word under consideration is an adverb and if it has a high contribution

score. If both conditions are met, the word is removed from the sample pool, creating a

modified sample. If the first strategy isn’t applicable, the second strategy comes into

play, which involves adding words. In this case, a word is selected from the candidate

pool using the Fast Gradient Sign Method (FGSM) [19], following a particular condition.

If neither of the first two strategies is applicable, the model resorts to the third strategy:

word replacement. In this case, a word is replaced with a genre-specific keyword from the

candidate pool, but only if the parts of speech of both the original and replacement words

match. If they don’t match, the model chooses the next best word from the candidate pool

for replacement. This strategy ensures that the modified sample isn’t easily detected as an

adversarial sample and that the sentence’s grammar remains largely intact.

Liang et al. [46] presented a method for creating adversarial text samples that can

deceive deep neural network (DNN) based text classifiers, indicating their vulnerability

to such attacks. Specifically, the authors proposed both a white-box and a black-box

attack strategy based on insertion, deletion, and modification of text. They employed a

natural language watermarking technique to generate adversarial samples. In the white-

box attack, they used the concepts of Hot Training Phrase (HTP) and Hot Sample Phrase

(HSP), obtained through backpropagation, to determine what and where to insert, delete,
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and modify. For black-box attacks, they used a fuzzing technique to implement a test and

obtain HTPs and HSPs. The effectiveness of this method was confirmed through tests on

two representative text classification DNNs.

Kuleshov et al. [40] defined adversarial examples as inputs that are crafted to retain

the same meaning as the original text but can fool text classification algorithms. They

introduce the notion of “altered adversarial examples,” which involve adding impercept-

ible perturbations to the original text while maintaining semantic and syntactic similarity.

To construct adversarial examples, the authors propose a greedy optimization strategy.

The algorithm iteratively replaces words in the input text with their synonyms, aiming to

maximize the adversarial objective while satisfying constraints on semantic and syntactic

similarity. The optimization process considers valid one-word changes at each step and

selects the replacement that improves the objective the most. The algorithm terminates

either when the objective surpasses a threshold or when a specified fraction of words

has been replaced. The authors utilize thought vectors to capture the semantic similarity

between sentences. Thought vectors are mappings of sentences to a vector space where

similar sentences are close to each other. The optimization process includes a constraint

on the semantic similarity between the original and altered examples using thought vec-

tors. Additionally, the authors introduce a syntactic constraint based on a language model.

The language model is trained on the same dataset as the text classifier and measures the

probability of a sentence being grammatically correct. The optimization process ensures

that the language model probabilities of the original and altered examples are similar,

preserving syntactic validity. Overall, the methodology involves a greedy optimization

strategy that iteratively replaces words with synonyms while maintaining semantic and

syntactic similarity. The approach leverages thought vectors and language models to cap-

ture semantic and syntactic constraints, respectively. The experimental results validate

the effectiveness of the proposed methodology in constructing adversarial examples in

natural language classification.

In 2018, Li et al. [44] demonstrated the vulnerability of Deep Learning-based Text

Understanding (DLTU) systems to adversarial text attacks. These attacks involve care-

fully crafted texts manipulating DLTU systems to produce incorrect results. They intro-
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duced a framework called “TextBugger” for generating adversarial texts. The framework

includes both white-box and black-box attack techniques, with white-box attacks being

more impactful than black-box attacks. For white-box attacks, Li et al. followed a two-

step process for generating adversarial examples. They first defined a score function to

identify keywords and then manipulated those words accordingly. Drawing inspiration

from JSMA (Jacobian-based Saliency Map Approach), which is used in adversarial at-

tacks in computer vision, they formulated their score function using the Jacobian matrix.

The score function, denoted as JF(x), measures the sensitivity of the model’s output to

changes in the input. To generate adversarial examples, they focused on five types of

edits: insertion, deletion, swapping, substitution with visually similar words, and sub-

stitution with words having similar meanings. They created all five types of edits and

selected the one that yielded the most significant reduction in accuracy. They proposed

a three-step approach for black-box attacks within their framework, where gradient in-

formation is inaccessible. They first determined the most important sentence and then

identified its optimal word. Since the performance of the black-box attack is not satis-

fying, we consider the contributions to be mainly for white-box attacking. Overall, [44]

developed a comprehensive framework, TextBugger, which showcased the susceptibility

of DLTU systems to adversarial text attacks. They provided strategies for generating ad-

versarial examples through white-box and black-box attack techniques, highlighting the

effectiveness of white-box attacks in particular.

Most researchers’ objective was to minimize the number of modified words while

maintaining semantic similarity and syntactic coherence between the original and ad-

versarial examples. However, when dealing with black box attacks, where access to the

structures and parameters of the DNN models is not available, and gradients cannot be

utilized, they needed an alternative approach. Instead of relying on gradient-based optim-

ization, they developed an attack algorithm that leverages population-based gradient-free

optimization using genetic algorithms. Alzanot [1] proposed black-box attack techniques

based on genetic algorithms. The authors aimed to generate adversarial examples that

preserve both semantic and syntactic similarity. They started by randomly selecting a

word from a given sentence and replacing it with a suitable replacement word that fits
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the sentence context. They utilized the GloVe embedding space to calculate the closest

neighboring words. To ensure contextual coherence, they used the Google Words lan-

guage model [5] to remove any words that didn’t align with the sentence context. Then,

they selected a word that maximized the prediction and replaced the original word with

the selected one.

Based on the genetic attack [1], Jia et al. [32] proposed a faster version of the Ge-

netic Attack by applying the Interval Bound Propagation (IBP) training. Specifically, IBP

training is a certifiably robust training method that minimizes the upper bound on the

worst-case loss induced by any combination of word substitutions. It computes a tract-

able upper bound on the loss of the worst-case perturbation to ensure robustness against

all possible word substitutions within a defined perturbation set. The effectiveness of IBP

training is measured by its certified accuracy, which provides a certificate of robustness.

IBP-trained models have shown significantly higher robustness. Besides, the key differ-

ences between these methods lie in their objectives and outcomes. The genetic attack

serves as a tool to test model vulnerabilities by actively seeking weaknesses, whereas

IBP training is a proactive approach that focuses on building inherent robustness into the

model during the training phase. These methods highlight the contrasting approaches in

adversarial machine learning: attacking or testing models versus defending or fortifying

them.

In 2020, Linyang Li and colleagues [45] introduced the BERT-Attack, leveraging the

capabilities of pre-trained masked language models like BERT. This approach repurposes

BERT to challenge its fine-tuned derivatives and other sophisticated neural models in

downstream tasks. Demonstrating superior effectiveness, their technique adeptly deceives

target models into erroneous predictions, surpassing existing attack methods in terms of

success rate and perturbation percentage. Notably, the adversarial samples produced are

both linguistically coherent and semantically intact. They have similar strategies to the

previous method, finding vulnerable words and substituting them. Since the pre-trained

model became a hot topic in natural language processing, Li fine-tuned BERT, a famous

pre-trained masked language model, to substitute these vulnerable words.
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Ren et al. [67] proposed a rank-based attacking method that uses saliency scores to

identify and prioritize words in a text for synonym-swap transformations. This method

involves using WordNet [53] to find synonyms or similar entities for each word, then

selecting the substitute word that most significantly alters the text’s classification probab-

ility. By replacing the original words with these substitutes, a new version of the text is

generated. The effectiveness of each substitution is evaluated based on the extent to which

it changes the classification probability, thereby identifying the most impactful words for

adversarial attacks on classification models.

Jin et al. [33] build upon the concept introduced by PWWS, but they adopt a different

approach for crafting ranks. In their method, the importance score for a word wi is calcu-

lated based on the change in prediction probability before and after the word is deleted.

This approach provides a nuanced understanding of each word’s impact on the overall

classification. Similarly, Garg and Ramakrishnan [17] follow the same foundational idea

but introduces another variation. Their method involves replacing and inserting tokens

in the original text. This is achieved by masking a portion of the text and then using

the BERT Masked Language Model (MLM) to compute the difference in logits. Both ap-

proaches offer alternative methods to assess the influence of specific textual modifications

on classification outcomes.

The strategy of finding appropriate word substitutions while preserving semantic

meaning is commonly used in word-level attacks. One straightforward approach is to

search the embedding space, where candidates with minimal distances can be considered

suitable replacements for the original word. However, this method requires computation-

ally expensive metric calculations, which is not ideal. To address this, Zang et al. [90]

proposed a sememe-based word substitution technique using Particle Swarm Optimiza-

tion (PSO) in their work. Sememes are the smallest semantic units in human language.

The authors argued that existing methods based on word embeddings and language mod-

els can provide numerous replacements but they may not always be semantically correct

or contextually relevant. In comparison, their sememe-based approach outperformed the

previously mentioned methods, as they demonstrated through their comparisons.
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Unlike previous approaches, Zhang et al. [92] employed the Metropolis-Hastings Al-

gorithm (MHA), a Markov Chain Monte Carlo method, to generate adversarial examples

in natural language processing. This method overcomes the limitations of traditional op-

timization techniques, which often struggle with the discrete and complex nature of sen-

tence space, leading to non-fluent adversarial examples. MHA operates in both white-box

and black-box settings, with the white-box version utilizing gradients to propose new ex-

amples while the black-box version selects target words randomly. This results in superior

performance of the white-box attacks compared to the black-box ones. The effectiveness

of MHA is demonstrated through experiments on the IMDB and SNLI datasets, where it

not only produces more fluent adversarial examples but also improves the robustness and

performance of NLP models via adversarial training. MHA marks a significant advance-

ment in the field by creating adversarial examples that are both effective in misleading

models and linguistically plausible.

Cheng et al. [6] tackled the intricate task of generating adversarial examples for

sequence-to-sequence (seq2seq) models, characterized by discrete textual inputs and out-

puts with extensive variability. Addressing the challenges of discrete inputs, they intro-

duce a technique that merges projected gradients, group lasso, and gradient regularization.

For handling the expansive and diverse output space, they innovatively craft loss functions

specifically designed for distinct non-overlapping attacks and attacks targeting specific

keywords. This approach is applied to machine translation and text summarization tasks,

demonstrating its effectiveness: by altering less than three words, the seq2seq model can

be made to produce desired outputs with high success rates. This research provides a sig-

nificant contribution to the field, particularly in understanding and manipulating seq2seq

models, a domain less evaluated compared to CNN-based classifiers. Similarly, Tan et al.

[78] introduced a method called Morph to attack sequence-to-sequence models. Morph

employs a greedy search strategy, focusing on words classified as nouns, verbs, or adject-

ives. The goal is to identify and substitute these words with synonyms in a manner that

maximally decreases the BLEU score, a metric commonly used for evaluating machine

translation quality. By strategically modifying these key words in the source text, Morph

aims to significantly impact the translation output. This method allows for precise ma-
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nipulation of the seq2seq model, targeting its translation capabilities by altering specific

parts of the input text.

Dianqi Li et al. [43] proposed CLARE (ContextuaLized AdversaRial Example),

which is a text generation model for creating adversarial examples in natural language

processing (NLP) tasks. It employs a mask-then-infill procedure to perturb input text

while maintaining its similarity to the original text. CLARE employs three contextual-

ized perturbation actions: Replace, Insert, and Merge. In the Replace action, a token at

a specific position is substituted with an alternative token. The original token is replaced

with a mask, and a candidate token is chosen from a set based on the probabilities as-

signed by a masked language model. The selected token minimizes the probability of

the gold label predicted by the victim model. The Insert action adds extra information

to the input by inserting a mask after a token. The masked language model is used to

select a candidate token that fits the unmasked context. The Merge action masks a bigram

(two consecutive tokens) by replacing it with a mask. The alternative token is selected

using the same approach as in the Replace and Insert actions. CLARE applies these per-

turbation actions iteratively, selecting the highest-scoring action at each step based on

its potential to confuse the victim model. By minimizing modifications to the original

input, CLARE generates adversarial examples that preserve textual similarity, fluency,

and grammaticality. From their experiments and human evaluation, CLARE outperforms

baseline methods and strikes a better balance between successful attacks and preserving

input-output similarity. Overall, CLARE employs contextualized perturbations, masked

language modeling, and scoring mechanisms to generate adversarial examples that main-

tain the characteristics of the original text across various NLP tasks.

The A2T [89] method enhanced the speed and efficiency of generating adversarial

examples in natural language processing. It achieves this through two key innovations: (1)

a gradient-based word importance ranking, which calculates the importance of each word

in the input text using the gradient of the loss, thus requiring only one forward and back-

ward pass, significantly reducing the number of necessary forward passes for each word,

and (2) the use of DistilBERT [72], a semantic textual similarity model, instead of larger

encoders like universal sentence encoder (USE) [88]. DistilBERT demands significantly
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less GPU memory and computational resources. A2T also employs precomputed top-k

nearest neighbors in a counter-fitted word embedding for word substitution, ensuring bet-

ter synonyms and faster attacks. Additionally, an alternative variation named A2T-MLM

uses a BERT-based masked language model for word substitution, focusing on preserving

grammatical and contextual coherence. According to their experimental results, these

improvements result in a faster and more efficient method than previous approaches.

2.4 Sentence Level Attack

The thesis presents a comprehensive overview of sentence-level attacks in natural

language processing, focusing on various manipulative strategies such as swapping, in-

serting, deleting, and generating parts of sentences. These methods are detailed in a struc-

tured format in Table 2.5, clearly categorizing and comparing different techniques used

in sentence-level adversarial attacks. This table is a valuable resource for understanding

the diverse approaches employed in altering sentence structures to test and enhance the

robustness of NLP models.

Table 2.5: Sentence level attack with application

Year Reference Attack Type Application
2017 Jia and Liang [31] White box& black box Question Answering
2017 Zhao et al. [95] Black box Natural Language Inference
2018 Wang and Bansal [84] White box Classification
2019 Cheng et al. [7] White box Machine Translation

The research by Jia and Liang [31] introduced a novel approach to evaluating natural

language processing (NLP) systems, particularly in the context of the SQuAD reading

comprehension task. This method, known as adversarial evaluation, diverges from tradi-

tional AI evaluation techniques that typically measure average error across a standard test

set. Adversarial evaluation specifically focuses on challenging systems with inputs de-

liberately designed to test their deeper understanding of language. The study implements

two distinct types of adversaries for this purpose: ADDSENT and ADDANY. ADDSENT

creates adversarial examples by appending sentences to the text that are grammatically
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coherent and contextually related to the question, yet they do not contradict the correct

answer. On the other hand, ADDANY introduces an even higher level of complexity by

adding random sequences of English words. These additions aim to confuse the models

further. Experimental results demonstrate that both ADDSENT and ADDANY effect-

ively disrupt the typical evaluation mechanisms in question-answering tasks, proving to

be potent tools in assessing the true capabilities of NLP systems while still aligning with

the correct answers.

The study by Zhao et al. [95] introduces an innovative framework that leverages

Generative Adversarial Networks (GANs) to create adversarial examples in natural lan-

guage processing. This framework is applied to the Stanford Natural Language Inference

(SNLI) dataset, with the goal of generating adversarial examples that are grammatically

coherent, semantically close to the original input, and capable of revealing the local be-

havior of models by exploring the semantic space of continuous data representations. To

assess the effectiveness of their approach, the researchers implemented these adversarial

examples in various applications, including image classification, machine translation, and

textual entailment. Their findings demonstrate that the model is adept at producing ad-

versaries that not only maintain logical coherence and common-sense reasoning but also

expose vulnerabilities in models like Google Translate during machine translation tasks.

This approach is notably distinct from other methods available at the time, primarily be-

cause it focuses on generating textual content instead of the usual manipulations of the

given input.

In their work, Wang and Bansal [84] made significant improvements to the ADDSENT

model, originally based on ADDSENT by Jia and Liang [31]. They introduced two modi-

fications, collectively referred to as ADDSENTDIVERSE. While the ADDSENT model

generated fake answers mimicking question syntax but without semantic relevance, ADDSENT-

DIVERSE aimed to produce adversarial examples with increased variability by random-

izing distractor placements. Additionally, they integrated semantic relationship features

from WordNet to address antonym-style semantic perturbations present in ADDSENT.

Their results showed that the ADDSENTDIVERSE model outperformed the ADDSENT

trained model, achieving an average improvement of 24.22% in F1 score.
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In the realm of neural machine translation, Cheng et al. [7] introduced AdvGen, a

gradient-based white-box attack technique. In their research, the authors adopted a greedy

approach steered by training loss to efficiently identify optimal solutions for generating

adversarial examples. A key aspect of their methodology was the integration of a language

model. This inclusion was strategic, as language models are computationally inexpensive

and aid in maintaining a degree of semantic coherence in the adversarial outputs. This

approach not only facilitates the generation of challenging adversarial attacks but also

significantly contributes to the development of adversarial training methods. By utiliz-

ing adversarial examples in training, the researchers aimed to enhance the robustness and

resilience of models, ensuring better performance against potential attacks. Their work

emphasizes the dual utility of adversarial examples, both as tools for testing model vul-

nerabilities and as means to fortify models against such vulnerabilities.

2.5 Discussion and Challenges

In this section, we will discuss the three levels of attacks in natural language pro-

cessing (NLP), provide a summary of each, highlight some interesting findings, and dis-

cuss the challenges that researchers face in this area.

The three levels of attacks that exist in natural language processing (NLP) are char-

acter level, word level, and sentence level. In character-level attacks, the adversarial ex-

amples are generated by modifying the characters within keywords. Although this at-

tack method can be useful in some scenarios, it is easily detectable by humans due to

the altered characters, which limits its effectiveness. In addition, word-level attacks are

known to be more detrimental to the models, and the existing methods typically involve

identifying significant or vulnerable words and manipulating them through substituting,

swapping, deleting, or inserting. Substituting important words with other phrases can

maintain the original semantic meaning and avoid detection by humans. As a result,

word-level attacks are more powerful and harmful than character-level attacks. When it

comes to sentence-level attacks, two trends are currently prevalent. The first trend in-
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volves inserting or deleting sentences, which is similar to word-level attacks. The second

trend is text generation, where the attacker uses text generation techniques to produce

text that generates an adversarial example. However, due to the lack of maturity of text

generation techniques, the text produced is often unclear and long-winded, reducing the

effectiveness of this approach.

According to Wu’s study [85], word-level attacks achieved the best scores; thus, we

will focus on the challenges in word-level attacks. Researchers face several challenges

in this area. One major challenge is the lack of attention given to adversarial learning in

NLP. Most research in adversarial learning has focused on computer vision, but there are

significant differences between the two domains. For instance, while image data is con-

tinuous, text data is discrete. Therefore, attacks developed for the image domain cannot

be utilized in the text domain.

Another significant challenge in word-level attacks in NLP is crafting attacks that are

both imperceptible and maintain fluency. The inherent discreteness of language makes it

easy for humans to spot alterations in text. This sensitivity to modifications poses a hurdle

in developing attacks that remain unnoticed by the human eye. Moreover, preserving the

fluency of the generated adversarial examples is crucial. While much of the existing

literature focuses on synonym substitution based on thesauri, this approach often neglects

the overall textual meaning, leading to a loss of coherence in the modified text. The

failure to consider the global context and semantics of the text can result in adversarial

examples that are syntactically correct but lack natural flow and coherence, undermining

their effectiveness and detectability. Therefore, developing methods that subtly alter text

while retaining its original meaning and fluency remains a key challenge in the field.
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Attacking Neural Machine Translation

via Hybrid Attentive Learning

Deep-learning based natural language processing (NLP) models are proven vulner-

able to adversarial attacks. However, there is currently insufficient research that stud-

ies attacks to neural machine translations (NMTs) and examines the robustness of deep-

learning based NMTs. In this chapter, we aim to fill this critical research gap. When

generating word-level adversarial examples in NLP attacks, there is a conventional trade-

off in existing methods between the attacking performance and the number of perturb-

ations. Although some literature has studied such a trade-off and successfully gener-

ated adversarial examples with a reasonable amount of perturbations, it is still challen-

ging to generate highly successful translation attacks while concealing the changes to the

texts. To this end, we propose a novel Hybrid Attentive Attack (HAA) method to locate

language-specific and sequence-focused words and make semantic-aware substitutions to

attack NMTs. We evaluate the effectiveness of our attack strategy by attacking three high-

performing translation models. The experimental results show that our method achieves

the highest attacking performance compared with other existing attacking strategies.

This chapter methodically unfolds the intricacies of the Hybrid Attentive Attack

(HAA) method. This part introduces the attention mechanism and pre-trained models,
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which we’ll explore more in Section 3.1. The core methodology of HAA is then thor-

oughly explicated in Section 3.2. Following this, the chapter evaluates the performance

of HAA through empirical analysis in Section 3.3 and investigates its transferability and

attack preferences in Sections 3.4 and 3.5, respectively. The chapter culminates in Sec-

tion 3.6, where it presents potential directions for future research. Specifically, the main

contributions of this chapter are as follows:

• We propose a novel Hybrid Attentive Attack (HAA) method which identifies the

most influential words in an input sequence based on language-specific and sequence-

centered attentions.

• We introduce a semantic-aware word substitution strategy for the proposed HAA

method to strike a balance between attack effectiveness and imperceptibility.

• We conduct extensive experiments on real-world datasets with three state-of-the-art

victim NMTs. Experimental results demonstrate that our proposed method achieves

the best performance with a small number of perturbed words.

3.1 Preliminary

In this section, we will introduce some preliminary knowledge about the attention

mechanisms and BERT variants.

3.1.1 Attention in NLP

Originally inspired by human cognitive processes, the concept of attention was sub-

sequently adapted for machine translation to facilitate automatic token alignment [28].

The attention mechanism, a technique for encoding sequence data by assigning import-

ance scores to each element, has seen extensive application and notable enhancements in

diverse natural language processing tasks, such as sentiment analysis, text summarization,
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question answering, and dependency parsing. This section will delve into relevant studies

on the application of the attention mechanism in NLP.

The traditional machine translation models [35] are constructed by an encoder-decoder

architecture, both of which are recurrent neural networks. An input sequence of source

tokens is first fed into the encoder, with which the tokens will be transferred to the hidden

representations, and then the decoder will utilize these hidden representations from the

encoders as the initial input and output a sequence of dependent tokens. Such an encoder-

decoder framework had achieved highest performance compared to purely statistical ma-

chine translation models. This design faces two significant challenges. Initially, RNNs

struggle with retaining older data, often discarding it after it has passed through several

time steps. Additionally, the lack of specific word alignment in the decoding phase results

in a diffused focus across the entire sequence. To overcome these obstacles, Bahdanau

[12] pioneered the use of attention in encoder-decoder NMT frameworks, which rap-

idly became a critical component in sequence-to-sequence models within the NMT field.

Bahdanau provided such an attention mechanism to model word alignments between in-

put and output sequence, which is an essential aspect of structured output tasks such as

translation or text summarization. Based on Bahdanau’s attention, Luong proposed two

attention models, namely local and global, in context of machine translation tasks [48].

The global attention model is similar to Bahdanau’s attention while the local attention is

computed with hidden states from the output of the encoder. Luong’s attention achieved a

better performance than Bahdanau’s attention and provided a way of transparentizing the

NMTs.

Recurrent architectures rely on sequential processing of input at the encoding step

that results in computational inefficiency, as the processing cannot be parallelized [83]. To

address this, Vasiwani proposed Transformer architecture that eliminates sequential pro-

cessing and recurrent connections. Specifically, transformer-based architectures, which

are primarily used in modelling language understanding tasks, avoid recurrent structure

in neural networks and instead trust entirely on self-attention mechanisms to draw global

dependencies between inputs and outputs. To be more specific, the transformer views the

encoded representation of the input as a set of key-value pairs,(K,V), whose dimension
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equals input sequence length. For the decoder, the previous output is compressed into

a query Q and the next output is produced by mapping this query and the set of keys

and values. Referring to Bahdanau’s and Luong’s attention, the transformer adopts the

scaled dot-product attention: the output is a weighted sum of the values, where the weight

assigned to each value is determined by the dot-product of the query with all the keys:

Attention(Q,K,V) = softmax
(
QK⊤
√

n

)
V.

Transformer architecture achieved significant parallel processing, shorter training time,

and higher accuracy for machine translation without any recurrent components. Be-

sides, self-attention can provide correlations among the contextual words for NLP models,

which we will utilize in our proposed algorithm.

3.1.2 BERT and Its Variations

Born from the Transformer architecture [83], BERT, which stands for Bidirectional

Encoder Representation Transformer [9], undergoes training through two unsupervised

tasks: masked language modeling and next sentence prediction. BERT models are ex-

tensively pre-trained on vast amounts of unannotated text, enabling fine-tuning for spe-

cific tasks and datasets through transfer learning. Thanks to its superior model structure

and extensive training data, BERT has consistently achieved state-of-the-art results in nu-

merous NLP tasks [9]. Beyond its accomplishments in language comprehension, BERT

has also emerged as a groundbreaking framework for a wide range of natural language

processing tasks, including sentiment analysis, sentence prediction, summarization, ques-

tion answering, natural language inference, and various others.

Over time, numerous new models have drawn inspiration from the BERT architec-

ture but have been tailored to different languages or fine-tuned on domain-specific data-

sets. One prominent variant of BERT is RoBERTa [47], known as the Robustly Optimized

BERT Pretraining Approach, designed to enhance the training process. RoBERTa was de-

veloped by extending the training duration of the BERT model, utilizing larger datasets
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containing longer sequences, and employing larger mini-batches. Through these adjust-

ments, RoBERTa achieved significantly improved results while also incorporating certain

modifications to BERT’s hyperparameters. Furthermore, RoBERTa does not employ next

sentence prediction (NSP) and employs dynamic word masking as part of its approach.

Another notable iteration of the BERT model, referred to as ALBERT [42], aimed

to improve upon the training process and outcomes achieved by the BERT architecture.

ALBERT introduced techniques such as parameter sharing and factorization to reduce

the total number of parameters. The BERT model encompasses millions of parameters,

with BERT-Base consisting of approximately 110 million parameters, which not only

makes training challenging but also places a heavy computational burden. In response to

these challenges, ALBERT was introduced with a reduced parameter count, providing a

solution to the issue of excessive parameters associated with BERT.

3.2 Methodology

In this section, we first introduce and formulate the attention mechanism in NMT.

Then, we elaborate on the proposed two-step attentive adversarial attack on NMTs, which

features an attentive word location and a semantic-aware word substitution. Specifically,

we first calculate the Hybrid Attention weights consisting of the language-specific trans-

lation attention and sequence-centered self-attention to locate the sensitive words. Then,

we target to find replacement words using costume-designed selection steps to ensure

parsing correctness and semantic preservations.

3.2.1 Attentions in NMT

Bahdanau [12] proposed the attention mechanism to help the word alignments, es-

pecially for long sentences. We argue that such an attention mechanism reflects the con-

tributions of each input word to the translated results. Therefore, a small perturbation to

the most contributing word will have a heavy influence on the translation. The attention
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model utilizes an encoder-decoder framework for each step j; during decoding, they com-

pute an attention score α ji for hidden representation h in i of each input token to obtain

and the formulation is below:

e ji = a
(
si−1, h j

)
(3.1)

αi j =
exp

(
ei j

)
∑T

k=1 exp (eik)
(3.2)

c j =

T∑
j=1

α jihi (3.3)

, where e ji is output of an alignment model a, usually a forward neural network, and

si is the decoder RNN hidden state for time i. Using e ji, one can score how well the

inputs around position j and the output at position i match. c ji is the encoded sentence

representation with respect to the current element h j to measure its similarity with output

sequence (y1,y2. . . yt), where y1 is the t-th output tokens. The diagram for this attention

model is demonstrated in Fig 3.1.

Self-Attention [83] can be applied to many other kinds of NLP tasks besides machine

translation. Different from a translation task, the goal is to learn the dependencies between

the words in a given sentence and use that information to capture the internal structure of

the sentence. In self-attention, there are 3 important variables, Q,K and V, which are

vectors used to get better encoding for both our source and target words. All of these

three variables are hidden representations from the linear layer. Furthermore, the attention

weights of self-attention are also calculated differently from Bahdanau’s attention; the

formulation is below:

Self = Attention(Q,K,V) = softmax
(

QK⊤
√

(dk)

)
V. (3.4)

where dk is the number of dimensions for key vector K. We argue to attack NMTs us-

ing self-attention too, as an disturbance to the dependency of source language can also

deprave the translation quality.
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Figure 3.1: Illustration of an attention-based NMT model [12] with RNN based encoder-
decoder structures, generating the t-th target token yt given a input sentence (x1, x2, . . . ,
xT ).

.

3.2.2 Problem Formulation

Denoting the source sequence as S , the translated target sequence as Y , a NMT model

can be defined as f (S ) : S → Y . We denote S = [w1, . . . ,wn] and Y = [h1, . . . , hk], where

w and h denote the words in the source and target sequence, while n and k are the number

of words in each respective sequence. To ensure the attack’s applicability, we assume a

black-box setting where the attacker can only query the NMT model for translated results

of a given input, and does not have access to the model parameters, gradients or training

data. For an input pair (S ,Y), we want to generate an adversarial example S adv such that

f (S adv) has an obvious semantic difference from Y . Additionally, we want S adv to be

grammatically correct and semantically similar to S .

3.2.3 Attentive Word Location

Attention weights in NMT models can be seen as the strength of semantic asso-

ciation between the source and target tokens, by adopting such a mechanism, the per-

formance NMTs are boosted [12]. Hence, we argue that NMTs can be crashed if the

attention mechanism is tampered, and the best way of tampering attention is to adopt at-

tention mechanism itself. In this subsection, we introduce the proposed attentive word
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location scheme and demonstrate different attentive NMT attack implementations based

on language-specific and sequence-centered attentions.

Translation Attentive Attack

Since translation is a cross-language task defined by the source and target languages,

it is intuitive to pose language-specific attacks to challenge NMTs’ robustness. To this

end, we propose a Translation Attentive Attack (TAA) mechanism that focuses on influ-

ential words in the translation towards a certain target language. Concretely, we obtain

such an attention A that measures word-wise importance in a specific translation task

based on a contextual NMT model [12].

To calculate A, we feed the NMT model with the source sequence to get the trans-

lated result Ŷ = [̂h1, . . . , ĥk′], where k′ is the number of words in the attacked target

sentence. We then extract a correlation matrix A from the softmax layer in the model’s

decoder, thereby formulating the process as T (S ) : S → A. The elements in the cor-

relation matrix A describe the probability distributions of translated words in the target

language conditioned on the source sequence S , which can be written as:

ai j = P(̂h j|[w1, . . . ,wi, . . .]) =
exp

(
ei j

)
∑n

i=1 exp
(
ei j

) , (3.5)

where P denotes probability, and ei j denotes the feature in the model depicting the match-

ing degree between the predicted word ĥ j in the target language and the input word wi

in S . The conditional probabilities reveal the correlation between the input sequence and

the predicted sequence in the target language. Given its softmax-normalized distribution,

we have
∑n

i=1 ai j = 1,∀ j, therefore it is intuitive to measure wi’s contextual contribution

to a translated word ĥ j using ai j straightforwardly. Further, to find the most influential

input words in the translation process, for the whole predicted sequence, we define the

language-specific word-wise attention by summing the matrix elements by index j, as

A = [A′1, . . . , A
′
i , . . . , A

′
n], where A′i =

∑k′
j=1 ai j.
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We can sort the words of the source sequence according to such an attention weight,

A, for the first step, and select the top language-specific influential words as the victim

words for substitution in the second step, which will be introduced in Section 3.2.4.

Self-attentive Attack

Beside the language-specific attack that focuses on the translation task between two

languages above, the inherent semantics of the input sequence can also be tampered. Thus

we propose a sequence-centered Self-Attentive Attack (SAA) which exploits attention

from the input sequence itself. We utilize the transformer model [83], V(S ) : S → B,

to extract the self-attention matrix B, whose elements bi j indicate the word-wise weights

given positional encodings. Particularly, since such weights are obtained via softmax

activation, they are also naturally normalized (
∑n

i=1 bi j = 1,∀ j), and thus they are suitable

to quantitatively measure the dependencies among words across the entire input sequence.

Therefore, similar to the first step in TAA, we define the sequence-centered self-attention

weight as B = [B′1 . . . B
′
i . . . B

′
n], where B′i =

∑n
j=1 bi j.

Different from the language-specific attention in TAA that emphasizes on contextual

alignment between source and target sequences, the sequence-centered attention in SAA

can explore long-range dependencies within the input sequence itself, better indicating

the word-wise influence on overall language understandings of the sequences.

Hybrid Attentive Attack

As analyzed above, the translation-attentive attack and self-attentive attack focus on

different aspects of NMTs, i.e., the cross-language context alignment and the overall se-

mantic understanding of the source sequence, respectively. We argue that both the two

aspects are crucial for NMTs, and an ideal attack for NMTs should combine their advant-

ages. Thus we propose a Hybrid Attentive Attack (HAA) scheme which comprehensively
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Algorithm 1 Hybrid Attentive Attack (HAA)
Input: Source and Target sentence pair S ,Y , number of perturbed words N, number

of adversarial candidates
Model:T : Translation attentive model for TAA. V: Self-attentive transformer for

SAA.M: MLM model for word substitution.
Output:Adversarial Examples S adv

1: Tokenize S
2: A ← T (S ) ▷ elements inA are represented by ai j

3: A←
∑n

j=1 ai j

4: B ← V(S ) ▷ elements in B are represented by bi j

5: B←
∑n

j=1 bi j

6: H← (1 − λ)A + λB
7: S mask ← mask the top N tokens by H scores
8: Scan = [ ] ▷ create an empty set
9: for i in range(N) do

10: S ′can ← the ith highest replacement fromM(S mask)
11: if S ′can , S then
12: Scan.append(S ′can)
13: end if
14: end for
15: S adv ← the element of Scan that has the highest semantic similarity with S
16: S adv ← Detokenize S adv

17: return S adv

considers the word influence by combining the attention weight from TAA and SAA:

H = (1 − λ)A + λB, (3.6)

where H = [H′1 . . .H
′
i . . .H

′
n] and H′i is the final influence weight for word wi in the input

sentence. The optimal parameter λ can be found by a greedy search based on the attack

performance measured by BLEU on translated results. The overall workflow of the HAA

model is demonstrated in Algorithm 1 with an example shown in Figure 3.2.

3.2.4 Semantic-aware Word Substitution

In the above subsection, we locate the most influential words in the input sequence

to be attacked. An ideal attack should guarantee sufficient concealment besides having

attack effectiveness, enabling the adversarial example to avoid being noticed by the NMT

53



CHAPTER 3. HYBRID ATTENTIVE ATTACK

Figure 3.2: An illustrated example of our HAA model. In this example, HAA generates
an adversarial example with one word perturbed to attack an English-Chinese translation.
The arrows inside the TAA box, and those in the SAA box, respectively represent the
utilisation of translation and self-attention weights. The numbers inside the semantic-
aware substitution box represents the sentence-level semantic similarity. The TAA, SAA,
HAA and Semantic-aware Substitution workflows are reflected in Lines 2-3, Lines 4-5,
Lines 6, and Lines 7-15 in Algorithm 1, respectively.

model. Therefore, we further argue a qualified adversarial example S adv should preserve

semantics and be grammatically correct, constraining reasonable deviations from the ori-

ginal input sequence.

We propose to design such a semantic-aware word substitution approach based on

the semantic feature similarity between the tampered sequence and the original one. We
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mask a victim word one at a time by a descending order of the attention score to get S mask,

and utilise an MLM modelM(S mask) : S mask → S ′can, where S ′can is a mask-filled sentence.

At each iteration, we utilizeM to generate n∗ best adversarial example candidates, Scan =

[S ′(can,1), . . . , S
′
(can,p), . . . , S

′
(can,n∗)], according to corresponding logits fromM, and we use a

pre-trained semantic retrieval model, universal sentence encoder (USE) [88], to calculate

the cosine feature distance between the candidate S ′(can,p) and the original sequence S .

Then we select S adv with highest similarity to the original one as the adversarial example.

By such a semantic-aware word substitution, we can complete the NMT adversarial attack

process and strike a balance between influencing the translation result and concealing the

perturbations with similar semantics.

3.3 Experiments

We empirically evaluated and assessed our proposed attacking strategies (TAA, SAA

and HAA) on a task of translating English to Chinese to three well-performed world-

leading NMTs: Google Cloud Translation, Baidu Cloud Translation and Helsinki NMT

[81]. To deeply explore the attacking performance, we not only attack the victim model

but also make transfer attacks which utilize the adversarial examples generated on one

victim NMT to attack other NMTs.

3.3.1 Datasets

To get sufficient training data, we utilized 4 datasets as our training set for training the

language-specific NMT and sequence-centered transformer models utilized for the TAA,

the SAA, and the MLM for semantic-aware word substitution. Three of the training sets

are Commentary [80], Infopankki [81] and the Openoffice [81], are publicly available,

while the other, YYeTs subs1, is scripted by us from YYeTs website (provided in the

codes of corresponding paper [58]), which provides human translated movie and drama

subtitles. The details of the train set can be found in Table 3.1.
1https://m.yysub.net/
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Table 3.1: introduces details about datasets used in the experiments.

Dateset
YYeTs
Subs

Comme
-ntary

Infop-
ankki

Openo-
ffice

WMT20
T1

WMT20
T2

ALT.P
(test)

Size 500k 69k 30k 69k 6.0k 6.0k 1.0k

Avg.len 7.83 46.14 9.92 6.16 14.10 16.51 16.54

Min.len 1 1 1 1 3 2 2

Max.len 67 229 144 221 130 199 204

Content Subs News Science Education Wiki Wiki News

Purpose Training Set Testing Set

To get reliable experimental results, we test attacking strategies on 3 other public

datasets, WMT20 T1, WMT20 T2 [81] and ALT-P(test) [69]. WMT is the main event for

machine translation and machine translation research, which provides reliable multilin-

gual datasets from Wikipedia. To diverse the sources of test set, we also include ALT-P

dataset on news. The details of the test set can be found in Table 3.1.

3.3.2 Victim Models

We test the proposed attacking strategies on three well-performed NMTs: Google

Cloud Translation2 (Google.T), Baidu Cloud Translation3 (Baidu.T), and Helsinki NMT

(Hel.T) [81]. The first two NMTs are cloud translation platforms, which are used for

commercial purposes while the other NMT, Helsinki NMT is based on MarianNMT[34]

from Microsoft for academic purpose.

3.3.3 Baselines

We compare our proposed strategies with 5 word-level attack strategies below:

• RAND: randomly selects victim words in the target sentences and utilize the pro-

posed semantic-aware substitution strategy to construct the adversarial examples.
2https://cloud.google.com/translate
3https://api.fanyi.baidu.com/
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• Morpheus-Attack (Morph) [78], greedily searches for words, from noun, verb, or

adjective tags, maximally decreasing BLEU on source language side, and substitute

them with synonyms.

• BERT-ATTACK (BERT.A) [45]: utilizes BERT to locate the victim words by rank-

ing the differences between the logits of original words and BERT-predicted words,

and then make substitutions with BERT.

• Seq2sick [6]: crafts the adversarial example by depraving the targeted logits of

victim NMT with regularization on preserving semantic similarity.

• PSO [90]: selects word candidates from HowNet and employs the PSO to find

adversarial text for classifier. We adjust the metric from classification logits to

BLEU.

3.3.4 Evaluation Metrics

We use metrics based on BLEU and USE [88] to evaluate attacking performance on

the target language side and the semantic preservation on the source language side. BLEU

evaluates the sentence pairs in term of word alignment while USE is a multilingual pre-

trained language model to evaluate the semantic similarity.

Since changes of the original input will always lead to changes of the translated

output, we examine how much more changes an attacked output has compared to those

of the unattacked translation. So instead of directly using BLEU and USE on translated

outputs, we define BLEU drop ratio (BDR) and USE drop ratio (UDR) to evaluate attacks:

BDR =
BLEU(Y, f (S )) − BLEU(Y, f (S adv))

BLEU(Y, f (S ))
(3.7)

UDR =
USE(Y, f (S )) − USE(Y, f (S adv))

USE(Y, f (S ))
(3.8)

where S and Y denote input sentence and translation reference, and f (·) is the victim
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NMT model.

In addition, we also evaluate how much word perturbations are made on the original

inputs by using BLEU and USE on the attacked source language. To distinguish from

the metrics used on the target language side, we use S-BLEU and S-USE for denoting

changes made on the source language.

3.3.5 Experimental Settings

This section presents the models used for HAA and the results of greedy searching

for λ. We examine how the number of perturbed words affects attack performance, testing

1 to 5 word perturbations per sentence in our comparisons.

3.3.5.1 Model Structures

In this subsection, we introduce the structure of the language-specific NMT for TAA,

transformer for SAA, and the MLM for semantic-aware word substitution. All of these 3

models are trained and fine-tuned on the same train datasets mentioned in Table 3.1.

• TAA: The architecture of TAA consists of a 2-layer stacked LSTM, plus a Luong’s

translation attention layer to process of the output of LSTM [48]. To be more spe-

cific, the encoder takes a list of subtoken IDs to an embedding vector for each

subtoken via an embedding layer. Further, we processes the embeddings into a

new sequence with a LSTM. After encoding, the features of input sentences will be

passed into a decoder, and the decoder’s job is to generate predictions for the next

output token. The decoder receives the complete encoder output and uses a LSTM

to keep track of what it has generated so far. To get translation attention, the decoder

will utilize its LSTM output as the query to the attention over the encoder’s output,

producing the context vector. After the LSMT in decoder, we adopt the Luong’s

translation attention to combine the LSTM output and the context vector generate

the translation attention matrix. For the last step, decoders generates logit predic-
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tions for the next tokens based on the attention matrix. For the hyper-parameter,

we set 1024 hidden units, 256 embedding dimmensions, 64 batch size, with Adam

optimizer.

• SAA: SAA is designed to get sequence-centered attention weights on the source

language, therefore it will be trained with only the data in source language. Since

the data is unlabeled and sequential, we utilize BERT-base-uncased [9], one of the

best unsupervised language models, as the transformer to extract the sequence-

centered attention weights. The hyper-parameters of this model are public avail-

able. To adjust the model to our dataset, it will be fine-tuned on our datset with

Adam optimizer with learning rate 0.001 and batch size 128.

• MLM for semantic-aware substitution: MLMs mask the words in the train set

and are given a task to fill these masks, therefore utilize these models can help to

find parsing substitutions for the proposed methods. We utilize a public pre-trained

model, RoBERTa-large [47], as our candidate to generate parsing and semantic-

preserving adversarial examples.

3.3.5.2 Optimization of λ

In the experiments, our proposed method, HAA, utilizes a greedy search for the

best hyper-parameter λ to combine language-specific and sequence-centered attention.

The objective used for searching is BLEU and the search is within the validation set

which contains 1000 samples separated from the training set. Greed search is used for the

optimal hyper-parameter λ within [0, 0.01, . . . , 1] with a step size of 0.01 for each victim

model and the searched results for the three victim NMTs (Google, Baidu and Helsinki

translations) are shown in Figure 3.3.

From search results in Fig 3.3, we can find that the optimal λ values for the three

victim models are λGoogle = 0.68, λBaidu = 0.47 and λHel.T = 0.41. Therefore, we can find

the λ can be different for different victim NMTs in our experimental settings. Since λ is

utilized to control the weight of SAA and TAA, it can show the preference between SAA
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Figure 3.3: The process of searching for the best λ for Google, Baidu and Helsinki NMT.
The discovered optimal λ values are highlighted in red.

and TAA. From the results, we find that for different victim NMTs, the proposed HAA

will have different preferences: TAA is preferred for Google translation while SAA is

preferred for Baidu Translation and Helsinki Translation. Besides, as λ is searched based

on the performance of NMTs, there is no doubt that λ can be different due to the different

NMTs’ performance on datasets so that this preference can be different in datasets.

3.3.6 Main Results and Analysis

We show the results for greedy searching process in Fig 3.3. The main results of

attacking performance and semantic preserving performance on different test data sets

are shown in Tables 3.2, 3.3, 3.4, and Figures 3.4, 3.5, and 3.6. In addition to the statistics

of the results, an example of learned attentions for the proposed methods is shown in

Table 3.5 and an adversarial example is also shown in Table 3.6 to show the differences of

attacks. We validate the advantages of our proposed methods (i.e., TAA, SAA and HAA)

from the following three aspects:

3.3.6.1 Does HAA have superior attack performance compared to baselines?

We assess the effectiveness of attentive methods (TAA, SAA, HAA) versus non-

attentive baselines across datasets, shown in Figures 3.4, 3.5, and Table 3.4, by compar-
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Figure 3.4: Attacking performance (BLEU, USE) on the WMT20 T1 dataset towards dif-
ferent numbers of perturbed words ranging from 1 to 5 for three victims, NMT, Goolge.T,
Baidu.T and Helsinki.T.

ing the decreases in BLEU and USE scores for original and attacked translations. It can

thus be concluded that the proposed method HAA achieves the best attacking perform-

ance, with the largest metric score drops for both word alignment (BLEU) and semantic

understanding (USE). Particularly, HAA consistently outperforms other competing meth-

ods across different data domains, regardless of the number of perturbed words. Apart

from HAA itself, its different attentive components TAA and SAA, also surpass the non-

attentive baselines in most cases.

3.3.6.2 Balance between attack performance and the number of perturbed words.

Concerning the trade-off between effectiveness and imperceptibility, we evaluate the

attack’s imperceptibility from both appearance and semantic modification perspectives,

the first of which is the number of words perturbed. As shown in Fig 3.4, Fig 3.5 and

Fig 3.6, comparing the numbers of words needed to achieve identical drops of metric

scores (marked by the horizontal red dashed lines), we can find that HAA perturbs the

fewest words, for it theoretical focuses on the most influential words with both language-

specific and sequence-centered attentions. Thus we can conclude that the proposed HAA
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Figure 3.5: Attacking performance (BLEU, USE) to the WMT20 T2 dataset towards dif-
ferent numbers of perturbed words ranging from 1 to 5 for three victims, NMT, Goolge.T,
Baidu.T and Helsinki.T.

more successfully balances attacking performance and the appearance modifications to

the sequence.

3.3.6.3 How well does HAA reserve the semantic meaning of the original input

sentences?

To further investigate the attack’s imperceptibility, we evaluate the semantic similar-

ities between the original input sentence and its derived adversarial sample (i.e., S-BLEU

and S-USE) shown in Table 3.2, Table 3.3 and Table 3.4 on different datasets. All of the

table demonstrates the attacking methods based our semantic-aware substitution, SAA

TAA HAA and RAND, are the best methods in most cases in terms of semantic pre-

serving. In some cases, our methods are not the best, but they are still comparable to the

best method PSO by a close margin in semantic preservation. However, PSO’s preserva-

tion comes at the price of much inferior performance, as is shown by its BDR and UDR.

Thus we can conclude that proposed HAA provides the one of the best balances between

attack performance and semantics preservation.
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Figure 3.6: Attacking performance (BLEU, USE) to the ALT.P dataset towards differ-
ent numbers of perturbed words ranging from 1 to 5 for three victims, NMT, Goolge.T,
Baidu.T and Helsinki.T. The horizontal red dashed lines indicate the numbers of words
needed to achieve identical drops of metric scores.
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CHAPTER 3. HYBRID ATTENTIVE ATTACK

Table 3.5: Examples for attentions learned by proposed methods (TAA, SAA and HAA).
The examples are red, blue and green for TAA, SAA, and HAA, respectively. The opa-
city of each word depends on its corresponding attention weight which is placed in the
brackets after each token.

TAA However, [0.68] after [1.58] a [3.26] few [4.16] victories,
[6.68] the [6.40] campaign [9.37] falters. [7.74]

SAA However, [0.80] after [0.79] a [0.68] few [0.98] victories,
[0.75] the [0.72] campaign [0.79] falters. [0.94]

HAA However, [0.75] after [1.10] a [1.72] few [2.25] victories,
[3.12] the [2.99] campaign [4.22] falters. [3.66]

To further validate the effectiveness of our word replacement strategy, we conduct

an extensive experiment on our semantic-preserving performance by a task of substituting

the same victim words located by our hybrid attention. We select 3 common substituting

baselines:

• Default masked-word filling (HA.Def): utilize MLM to fill the mask without a

consideration to the semantic preservation

• Synonyms (HA.Syn): replace the victim words with synonym from the WordNet

[53]

• Word embedding distance ranking (HA.Rank): search the word embedding space

in GloVe [63] to set the word, with smallest distance (l2) to victim word, as the

replacement.

The results from Table 3.7 show that HAA (semantic-aware substitution) achieves the

best semantic-preserving performance on attacking the same position. Clearly, HAA

can provide more parsing-correct and semantic-preserved adversarial examples than other

methods.
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Table 3.6: Adversarial examples (adv.) crafted by proposed methods and baselines, and
their corresponding translated results (Tran.). The semantic preserving (S-BLEU, S-USE)
and attacking performance (BDR, UDR) metrics are provided in the brackets after the
adversarial and translated sentence, respectively. The translation attacked by HAA made
a completely wrong causality of between the ”war” and the ”mustache” by stating ”The
war of beard sparked off this atrocity” in the translation.

BERT.A

Adv. This atrocity sparked off the war of the mustache, a millennia spanning long
that saw the empires of the Elves and Dwarves crumble into ruins. (S-BLEU:
0.9440, S-USE: 0.9865)

Tran.这场暴行引发了胡子战争,在这场长达数千年的冲突中,精灵帝国和矮人
帝国陷入废墟。(BDR: 3.31%, UDR: -3%)

Morph

Adv. This atrocity sparked off the war of the mustache, a millennia spanning that
saw the empires of the Elves and Dwarves crumble disintegrate into ruins. (S-
BLEU: 0.9120, S-USE: 0.9193)

Tran.这场一暴行引发了胡子战争,在长达数千年的冲突战争中,精灵帝国和矮
人帝国陷入废墟解体。 (BDR: -7.76%, UDR: 5.19%)

PSO

Adv. This atrocity sparked off the war of the mustache, a one millennia spanning
that saw the empires of the Elves and Dwarves crumble into ruins. (S-BLEU:
0.9669, S-USE: 0.9958)

Tran.这场暴行引发了胡子战争,在长达数千年的冲突中 之久,精灵帝国和矮人
帝国陷入废墟崩溃。 (BDR: 23.37%, UDR: 1.90%)

Seq2sick

Adv. This atrocity sparked off the war of the mustache, a millennia spanning that
saw the empires king of the Elves and Dwarves crumble into ruins. (S-BLEU:
0.9460, S-USE: 0.9663)

Tran.这场暴行引发了胡子战争, 在长达数千年的冲突中之久,精灵帝国和矮
人帝国国王们陷入废墟都陷入了困境。(BDR: 21.33%, UDR: 5.789%)

SAA

Adv. This atrocity sparked off the war of the mustache, a millennia spanning that
saw the empires of the Elves and Dwarves Dwarfs crumble into ruins. (S-
BLEU: 0.9739, S-USE: 0.9832)

Tran.这场暴行引发了胡子战争,长达数千年的冲突中,精灵帝国和矮人帝
国陷入废墟奔溃。 (BDR: 21.33%, UDR: 5.78%)

TAA

Adv. This atrocity sparked off the war of the mustache beard, a millennia spanning
conflict that saw the empires of the Elves and Dwarves crumble into ruins. (S-
BLEU: 0.9329, S-USE: 0.9420)

Tran.这场暴行引发了胡子战争 是胡子战争引发的, 在长达数千年的冲突中
几千年来, 精灵帝国和矮人帝国陷入废墟都陷入困境。(BDR: 37.43%,
UDR: 13.86%)

HAA

Adv. This atrocity sparked off the war of the mustache beard, a millennia spanning
conflict that saw the empires of the Elves and Dwarves crumble into ruins. (S-
BLEU: 0.9329, S-USE: 0.9420)

Tran.这场暴行引发了胡子战争 是胡子战争引发的, 在长达数千年的冲突中
几千年来, 精灵帝国和矮人帝国陷入废墟都陷入困境。(BDR: 37.43%,
UDR: 13.86%)
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Table 3.7: Comparisons among different word substituting methods.

Metrics HA.Def HA.Syn HA.Rank HAA

Avg.S-BLEU 0.3634 0.3521 0.3631 0.3642

Avg.S-USE 0.7639 0.6733 0.7591 0.8328

Figure 3.7: Attacking performance (BDR, UDR) of transferred attacks from mBART to
Google, Baidu and Helsinki NMT models.

3.4 Transferability

The transferability of adversarial examples is defined as whether the adversarial ex-

amples targeting at a specific model f can also mislead another model f
′

. To evaluate

transferability, we apply one-word-perturbation adversarial examples generated by differ-

ent methods on mBART-large-cc25 [79], a sequence-to-sequence transformer from Face-

book, to attack Google, Baidu and Helsinki translation models. Figure 3.7 shows the

results on the original mBART NMT and other transferred models. It can be concluded

from this figure that our attentive methods (TAA, SAA, and HAA) achieve the best attack

performance on the three transferred NMT models, demonstrating the effectiveness of our

methods in terms of attack transferability.
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Table 3.8: Distributions of POS tags for different attack strategies. The percentages are
calculated row-wise. For each row, the most, second and third highest percentage is
highlighted in bond, underlined italic, respectively.

Models Noun Verb Adj. Adv. Others
PSO 40.89% 9.12% 15.77% 17.89% 16.33%

Seq2sick 40.11% 14.90% 19.30% 8.77% 16.92%
BERT.A 78.42% 3.90% 9.92% 2.51% 5.25%
Morph 35.51% 9.77% 44.19% 10.53% 0.0%
TAA 48.37% 24.33% 6.15% 0.04% 17.15%
SAA 44.71% 27.10% 17.56% 6.57% 4.06%
HAA 51.14% 23.86% 17.41% 2.79% 4.80%

3.5 Attacking Preference

As the superiority of proposed method in terms of attacking performance, we collect

some statistics to research the attacking preference, described by speech (POS) tags, for

different attacking strategies. In this subsection, we analyze statistics on POS as shown

in Table 3.8, and aim to analyse the more vulnerable POS tags by a comparison between

the proposed methods and baselines.

Words that are assigned to the same part of speech (POS) tags generally present sim-

ilar syntactic importance, we investigate attacking strategies’ preference on POS tags for

further lingual analysis. We apply Stanford PSO tagger [82] to annotate them with POS

tags, including noun, verb, adjective (Adj.), adverb (Adv.) and others (i.e., pronoun pre-

position, conjunction, etc.). Statistical results in Table 3.8 demonstrate that generally all

the attacking methods tend to focus on noun, which we can suppose is the most sensitive

POS category for translation. However, the proposed attacking strategies (TAA, SAA and

HAA) tends to take a larger proportion of Verbs than any other methods, thus we may

conclude that Verb might be the second adversarially vulnerable POS tag.

3.6 Summary and Discussion

This chapter highlights the susceptibility of Neural Machine Translation (NMT)

models to adversarial attacks, which not only disrupt the translation of specific words
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but also their contextual environment. A method named HAA is introduced, which stra-

tegically selects and substitutes influential words, thereby affecting the translation of other

words in the sequence. This method has proven to provide an optimal balance between

the number of altered words and the effectiveness of the attack. In addition, this chapter

suggests that adversarial examples are features, not bugs, and proposes adversarial re-

training as a potential defense strategy. This involves integrating adversarial examples

into the training set to enhance the model’s robustness against such attacks.
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Chapter 4

Fraud’s Bargain Attack to Textual

Classifiers via Metropolis-Hasting

Sampling

It has been proven that adversarial examples expose vulnerabilities of natural lan-

guage processing (NLP) models [32, 67, 87, 90]. The performance of existing tech-

niques for generating adversarial examples is limited due to searching for a sub-optimal

adversarial example, which would often cause attack failures. In this chapter, we intro-

duce Fraud’s Bargain Attack (FBA), a novel approach that leverages the Word Manipu-

lation Process (WMP) to expand the search space and generate high-quality adversarial

examples with increased probability. FBA employs a conditional Metropolis-Hastings

sampler to select adversarial examples from the WMP, enhancing its effectiveness.

Compared with most literature attacks, FBA has two outstanding advantages: a large

searching space and an adaptive setting of NPW. Instead of perturbing the input texts

only with word substitutions, FBA can generate adversarial examples by manipulating

words in the input text through insertion, substitution, and deletion. Besides, different

from WIR, WMP selects the attacked position stochastically by a customized word dis-

tribution, with which it is possible for every word in the context to be chosen according
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to its importance. More word manipulation operations and attacked positions provide a

significantly larger searching domain, which is theoretically expected to generate more ef-

fective adversarial examples than literature. In addition, we regulate the MH sampler with

the imperceptibility of the attacks and minimal deviations from the original semantics. In

this way, the NPW, usually preset in previous studies, can be adaptive to different input

texts, an approach that can achieve many successful attacks. Our main contributions to

this work are as follows:

• We design a stochastic process, the Word Manipulation Process (WMP), which

creates a large search space for adversarial candidates by taking word insertion,

removal, and substitution into account of the stochastic processes.

• We propose a highly effective adversarial attack method, Fraud’s Bargain Attack

(FBA), which applies the Metropolis-Hasting (MH) algorithm to construct an ac-

ceptance probability and use it to adaptively select high-quality adversarial can-

didates generated by WMP. The use of the acceptance probability helps our attack

method jump out of the local optima and generate solutions closer to the global

optima.

• We evaluate our attack method on real-world public datasets. Our results show

that methods achieved the best performance in terms of both attack success and

semantics preservation.

This chapter is structured as follows. Firstly, we introduce the formulation and properties

of MCMC in Section 4.1. Then we detail our proposed method in Section 4.2 and 4.3. We

evaluate the performance of the proposed method through empirical analysis in Section

4.4. We conclude the chapter with suggestions for future work in Section 4.5.

4.1 Preliminaries

Markov chain Monte Carlo methods create samples from a continuous random vari-

able, with probability density proportional to a known function. To generate a sample that
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reflects the target distribution, a Markov chain is constructed with the target distribution as

its equilibrium. Recording states from this chain yields a sample of the target distribution.

As more samples are produced, the sample distribution increasingly resembles the true

target distribution. Metropolis Hasting (MH) sampler [50], from which MCMC methods

originate, applies the following setting: suppose that we wish to generate samples from

an arbitrary multidimensional probability density function (PDF):

f (x) =
p(x)
Z
, (4.1)

where p(x) represents a defined positive function, andZ is a normalizing constant, which

may or may not be known. The term q(y|x) denotes a proposal or instrumental density.

This Markov transition density describes the transition process from state x to state y.

The MH algorithm is based on the following “trial-and-error” strategy by defining an

acceptance probability α(y|x) as follows:

α(y|x) = min
{

f (y)q(x | y)
f (x)q(y | x)

, 1
}

(4.2)

which decides whether the new state y is accepted or rejected. To be more specific,

we sample a random variable u from a Uniform distribution ranging from 0 to 1, u ∼

Uni f (0, 1), and if u < α(x, y) then y is accepted as the new state. Otherwise, the chain

remains at x. The fact that the equilibrium distribution of the MH Markov Chain is equal

to the target distribution is guaranteed by the local/detailed balance equation.

A good property of the MH sampler is that in order to evaluate the accept rate α(x, y),

it is only necessary to know the positive function q(y | x), which is also known as kernel

density. In addition, the efficiency of the MH sampler depends on the choice of the trans-

ition density function q(y | x). Ideally, q(y | x) should be ”close” to f (y), with respect to

x.
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4.2 Word Manipulation Process

In this section, we detail the Word Manipulation Process (WMP) and shall ex-

plain our strategy for selecting the generated candidates in the next section. Let D =

{(x1, y1), . . . , (xm, ym)} denote a dataset with m data samples, where x and y are the in-

put text and its corresponding class. The victim classifier F learns from text space to

class space through a categorical distribution, F(·) : X → (0, 1)K , where X represents

text space and K is the number of classes. Given the input text x = [w1, . . . ,wi, . . . ,wn]

with n words, we denote an adversarial candidate of x as x′, and denote the final chosen

adversarial example as x∗.

From the current text state x, WMP takes three steps to implement perturbations.

The first step is to sample an action e from the set {insert(0), substitute(1), remove(2)}.

Then we determine the position l in the sentence to conduct the chosen manipulation e by

drawing l from a customized categorical distribution. For the third step, if word insertion

or substitution is chosen, WMP will provide an insertion or substitution candidate. The

candidate is selected from a combination of synonyms of the original words and a pre-

trained masked language model (MLM), such as BERT[9], XML [8] and MPNet [76].

The algorithm of WMP is demonstrated in Algorithm 2. Details of the three steps of

WMP are elaborated as follows:

4.2.1 Action

we draw e ∈ {0, 1, 2} from a categorical distribution:

p(e|x) =


Pins e = 0,

Psub e = 1,

Prem e = 2

(4.3)
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where Pins +Psub +Prem = 1, and Pins,Psub, and Prem represent probability of insertion (0),

substitution (1) and removing (2), respectively. The probabilities of these types of attacks

can be set by the attacker’s preference.

4.2.2 Position

Given a certain action e, we need to select one target word at location l in the sentence

to implement the attack. Considering the effectiveness of the selection, higher probabil-

ities should be assigned to the words with more influence. To solve this, we use the

changes of victim classifiers’ logits, I = [Iw1 , . . . , Iwi , . . . , Iwn], before and after deleting a

word. Such a drop of logits for ith word, Iwi , is mathematically formulated as:

Iwi = Fy,logit(x) − Fy,logit(xwi), (4.4)

xwi = [w1, . . . ,wi−1,wi+1, . . . ,wn]

where Fy,logit(·) is the classifier returning the logit of the correct class, and xwi is the text

with wi removed. Differently with word importance rank (WIR), we utilize drops of logits

I to craft categorical distribution on position l, p(l|e, x), by putting I to a softmax function

as following:

p(l|e, x) = softmax(I) (4.5)

This way, locations of words (tokens) are assigned with probabilities according to the

words’ influence on the classifier.

4.2.3 Word Candidates

Different actions require different searching strategies for word candidates. To find

the word candidates for substitution and insertion, we utilize an MLM and synonyms of

the original words (calculated by nearest neighbors using L2-norm of word embeddings),

for parsing-fluency and semantic preservation, respectively. As for word removals, we
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design a hesitation mechanism to maintain a probabilistic balance with word insertion.

The details are demonstrated in the following paragraphs.

4.2.3.1 Candidates for Substitution Attacks

We mask the word on the selected position to construct a masked sentence x∗sub =

[w1, . . . , [MAS K], . . . ,wn] and feed this masked sentence x∗sub into a MLMM(·) : X →

(0, 1)d to obtain a distribution about word candidates o across all the words in the diction-

ary size d. The distribution is below:

pM(o|l, e, x) =M(x∗sub) (4.6)

The MLM relies on softmax to output a distribution on the dictionary but most words

from the dictionary can be grammarly improper and the probability of selecting one of

these words can be high. To this end, we tend to create another distribution with re-

spect to the k top word candidates from the MLM. By mixing such a distribution with

the MLM distribution, the probability of selecting grammarly improper words can be

decreased. To construct such a k top words distribution, we choose the k top words

Gsub
M
= {wsub

(M,1), . . . ,w
sub
(M,k)} from M and treat every word from this set equally import-

ant:

ptop
M

(o|l, e, x) = 1(o ∈ Gsub
M

)
1
k
, (4.7)

where 1(·) is an indicator function. In such a setting, the top candidates from MLM are

attached with more importance.

Although the MLM can find parsing-fluent word candidates, these candidates cannot

ideally preserve semantics. Therefore, we perform synonym extraction by gathering a

word candidate set for top k replacements of the selected word. Specifically, we use L-

2 norm as the metric to perform kNN inside word embedding space from BERT, and

construct such a synonym candidates set Gnn = {w(M,1), . . . ,w(M,k)}, with top-k nearest

neighbors from the embedded spaces as synonyms for the word on selected position l. In
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this way, we construct the synonym words distribution as follows:

pnn(o|l, e, x) = 1(o ∈ Gnn)
1
k

(4.8)

As we tend to generate parsing-fluent and semantic-preserving adversarial candidates,

we combine the distributions in Eq. 4.6, Eq. 4.7 and Eq. 4.8 to construct a mixture

distribution as the final distribution to draw the substitution:

psub(o|e, l, x) =a1 pM(o|l, e, x) + a2 ptop
M

(o|l, e, x)

+ a3 pnn(o|l, e, x), (4.9)

where a1 + a2 + a3 = 1, a1, a2, a3 ∈ (0, 1), while a1, a2 and a3 are hyper-parameters for

weighing the corresponding distribution.

4.2.3.2 Candidates for Insertion Attacks

Searching word candidates for insertion attacks follows a similar logic as substitu-

tions but without a synonym search. We construct the mask sentence:

x∗ins = [w1, . . . ,wl−1, [MAS K],wl, . . . ,wn]

by inserting a masked token on the left side of selected position, then apply the MLMM

to the mask sentence for extracting the output of the softmax layer, M(x∗ins). Following

the same logic as Eq. 4.7, we select the top k word candidates Gins
M
= {w(M,1), . . . ,w(M,k)}.

Similarly with Eq. 4.9, insertion word candidate distribution can be constructed as fol-

lows:

pins(o|l, e, x) = b1M(xins) + b21(o ∈ Gins
M

)
1
k

(4.10)

where b1 + b2 = 1, b1, b2 ∈ (0, 1), b1 and b2 are hyper-parameters for weighing the

corresponding distribution.
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4.2.3.3 Candidates for Removal Attacks

Since word candidates for insertion and substitution can be drawn from a signific-

antly large dictionary, these two actions will provide a large variance of adversarial can-

didates. Differently, removal does not require a selection of word candidates but directly

removes the word on the selected position, which will lead to a low variety of adversarial

candidates crafted by removal. The consequence of such a low variety is that the probabil-

ity of crafting the same adversarial candidate is much higher than inserting and substitut-

ing. To balance such a probability, we design a Bernoulli distribution to determine word

removals. Specifically, we craft the removal word candidates set Grem = {0, 1}, where 0

and 1 represent remaining and removing the selected word, respectively. The distribution

is as follows:

prem(o|e, l, x) =


1 − 1

k o = 0,

1
k o = 1

(4.11)

With the above distribution, the o = 1 (i.e., to remove the word) is selected to replace the

original word with probability 1
k . The rationale of using 1

k is to decrease the probability of

repeatedly proposing the same perturbed sentence with action removal such that it is ap-

proximate to the probability of word replacement and insertion as in Eq. 4.6 and Eq. 4.10:

while each replacement word has a probability of 1
k for being chosen, the removal, o = 1,

has the same probability of being selected in removal attacks.

4.2.3.4 Integration of the three WMP steps

With the three WMP steps, we summarize the probability density function for word

candidates:

p(o|e, l, x) =


pins(o|e, l, x) e = 0,

psub(o|e, l, x) e = 1,

prem(o|e, l, x) e = 2

(4.12)
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By iteratively running WMP T times with an initial start at original input text (x′0 =

x), we can get a sequence of adversarial candidates x′T = [x′1, . . . , x
′
t , . . . , x

′
T ]. By applying

the Bayes rule, we can derive the WMP’s distribution from the iteration t to t + 1 as the

following equation:

WMP(x′t+1|x
′
t) =p(e, l, o|x′t)

=p(e|x′t)p(l|e, x′t)p(o|e, l, x′t) (4.13)

4.2.4 The Theoretical Merit of WMP

WMP is expected to own two major merits: enlarging the searching domain and the

ability to correct possible wrong manipulation. The merits can guarantee by the aperiod-

icity in the following theorem.

Theorem 1 Word Manipulation Process (WMP) is aperiodic.

Proof: Suppose we have two arbitrary text samples xi, x j ∈ X from text space X. xi =

[wi
1, . . . ,w

i
ni

] x j = [w j
1, . . . ,w

n j

1 ] have ni and n j words, respectively. To prove the process

is aperiodic by definition, we need to show:

∃N ⩽ ∞, P(x(N) = x j|xi) > 0, (4.14)

which means that there always exist ∃N ⩽ ∞ that can make the probability of transfer xi

to x j after N times larger than zero.

Because text dataset is discrete and WMP is time-discrete, WMP is a Markovian

process. Therefore, we apply the Chapman–Kolmogorov equation, to derive the following

equation:

P
(
x(N) = x j|xi

)
=

∑
x(t)∈X

WMP
(
x(1)|xi

)
WMP

(
x(2)|x(1)

)
· · ·WMP

(
x(N−1)|xN−2

)
WMP

(
x j|x(N−1)

)
, (4.15)
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where WMP(·) denotes the Word Manipulation process (WMP). We try to prove aperiod-

icity with a special case, let N = ni + n j A: first inserting all the words from x j to the xi,

then remove all words from xi. This process can be illustrated as follows:

A : xi
n jtimes
−−−−−→

insert
xn j = [wi

1, . . . ,w
i
ni
,w j

1, . . . ,w
n j

1 ]

n jtimes
−−−−−→
remove

x j = [w j
1, . . . ,w

n j

1 ]

AsA is the special case of the N times iterations, we have:

P(A) ⩽ P
(
x(N) = x j|xi

)
. (4.16)

Moreover, the WMP inserts one word on any position based on softmax, which outputs

non-zero probabilities, therefore we can derive:

0 < P(A) ⩽ P
(
x(N) = x j|xi

)
. (4.17)

Therefore, we find that for arbitrary xi, x j ∈ X, there always exist N = ni + n j ⩽ ∞ that

can make the probability of transfer xi to x j after N time larger than zero, i.e., P(x(N) =

x j|xi) > 0. According to the definition, we successfully prove the Theorem 1. □

Aperiodicity implies that, given a large enough number of iterations T , an arbitrary x

can be perturbed to any text x′ in text space, i.e., WMP(x|x′) , 0. The first merit of aperi-

odicity, WMP theoretically guarantees that the searching domain is enlarged to generate

the most effective adversarial candidates. Since WMP samples the adversarial candidates

with randomness, there is a tiny possibility of crafting a bad adversarial candidate. With

aperiodicity, WMP is eligible for correcting this bad manipulation by reversing the bad

sample x′t+1 to the previous state x′t .
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4.3 Adversarial Candidate Selection by Metropolis-Hasting

Sampling

After WMP generates adversarial candidates, a naive method is to greedily test all

the adversarial canididates and choose the best-performed candidates as adversarial ex-

amples. However, such a brute-force approach not only is time consuming but also can

end up with over-modified adversarial examples. To this end, we propose Fraud’s Bar-

gain Attack (FBA), which utilizes the Metropolis-Hasting (MH) algorithm to enhance the

WMP via selecting adversarial candidates evaluated by a customized adversarial distribu-

tion.

4.3.1 Adversarial Distribution

We argue that adversarial examples should work with imperceptible manipulations

to input text. Therefore, given text x, we construct the adversarial target distribution

π(x′) : X → (0, 1) to measure the classifier’s depravation once under attack with a heavy

penalty on change of semantics. Concretely, we measure the classifier’s depravation by

defining a measure of distance to perfection, R, based on the confidence of make wrong

predictions 1 − Fy(x′), where Fy : X → [0, 1] is the confidence of predicting correct

class. The higher the value of the distance to perfection R, the more successful the attack.

Meantime, we add a regularizer on semantic similarity, Sem(·) =. Thus the mathematical

formulation is as follows:

π(x′|x, λ) =
R + λSem(x′, x)

C
(4.18)

R =


1 − Fy(x′) Fy(x′) > 1

K ,

1 −
1
K

Fy(x′) ⩽ 1
K

(4.19)

C =
∑
x′∈X

R + λSem(x′, x), (4.20)
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Algorithm 2 Word Manipulation Process
Input: Number of iterations: T , Input text: x
Output: A set of adversarial candidates: [x′1, . . . , x

′
T ]

1: candidates=[ ]
2: x′0 = x
3: for t in T do
4: Given x′t−1, sample e with Eq. 4.4
5: Given x′t−1, e, sample l with Eq. 4.5
6: Given x′t−1, e, l, sample o with Eq. 4.12
7: Craft x′t by taking action e, l, o to x′t−1
8: candidate.append(x′t)
9: end for

10: return candidates

where K is the number of classes. In Eq. 4.18, we construct adversarial distribution by

utilizing a hyper-parameter λ to combine the attack performance R and semantic similarity

S em(·). In Eq. 4.20, C represents the constant normalizing π(x′) to ensure the distribution

condition,
∑

x′∈X π(x′|x, λ) = 1. To keep more semantics, we let Sem(x′, x) denote the

semantic similarity between adversarial example x′ and original text x. In general, the

S em(·) is implemented with the cosine similarity between sentence encodings from a pre-

trained sentence encoder, such as USE [4].

In spite of the use of the semantic regularizer, we argue that a high R might still cause

a thrilling semantic loss because the value of π(x′|x) might go up with large increases of

R and small drops of semantic similarity S em(x′, x). Thus, for a further improvement on

semantic preservation, we let the R be associated with a cut-off value at 1
K when the class

is successfully misclassified (i.e., when Fy(x′) ⩽ 1
K ). Note that when Fy(x′) ⩽ 1

K , the

classifier will misclassify x′ to one of the other K − 1 classess other than y. By having

the mechanism of setting R to 1
K whenever misclassification is achieved, all successful

adversarial examples will have the same R value. This way, their optimization with π will

then focus on maximizing their semantic similarity S em(x′, x) with the original texts.
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4.3.2 Fraud’s Bargain Attack via Metropolis Hasting Sampler

Metropolis Hasting [50] simulates a target distribution by using a proposing func-

tion to offer a trial state which is then accepted or rejected according to a customized

acceptance probability. Specifically, given a target distribution Q(·), the MH sampler

utilizes a proposing function q(st+1|st) (transition density from st to st+1) to construct a

Markov Chain, whose equilibrium distribution is our target distribution. By this probabil-

istic mechanism, the proposing function would propose a trial state st+1 given the current

state st and the acceptance probability α(st+1|st), as shown in Eq. 4.21:

α(si, si+1) = min
(
1,

Q (si+1)
Q(si)

q (si | si+1)
q (si+1 | si)

)
(4.21)

Based on such a setting, we construct FBA by considering the adversarial distribu-

tion (Eq. 4.18) and the WMP as the MH’s target distribution and proposing function,

respectively. In each iteration of FBA, we use WMP to propose a trial state xt+1 and cal-

culate the acceptance probability α(xt+1|xt). FBA’s acceptance probability in Eq. 4.21 can

then be mathematically formulated by using WMP as follows:

α(xt+1|xt) = min
(
1,
π (xt+1)
π(xt)

WMP (xt | xt+1)
WMP (xt+1 | xt, )

)
(4.22)

where WMP (xt | xt+1) can be guaranteed non-zero by Theorem 1, and calculated by re-

versing the WMP process: removing the inserted word, inserting the removed word and

recovering substituted word. After calculating α(xt+1|xt), we sample u from a uniform dis-

tribution, u ∼ Uni f (0, 1), if u < α(xt+1|xt) we will accept xt+1 as the new state, otherwise

the state will remain as xt. By running T iterations, FBA generates a set of adversarial

candidates, and we will choose the one with lowest modification among the successful ad-

versarial candidates that flips the predicted class. The whole process of FBA is illustrated

in the Algorithm 3.
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Algorithm 3 Fraud’s Bargain Attack (FBA)
Input: Input text: x, Number of Sample: T
Output: An adversarial example

1: Adv set = [ ]
2: x1 = x
3: for t in range(T ) do
4: Sample xt from WMP given xt−1 with Eq. 4.13
5: Sample u from Uniform distribution, Uniform(0,1)
6: Calculate the acceptance probability, prob = α(xt+1, xt) with Eq. 4.22
7: if u < prob then
8: xt = xt+1

9: Adv set.append(xt+1)
10: else
11: xt = xt

12: Adv set.append(xt)
13: end if
14: return Adv set
15: end for
16: Choose the candidate with the least modification as adversarial example x∗.
17: return adversarial example x∗

4.4 Experiments and Analysis

We evaluate the effectiveness of methods on widely-used and publicly available data-

sets with well-performed victim classifiers. We provide codes and data with the published

paper [61] to ensure reproducibility.

4.4.1 Main Experimental Settings

In this subsection, the basical experimental settings such as the datasets, victim mod-

els, baselines and the evaluation metrics used for the performance evaluation will be in-

troduced.

4.4.1.1 Datasets and Victim Models

In this section, we detail the three benchmark datasets and the two well-performed

textual classifiers. We conduct experiments on four publicly accessible benchmark data-
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Table 4.1: Datasets and accuracy of victim models before attacks.

Dataset Size Task Model Accuracy

AG’s News 127000 News
topics

BERT-C 94%
TextCNN 90%

Emotion 20000 Sentiment
analysis

BERT-C 97%
TextCNN 93%

SST2 9613 Sentiment
analysis

BERT-C 91%
TextCNN 83%

IMDB 50000 Movie
review

BERT-C 93%
TextCNN 88%

sets. AG’s News [94] is a news classification dataset with 127,600 samples belonging to

4 topic classes. Emotion [73] is a dataset with 20,000 samples and 6 classes. SST2 [75] is

a binary class topic dataset with 9,613 samples. IMDB [75] is a binary class topic dataset

with 50,000 labeled samples. Details of these datasets can be found in Table 4.1.

We apply our attack algorithm to two popular and well-performed types of victim

models. The details of the models can be found below.

BERT-based Classifiers

To do convincing experiments, we choose three well-performed and popular BERT-

based models, which we call BERT-C models, pre-trained by Huggingface1. Due to the

different sizes of the datasets, the structures of BERT-based classifiers are adjusted ac-

cordingly. The BERT classifier for AG’s News is structured by the Distil-RoBERTa-base

[72] connected with two fully connected layers, and it is trained for 10 epochs with a

learning rate of 0.0001. For the Emotion dataset, its BERT-C adopts another version

of BERT, Distil-BERT-base-uncased [72], and the training hyper-parameters remain the

same as BERT-C for AG’s News. Since the SST2 dataset is relatively small compared

with the other two models, the corresponding BERT classifier utilizes a small-size ver-

sion of BERT, BERT-base-uncased [9]. The test accuracies of these BERT-based classi-

1https://huggingface.co/
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fiers before they are under attack are listed in Table 4.1 which are publicly accessible 2 3

4.

TextCNN-based models

The other type of victim model is TextCNN [38], structured with a 100-dimension

embedding layer followed by a 128-unit long short-term memory layer. This classifier

is trained 10 epochs by ADAM optimizer with parameters: learning rate lr = 0.005,

the two coefficients used for computing running averages of gradient and its square are

set to be 0.9 and 0.999 (β1 = 0.9, β2 = 0.999), the denominator to improve numerical

stability σ = 10−5. The accuracy of these TextCNN-base models is also shown in Table

4.1. The hyper-parameters for training this models, is based on the literatures [55, 86].

Additionally, the victim models are employed to evaluate the attack performance, testing

whether the proposed methods can compromise robustness. Consequently, these models

do not need to achieve state-of-the-art performance.

2https://huggingface.co/mrm8488/distilroberta-finetuned-age_
news-classification

3https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion
4https://huggingface.co/echarlaix/bert-base-uncased-sst2-acc91.

1-d37-hybrid
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Table 4.2: Adversarial examples of Emotion dataset for victim classifier BERT-C. Ori-
ginal words are highlighted in blue, while substitutions are indicated in red. The attack
performance measured by true class scores is placed inside the brackets. The lower true
class score indicates better performance. The successful attacks and lowest true class
scores are bold.

Attacks Adversarial examples

A2T (Unsuccessful
attack. True class
score = 41.31%)

i spent wandering around still kinda dazed and not feeling sense partic-
ularly sociable social but because id been in hiding for a couple for days
and it was getting to be a little unhealthy i made myself go down to the
cross and hang out with folks

BAE (Unsuccess-
ful attack. True
class score =
33.25%)

i spent wandering around still kinda dazed and not feeling being partic-
ularly sociable but because id been in hiding for a couple for days and
it was getting to be a little bit unhealthy i made myself go down to the
cross and hang out with folks

FAGA (Successful
attack. True class
score = 13.32%)

i spent wandering around still kinda dazed and not feeling particularly
sociable sympathetic but because id been in hiding for a couple few for
days and it was getting to be a little unhealthy i made myself go down
to the cross and hang out with folks

BERT.A (Unsuc-
cessful attack.
True class score =
77.04%)

i spent wandering around still kinda dazed and not feeling being partic-
ularly sociable happy but because id been in hiding for a couple for days
and it was getting to be a little unhealthy i made myself go down to the
cross and hang out with folks

CLARE
(Successful at-
tack. True class
score = 10.54%)

i spent wandering around still kinda dazed and not feeling particularly
sociable lonely but because id been in hiding for a couple for days and
it was getting to be a little unhealthy i made myself go down to the cross
and hang out with folks.

PWWS
(Successful at-
tack. True class
score = 21.11%)

i spent wandering around still kinda dazed and not feeling palpate par-
ticularly sociable but because id been in hiding for a couple for days and
it was getting to be a little unhealthy i made myself go down to the cross
and hang out with folks

PSO (Successful
attack. True class
score = 6.90%)

i spent wandering around still kinda dazed and not feeling considering
particularly sociable but because id been in hiding for a couple for days
and it was getting to be a little unhealthy i made myself go down to the
cross and hang out with folks dudes

FBA (Successful
attack. True class
score = 0.63%)

i spent wandering around still kinda dazed and not feeling sensing par-
ticularly sociable but because id been in hiding for a couple for days and
it was getting to be a little unhealthy i made myself go down to the cross
and hang out with folks
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Table 4.3: Adversarial examples of AG’s News dataset for victim classifier TextCNN.
Original words are highlighted in blue, while substitutions are indicated in red. The attack
performance measured by true class scores is place inside the brackets. The lower true
class score indicates better performance. The successful attacks and lowest true class
score are bold.

Attacks Adversarial examples

A2T (Unsuccessful
attack. True class
score = 45.59%)

Card fraud unit nets 36,000 cards In its first two years, the UK’s ded-
icated card fraud unit, has recovered 36,000 stolen cards items and 171
arrests - and estimates says it saved 65m.

BAE (Unsuccess-
ful attack. True
class score =
73.25%)

Card fraud unit nets 36,000 stolen cards In its first two years, the UK’s
dedicated card fraud unit, has recovered 36,000 stolen cards and 171
arrests accounts - and estimates it saved 65m.

FAGA (Unsuc-
cessful attack.
True class score =
37.32%)

Card fraud unit nets recovered 36,000 cards In its first two years, the
UK’s dedicated card fraud unit, has recovered 36,000 stolen credit cards
and 171 arrests - and estimates it saved 65m.

BERT.A (Unsuc-
cessful attack.
True class score =
30.43%)

Card fraud unit nets 36,000 cards In its first two years, the UK’s new
dedicated largest card fraud unit, has recovered 36,000 stolen cards and
171 arrests - and estimates claims it saved 65m.

CLARE
(Successful at-
tack. True class
score = 9.05%)

Card fraud unit nets 36,000 cards In its first two years, the UK’s dedic-
ated card fraud collection unit center, has recovered 36,000 stolen cards
and 171 arrests - and estimates it saved 65m.

PWWS
(Successful at-
tack. True class
score = 18.31%)

Card The fraud unit nets 36,000 cards In its first two years, the UK’s
dedicated card fraud unit, has recovered reported 36,000 stolen cards
and 171 arrests - and estimates it saved 65m.

PSO (Unsuccessful
attack. True class
score = 44.01%)

Card fraud unit nets 36,000 cards In its first two years ages, the UK’s
dedicated card fraud unit, has recovered 36,000 stolen cards and 171
many arrests - and estimates it saved 65m.

FBA (Successful
attack. True class
score = 1.92%)

Card fraud unit nets 36,000 cards In its first two years, the UK’s dedic-
ated card fraud unit, has recovered 36,000 stolen cards and emancipation
171 arrests - and estimates it saved 65m.
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Table 4.4: Adversarial examples of SST2 dataset for victim classifier TextCNN. Original
words are highlighted in blue, while substitutions are indicated in red. The attack per-
formance measured by true class scores is placed inside the brackets. The lower true class
score indicates better performance. The successful attacks and lowest true class scores
are bold.

Attacks Adversarial examples

A2T (Successful
attack. True class
score = 21.31%)

an often-deadly boring short, strange reading of a classic whose witty
dialogue is treated laced with a baffling casual approach

BAE (Unsuccess-
ful attack. True
class score =
32.10%)

an often-deadly boring , strange reading of a classic novel whose witty
dialogue commentary is treated with a baffling casual approach

FAGA (Unsuc-
cessful attack.
True class score =
51.12%)

an often-deadly extremely boring , strange reading of a classic charac-
ters whose witty dialogue is treated with a baffling casual approach

BERT.A (Unsuc-
cessful attack.
True class score =
63.41%)

an often-deadly boring , strange critical reading of a classic whose witty
spoken dialogue is treated with a baffling casual approach

CLARE (Unsuc-
cessful attack.
True class score =
10.54%)

an often-deadly boring , strange reading of a classic whose witty entire
dialogue is treated with a baffling casual approach casualness

PWWS (Unsuc-
cessful attack.
True class score =
51.11%)

an often-deadly boring, strange casual reading of a classic whose witty
dialogue is treated with a baffling more casual approach

PSO (Successful
attack. True class
score = 7.90%)

an often-deadly somewhat boring, strange humorous reading of a classic
whose witty dialogue is treated with a baffling casual approach

FBA (Successful
attack. True class
score = 5.11%)

an often-deadly often-harmful boring, strange reading of a classic whose
witty dialogue is treated with a baffling casual approach

4.4.1.2 Baselines

To evaluate the attacking performance, we use the Textattack [55] framework to

deploy the following baselines:
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• Faster Alzantot Genetic Algorithm (FAGA) [32] accelerate Alzantot Genetic Al-

gorithm [1], by bounding the searching domain of genetic optimization.

• BAE [17] replaces and inserts tokens in the original text by masking a portion of

the text and leveraging the BERT-MLM.

• BERT-Attack [45] takes advantage of BERT MLM to generate candidates and at-

tack words by the static WIR descending order.

• A2T [89] uses a gradient-based word importance ranking method to iteratively re-

place each word with synonyms generated from a counter-fitted word embedding.

• CLARE (Li, 2021) [43] implements a series of context-sensitive perturbation steps

on the input. This process resembles a localized mask-then-infill approach, where

a specific portion of the input is masked and subsequently completed using a pre-

trained Masked Language Model (MLM).

• In PWWS (Ren, 2019) [67], the selection of potential words is derived from Word-

Net [54]. The approach prioritizes words for alteration by calculating a product

of their significance in the text and the degree of change they cause in the output

probability.

• Particle Swarm Optimization (PSO) by Zang et al. (2020)[90] involves sourcing

word alternatives from HowNet [10] and utilizing PSO for generating adversarial

text. In this framework, each sample is viewed as a particle whose position requires

optimization within the search space.

4.4.1.3 Evaluation Metrics and Experimental Setting

We use the following metrics to measure the performance of adversarial attacks.

• Successful attack rate (SAR): the percentage of adversarial examples that can suc-

cessfully attack the victim model.

91



CHAPTER 4. FRAUD’S BARGAIN ATTACK

• Textual similarity: the cosine similarity between the input and its adversary. We

calculate this using the universal sentence encoder USE [4].

• Modification Rate (Mod) is the percentage of modified tokens. Each replacement,

insertion or removal action accounts for one modified token.

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE): the overlap of n-

grams between the candidate sentence and reference sentence. Since the modific-

ation rate cannot measure the similarity of word alignment such as word ordering

and sentence length, we adopt ROUGE to measure the alignment similarity between

adversarial examples and original sentences.

• Grammar Error Rate (GErr) is measured by the absolute rate of increased gram-

matic errors in the successful adversarial examples, compared to the original text,

where we use LanguageTool [57] to obtain the number of grammatical errors.

• Perplexity (PPL) denotes a metric used to evaluate the fluency of adversarial ex-

amples and is broadly applied in the literature [43, 90]. The perplexity is calculated

using small-sized GPT-2 with a 50k-sized vocabulary [66].
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CHAPTER 4. FRAUD’S BARGAIN ATTACK

For settings of FBA, we set WMP action proposing probability in Eq. 4.4 as Pins =

0.2, Psub = 0.6, and Prem = 0.2. While setting up the distribution for selecting the substitu-

tion and insertion words, we believe MLM and Synonyms are equally important. There-

fore we set the weights of these two methods equal by setting a1 = 0.1, a2 = 0.4, a3 = 0.5

and b1 = 0.5, b2 = 0.5 from Eq. 4.9 and Eq. 4.10, respectively.

4.4.2 Experimental Results and Analysis

The experimental results of attacking performance (SAR) and the imperceptibility

performance (ROUGE, USE) and sentence quality (GErr, PPL) are listed in Table 4.5 and

Table 4.6 and Table 4.7, respectively. To give an intuitive of the generated examples, we

also show two generated adversarial examples in Tables 4.2, 4.3 and 4.4. We manifest

the three contributions mentioned in the beginning of the chapter by asking four research

questions:

(a) Does our FBA method make more thrilling attacks to baselines?

We compare the attacking performance of the proposed FBA method and baselines

in Table 4.5. To be more specific, Table 4.5 demonstrates that FBA consistently outper-

forms other competing methods across different data domains, regardless of the structure

of classifiers. It can thus be concluded that the proposed method FBA achieves the best

attacking performance, with the largest successful attack rate (SAR). We attribute such

an outstanding attacking performance to the two prevailing aspects of FBA. Firstly, the

proposed FBA could enlarge the searching domain by removing, substituting and insert-

ing words compared with the strategies with only substitution such that FBA provides

more possible attacking combinations. Secondly, FBA optimizes the performance by

stochastically searching the domain. Most of the baselines perform a deterministic search-

ing algorithm with Word Importance Rank (WIR) could get stuck in the local optima. Dif-

ferently, such a stochastic mechanism helps skip the local optima and further maximize

the attacking performance.
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CHAPTER 4. FRAUD’S BARGAIN ATTACK

(b) Is FBA superior to the baselines in terms of imperceptibility?

We evaluate the imperceptibility of different attack strategies, in terms of semantic

similarities (USE), modification rate (Mod) and word alignment (ROUGE) between the

original input text and its derived adversarial examples, shown in Table 4.6. Specific-

ally, Table 4.6 demonstrates the proposed FBA mostly attains better performance than

baselines. FBA is comparable to PSO for ROUGE while attacking BERT-C on AG’s

News, however, FBA maintains a higher semantic similarity (USE) than PSO on that data

set. This means PSO’s performance comes at the price of much inferior imperceptibility

performance. Thus we can conclude that the proposed FBA provides the best perform-

ance for imperceptibility among baselines. There are two important reasons for such an

outstanding performance for imperceptibility. The first factor is the customized target dis-

tribution in Eq. 4.18, which could help to avoid over-modifications. The second reason

is that we apply both MLM and kNN to find the best substitution candidates which can

provide more semantic similar substitutions.

(c) Is the quality of adversarial examples generated by the FBA better than that

crafted by the baselines?

High-quality adversarial examples should be parsing-fluent and grammarly correct.

From Table 4.7, we can find that FBA provides the lowest perplexity (PPL), which means

the examples generated by FBA are more likely to appear in the corpus of evaluation. As

our corpus is long enough and the evaluation model is broadly used, it indicates these

examples are more likely to appear in natural language space, thus eventually leading to

better fluency. For the grammar errors, the proposed method FBA is substantially better

than the other baselines, which indicates better quality of the adversarial examples. We

attribute such performance to our method of finding word substitution, constructing the

candidates set by applying both MLM and kNN for synonym searching.
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CHAPTER 4. FRAUD’S BARGAIN ATTACK

Table 4.8: Comparisons between the FBA and its ablation WMP on AG’s News dataset.
The better performance is highlighted in bold.

Models Attack
Metrics

SAR↑ ROUGE↑ USE↑ Mod↓ PPL↓ GErr↓

BERT-C
WMP 21.39% 0.5149 0.7083 17.2% 331 0.22
FBA 81.90% 0.8453 0.8001 11.0% 133 0.18

TextCNN
WMP 25.19% 0.5149 0.7083 19.2% 281 0.23
FBA 93.12% 0.8711 0.8224 10.3% 133 0.13

(d) Does the Metropolis-Hasting (MH) algorithm benefit the selection of the best

adversarial candidates?

To test the performance of the Metroplis-Hasting algorithm, we did an ablation study

by making a comparison between FBA and WMP whose adversarial candidates are not

selected by the Metropolis-Hasting algorithm. Specifically, we perform these two attacks,

FBA and WMP, on two classifiers, BERT-C and TextCNN pre-trained on dataset AG’s

News, and the experimental results are shown in Table 4.8. From Table 4.8, FBA achieved

better performance in both attack (SAR), imperceptibility (USE, Mod, ROUGE) and sen-

tence quality (PPL, GErr), thus we can conclude that the Metropolis-Hasting algorithm is

effective in selecting the adversarial candidates.

4.4.3 Ablation Studies

(a) Evaluating the Effectiveness of MH

To test the performance of the Metroplis-Hasting algorithm, we did an ablation study

by making a comparison between FBA and WMP whose adversarial candidates are not

selected by the Metropolis-Hasting algorithm. Specifically, we perform these two attacks,

FBA and WMP, to two classifiers, BERT-C and TextCNN pre-trained on dataset AG’s

News, and the experimental results are shown in Tables 4.5, 4.6 and 4.7. From these tables

, FBA achieved better performance in both attack (SAR), imperceptibility (USE, Mod,

ROUGE) and sentence quality (PPL, GErr), thus we can conclude that the Metropolis-
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CHAPTER 4. FRAUD’S BARGAIN ATTACK

Hasting algorithm is effective in selecting the adversarial candidates.

(b) Evaluating the Impact of Actions: Removal, Insertion, and Substitution

To evaluate the influence of different actions on attack performance, we set up six

distinct pairs with associated probabilities, as outlined in Table 4.9. In order to achieve

equilibrium between the actions of removal and insertion, we consistently set their prob-

abilities to be equal, represented as Pins = Prem.

The analysis of results from Table 4.9 can be categorized into three key facets: at-

tack performance (SAR), imperceptibility (ROUGE, USE, Mod), and the quality of the

generated examples (PPL, GErr). For attack performance, the group with Psub = 0.4

exhibited the highest efficacy. Meanwhile, the groups with Psub = 0.6 and Psub = 0.8

trailed closely, differentiated by a slim margin. The initial three groups underperformed,

primarily due to constraints that only consider examples with a USE exceeding 0.5 and a

modification rate below 0.25. Hence, even though these groups could generate adversarial

candidates capable of deceiving the target models, such examples are not regarded as suc-

cessful adversarial instances. Furthermore, the group focusing solely on substitution also

showcased a commendable success rate against overall performance.

Regarding imperceptibility, we observed an initial increase in performance with a

rise in the substitution probability Psub, which later began to decline. This trend can be

attributed to the notion that a higher likelihood of insertions and removals can impact

imperceptibility. Specifically, inserting or removing words may compromise language

semantics, alignment, and parsing, as these actions can introduce significant losses or

semantic redundancies. Simultaneously, if attackers focus exclusively on substitution,

imperceptibility may suffer due to altering a larger set of words to bolster the attack’s suc-

cess. Hence, an optimal substitution probability likely exists that harmoniously balances

imperceptibility. As for the quality of adversarial examples, there’s a distinct pattern: the

greater the substitution probability, the higher the quality. The experimental data suggests

that inserting and removing affect sentence quality.
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Table 4.9: Performance comparison of FBA on the AG News dataset against the TextCNN
victim model using different action probabilities. The top three performances are high-
lighted in bold, underlined, and italics.

Psub Pins SAR ROUGE USE Mod PPL GErr

0.0 0.5 69.12% 0.6711 0.7411 16.3% 231 0.21
0.2 0.4 78.10% 0.7011 0.7524 15.3% 201 0.19
0.4 0.3 94.12% 0.7911 0.7771 15.1% 179 0.17
0.6 0.2 93.12% 0.8711 0.8224 10.3% 133 0.13
0.8 0.1 91.12% 0.8211 0.8401 12.3% 112 0.13
1.0 0.0 87.01% 0.8011 0.8333 14.3% 110 0.12

Our findings indicate that the performance is suboptimal when focusing solely on

substitution or when excluding substitution altogether. This underscores the importance

of considering all actions – substitution, removal, and insertion – to bolster the attack’s

effectiveness. It’s imperative to gauge the overall success of adversarial attacks across

three dimensions: attack potency, imperceptibility, and sentence quality. Engaging in

adversarial attacks often necessitates trade-offs between imperceptibility and sentence

quality, as documented in [51, 59]. Given varying attack objectives, attackers can adjust

the substitution probability. Based on our experiments, a substitution probability of 0.6

(denoted as Psub = 0.6) is recommended, as it strikes an ideal balance between attack

efficacy and imperceptibility without undermining the textual quality.

(c) Evaluating the Effectiveness of Word Candidates Selection

Choosing the appropriate word candidates for substitution and insertion actions is

crucial, as it directly impacts the success rate of attacks and imperceptibility. To evalu-

ate the effectiveness of our word candidates selection method, we undertook an ablation

study. This study compared performances utilizing a thesaurus (specifically, WordNet[54]),

Masked Language Model (MLM), and Nearest Neighbors (NN) under L1, L2, and in-

finite norms. As shown from Table 4.10, our proposed method (MLM+L1, MLM+L2,

MLM+Linf) for word candidate search exhibited superior performance than the baselines.

We attribute this success to two main factors. Firstly, WMP utilizes NN to identify ‘poten-

tial’ synonyms that, although not always precise, capture the desired meaning. Secondly,
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Table 4.10: Performance metrics for FBA against the TextCNN model on the AG News
dataset using varied word candidate selection methods. The best three performances for
each metric are highlighted in bold, underline, and italics.

Methods SAR ROUGE USE Mod PPL GErr

WordNet 55.12% 0.7103 0.7231 15.1% 260 0.21
Linf 63.06% 0.7401 0.7010 14.8% 281 0.20
L1 70.19% 0.7419 0.7533 14.1% 209 0.18
L2 72.88% 0.7812 0.7695 14.0% 201 0.19

MLM 81.12% 0.7731 0.7031 15.3% 178 0.17

MLM+Linf 88.12% 0.8441 0.8001 13.3% 140 0.17
MLM+L1 92.42% 0.8713 0.8194 11.1% 136 0.14
MLM+L2 93.12% 0.8711 0.8224 10.3% 133 0.13

Table 4.11: The time efficiency of attack algorithms evaluated with BERT-C on the Emo-
tion and IMDB dataset. The metric of efficiency is second per example, which means a
lower metric indicates a better efficiency. The horizontally best 3 methods will be bold,
underlined and italic.

Datasets WMP A2T BAE FAGA BERT.A CLARE PWWS PSO FBA

Emotion 100.7 162.4 21.7 414.0 707.9 130.5 0.7 73.8 120.2

IMDB 155.7 431.4 81.1 781.0 1007.9 170.5 3.7 166.9 159.2

the MLM is crucial in improving the sentence’s parsing structure. Furthermore, our ob-

servations indicate that the L2 norm marginally surpasses the L1 norm and significantly

outperforms the infinite norm. While NN methods are not limited to any particular norm,

our experimental results demonstrate the commendable efficacy of both L1 and L2 norms.

4.4.4 Derivative Attacks and Retraining

In this subsection, we will explore various derivative attacks leveraging the proposed

methods. These include transfer attacks, where the attack model is transferred to a dif-

ferent target model; target attacks, which aim to cause misclassifications for specific tar-

geted samples; and attacks targeting defense mechanisms employed to safeguard machine

learning models. We will delve into the intricacies of each attack type and evaluate their

effectiveness against state-of-the-art models and defenses.
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Table 4.12: Targeted attack results on Emotion dataset. The better-performed attack is
highlighted in bold.

Models Attack
Metrics

SAR↑ ROUGE↑ USE↑ Mod↓ PPL↓ GErr↓

BERT-C
PWWS 21.23% 0.4541 0.6012 13.1% 341 0.28
FBA 57.21% 0.5101 0.7732 11.3% 299 0.22

TextCNN
PWWS 32.61% 0.5603 0.6320 21.3% 411 0.29
FBA 65.07% 0.6198 0.6511 15.1% 223 0.28

4.4.4.1 Transferability

Transferability of adversarial examples implies whether the adversarial samples gen-

erated to mislead a seimportant evaluation metric in adversarial attacks [43, 87, 90]. To

evaluate the transferability of the adversarial attacks, we exchange the adversarial ex-

amples generated on BERT-C and TextCNN, and let them attack the other side. Fig 4.1

shows the classification accuracy results of transferred adversarial examples. Note that

the lower the accuracy, the higher the transferability. From Fig 4.1, it can be seen that our

method attains the best transfer attack performance.

4.4.4.2 Targeted Attacks

A targeted attack is to attack the data sample with class y in a way that the sample

will be misclassified as a specified target class y′ but not other classes by the victim clas-

sifier. The targeted attack is regarded as a more harmful attack compared with untargeted

attacks, since targeted adversarial attacks give the attackers more control over the final

predicted label of the perturbed text. FBA can be easily adapted to targeted attack by

modifying 1 − Fy(x′) to Fy′(x′) in the definition of R in Eq. 4.19. The targeted attack

experiments are conducted on the Emotion dataset. The results are shown in Table 4.12

which demonstrates that the proposed FBA achieves better attacking performance (SAR)

and imperceptibility performance (ROUGE, USE).
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Figure 4.1: Performance of transfer attacks to victim models (BERT-C and TextCNN) on
Emotion. The decreased accuracy of the victim models indicates an increased level of
transferability, with lower values indicating improved performance in this regard.

4.4.4.3 Adversarial Retraining

Since adversarial examples should be regarded as features rather than bugs [30],

adversarial retraining is an effective way of using these features to improve the model’s

accuracy and robustness. To test the accuracy of adversarially retrained classifiers, we

randomly generate 1000, 2000, 3000, 4000, 5000, and 6000 adversarial examples from the

training set of SST2 and then append them to the training set for retraining the TextCNN.

Figure 4.2 shows the model’s accuracy on the clean test set after adversarial training

versus appending the different numbers of adversarial examples. From Figure 4.2, we

find that the classifier trained with adversarial examples achieves the best accuracy for

adding the same number of adversarial examples from FBA. In addition, we also evaluate

the robustness of the retrained model by applying FAGA to attack the retrained models.

Results in Fig 4.3 show that all retrained victim models can defend against the attacks to

a certain degree, and the retrained model with adversarial data from FBA is even more

robust than baselines. The reason for improved accuracy and robustness is that adversarial

attacks can augment informational features targeting the weak spots of the classifier. At

the same time, FBA with the best attacking performance can generate more robust and

103



CHAPTER 4. FRAUD’S BARGAIN ATTACK

Figure 4.2: Retraining accuracy of TextCNN with different numbers of adversarial ex-
amples included in the retraining. The higher the accuracy, the better the performance of
the retraining.

Figure 4.3: We employ FAGA to attack the adversarial retrained TextCNNs which joins
adversarial examples from different attacking strategies (CLARE, PWWS, PSO and FBA)
to the training set of SST2. The lower metrics (SAR, ROUGE, USE) suggest a better
performance in robustness while The higher metrics (Mod, PPL, GErr) suggest a better
performance in robustness.

informative features to adapt the original data domain to the true domain. Therefore,

FBA achieves the best retrain performance in accuracy and robustness.
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4.4.5 Complexity and Qualitative Results

Experiments were run on a RHEL 7.9 system with an Intel(R) Xeon(R) Gold 6238R

CPU (2.2GHz, 28 cores - 26 enabled, 38.5MB L3 Cache), an NVIDIA Quadro RTX 5000

GPU (3072 Cores, 384 Tensor Cores, 16GB memory), and 88GB RAM.

Table 4.11 presents the time taken to attack BERT and TextCNN classifiers on the

Emotion dataset. Time efficiency is measured in seconds per example, where a lower

value denotes better efficiency. As observed from Table 4.11, while our WMP and FBA

methods take longer than certain static baselines like PWWS and BAE, they outperform

others such as CLARE, FAGA, A2T, and BA in terms of efficiency. It is noted that the

extended run time of our methods compared to some baseline approaches suggests the

additional time invested in seeking more optimal adversarial examples.

4.5 Summary and Discussion

In conclusion, the chapter presents a novel FBA algorithm for creating natural lan-

guage adversarial examples, which not only enables successful attacks on textual classifi-

ers but also enhances the models’ accuracy and robustness through adversarial retraining.

While adversarial examples are considered features, not bugs, they pose a threat to NLP

models. Adversarial retraining, despite its effectiveness, can be costly and potentially

degrade model accuracy.
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Chapter 5

Reversible Jump Attack to Textual

Classifiers with Modification Reduction

Crafting optimal adversarial examples requires balancing successful attacks and con-

trolled imperceptibility. Existing optimization algorithms like Genetic Attack (GA)[1]

and Particle Swarm Optimization (PSO) [90] face challenges like low efficiency due to

large search spaces and compromised semantic integrity from synonym substitutions.

Hierarchical search methods based on word saliency rank (WSR) have drawbacks: 1)

Difficulty setting the optimal number of perturbed words for large datasets; 2) Reduced

search domain by only attacking words ordered by WSR. To address these limitations, we

propose two algorithms: Reversible Jump Attack (RJA) using randomization to enlarge

the search space, and Metropolis-Hasting Modification Reduction (MMR) to enhance the

imperceptibility of generated adversarial examples.

To address identified challenges, we introduce two novel black-box, word-level ad-

versarial algorithms: Reversible Jump Attacks (RJA) and MH Modification Reduction

(MMR). RJA employs the Reversible Jump sampler to dynamically adjust the number of

perturbed words and select high-quality adversarial candidates based on semantic simil-

arity. MMR aims to reverse RJA’s changes by restoring original words and updating sub-

stitutions to maintain attack effectiveness. By integrating RJA and MMR, our approach
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Figure 5.1: An example to show attack performance of optimizing attack (Genetic at-
tack), hierarchical attack, and the proposed method RJA-MMR, where label “0” repres-
ents negative sentiment and “1” represents positive sentiment. The substitutions for dif-
ferent attack methods are bold. Genetic Attack sacrifices too much semantics by changing
“thrillers” to “science” while PWWS fails to fool the model and makes many ineffective
modifications. The proposed method, RJA-MMR, makes a successful attack with only
one word changed.

optimizes adversarial attacks by balancing semantic coherence with minimal perturba-

tions. This effectiveness is clearly illustrated in an example Fig 5.1 where RJA-MMR

significantly outperforms traditional Genetic and hierarchical attacks.

Our main contributions from this work are as follows:

• We design a highly effective adversarial attack method, Reversible Jump Attack

(RJA), which utilizes the Reversible Jump algorithm to generate adversarial ex-

amples with an adaptive number of perturbed words. The algorithm enables our

attack method to have an enlarged search domain by jumping across the dimen-

sions.

• We propose Metropolis-Hasting Modification Reduction (MMR), which applies

Metropolis-Hasting (MH) algorithm to construct an acceptance probability and use

it to restore the attacked victim words to improve the imperceptibility with attack-

ing performance reserved. MMR is functional with RJA and empirically proven

effective in the adversarial examples generated by other attacking algorithms.

• We evaluate our attack method on real-world public datasets. Our results show that

methods achieved the best performance in terms of attack performance, impercept-

ibility and examples’ fluency.
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The rest of this chapter is structured as follows. We first review adversarial attacks

for NLP models and the Markov Chain Monte Carlo methods in NLP in Section 5.1.

Then, we detail our proposed method in Section 5.2. We evaluate the performance of the

proposed method through empirical analysis in Section 5.3. We conclude the chapter with

suggestions for future work in Section 5.4.

5.1 Preliminary

Markov chain Monte Carlo (MCMC) [50], a statistically generic method for approx-

imate sampling from an arbitrary distribution, can be applied in a variety of fields, such

as optimization [70], machine learning [14], quantum simulation [22] and icing models

[25]. The main idea is to generate a Markov chain whose equilibrium distribution is equal

to the target distribution [39]. There exist various algorithms for constructing chains, in-

cluding the Gibbs sampler, Reversible Jump sampler [21], and Metropolis-Hasting (MH)

algorithm [50]. To get models capable of reading, deciphering, and making sense of hu-

man languages, NLP researchers apply MCMC to many downstream tasks, such as text

generation and sentimental analysis. For text generation, Kumagai [41] proposes a prob-

abilistic text generation model which generates human-like text by inputting semantic

syntax and some situational content. Since human-like text requests grammarly correct

word alignment, they employed Monte Carlo Tree Search to optimize the structure of the

generated text. In addition, Harrison [23] presents the application of MCMC for gener-

ating a story, in which a summary of movies is produced by applying recurrent neural

networks (RNNs) to summarize events and directing the MCMC search toward creating

stories that satisfy genre expectations. For sentimental analysis, Kang [36] applies the

Gibbs sampler to the Bayesian network, a network of connected hidden neurons under

prior beliefs, to extract the latent emotions. Specifically, they apply the Hidden Markov

models to a hierarchical Bayesian network and embed the emotional variables as the latent

variable of the Hidden Markov model.

Despite the applications in NLP, the MCMC can be applied to adversarial attacks on
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NLP models. [92] has successfully applied MH sampling to generate fluent adversarial

examples for natural language by proposing gradient-guided word candidates. Specific-

ally, they proposed both black-box and white-box attacks, and for black-box attacks, they

perform removal, insertion and replacement by the words chosen from the pre-selector

candidates set, but the empirical studies indicate these candidates are not efficient and

effective for attacking. As for the white-box attacks, the gradient of the victim model is

introduced to score the pre-selector candidates set, which successfully improves the at-

tacking performance. However, the white-box setting is not practical in the real world, as

attackers cannot access the gradient and structure of the victim models. In addition, MHA

successfully improved the language quality in terms of fluency, but the imperceptibility

of the generated examples, especially in the modification rate, cannot be optimized.

The Metropolis-Hasting (MH) [50] algorithm is a classical Markov chain Monte

Carlo sampling approach. Given the stationary distribution f (z) and transition proposal

q(z′|z), the MH algorithm can generate desirable examples from f (z). Specifically, at each

iteration, a new state z′ will be proposed given the current state z based on a transition

function q(z′|z). The MH algorithm is based on a “trial-and-error” strategy by defining an

acceptance probability α(z′|z) as following:

α(z′|z) = min
{

f (z′)q(z | z′)
f (z)q(z′ | z)

, 1
}

(5.1)

to decide whether the new state z′ is accepted or rejected.

MCMC can also be applied to sample variational dimension sampling. Reversible

Jump samplers (RJS) [21] is a variation of MCMC algorithms specifically designed to

sample from target distributions that contain vectors with different dimensions. Due to

such a property, RJS can be applied to variable selection [15], dimension reduction [68],

and cross-dimensional optimization [39]. Unlike the MH algorithm, RJS requests an

additional transition item for proposing the new dimensions. The formulation of the ac-
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ceptance probability of RJS is below:

α(z′(m′)|z(m)) = min
{

f (z′(m′))q(z(m) | z′(m′))
f (z(m))q(z′(m′) | z(m))

, 1
}

(5.2)

q
(
z′(m′)|z(m)

)
= p

(
z′(m′)|m′, z(m)

)
p
(
m′|z(m)

)
, (5.3)

where m denotes the dimensions of the vector z(m), q
(
z′(m′)|z(m)

)
in Eq. 5.3 illustrates the

new transition function and p
(
m′|z(m)

)
is the dimensional transition item. Comparing MH

and RJS reveals that RJS is more effective than MH in handling dimensional variations

and sampling parameters of unknown dimensions. Since making adversarial would be

a typical situation of dimension variation due to number of perturbed words (NPW), we

believe that attacks based RJS is expected to achieve better performance than the literature

based on MH [92].

5.2 Imperceptible Adversarial Attack via Markov Chain

Monte Carlo

In this section, we will detail our proposed method, RJA-MMR, the Reversible Jump

attacks (RJA) with Metropolis-Hasting Modification Reduction (MMR).

5.2.1 Problem Formulation and Notaition

Given a pre-trained text classification model, which maps from feature space X to

a set of classes Y, an adversary aims to generate an adversarial document x∗ from a

legitimate document x ∈ X whose ground truth label is y ∈ Y, so that F(x∗) , y. The

adversary also requires S em(x, x∗) ⩽ ε for a domain-specific semantic similarity function

S em(·) : X × X → (0, 1), where the bound ε ∈ R helps to ensure imperceptibility. In

other words, in the context of text classification tasks, we use S em(x, x∗) to capture the

semantic similarity between x and x∗. More details of the notation are illustrated in Table

5.1.

110



CHAPTER 5. REVERSIBLE JUMP ATTACK WITH MODIFICATION REDUCTION

Table 5.1: List of notations used in this research.

Notation Description

X Text sample space.

Y Class space.

D A dataset to be attacked.

x = [w1,w2, . . . ,wn] An input text with n words and wi is the ith word in the se-
quence.

x An adversarial candidate generated by RJA.

m, v, s Three factors in adversarial sample generation: the number
of perturbed words, victim words, and their substitutions, re-
spectively.

G The set of substitution candidates.

xr The adversarial candidate generated in the restoring step of
MMR.

xu The adversarial candidate generated in the updating step of
MMR.

x∗ The final optima adversarial example.

I(wi) The saliency of the word wi.

T The total number of iterations for RJA-MMR.

F(·) : X → Y The victim classifier.

S em(·) : X2 → (0, 1) The function measuring the semantic similarity.

p(xt+1|xt) : X → (0, 1) The transition function from state xt to xt+1.

π(x) : X → (0, 1) Target distribution.

α(xt+1|xt) : X → (0, 1) The acceptance probability.

5.2.2 Reversible Jump Attack

This section details our proposed Reversible Jump Attack (RJA) which generates ad-

versarial examples under semantic regularisation. Let D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

denote a dataset with N data samples, where x and y are the input text and its corres-

ponding class. Given the input text x = [w1, . . . ,wi, . . . ,wn] with n words, we denote an

adversarial candidate of RJA as x and denote the final chosen adversarial example as x∗.

RJA, unlike traditional methods, treats the number of perturbed words (NPW) as
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Figure 5.2: The workflow of our RJA-MMR. In this example, HAA generates an ad-
versarial example with one word perturbed to attack a sentimental classifier with two
labels (positive and negative). The block 1© shows the calculation of word saliency. After
obtaining the word saliency, we perform RJA in block 2© which reflects the lines 4-15 in
Algorithm 4. After RJA, we perform the two steps, restoring and updating MMR in block
3© and 4©, respectively. The block 3© and 4© are illustrated in lines 4-10 and lines 11-18

in Algorithm 5, respectively.

a variable in the sampling process, not a preset value. Utilizing the Reversible Jump

Sampler, RJA conditionally samples NPW, victim words, and their substitutions. The

approach involves a transition function that proposes adversarial candidates, evaluated

against a target distribution focusing on attack effectiveness and semantic similarity (Eq.

5.2). This process iteratively refines the adversarial examples, guided by an acceptance

probability mechanism.
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This section first presents the transition function (Section 5.2.2.1) and then elaborates

on the acceptance probability (Section 5.2.2.2), which builds upon the transition function.

5.2.2.1 Transition Function

To propose the adversarial candidates, we construct our transition function to se-

quentially propose the three compulsory factors of crafting a new adversarial candidate

xt+1 given the current one xt: the NPW m, the victim words v = [v1, . . . , vm], and the cor-

responding substitutions s = [s1, . . . , sm], where the dimension of v and s is m. Before we

detail the process of proposing these factors, we first introduce the concept of the word

saliency. In this context, word saliency refers to the impact of the word wi on the output

of the classifier and the transition function, if this word is deleted from the sentence. The

word with a high saliency has a high impact on the classifier. Thus, associating more

importance to high-saliency words can help the transition function efficiently propose a

high-quality adversarial candidate. To calculate the word saliency, we use the changes of

victim classifiers’ logits before and after deleting word wi to represent the saliency I(wi):

I(wi) = Flogit(x) − Flogit(x\wi), (5.4)

x\wi = [w1, . . . ,wi−1,wi+1, . . . ,wn],

where Flogit(·) is the classifier returning the logit of the correct class, and x\wi is the text

with wi removed. We calculate the word saliency I(wi) for all wi ∈ x to obtain word

saliency I(x). Calculating the word saliency is illustrated in Block 1⃝ of Fig 5.2.

Among the iterations of searching for victim words, assume the RJA adversarial

candidate at iteration t is xt = (mt, vt, st) and the new adversarial candidate to be crafted is

xt+1 = (mt+1, vt+1, st+1), we propose the first factor, the NPW value mt+1, by either adding

or subtracting 1, i.e., mt+1 ∈ {mt + 1,mt − 1}. This set {mt + 1,mt − 1} does not need to

include mt because if the proposed state is rejected, mt+1 will be retained as mt, which

means mt still remains as a possible state. Thus the transition function for the new NPW
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value mt+1 can be formulated as a probability mass function as below:

p(mt+1|xt) =


exp(l1)

exp(l1) + exp(l2)
mt+1 = mt − 1,

exp(l2)
exp(l1) + exp(l2)

mt+1 = mt + 1,
(5.5)

where l1 =
∑
wi∈vt

I(wi), l2 =
∑
wi<vt

I(wi).

Such a transition function can propose the new state mt+1 ∈ {mt − 1,mt + 1} by

referring to the proportion of the exponential on victim word saliency l1 and unattacked

word saliency l2 overall word saliency exponential. Intuitively, if the saliency values of

all attacked words are high, the probability of proposing to reduce one attacked word,

mt+1 = mt − 1, is high, and vice versa. Concretely, to sample mt+1 from such a transition

function, we firstly draw a random number, η ∼ Uni f (0, 1); and if η is less than the

probability of sampling mt+1 = mt − 1, i.e., η < exp(l1)
exp(l1)+exp(l2) , then mt+1 = mt − 1, otherwise

mt+1 = mt+1. Unlike hierarchical attacks, which deterministically perturb the words in the

descending order of the word saliency, randomization is applied because of its two merits:

1) it overcomes the imprecision problem with the WSR (word saliency rank) mentioned

in the preceding introduction section, and 2) it enlarges the search domain by proposing

more combinations of attacked words than those in hierarchical searching.

After determining the number of perturbed words, we sample one target victim word

vtgt (where “tgt” refers to “target”) to be manipulated according to the newly sampled

mt+1. Specifically, for mt+1 = mt + 1, the target word vtgt is uniformly sampled from

unattacked word set x\vt, while for mt+1 = mt − 1 the target word vtgt is uniformly drawn

from attacked words set vt then the selected words will be restored to the original words.

The transition function of sampling the target victim word vtgt is thus formulated as:

p(vtgt|xt,mt+1) =


1

mt
vtgt ∈ vt if mt+1 = mt − 1,

1
n−mt

vtgt ∈ x\vt if mt+1 = mt + 1.

(5.6)
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After the target word vtgt ∈ xt is selected, we search for a parsing-fluent and semantic-

preserving substitution for wtgt. Therefore, we uniformly draw a substitution stgt for vtgt

from the candidates set, which is the intersection (consensus) of candidates provided by

Mask Language Models (MLMs) and Synonyms. Specifically, let M denote the MLM,

and we mask the vtgt in x to construct a masked xmask and feed the masked text into

M to search for the parsing-fluent candidates. Instead of using the argmax prediction,

we take the most possible K words, which are the top K words suggested by the logits

from M, to construct MLM candidates set GM = {w1
M
, . . . ,wK

M
}. To keep semantically

similar, we form a synonym set Gsyn = {w1
syn, . . . ,w

K
syn} from HowNet [11] based thesauri

such as OpenHowNet [64] and BabelNet [65] These thesauri are context-aware and at

the same time can provide more synonyms than common thesaurus such as WordNet

[52]. Since our objective is that the generated adversarial examples should be parsing-

fluent and semantic-preserving, the substitution stgt will be uniformly sampled from the

intersection G = GM ∩Gsyn, which is illustrated in Eq. 5.7.

p(stgt|wtgt,mt+1, xt) =
1

[G]
(5.7)

where G = GM ∩Gsyn and [G] is the cardinality of the set G.

By applying the Bayes rule to the Eqs. 5.5, 5.6 and 5.7, the final transition function

is:

pRJA (xt+1|xt) = p (mt+1|xt) p
(
wtgt|mt+1, xt

)
p
(
stgt|wtgt,mt+1, xt

)
(5.8)

5.2.2.2 Acceptance Probability for RJA

Before we calculating the acceptance probability, we need to construct the target

distribution for evaluating the performance. Specifically, we argue that a good ad-

versarial example should achieve successful attacks while being kept semantically similar

to the input text x. Therefore, we formulate the following equation as our target distribu-
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tion:

π(x) =

(
1 − Fp(x)

)
S em (x, x)

C
, (5.9)

where S em(x, x) represents the semantic similarity, which generally is implemented with

the cosine similarity between sentence encodings from a pre-trained sentence encoder,

such as USE [4]. C =
∑

x∈X

(
1 − Fp(x)

)
S em (x, x) is a positive normalizing factor to

make
∑

x∈X π(x) = 1 and Fp(·) : X → (0, 1) denotes the confidence of making right

predictions where X represents text space. From Eq. 5.9, we can easily observe that

the value from target distribution π(x) will increase with the increase of the attacking

performance measured by the confidence of making a wrong prediction 1 − Fp(x), and

semantic similarity S em(x, x).

Given the target distribution in Eq. 5.9 and transition function in Eq. 5.8, we

formulate the acceptance probability for RJA, αRJA(xt+1|xt), as follows:

αRJA(xt+1|xt) = min
{
π(xt+1)pRJA(xt|xt+1)
π(xt)pRJA(xt+1|xt)

, 1
}

(5.10)

After calculating α(xt+1|xt), we sample a random number ε from a uniform distribution,

ε ∼ Uni f orm(0, 1), if ε < α(xt+1|xt) we will accept xt+1 as the new state, otherwise the

state will remain as xt. By running T iterations, we obtain a set of adversarial candidates

{x1, x2, . . . xT }. We then choose the candidate which not only successfully fools the classi-

fier but also preserves the most semantics as the final adversarial candidate x. The process

of RJA is illustrated in Algorithm 4 and block 2⃝ in Fig 5.2.

5.2.3 Modification Reduction with Metropolis-Hasting Algorithm

Besides the success of tampering with the classifier and semantic preservation, the

modification rate is also an important factor in evaluating the imperceptibility of ad-

versarial examples. Generally, methods in the literature can generate effective adversarial

examples; however, it was hard to guarantee the modification rate is optimally the lowest.

To address this, we introduce the Metropolis-Hasting Modification Reduction (MMR),
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Algorithm 4 Reversible Jump Attack (RJA)
Input: Input text: x, Number of iterations: T
Output: Adversarial candidate x

1: Adv set = [ ]
2: x0 = x
3: for t+1 in range(T ) do
4: Sample mt+1 given xt with Eq. 5.5
5: Sample st+1 given xt and mt+1 with Eq. 5.6
6: Sample vt+1 given vt, mt+1 and s + 1 with Eq. 5.7
7: Craft xt+1 with mt+1, st+1, vt+1 and xt−1,
8: Calculate the acceptance probability, α(xt|xt−1) with Eq. 5.10
9: Sample ε from Uniform distribution, Uniform(0,1)

10: if ε < α(xt|xt−1) then
11: xt+1 = xt+1

12: Adv set = [Adv set, xt+1]
13: else
14: xt+1 = xt

15: Adv set = [Adv set, xt+1]
16: end if
17: end for
18: return An Adversarial candidate set Adv set
19: Choose the candidate which successfully fools the classifier with lease semantic sac-

rifice as an adversarial example x.
20: return Adversarial candidate x

leveraging the Metropolis-Hasting (MH) algorithm to optimize the modification rate by

exploring efficient yet minimal substitution combinations for a given adversarial can-

didate. MMR involves two steps, each employing the MH algorithm: 1) stochastically

restoring some attacked words to create a less modified candidate and 2) updating all

substitutions without altering the NPW, m. These steps are detailed in Sections 5.2.3.1

and 5.2.3.2 respectively.

5.2.3.1 Restoring Attacked Words with MMR

The first step of MMR is probabilistically restoring some attacked words with MH

algorithm to test the necessity of the current substitutions. Given an adversarial candidate

xt = (mt, vt, st) from iteration t in RJA, we aim to generate an adversarial candidate xr
t

which is constructed by restoring some attacked words in xt. To sample the restored

substitutions, we propose the probability mass function of selecting substitutions sr ∈
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{si,wi} in iteration t as follows:

p(sr|xt) =


exp(I(wi))

1 + exp(I(wi))
if sr = si (continue to attack),

1
1 + exp(I(wi))

if sr = wi (attack cancelled),
(5.11)

prestore(xr
t |xt) =

∏
sr∈st

p(sr|xt) (5.12)

where sr = si denotes to continue the attack and sr = wi denotes restoring the substitution

to the original word wi, respectively. The xr
t is the proposed adversarial candidate with

selected substitutions restored from x. With such a probability mass function, the sr can

be sampled by the same strategy of sampling as in Eq. 5.5. To further investigate the

quality of such a candidate, we apply the target distribution, π(x), in Eq. 5.9 to construct

the following acceptance probability:

αrestore(xr
t |xt) = min

(
π(xr

t )prestore(xt|xr
t )

π(xt)prestore(xr
t |xt)
, 1

)
(5.13)

to decide whether the proposed adversarial candidate xr
t should be accepted as the true

candidate.

5.2.3.2 Updating the Combination of Substitutions with MMR

Having restored selected substitutions to obtain the adversarial candidate xr
t at the

t-th iteration, we proceed to the second step: MMR updating. This step is designed

to refine attack performance by altering substitution combinations without affecting the

NPW, mt. We apply a methodology similar to the one in Eq. 5.7 for sampling substitution

combinations. In essence, the MMR updating utilizes the candidate proposing function

(Eq. 5.7) to explore alternative substitutions for each attacked word, aiming for enhanced

attack efficacy. The formulation for this update, leading to the next adversarial candidate
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xu
t , is governed by the subsequent acceptance probability:

αupdate(xu
t |x

r
t ) = min

(
π(xu

t )pupdate(xr
t |xu

t )
π(xr

t )pupdate(xu
t |xr

t )
, 1

)
, (5.14)

pupdate(xu
t |x

r
t ) =

∏
si∈sr

t

p(si|wi,mr
t , x

r
t ), (5.15)

where p(si|wi,mr
t , xr

t ) is identical to that in Eq. 5.7.

By iteratively running T times MH algorithms for substitution restoring and updating

with acceptance probabilities in Eq. 5.13 and Eq. 5.14, respectively, we can construct the

adversarial set X′ = {xu
t }

T
t=1 and select the candidate with the highest semantic similarity

among the successful candidates that fools the classifier as the final adversarial example

x∗. The suggested MMR technique has potential applications beyond our RJA method,

potentially minimizing alterations required in various other attack strategies as well. The

whole process of MMR is illustrated in Algorithm 5 and block 3⃝- 4⃝ in Fig 5.2.

5.3 Experiments and Analysis

In this section, we comprehensively evaluate the performance of our method against

the current state of the art and the basical experimental setting is provided in Sec. 5.3.1.

Besides the main results (Sec. 5.3.2) of attacking performance and imperceptibility, we

also conduct experiments on ablation studies (Sec. 5.3.3), derivative attacks (Sec. 5.3.4),

adversarial retraining (Sec. 5.3.5), efficiency and attacking performance (Sec. 5.3.6).

We evaluate the effectiveness our methods on three widely-used and publicly avail-

able benchmark datasets: AG’s News [94], Emotion [73], SST2 [75] and IMDB[49]. Spe-

cifically, AG’s News is a news classification dataset with 127,600 samples belonging to

4 topic classes, World, Sports, Business, Sci/Tech. Emotion [73] is a dataset with 20,000

samples and 6 classes, sadness, joy, love, anger, fear, surprise. SST2 [75] is a binary

class (positive and negative) topic dataset with 9,613 samples. The IMDB dataset [49],

comprising movie reviews from the Internet Movie Database, is predominantly utilized

119



CHAPTER 5. REVERSIBLE JUMP ATTACK WITH MODIFICATION REDUCTION

Algorithm 5 Metropolis-Hasting Modification Reduction (MMR)
Input: Adversarial candidate x = (m, v, s)
Output: The final adversarial example x∗

1: Adv set = [ ]
2: for t in range(T ) do
3: Fetch xt from RJA in iteration t
4: Sample xr

t to reduce the modifications with Eq. 5.11
5: Calculate the acceptance probability, α(xt|x) with Eq. 5.13
6: Sample ε from Uniform distribution, Uniform(0,1)
7: if ε < α(xr

t |x) then
8: xr

t = xr
t

9: else
10: xr

t = x
11: end if
12: Sample xu

t to update the substitutions in xr
t with Eq. 5.15

13: Calculate the acceptance probability, α(xu
t |xr

t ) with Eq. 5.14
14: if u < α(xu

t |xr
t ) then

15: xu
t = xu

t
16: Take xu

t as RJA’s input for next iteration
17: else
18: xu

t = xr
t

19: end if
20: Take xu

t as RJA’s input for next iteration
21: Adv set = [Adv set, xu

t ]
22: return Adv set
23: end for
24: return An Adversarial candidate set Adv set
25: Choose the candidate with the least modification from Adv set as the final adversarial

example x∗.
26: return The final adversarial example x∗

for binary sentiment classification, categorizing reviews into ‘positive’ or ‘negative’ sen-

timents. The details of these datasets can be found in Table 5.2. To ensure reproducibility,

we provide the code and data used in the published paper [60].

5.3.1 Main Experiments Settings

In this subsection, the basic experimental settings such victim models, baselines and

metrics will be introduced.
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Table 5.2: Datasets and accuracy of victim models before attacks.

Dataset Size Avg.Length Class Task Model Accuracy

AG’s News 12,700 37.84 4 News
topics

BERT-C 94%
TextCNN 90%

Emotion 20,000 19.14 6 Sentiment
analysis

BERT-C 97%
TextCNN 93%

SST2 9,613 19.31 2 Sentiment
analysis

BERT-C 91%
TextCNN 83%

IMDB 50,000 19.31 2 Movie
review

BERT-C 93%
TextCNN 88%

5.3.1.1 Victim Models

We apply our attack algorithm to two types of popular and well-performed victim

models. The details of the models can be found below.

BERT-based Classifiers We choose three well-performed and popular BERT-based

models, which we call BERT-C models (where the letter “C” represents “classifier”),

pre-trained by Huggingface1. Due to the different sizes of the datasets, the structures of

BERT-based classifiers are adjusted accordingly. The BERT classifier for AG’s News is

structured by the Distil-RoBERTa-base [72] connected with two fully connected layers,

and it is trained for 10 epochs with a learning rate of 0.0001. For the Emotion dataset, its

BERT-C adopts another version of BERT, Distil-BERT-base-uncased [72], and the train-

ing hyper-parameters remain the same as BERT-C for AG’s News. Since the SST2 dataset

is relatively small compared with the other two models, the corresponding BERT classi-

fier utilizes a small-size version of BERT, BERT-base-uncased [9]. The test accuracy of

these BERT-based classifiers before they are under attacks are listed in Table 5.2 and these

models are publicly accessible2 3 4 5.

1https://huggingface.co/
2https://huggingface.co/mrm8488/distilroberta-finetuned-age_

news-classification
3https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion
4https://huggingface.co/echarlaix/bert-base-uncased-sst2-acc91.

1-d37-hybrid
5https://huggingface.co/lvwerra/distilbert-imdb
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TextCNN-based models The other type of victim model is TextCNN [38], structured

with a 100-dimension embedding layer followed by a 128-unit long short-term memory

layer. This classifier is trained 10 epochs by ADAM optimizer with parameters: learning

rate lr = 0.005, the two coefficients used for computing running averages of gradient and

its square are set to be 0.9 and 0.999 (β1 = 0.9, β2 = 0.999), the denominator to improve

numerical stability σ = 10−5. The accuracy of these TextCNN-base models is also shown

in Table 5.2.

5.3.1.2 Baselines

To evaluate the attacking performance, we use the TextAttack [55] framework to

deploy the following baselines:

• AGA [1]: it uses the combination of restrictions on word embedding distance and

language model prediction scores to reduce search space. As for the searching

algorithm, it adopts a genetic algorithm, a popular population-based evolutionary

algorithm.

• Faster Alzantot Genetic Algorithm (FAGA) [32]: it accelerates AGA by bounding

the searching domain of genetic optimization.

• BERT-Base Adversarial Examples (BAE) [17]: it replaces and inserts tokens in the

original text by masking a portion of the text and leveraging the BERT-MLM.

• Metropolis-Hasting Attack (MHA) [92]: it performs Metropolis-Hasting sampling,

which is designed with the guidance of gradients, to sample the examples from a

pre-selector that generates candidates by using MLM.

• BERT-Attack (BA)[45]: it takes advantage of BERT-MLM to generate candidates

and attacked words by the static WIR descending order.

• Probability Weighted Word Saliency (PWWS) [67]: it chooses candidate words

from WordNet [54] and sorts word attack order by multiplying the word saliency

and probability variation.
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• TextFooler (TF) [33]: it ranks the important words with similar strategy with Eq.

5.4. With the important rank, the attacker prioritizes replacing them with the most

semantically similar and grammatically correct words until the prediction is altered.

• Particle Swarm Optimization (PSO) by Zang et al. (2020) [90] involves sourcing

word alternatives from HowNet [10] and utilizing PSO for generating adversarial

text. In this framework, each sample is viewed as a particle whose position requires

optimization within the search space.

5.3.1.3 Experimental Settings and Evaluation Metrics

For our RJA and RJA-MMR, we use the Universal Sentence Encoder (USE) [4] to

measure the sentence semantic similarity for target distribution in Eq. 5.9. We experiment

to find k = 30 substitution candidates, and to find these candidates’ substitutions, we use

RoBERTa-large [47] as the MLM for contextual infilling and utilize OpenHowNet [64]

as the synonym thesaurus. For the sampling-based algorithms, MHA and the proposed

methods (RJA, RJA-MMA), we set the maximum number of iterations T to 1000.

We use the following five metrics to measure the performance of adversarial attacks:

• Successful attack rate (SAR) is defined as the percentage of attacks where the ad-

versarial examples make the victim models predict a wrong label.

• Modification Rate(Mod) is the percentage of modified tokens. Each replacement,

insertion or removal action accounts for one modified token.

• Grammar Error (GErr) is measured by the absolute rate of increased grammatic

errors in the successful adversarial examples, compared to the original text, where

we use LanguageTool [57] to obtain the number of grammatical errors.

• Perplexity (PPL) denotes a metric used to evaluate the fluency of adversarial ex-

amples [37, 90]. The perplexity is calculated using small-sized GPT-2 with a 50k-

sized vocabulary [66].
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• Textual similarity (Sim) is measured by the cosine similarity between the sentence

embeddings of the input and that of the adversarial sample. We encoded the two

sentences with the universal sentence encoder (USE) [4].
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5.3.2 Experimental Results and Analysis

The main experimental results of the attacking performance (SAR), the impercept-

ibility performance (Sim, Mod) and the fluency of adversarial examples (PPL, GErr) are

listed in Tables 5.3 and 5.4. Moreover, we demonstrate adversarial examples crafted by

various methods shown in Table 5.5. We manifest the three contributions mentioned in

the Introduction section by answering three research questions:

5.3.2.1 Does our method make more thrilling attacks compared with baselines?

We compare the attacking performance of the proposed method RJA-MMR and

baselines in Table 5.3. This table demonstrates that RJA-MMR consistently outperforms

other competing methods across different data domains, regardless of the structure of

classifiers. Further, even RJA by itself, without using MMR, can craft more menacing

adversarial examples than most baselines. We attribute such an outstanding attacking per-

formance to the two prevailing aspects of RJA. Firstly, RJA optimizes the performance by

stochastically searching the domain. Most of the baselines perform a deterministic search-

ing algorithm which could get stuck in the local optima. Differently, such a stochastic

mechanism helps skip the local optima and further maximize the attacking performance.

Secondly, some of the baselines strictly attack the victim words in the order of word

importance rank (WIR), where the domain of the hierarchical search is limited to combin-

ations of the neighbouring victim words from the WIR, which would miss the potential

optimal victim words combination. Unlike these methods, the RJA would enlarge the

searching domain by testing more combinations of substitutions that do not follow the

WIR order. Thus, the proposed method RJA achieves the best-attacking performance,

with the highest successful attack rate (SAR).
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Table 5.5: Adversarial examples of the Emotion dataset for victim classifier BERT-C.
Original words are highlighted in blue, while substitutions are indicated in red. Besides
the examples, the attack performance is measured by attacking success (Succ.) and con-
fidence (Conf.) in making correct predictions. The lower confidence indicates better
performance, and the successful attacks and lowest confidence are bold.

Methods Adversarial example Succ. Conf.

BAE made a wonderful nasty new friend Yes 4.3%

AGA made a wonderful beautiful new friend No 94%

FAGA made introduced a wonderful beautiful new friend No 95%

MHA made a wonderful new newly friend No 70%

BA made a wonderful good new brand friend No 95%

PWWS made seduce a wonderful new raw friend admirer No 99%

TF made a wonderful strange new friend Yes 5.0%

PSO made doomed a wonderful new friend Yes 0.92%

RJA-MMR made a wonderful lovely new friend Yes 0.80%

5.3.2.2 Is RJA-MMR superior to the baselines in terms of imperceptibility?

We evaluate the imperceptibility of different attack strategies in terms of semantic

similarities (USE) and modification rate (Mod) between the original input text and its

derived adversarial examples, shown in Table 5.4. It can be seen that the proposed RJA-

MMR attains the best performance among the baselines. The outstanding performance

of the proposed method is attributed to the mechanisms of RJA and MMR. For semantic

preservation, we statistically design the target distribution (Eq. 5.9) with a strong regular-

ization of the semantic similarity in each iteration. Moreover, the HowNet are knowledge-

graph-based thesaurus which provides part-of-speech (POS) aware substitutions. Com-

pared with the candidates supplied by baselines, the synonyms from HowNet can be more

semantically similar to the original words. As for the modification rate, the proposed

MMR is mainly designed for restoring the attacked words from successful adversarial

examples so that the proposed RJA-MMR perturbs fewer words without sacrificing the

attacking performance. Thus we can conclude that the proposed RJA-MMR provides the

best performance for imperceptibility among baselines.
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5.3.2.3 Is the quality of adversarial examples generated by the proposed methods

better than that crafted by the baselines?

We insist the qualified adversarial examples should be parsing-fluent and grammarly

correct. From the table 5.4, we can find the RJA-MMR provides the lowest perplexity

(PPL), which means the examples generated by RJA-MMR are more likely to appear

in the corpus of evaluation. As our corpus is long enough and the evaluation model is

broadly used, it indicates these examples are more likely to appear in natural language

space, thus eventually leading to better fluency. For the grammar errors, the proposed

method RJA-MMR is substantially better than the other baselines, which indicates better

quality of the adversarial examples. We attribute such performance to our method of

finding word substitution, constructing the candidates set by intersecting the candidates

from HowNet and MLM.

5.3.3 Ablation Study

To rigorously validate the efficacy of the proposed RJA-MMR method, this section

conducts a detailed ablation study, dissecting each component to assess its individual

impact and overall contribution to the method’s performance.

5.3.3.1 Effectiveness of RJA

We compare the attacking performance of our Reversible Jump Attack methods

(RJA, RJA-MMR) and baselines in Table 5.3, reflected by SAR. The RJA helps attackers

achieve the best-attacking performance, with the largest metric SAR across the differ-

ent downstream tasks. Apart from RJA-MMR, its ablation RJA also shows surpasses the

strong baselines in most cases. Therefore, RJA is effective in terms of attacking perform-

ance.
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Figure 5.3: Comparisons on modification rates among attacking strategies (PSO, TF,
PWWS, BA, MHA) with MMR and without MMR to attack the BERT-C on AG News
dataset.

5.3.3.2 Effectiveness of MMR

MMR is a stochastic mechanism to reduce the modifications of adversarial examples

with attacking performance preserved. Besides RJA-MMR, we also apply MMR to dif-

ferent attacking algorithms, including PSO, TF, PWWS, BA and MHA, aiming to demon-

strate the advantages of MMR in general.

From Table 5.3,we can find RJA-MMR has superior performance to RJA with lower

modification rates. Moverover, the other baseline analysis results are shown in Fig 5.3.

It shows that the attacking algorithms with MMR consistently have a lower modification

rate than those without MMR. This means that attacking strategies can generally benefit

from MMR by making fewer modifications.

5.3.3.3 Performance versus the Number of Iterations

The performance of the proposed methods is influenced by the number of iterations,

denoted as T . To delve deeper into this relationship, we conducted an extensive ablation

study examining the correlation between performance and T . Insights drawn from Figure
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Table 5.6: Performance metrics for RJA-MMR against the TextCNN model on the AG
News dataset using varied word candidate selection methods. The best performances for
each metric are highlighted in bold.

Methods SAR USE Mod PPL GErr

HowNet 85.1 72 13.1 159 0.15
MLM 90.1 73 11.3 156 0.12

HowNet+MLM 93.8 82 9.9 127 0.12

Figure 5.4: shows the progression of SAR, SIM, Mod, GErr, and PPL metrics for SST2
BERT over increased iterations (T). Performance trends and convergence points are visu-
ally represented.

5.4 reveal a positive trend where performance amplifies in tandem with the number of

iterations. Notably, performance begins to plateau, indicating convergence, at T = 100.

5.3.3.4 Effectiveness of the Word Candidates

In our ablation study outlined in Table 5.6, we assessed the impact of different

word candidate selection methods on the RJA-MMR’s performance against the TextCNN

model using the AG News dataset. The evaluation encompassed three distinct strategies:

HowNet, MLM, and a synergistic combination of both. Individually, HowNet and MLM

demonstrated commendable performances, with MLM slightly edging ahead. However,

the confluence of HowNet and MLM delivered unparalleled results, outclassing the in-

dividual methods across all metrics. This underscores the enhanced efficacy achieved

through the integration of HowNet and MLM in bolstering adversarial attack potency.
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Table 5.7: Robustness of BERT Models of Different Sizes on the Emotion Dataset

Metric BERT Tiny BERT Base BERT Large BERT Huge

SAR 98.1 97.3 94 90
Sim 6.0 7.1 7.7 7.9
Mod 93 90 88 87

5.3.3.5 Robustness versus the Scale of Pre-trained Models

Examining Tables 5.3 and 5.4, a question arises: Does increasing the scale of a model

enhance its robustness? To explore this, we conducted a study applying our proposed

attack methods to victim models of varying sizes on the Emotion dataset. The findings,

presented in Table 5.7, confirm an increase in robustness correlating with model size

augmentation.

5.3.4 Derivative Attacks

In this subsection, we will explore various derivative attacks leveraging the proposed

methods. These include transfer attacks, where the attack model is transferred to a dif-

ferent target model; target attacks, which aim to cause misclassifications for specific tar-

geted samples; and attacks targeting defense mechanisms employed to safeguard machine

learning models. We will delve into the intricacies of each attack type and evaluate their

effectiveness against state-of-the-art models and defenses.

5.3.4.1 Transferability

The transferability of adversarial examples refers to its ability to degrade the per-

formance of other models to a certain extent when the examples are generated on a spe-

cific classifier [19]. To evaluate the transferability, we investigate further by exchanging

the adversarial examples generated on BERT-C and TextCNN and the results are shown

in Fig 5.5.
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Figure 5.5: Performance of transfer attacks to victim models (BERT-C and TextCNN) on
Emotion. A lower accuracy of the victim models indicates a higher transfer ability (i.e.,
the lower, the better).

When the adversarial examples generated by our methods are transferred to attack

BERT-C and TexCNN, we can find that the attacking performance of RJA-MMR still

achieves more than 80% successful rate, which is the best among baselines as illustrated

in the Fig 5.5. Apart from RJA-MMR, its ablated components RJA also surpass the most

baselines. This suggests that the transferring attacking performance of the proposed meth-

ods consistently outperforms the baselines.

5.3.4.2 Targeted Attacks

A targeted attack is to attack the data sample with class y in a way that the sample

will be misclassified as a specified target class y′ but not other classes by the victim clas-

sifier. RJA and MMR can be easily adapted to targeted attack by modifying 1 − Fy(x) to

Fy′(x) in Eq. 5.9. The targeted attack experiments are conducted on the Emotion data-

set. The results are shown in Table 5.8, which demonstrates that the proposed RJA-MMR

achieves better performance than PWWS, in terms of attacking performance (SAR), im-

perceptibility performance (Mod, Sim) and sentence quality (GErr, PPL).
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Table 5.8: Targeted attack and imperceptibility-preserving performance on the Emotion
dataset. The victim models are BERT-C and TextCNN classifiers, and the baseline is
PWWS. The statistics for better performance are vertically highlighted in bold.

Classifers Attack methods
Metrics

SAR↑ Mod↓ PPL↓ GErr↓ Sim↑

BERT-C
PWWS 21.2 14.1 377 0.19 60

RJA-MMR 28.0 9.2 299 0.13 71

TextCNN
PWWS 32.6 11.1 345 0.22 63

RJA-MMR 57.1 10.3 256 0.17 65

5.3.4.3 Attacking Models with Defense Mechanism

Defending against textual adversarial attacks is paramount in ensuring the integrity

and security of machine learning models used in natural language processing applications.

Effective defense mechanisms encompass two multi-faceted approaches that include: 1)

robust model training, utilizing adversarial training techniques to increase models’ resili-

ence against malicious inputs. 2) malicious input detection, aiming to identify and mitig-

ate adversarial examples without actively altering the machine learning model’s structure

or training process.

To ensure a thorough evaluation of our proposed attack methods, we’ve integrated

two distinct defense mechanisms into our assessment. For passive defense, we adopted

the Frequency-Guided Word Substitutions (FGWS)[56] approach, which excels at identi-

fying adversarial examples. Conversely, for active defense, we incorporated Random

Masking Training (RanMASK)[91], a technique that bolsters model resilience via spe-

cialized training routines. We perform the adversarial attack to the BERT-C on the two

datasets IMDB and SST2, and the results are presented in Table 5.9. The results show

that our method outperforms the baselines.
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Table 5.9: A comparative analysis of attack performance (SAR) against BERT-C when
subjected to two defense mechanisms, FGWS and RanMASK, across IMDB and SST2
datasets. Performance metrics are highlighted in bold to emphasize superior results.

Datasets Defense BAE FAGA MHA PWWS PSO RJA-MMR

IMDB
FGWS 37.7 18.0 34.9 66.1 80.0 88.1

RanMASK 39.1 19.2 40.1 55.3 81.0 83.1

SST2
FGWS 38.1 40.1 61.0 63.7 79.9 81.7

RanMASK 41.1 16.4 39.6 71.3 77.1 86.7

5.3.5 Adversarial Retraining

This section explores RJA-MMR’s potential in improving downstream models’ ac-

curacy and robustness. Following [43], we use RJA-MMR to generate adversarial ex-

amples from AG’s News training instances and include them as additional training data.

We inject different proportions of adversarial examples into the training data for the set-

tings of a BERT-based MLP classifier and a TextCNN classifier without any pre-trained

embedding. We provide adversarial retraining analysis by answering the following two

questions:

5.3.5.1 Can adversarial retrainig help achieve better test accuracy?

As shown in Fig. 5.6, when the training data is accessible, adversarial training gradu-

ally increases the test accuracy while the proportions of adversarial data are smaller than

roughly 30%. Based on our results, we can see that a certain amount of adversarial data

can help improve the models’ accuracy, but too much such data will degrade the perform-

ance. This means that the right amount of adversarial data will need to be determined

empirically, which matches the conclusions made from previous research [32, 87].
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Figure 5.6: Results of adversarially trained BERT and TextCNN by inserting the different
numbers of adversarial examples to the training set. The accuracy is based on the per-
formance of the SST2 test set.

5.3.5.2 Does adversarial retraining help the models defend against adversarial at-

tacks?

To evaluate this, we use RJA-MMR to attack the classifiers trained with different

proportions (0%, 10%, 20%, 30%, 40%) of adversarial examples. A higher success rate

(SAR) indicates a victim classifier is more vulnerable to adversarial attacks. As shown in

Fig 5.7, adversarial training helps to decrease the attack success rate by more than 10%

for the BERT classifier (BERT-C) and 5% for TextCNN. These results suggest that the

proposed RJA-MMR can be used to improve downstream models’ robustness by joining

its generated adversarial examples to the training set.
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Figure 5.7: The success attack rate (SAR) of adversarially retrained models with different
numbers of adversarial examples. A lower SAR indicates a victim classifier is more robust
to adversarial attacks.

5.3.6 Efficiency and Attacking Preference

This section explores RJA-MMR’s efficiency and attacking preference in terms of

part-of-speech (POS).

5.3.6.1 Parts of Speech Preference

Regarding the superiority of the proposed method in attacking performance, we in-

vestigate its attacking preference, described by parts of speech (POS), for further lin-

guistic analysis. In this subsection, we break down the attacked words in AG’s News

dataset by part-of-speech tags with Stanford PSO tagger [82], and the collected statistics

are shown in Table 5.10. By analyzing the results, we expect to find the more vulnerable

POS by comparing the proposed methods and baselines.

We apply PSO tagger to annotate them with POS tags, including noun, verb, ad-

jective (Adj.), adverb (Adv.) and others (i.e., pronoun preposition, conjunction, etc.).

Statistical results in Table 5.10 demonstrate that all the attacking methods heavily focus

on the noun. Presumably, in the topic classification task, the prediction heavily depends
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Table 5.10: POS preference with respect to choices of victim words among attacking
methods. The tags with the horizontally highest and second highest proportion are bold
and italic, respectively

Methods Noun Verb Adj. Adv. Others

BAE 30% 14% 13% 41% 2%
AGA 44% 21% 11% 5% 19%
FAGA 34% 11% 22% 14% 19%
MHA 54% 9% 21% 4% 12%
BA 68% 9% 4% 9% 10%

PWWS 54% 9% 18% 3% 16%
TF 31% 10% 39% 10% 10%

PSO 48% 9% 15% 19% 9%
RJA 28% 12% 19% 11% 30%

RJA-MMR 22% 17% 13% 17% 31%

on noun. However, the proposed attacking strategies (RJA and RJA-MMR) tend to take

a more significant proportion of others than any other methods; thus we might conclude

that Others (pronoun, preposition and conjunction) might be the second adversarially

vulnerable. Since these tags (pronouns, prepositions and conjunction) do not carry much

semantics, we think these tags will not linguistically and semantically affect prediction

but possibly impact the sequential dependencies, which could contaminate the contextual

understanding of the classifiers and then subsequently cause wrong predictions.

5.3.6.2 Efficiency Analysis

In this section, we aim to evaluate the efficiency from both empirical and theoret-

ical perspectives. To perform the empirical complexity (EV) evaluation, we carry out

all experiments on RHEL 7.9 with the following specification: Intel(R) Xeon(R) Gold

6238R 2.2GHz 28 cores (26 cores enabled) 38.5MB L3 Cache (Max Turbo Freq. 4.0GHz,

Min 3.0GHz) CPU, NVIDIA Quadro RTX 5000 (3072 Cores, 384 Tensor Cores, 16GB

Memory) (GPU), and 88GB RAM. Table 5.11 lists the time consumed for attacking BERT

and TextCNN classifiers on the Emotion dataset. The metric of time efficiency is second

per example, which means a lower metric indicates better efficiency. Results from Table

5.11 show that our RJA and RJA-MMR run longer than some static counterparts (PWWS,
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Table 5.11: Assessment of attack algorithms’ efficiency on the Emotion dataset, utilizing
empirical complexity (EC) in seconds per example for practical evaluation and total vari-
ance (TV) distance for theoretical convergence speed analysis. Lower EC values denote
higher efficiency. The top three methods are highlighted in bold, italic, and underlined.

Methods Metric BAE FAGA MHA BA PWWSTF PSO RJA +MMR

BERT-C
EC 21.7 162.4 414.0 707.9 0.7 40.5 73.8 66.9 56.2

TV – 1.22 1.14 – – – 1.3 0.99 0.89

TextCNN
EC 17.4 84.5 191.3 488.1 0.4 28.1 55.1 51.9 54.1

TV – 1.31 1.40 – – – 1.29 1.11 1.01

BAE, TF) but are more efficient than the others, such as PSO, FAGA, MHA and BA. Non-

etheless, the results of our methods running longer than some baseline methods indicate

the genuine time needed to look for the more optimal adversarial examples.

To theoretically gauge convergence speed, researchers employ the probabilistic concept

of Mixing Time (MT), which denotes the duration for a Markov chain to approach its

steady-state distribution closely [39]. Given that MT is constrained by the total variation

distance (TV) between the proposed and target distributions, TV is frequently used as a

metric to quantify both the mixing time and speed of convergence[21, 50]. Analysis of

Table 5.11 reveals that the proposed RJA-MMR method registers the lowest Total Vari-

ance (TV) distance, indicating superior theoretical performance in terms of convergence

speed compared to other methods.

5.4 Summary and Discussion

In conclusion, this chapter of your thesis discusses the vulnerability of NLP classi-

fiers to adversarial attacks. It introduces a novel method, RJA-MMR, which consists of

two algorithms: Reversible Jump Attack (RJA) and Metropolis-Hasting Modification Re-

duction (MMR). RJA poses a threat to NLP classifiers by adaptively sampling the number

of perturbed words, victim words, and their substitutions. MMR improves imperceptibil-

ity and lowers the modification rate by restoring attacked words without affecting attack

performance. The RJA-MMR method has proven to deliver the best attack success, im-
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perceptibility, and sentence quality among strong baselines. Adversarial examples, while

posing a threat, are considered features, not bugs. A defense strategy, adversarial re-

training, is proposed and tested, involving the integration of adversarial examples into

the training set. This strategy has significantly improved the robustness of the classifiers,

although the accuracy on clean data decreases when an excessive amount of adversarial

examples are injected. This chapter contributes to the ongoing research on enhancing the

robustness of NLP models against adversarial attacks.

Different from the HAA proposed in Chapter 3, the FBA in Chapter 4 and RJA-

MMR aim to fool textual classifiers rather than NMTs. The key distinction lies in their

objectives: degrading translation quality for NMTs (a continuous measure) versus flipping

classes for classifiers (a discrete outcome). In Chapter 4, we primarily focused on enhan-

cing attacking performance, with imperceptibility as a secondary concern. To address

this, we introduce RJA-MMR in this chapter, comprising RJA and MMR. Both compon-

ents mitigate excessive modifications without compromising the attacking effectiveness

of FBA, as evidenced by the results in Tables 4.6 and 5.3.
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Conclusion and Future Work

In this chapter, a brief conclusion is presented in Section 6.1, and then several poten-

tial future research directions are proposed in Section 6.2.

6.1 Conclusion of This Thesis

In this thesis, we have undertaken a thorough investigation into the vulnerabilities

of NMT and textual classifiers under adversarial attacks. Our exploration has yielded

significant insights into the frailties of these models. It has provided a valid way to test

and enhance the robustness of the current NMTs and textual classifiers. In Chapter 3,

we have proposed HAA, which selects influential words by both translation-specific and

language-centered attention and substitutes them with semantics-preserved word perturb-

ations. Adversarial examples generated by our proposed method will affect not only the

victim’s word translation but also other words’ translations. Experiments demonstrate

that HAA delivers the best balance between the number of perturbed words and attack-

ing performance among the competing methods. Although the generated adversarial ex-

amples can threat the NMTs, adversarial examples are not bugs but features [30]. To

protect the NMT from the proposed attack, we believe that one possible defence strategy

is adversarial retraining, which is usually done by joining the adversarial examples in
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the training set then retraining the models with the newly constructed training set. Al-

though we did not perform the adversarial retraining in experiments, due to the lack of

access to the victim models’ structure since the Google and Baidu translations are online

service and Helsinki NLP does not specify their model structures, by joining the ad-

versarial features into model training, the model can be theoretically more robust against

adversarial attacks. At the outset of this journey, we identified a crucial gap in the under-

standing of deep-learning-based NMTs’ vulnerability to adversarial attacks. This initial

finding steered us towards a more nuanced exploration of the weaknesses inherent in these

models. Our first major contribution in this area was the development of the Hybrid At-

tentive Attack (HAA) method. This approach targeted the trade-offs between attacking

performance and text perturbations in word-level adversarial examples. By focusing on

key language-specific and sequence-focused words, HAA enabled semantic-aware sub-

stitutions that proved highly effective in attacking NMTs.

Building on the foundation of HAA, we then proposed the Fraud’s Bargain Attack

(FBA), utilizing the novel Word Manipulation Process (WMP). This methodology expan-

ded the search space for adversarial examples, facilitating the generation of high-quality

adversarial examples with increased success probabilities. This advancement marked

a significant step forward in adversarial machine learning within the realm of NLP. In

chapter 4, we specify FBA to exploit a stochastic process WMP to generate the adversarial

candidates from an enlarged domain and employs the MH sampler to improve the quality

of these candidates. With FBA, we not only make successful attacks on textual classifi-

ers but also improve the accuracy and robustness of models by adversarial retraining. To

protect the models from the attacks, adversarial retraining, which is done by joining the

adversarial examples in the training set and then retraining the models with the newly con-

structed training set, is proven effective for defending against these attacks in our exper-

iments. However, adversarial retraining can be extremely expensive, and some research

indicates that adversarial retraining can degrade the accuracy of the models [43, 67]. To

the best of our knowledge, existing defence methods for adversarial examples mainly fo-

cus on the image domain, the defence methods studied in the text domain are not effective

enough to prevent these maliciously crafted adversarial examples. Therefore, developing
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effective and robust defence schemes is a promising direction for future work which we

plan to pursue.

The pinnacle of our research was the introduction of the Reversible Jump Attack

(RJA) and Metropolis-Hasting Modification Reduction (MMR) algorithms. These meth-

odologies revolutionized the generation of adversarial examples, balancing high effect-

iveness with heightened imperceptibility. RJA’s innovative randomization mechanism and

MMR’s application of the Metropolis-Hasting sampler set new standards in the field by

enhancing the subtlety of perturbations while maintaining attack success. Specifically,

to improve classifiers’ robustness, we have presented RJA-MMR which consists of two

algorithms, Reversible Jump Attack (RJA) and Metropolish-Hasting Modification Reduc-

tion (MMR). RJA poses threatening attacks to NLP classifiers by applying the Reversible

Jump algorithm to adaptively sample the number of perturbed words, victim words and

their substitutions for individual textual input. While MMR is a customized algorithm

to help improve the imperceptibility, especially to lower the modification rate, by util-

izing the Metropolis-Hasting algorithm to restore the attacked words without affecting

attacking performance. Experiments demonstrate that RJA-MMR delivers the best attack

success, imperceptibility and sentence quality among strong baselines.

In summary, this thesis represents a significant stride towards understanding and

improving the security of NLP models via adversarial attacks. The methods developed

challenge existing paradigms and pave the way for more resilient and robust AI systems.

As AI continues to evolve, it is imperative that research in adversarial machine learning

progresses in parallel to ensure secure and beneficial advancements in AI for society.

6.2 Future Work

This thesis introduces innovative adversarial attack methods aimed at assessing the

performance of Deep Neural Networks (DNNs) and enhancing their robustness through

adversarial retraining. Building on these investigations, we propose several promising

avenues for future research. Our findings have profound implications for the future of
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NLP, particularly concerning the security and robustness of neural network models.

• Advanced Defensive Techniques: Explore the development of novel defensive mech-

anisms tailored to counter the sophisticated adversarial attacks identified in this re-

search. Investigate the integration of machine learning-based defenses, anomaly

detection, and robust training methods to enhance model resilience. Additionally, it

examines the potential of ensemble methods and adversarial training to fortify NLP

models against a diverse range of adversarial perturbations.

• Transferability to Other NLP Applications: Adapt the Hybrid Attentive Attack

(HAA), Fraud’s Bargain Attack (FBA), Reversible Jump Attack (RJA), and Metropolis-

Hasting Modification Reduction (MMR) methodologies for broader applications

within NLP. Explore the transferability of attack methods across various NLP tasks,

such as sentiment analysis, text summarization, and named entity recognition. As-

sess the robustness and effectiveness of the introduced methods in diverse linguistic

contexts and languages beyond the scope of machine translation.

• Data Augmentation Strategies: Investigate advanced data augmentation techniques,

including synthetic data generation and diversity-enhancing methods, to enrich the

training dataset. Explore the impact of augmented datasets on improving model

generalization and resilience against adversarial attacks. Consider the combination

of data augmentation with privacy-preserving strategies to ensure the responsible

use of sensitive information.

• Ethical Considerations in Adversarial Attacks: Address ethical considerations re-

lated to the responsible use of adversarial attacks in AI research. Explore guidelines

and frameworks for conducting ethical adversarial machine learning research, con-

sidering potential societal implications. Investigate transparency and disclosure

practices when using adversarial attacks, ensuring clear communication about the

intent and impact of the research.

These detailed future directions aim to provide a comprehensive understanding of the pro-

posed research avenues, emphasizing advanced defensive strategies, broader application
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of attack methodologies, enhanced data augmentation techniques, and ethical considera-

tions in the evolving field of adversarial machine learning for NLP.
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