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Abstract

The industrial assembly sector is confronted with a confluence of challenges arising from

demands for mass customisation, labour shortages, and competitive pressure. To address

this unique combination, automation systems appear beneficial that can rapidly adapt to

new tasks and be operated by non-technical personnel. The Learning from Demonstration

(LfD) concept emerges as a promising solution, enabling non-expert operators to teach

robots new tasks without the complexities of traditional programming. This concept also

empowers robots to apply learnt tasks in changed situations, fostering flexibility for com-

petitive solutions. Despite being a well-explored field in research, the effective deployment

of LfD in industrial settings remains an unmet challenge.

This thesis delves into the application of prominent LfD methods towards industrial as-

sembly tasks and investigates how the concept can be leveraged to benefit this sector.

Through a comprehensive analysis of LfD solutions in research and a comparison with in-

dustrial practices, key obstacles hindering the seamless integration of promoted solutions in

an industrial environment are identified. These challenges include issues of practicability,

task complexity and diversity, generalisability, performance evaluation, and integration

concepts. With the goal of developing a framework that enhances applicability in the

industrial assembly industry, this thesis promotes improvements in the three phases of

characteristic LfD: human demonstration, robot learning, and robot reproduction.
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In contrast to the prevailing kinaesthetic teaching application, a guiding graphical in-

terface is developed based on the Hausdorff approximation planner (HAP) framework,

providing human operators with insights into the robot’s kinematic constraints during

demonstration. The robot learning phase is enhanced by combining the primarily employed

trajectory-based Dynamic Movement Primitives (DMPs) method with the well-established

Methods-Time Measurement (MTM-1) industrial taxonomy for extended generalisability

across custom skills. Addressing challenges during reproduction in changing environments,

a reactive control approach is presented that employs a novel multibody approximation

scheme. This scheme informs potential fields generating wrenches of repulsion and attrac-

tion for robust reproduction given new environmental situations. A unified framework

incorporating these novel methods is established and demonstrated through a physical

demonstrator, allowing for real-world evaluation of the proposed methods.

This thesis contributes a comprehensive framework to promote increased applicability of

LfD for the industrial assembly sector, addressing key challenges in prevailing LfD research

approaches, and providing a pathway towards effective deployment of robotic solutions in

a competitive and evolving industrial landscape.
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Chapter 1

Introduction

1.1 Background and Motivation

The first industrial robot was installed in 1961 by Unimation on a production line at

the GM Ternstedt plant in Trenton, NJ, to automate the handling of distinct hardware

components [3]. Since then, robots have become a popular tool in the industrial sector and

are increasingly present in public and private life. In science-fiction movies, robots have

ever since been portrayed as intelligent and capable of communicating through intuitive

approaches, such as direct conversation or simple gestures. However, reality continues to

challenge many people when it comes to programming modern robots.

With the rationale of transmitting an intended behaviour to a robotic system through

user-friendly and intuitive methods, a variety of techniques have been developed since

the invention of robots. Most of the approaches that emerged in the first decades of the

robotics era are still common among today’s industrial practice, including teach pendants

from the 1970s, offline programming using Computer-aided Design (CAD) / Computer-

aided Manufacturing (CAM) from the 1980s, and lead-through technology (1987) where a

robot is physically guided through the task. [4]

At about the same time, a highly visionary idea emerged that gained attention in the man-

ufacturing industry. The so-called Learning from Demonstration (LfD) concept, known

then as Programming by Demonstration (PbD), envisioned the ability of robots to be

taught new tasks by end users without the need for explicit and tedious manual program-

ming. Thus, the desire for more efficient ways to program robots grew, in contrast to

1



2 Chapter 1. Introduction

the prevailing trial-and-error tabula rasa approaches, and simultaneously extending the

robot’s operability to a wider range of potential users. [5]

The first implementations of PbD date back to the early 1980s, when industrial robots

were still extremely limited in their capabilities. Sensorimotor information recorded of the

end-effector was initially segmented by discrete key subgoals such as a relative pose be-

tween objects or absolute goal poses. To mimic the motion presented, the key points were

traversed using primary actions in the form of simple point-to-point movements of the

industrial robot. Due to the sheer variability in human motions, these linear state-action-

state sequences were soon transformed into symbolic if-then rules within graph-based

representations, allowing symbolic reasoning to unify different task approaches. With the

influence of the emerging field of machine learning, the PbD community shifted expecta-

tions from recording and playing back scenarios to generalisable capabilities, introducing

challenges such as how to generalise a task or how to reproduce a skill in a completely novel

situation. The initial two-step approach that incorporated human demonstration and robot

reproduction experienced a rethinking in which an intermediate phase of a necessary robot

learning of the task’s nature was considered. As a consequence, the necessity for adap-

tive robot controllers and an active role of the user was established to ensure appropriate

learning of the intended task. [6]

Driven by the progressive development towards generalisability in combination with in-

novations in robotics technology, the expectations around LfD expanded increasingly into

interdisciplinary challenges. With increasing interest in mobile and humanoid robots,

trends toward robot behaviour similar to that of living beings were awakened. Influential

studies of primate neural mechanisms and children’s imitation capacities led to the bio-

logically inspired branding of imitation learning. Recent developments such as the new

category of collaborative robots that have been in use since late 2008 [7] and revolutionary

technologies in the field of artificial intelligence [8] have added additional stimuli to the

current progression surrounding LfD. [6]

Today, the traditional idea of PbD is considered an interdisciplinary field with a variety

of unique challenges to tackle and desires to meet depending on the application explored.

LfD is known under several conceptually comparable approaches, including learning from

observation, programming from demonstration, imitation learning, or apprenticeship learn-

ing. However, all continue to follow the initial general paradigm of endowing robots with

the ability to learn new tasks from human demonstrations. Categorised as a program-

ming approach based on direct human demonstration rather than learning on its own,
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LfD promises, in particular, to reduce the complexity of search spaces for learning [5],

resulting in more efficient and human intention-driven learning.

Due to the wide range of possible applications and approaches investigated so far, there

exists no overarching blueprint for the realisation of an LfD solution. As a general frame-

work, the generic questions formulated in the early 2000s, namely, who to imitate, when

to imitate, what to imitate, and how to imitate, provide indicative guidance [6]. How-

ever, many implementations continue to follow a procedural structure that divides an LfD

approach into three consecutive phases: demonstration, learning, and reproduction (see

Figure 1.1).

Figure 1.1: Conceptual procedure of Learning from Demonstration

In the first phase, the human takes an active role in performing the task that the robot

shall reproduce afterward, while the robotic system observes the happenings passively.

The wording ‘observation’ highlights the passivity of the robot and does not imply the

perceptual solution with which this is implemented. In fact, observation can be carried out

in mainly three different ways, including kinaesthetic teaching, teleoperation, and passive

observation [9]. In kinaesthetic teaching, the human guides the robot physically through

the desired motion by manually adjusting its end-effector position. The robot follows

passively while compensating for any gravitational effects. On the contrary, teleoperation

refers to the robot’s ability to be controlled from a certain distance, resulting in no physical

contact between the human and the robot, but requires still the simultaneous performance

of the task. A robot-independent task demonstration is considered as a passive observation
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technique, where the human performs the task using their own capabilities while being

tracked from various sensors.

Related to the choice of the demonstration method is the appearance of two critical corre-

spondence problems, namely physical and perceptual inequality [5]. The former thematises

the differences in human’s and robot’s embodiment that may result in distinct actions /

movements to accomplish the same physical effect. The perceptual issue describes the

difference between the human’s and robot’s sensory capabilities, which may produce dis-

similar observations of the actions/scene. Regarding tactile impression, for example, the

human skin allows the simultaneous sense of contact forces, temperature, and surface pro-

curement, while most tactile robot sensors perceive only information of contact through

force interaction.

During the learning phase, the robot is assigned to actively learn the essence of the task

taught through the implemented LfD learning framework. While aiming for a generalised

understanding capable of reproducing the task under differing circumstances, this phase

is considered highly impactful on the final outcome of any LfD solution. The selected

technique defines the required information of the demonstration, the technique’s abil-

ity to generalise to differing circumstances, and the robot’s capability of translating the

technique’s outcome to physical motion. Generally speaking, common techniques can be

classified on the basis of their outcomes. An outcome can be a policy in the form of trajec-

tories or low-level actions, a plan consisting of primitive sequences or primitive hierarchies,

or a cost/reward for trajectory optimisation or Inverse Reinforcement Learning (IRL) [9].

Depending on the demonstration’s quality and the task’s nature, the human teacher usu-

ally supervises the learning and provides, if necessary, guiding/correcting feedback or new

demonstrations to the robot. By monitoring and intervening during the learning process,

the human ensures that the robot is adequately understanding the expected behaviour.

Once the human is satisfied with the task learnt within the controlled environment, the

final phase of autonomous reproduction commences. Success is mainly driven by the gen-

eralisability to new unknown situations. Due to growing expectations, the situation may

today consider changes in motion, such as spatial or temporal scaling, in the environment,

such as appearing obstacles or uncertainties within the real world, as well as in the task

by performing a manipulation on similar but not identical objects. Depending on the

application, the task may incorporate the collaboration between the human and the robot

during reproduction, requiring a more responsive acting of the robot. However, in most

cases, the human is passive during reproduction and optionally monitors the continuous
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appropriate performance of the robot. Table 1.1 summarises the technical categories that

are commonly encountered when implementing an LfD solution.

Demonstration
Method

Learning
Methods Outcomes

Reproduction
Generalisability

Kinaesthetic
Teaching

Policy:
• trajectory
• low-level actions

changes in motion
(spatial / temporal scaling)

Teleoperation Plan:
• primitive sequence
• primitive hierarchy

changes in environment
(e.g. obstacles)

Passive
Observation

Cost/Reward:
• trajectory optimisation
• inverse reinforcement learning

changes in task
(e.g. differing objects)

Table 1.1: Technical categories of Learning from Demonstration approaches

As the spectrum of potential robot usage has expanded beyond industrial settings in recent

years, LfD has received increasing attention in a variety of application areas [8]. Ranging

from manufacturing and assembly [10, 11], surgery and rehabilitation [12, 13], personal

assistance, to construction tasks [14], LfD approaches promise to make the communication

between humans and robots more accessible to non-robot experts and to strengthen the

robot’s task performance against varying circumstances.

Originated in the manufacturing industry, LfD continues to be a highly promising tech-

nology with the potential to revolutionise the prevailing practices. The assembly industry,

which accounts for a significant share of up to 70% of the time allocated within the pro-

duction process [15], faces emerging factors that threaten to limit its growth. Although

the availability of the workforce is expected to be reduced in the near future due to demo-

graphic changes [16, 17], the assembly process continues to be carried out predominantly

manually [18]. Simultaneously, a shift from mass production to mass customisation is ob-

servable [19, 20], limiting the applicability of customised assembly systems, while products

tend to generally shrink in dimensions, making manual assembly more challenging or even

impossible in certain industries [21]. These challenges requiring modern solutions in the

assembly industry favour the deployment of user-friendly, intuitively programmable, and

flexible robotic systems. Based on the anticipated capabilities of the LfD concept, such

approaches are considered highly promising to tackle the present challenges. Despite its
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great potential proven within the research environment and few commercial products, such

as MIRAI [22], LfD has not yet been widely deployed in the assembly industry.

This thesis presents an investigation into techniques that improve the applicability of LfD

for industrial assembly tasks. Extending existing approaches based on application-specific

requirements and expectations can promote a relevant boost of the concept for practical

consideration in the near future and assist in coping with modern challenges in the targeted

field.

1.2 Research Questions

Existing research on LfD for assembly-related tasks have mainly focused on methodolog-

ical functionality rather than exploiting sufficiently the distinctive characteristic entailed

in assembly-specific requirements. Satisfactory results were often achieved based on sim-

plified scenarios, either by targeting a specific subskill that has limited conclusive value in

isolation, or oversimplified representation of objects and environments which hinders the

transferability to practical settings. Another distinction is drawn from the driving goals

of research trends and the practical use of LfD in industrial assembly. Industrial assembly

emphasises efficiency, productivity, and cost effectiveness [23], contrary to assembly-related

experiments in research where effectiveness is less critical and success rates above 50% are

considered satisfactory.

Based on decades of research efforts, the numerous contributions in LfD provide a solid

foundation for assembly-related applications, and the assembly industry is considered a

field of application that will benefit significantly from application-targeted LfD solutions.

In light of the situation described above, this thesis investigates the research question of

how state-of-the-art LfD approaches can be leveraged toward practical industrial assembly

capabilities. In line with the characteristic LfD procedure, this is linked to the following

aspects: (1) Is the prevailing demonstration method designed for effective and efficient

teaching? (2) How can specific tasks of a typical industrial assembly be effectively em-

bodied in an LfD framework? (3) How can LfD ensure robust reproduction in realistic

situations?
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1.3 Scope

Following the formulated research question, this research seeks to develop a framework

that incorporates techniques to improve the applicability of LfD in an industrial assembly

context. In detail, this thesis aims to: (1) examine currently prevailing methods with

respect to the requirements and expectations in the targeted field of application (2) enhance

preexisting methods to overcome identified obstacles limiting the applicability of LfD in the

outlined context (3) develop a framework embodied in an application-oriented experimental

physical demonstrator.

To make the technical scope of this thesis attainable, specific assumptions have been es-

tablished, in particular, surrounding the envisioned application. In the scope of this thesis,

a scenario of repetitive assembly operations is depicted in which the task-experienced non-

robot experts, referred to as human operators, are assumed to perform the teaching of the

required task to the robotic system. Due to the industrial context, demonstration, learn-

ing, and reproduction are envisaged under certain time constraints, and the availability of

resources is taken into account. Once human-driven demonstration and robot-driven learn-

ing are finalised, the robot is expected to perform the task autonomously under varying

scenery conditions, including changes in motion and environment. All physical operations

are limited to a workspace of a small workbench setup assuming that all necessary compo-

nents are in reach for a human operator and no larger body motion is required. Tasks that

require the collaboration between the human operator and the robot during reproduction

are not considered. The scope of this thesis is restricted to investigating the improved

applicability of LfD methods in the industry-inspired scenario described.

Further constraints are drawn with respect to the interdisciplinary field of LfD. In light of

the achievements of previous academic contributions, the development of completely novel

demonstration technologies, learning methods, or reproduction characteristics is consid-

ered neither within the scope of this thesis nor necessary due to the wide preexisting range

of LfD techniques. As a result, the selection of foundational LfD techniques is driven

by the requirements extracted from the specified scenario. This includes predominantly

the assumption that the human operator is an expert of the intended task favouring a

demonstration-driven learning procedure. As a consequence, self-driven approaches em-

phasising Artificial Intelligence (AI) and Machine Learning (ML)-inspired techniques are

considered out of scope.
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Finally, the thesis presents fundamental research aimed at enhancing state-of-the-art LfD

features tailored to assembly-related skills. Criteria identified from a comprehensive lit-

erature review inform key requirements investigated for LfD systems to improve their

applicability in industrial contexts. Laboratory experiments, both in simulation and real-

world settings, demonstrate how the proposed framework achieves these improvements.

An evaluation or deployment in industrial practice is out of scope, as the desired outcomes

can be adequately reflected in the given scenarios.

1.4 Principal Contributions

The research contributions that emerged from the work associated with this thesis can

be framed around the three-phase LfD procedure discussed above and summarised as in

Figure 1.2. Individual contributions are described as follows:

• C1: A systematic literature review that provides insights into the state-of-the-art

LfD research for assembly-related applications and a discussion of the similarities

and obstacles identified compared to industrial practices and expected requirements.

• C2: A method for robust transferability of a human demonstration in the absence

of the robotic system, allowing more efficient and reliable resource occupation when

applying LfD approaches in industrial practice.

• C3: A learning technique designed for assembly tasks in industrial environments that

combines the prevailing LfD approach with the industry-established Methods-Time

Measurement that is used to model assembly operations.

• C4: A method for robust reproduction under environmental changes and motion

alteration based on potential fields between multi-volumetric objects represented as

superquadrics.

1.5 Publications

The contributions presented within this thesis have been partially featured in the directly

related publications P1-4 listed below. To elaborate, the systematic literature review was

published in P1. The content of contribution C2 corresponds to what was presented in P2,

while the material in P3 served as a template for the content of contribution C3. As of the

submission of this thesis, the content of the contribution C4 is prepared for submission to

the IEEE Robotics and Automation Letters (RA-L) Journal under the title ‘Multibody
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Figure 1.2: Contribution overview

collision avoidance using superquadrical potential fields’. All publications influenced the

thesis conclusion and the prospects for future work. Victor Hernandez Moreno was the

main contributor to all of these publications.

• P1 [24]: Victor Hernandez Moreno, Steffen Jansing, Mikhail Polikarpov, Marc

G. Carmichael, and Jochen Deuse. Obstacles and Opportunities for Learning from

Demonstration in Practical Industrial Assembly: A Systematic Literature Review.

Robotics and Computer-Integrated Manufacturing, accepted, 2024

• P2 [25]: Fouad Sukkar*, Victor Hernandez Moreno*, Teresa Vidal-Calleja, and

Jochen Deuse. Guided Learning from Demonstration for Robust Transferability.

IEEE International Conference on Robotics and Automation (ICRA), accepted, 2023

• P3 [26]: Victor Hernandez Moreno, Marc G. Carmichael, and Jochen Deuse.

Towards Learning by Demonstration for Industrial Assembly Tasks. Manufacturing

Handling Industrial Robotics (MHI) Conference, published, 2022.

• P4 [27]: Victor Hernandez Moreno, Louis F. Fernandez, Marc G. Carmichael,

and Jochen Deuse. Multi-volume Potential Fields for Effective Learning from Demon-

stration. IEEE International Conference on Automation Science and Engineering,

accepted, 2024.
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1.6 Thesis Outline

The thesis is organised as follows:

Chapter 2 explores relevant literature and shows the obstacles identified in the current

research of LfD for assembly-related tasks with the intention of industry deployment.

The summary incorporates a scoped outline of the framework that aims to improve the

applicability of LfD for industrial assembly.

Chapter 3 details a novel technique to improve the efficiency of the demonstration process

in the absence of the physical robot using an interactive interface that provides information

about the robot’s kinematic constraints.

Chapter 4 presents a learning framework that addresses the individual characteristics of

assembly-related tasks. A prominent LfD learning technique is enhanced with an industry-

established task discretisation system. The creation of generalised skills allows their indi-

vidual characterisation for improved performance.

Chapter 5 contributes a technique for robust reproduction that allows the robotic repro-

duction of the learnt task in new contexts. Considered changes include the relocation of

task-related objects and the appearance of unrelated obstacles while respecting boundaries

of an artificially introduced workspace and being attracted to the desired final state.

Chapter 6 consolidates the three techniques from Chapters 3, 4, and 5 into a unifying

framework. A physical demonstrator is proposed that embodies the established framework.

Chapter 7 concludes the presented work by providing a summary of the contributions

elaborated, together with a discussion of their limitations and potential future research

avenues.



Chapter 2

Literature Review

The work in this thesis investigates the potential to leverage LfD to the specified industry-

focused scenario of assembly tasks. This Chapter surveys the state-of-the-art of LfD

approaches explored in research for assembly-related tasks and depicts their obstacles

based on the comparison to industrial practice. In detail, it reviews the literature with

the purpose of answering the following questions:

• (Q1) What are the prevalent LfD methods and problem domains explored in re-

search?

• (Q2) How do state-of-the-art LfD approaches align with the training techniques and

learning behaviour of human operators in the industry?

• (Q3) What are the primary obstacles that hinder the practical implementation of

LfD solutions in the traditional repetitive assembly industry?

An evidence-based approach was performed in the form of a systematic literature review,

known to produce reliable, reproducible, and transparent research results with minimal

bias and errors [1, 28, 29]. It was carried out according to the updated Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline [1].

The Chapter is structured as follows: Based on the systematic approach described in

Section 2.1, the findings with respect to Q1 are summarised in Section 2.2. In light of Q2,

Section 2.3 reviews a common training technique to teach human operators new manual

assembly tasks and discusses its similarities and differences to LfD dominant research

trends. Identified obstacles are described in Section 2.4 reflecting Q3. Finally, a summary

and justified specification of the research narrative investigated in this thesis are given in

Section 2.5. This Chapter was derived from [24].

11
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2.1 Systematic Approach

The following reports on the information sources interrogated, the search strategy chosen,

the eligibility criteria selected, and details regarding the data collection process. Potential

limitations of the chosen approach are discussed in the end.

2.1.1 Information Sources and Search Strategy

The systematic review of the literature was based on the interrogation of the well-recognised

databases Scopus and Web of Science (WoS) [30]. Web of Science has been searched using

the Core Collection and the Exact Search option.

To query representative records of state-of-the-art robot LfD for assembly applications,

both aspects were embedded in the search string. It incorporated the LfD variations

from Section 1.1 and a list of assembly-related terms established through a preliminary

screening of abstracts that included the term ’assembly’ combined with the assembly

taxonomy of [23] (see Table 2.1). A consistent selection of relevant reports was achieved

using the automatic filter mechanisms described in Table 2.1 and manual screening based

on the eligibility criteria defined in Section 2.1.2. The final database interrogation was

conducted on 31 March 2023.

2.1.2 Eligibility Criteria

In addition to the application scenario described in Section 1.3, physical relatable exper-

iments are considered essential to evaluate the state-of-the-art LfD approaches applied

to assembly tasks. Therefore, records were included that show demonstrations done by

humans and reproduced motions made by physical robots. Although physical experiments

were required, practical implementation in an industrial environment was not necessary.

In order to establish coverage of high-quality records, additional reputation criteria were

applied in the form of a grouping approach inspired by [31]. The first group of eligible

records includes all records published in 2022 despite the citation count to acknowledge

and emphasise the most recent efforts in the field of interest. Records published between

2013 and 2021 are recognised as eligible should the threshold of at least three citations on

average per year be reached.
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Database Search String and Filter Parameters

Scopus

TITLE-ABS-KEY( ( ( learning OR programming OR teaching ) PRE/2 (
demonstration OR observation ) ) OR ( ( imitation OR apprenticeship ) PRE/2
learning ) AND robot* ) AND TITLE-ABS-KEY ( assembl* OR ( peg W/2
( hole OR insertion ) ) OR interlocking OR ( pick W/1 place ) OR rivet* OR
wiring OR fastener OR jamming OR glue OR gluing OR ( reach* W/2 grasp*
) OR weld* OR stacking OR screw* OR retainer OR ( ( press OR snap ) W/1
fit ) OR adhesiv* OR crimp* )

Publication Year: 2013 – 2023
Subject Area: Computer Science, Engineering, Mathematics
Language: English
Document Type Exclusion: Conference Review, Editorial

Web of
Science

TS=( ( ( ( learning OR programming OR teaching ) NEAR/2 ( demonstration
OR observation ) ) OR ( ( imitation OR apprenticeship ) NEAR/2 learning
) AND robot* ) AND ( assembl* OR ( peg NEAR/2 ( hole OR insertion ) )
OR interlocking OR ( pick NEAR/1 place ) OR rivet* OR wiring OR fastener
OR jamming OR glue OR gluing OR ( reach* NEAR/2 grasp* ) OR weld*
OR stacking OR screw* OR retainer OR ( ( press OR snap ) NEAR/2 fit )
OR adhesiv* OR crimp* ) )

Publication Year: 2013 – 2023
Subject Area: Robotics, Computer Science, Automation Control Sys-
tems, Engineering, Mathematics
Language: English

Table 2.1: Information Sources and Search Strategy

In summary, the following exclusion criteria (EX1-6) were defined, which supplement the

parameters for automatic filtering of Table 2.1:

• EX1: The study was published between 2013 and 2021, but the annual average

citation count is below the threshold at the time of final database access (citation

requirement).

• EX2: The terms LfD and assembly are used in an unrelated context.

• EX3: The full text of the study is not available.

• EX4: The study is a review or survey.

• EX5: The study deals with collaborative applications between humans and robots

in which the task is reproduced jointly.

• EX6: The study has not evaluated the proposed method with the execution of a

physical robot.

• EX7: The study has not evaluated the proposed method with demonstrations per-

formed by humans.
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2.1.3 Selection and Data Collection Process

The systematic literature review was performed following the three consecutive phases

of the PRISMA 2020 [1] guideline, namely identification, screening, and data collection

(see Figure 2.1). Within the initial identification phase, the interrogation of the selected

databases Scopus and WoS, resulted in n = 330 and n = 265 identified records, respectively.

The automated filtering system of both databases, following the parameters specified in

Table 2.1, removed a total of n = 136 records. Using software and manual comparison

of authors, title, and abstract, n = 190 records were identified as duplicates and merged.

Furthermore, the average annual citation value was calculated for each record, which

marked a total of n = 156 publications as ineligible with respect to the citation requirement

(EX1). Within the consecutive screening phase, the preliminary review of the title and

abstract revealed that n = 12 records were not related to the field of interest (EX2),

while the full text of all records was accessible (EX3). The full reports were assessed for

eligibility following the exclusion criteria EX4 to EX7. In this context, n = 4 reports

were identified as reviews or surveys (EX4), n = 17 reports only discussed human-robot

collaboration (EX5), and n = 15 + 4 reports did not evaluate the proposed method in

an end-to-end solution with human and robot performing the task physically (EX6 +

EX7). Consequently, a total of n = 61 studies were verified as appropriate for the present

study and accordingly used for the data collection process. Appendix A.1 and A.2 provide

a corresponding table of all included studies of the literature review conducted. The

included studies were reviewed for the following data: LfD methods, applications, and

experimentally evaluated capabilities. Particular attention was paid to the experimental

evaluation and the results presented.

2.1.4 Limitations of the Systematic Approach

With the intention of comparing the state-of-the-art achievements of learning from demon-

stration research to industrial requirements, the systematic literature deliberately focusses

on end-to-end solutions performed physically by humans and robots. Consequently, po-

tential impactful theoretical findings may be excluded either intentionally by the authors

or unintentionally due to uncontrollable circumstances. An acute reason for unintentional

limitation was the COVID-19 pandemic, which affected physical work in laboratories and

workplaces between 2020 and 2022. Such exclusions are covered by criteria EX6 and EX7

(assessment performed in order: EX6 before EX7). Figure 2.2 illustrates the chronological

distribution of excluded studies as a percentage of included+EX6/7. Outliers in 2015 and
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Figure 2.1: PRISMA 2020 flow diagram [1]

2019 are attributable to only two included versus two excluded records. The remaining

outliers for 2018 and 2020 are based on two out of seven excluded records. Hence, the

COVID-19 pandemic did not have an exclusive impact on the results of the conducted

systematic review of the literature. Regarding the deliberate omission of physical exper-

iments, it is assumed that the impactful fundamental theoretical achievements without

physical evaluation are covered by reviews and surveys that emphasise LfD methodolo-

gies [24]. Finally, the chosen citation requirement might have excluded valuable studies.

However, to the best knowledge of the author, the systematic literature review reflects

comprehensively current trends and procedures in academic research on LfD for assembly-

related tasks.
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Figure 2.2: Chronological percentage of excluded studies based on non-human demon-
stration (EX6) or non-physical robotic reproduction (EX7)

2.2 Findings

This section summarises the analytical findings acquired by reviewing the studies identified

using the systematic approach of Section 2.1. The following provides a statistical analysis

of the methods utilised during the demonstration and learning phases, investigated use

cases, performed assembly skills, including a qualitative analysis of the main research

trends, achieved generalisability capabilities, and reported performances.

2.2.1 Demonstration and Learning Methods

Figure 2.3a illustrates the resulting statistical comparison of the methods applied for hu-

man demonstration. As can be seen, kinaesthetic teaching and passive observation prevail

with 41% and 30% as preferred methods for teaching assembly-related tasks. Teleop-

eration was exclusively selected only in 13 out of 56 cases. Five studies provided two

demonstration methods, either for initial skill acquisition and testing [32, 33], consecu-

tive skill correction [34], or teaching distinctive task aspects [35]. Abu-Dakka et al. [36]

used teleoperation and kinaesthetic teaching to meet the requirements of different robotic

platforms. In general, passive observation was achieved in various ways. The most com-

mon approach is to use camera streams or images of the recorded human demonstration

(see, e.g., [37]). However, other studies used customised demonstration tools [38], sensor-

augmented objects [39], mock-up objects with distinctive properties (e.g., a lighter object

than what the robot handles [40]), or tangible instruction ‘blocks’ [41]. Similarly, teleop-

eration was achieved through the robot’s teach pendant [42], commercial tools [43], or by

mimicking the human manipulation path with identical objects in real time [33].

In addition to the demonstration method, the number of demonstrations required is consid-

ered an important indicator of applicability. Within the 61 analysed studies, a tendency is
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noticeable towards requiring two to ten demonstrations, which was considered in 26 cases.

On the contrary, 15 studies built on a single demonstration and eight experimental evalu-

ations required more than ten instructions. The remaining 12 studies have not quantified

(using phrases such as ‘multiple’, ‘set’, ‘few’, or ‘several’) or have not specified the required

number of demonstrations at all.

As can be seen in Figure 2.3, learning methods based on trajectory policies as learning

outcomes prevail in assembly-related LfD research, endorsed by 35 of the 61 studies that

used it as their selected approach. The second most prominent method is the representa-

tion of tasks in the form of plans based on primitive sequences reported in 23.0% of the

studies. The least reported category of applied learning methods is based on cost/reward-

driven outcomes with a joint share of 13.1%. Among the most prominent techniques are

the so-called Dynamic Movement Primitives (DMPs) and Reinforcement Learning (RL).

These techniques were explored in a total of 19 and 14 studies, respectively, and applied

independently and in combination with other techniques. Furthermore, the analysis of

learning methods in terms of preferred demonstration methods shows that 54.3% of the

studies used kinaesthetic teaching when targeting trajectory policy outcomes, while 64.3%

preferred passive observation for outcomes in the form of primitive sequences (see Ap-

pendix A.1 and A.2).

2.2.2 Use Cases

In the context of application scenarios, the experimental reports are analysed regarding

their practicability for real-world scenarios and to which extent research approaches re-

spond to actual assembly scenarios in the industrial sector. Therefore, three categories of

practicability are defined. Studies that evaluate their LfD approach in a practical indus-

trial use case that assembles realistic objects are classified as practical. The second level of

practicability considers the handling of related objects. This includes objects that are only

handled in a subsidiary manner in the industry, objects interesting for specific industry sec-

tors but not practically applied, or benchmark models mimicking industrial challenges. All

experiments using objects that do not meet the above categories are considered unrelated.

The collection of identified studies features six practical assembly scenarios with realistic

objects that mainly target the electronics industry (see Figure 2.4). Hu et al. [44, 45] inves-

tigated the Printed Circuit Board (PCB) assembly on the bottom case of a cursor mouse,

which required fitting two locating pins and three resilient fasteners (see Figure 2.4a).
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Passive Observation (PO), 
30 % (18 studies)

Kinaesthetic Teaching (KT), 
41 % (25 studies)

Teleoperation (TO),
21 % (13 studies)

TO + KT,
3 % (2 studies)

KT + PO, 
3 % (2 studies)

PO + TO, 
2 % (1 study)

(a) Demonstration methods (five studies used a combination of two demonstration
methods)

Cost/Reward

Plan

Policy

Low-level Actions, 
3.3% (2 studies)

Primitive Hierarchy, 
3.3% (2 studies)

Trajectory Optimisation, 
11.4% (7 studies)

IRL, 
1.6% (1 study)

Trajectory, 
57.4% (35 studies)

Primitive Sequence, 
23.0% (14 studies)

(b) Learning methods based on the learning outcome

Figure 2.3: Classification of applied demonstration and learning methods

Similarly, Haage et al. [46] investigated the PCB assembly based on passive visual obser-

vation. Yan Wang et al. [47, 48] carried out experiments on a circuit breaker condenser
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assembly task (see Figure 2.4c) that required an L-shaped insertion motion. More complex

task sequences in an industrial scenario were emphasised by Ji et al. [32], who evaluated

the proposed LfD solution in the assembly of power breakers and set-top boxes (see Fig-

ure 2.4d). Precision insertion and gluing capabilities for joining micro sleeve-cavities and

coil-cylinders with 10µm clearance fit were explored by Qin et al. [49]. Finally, Yue Wang

et al. [50] investigated the assembly of a switch through passive observation, including

placing, screwing and pushing motions.

(a) PCB assembly of cur-
sor mouse [44, 45]

(b) PCB assembly [46] (c) condenser assem-
bly [47, 48]

(d) power breaker (left) and set-top box (right) assembly [32]

(e) sleeve-cavity and coil-cylinder as-
sembly [49]

(f) switch assembly [50]

Figure 2.4: Practical use cases

Related use cases do not represent a direct practical application, but offer experimental

evaluation with objects that are realistically transferable to industrial environments (see

Figure 2.5). A prominent example is the standardised connector plug-in, including RJ-45

connectors, USB sticks, power plugs, and HDMI connectors (see Figures 2.5a to 2.5c). Spe-

cific industries, including the medical, construction and microscale assembly sectors, were

targeted by [51–53]. The experiments demonstrated the ability to sew personalised stent
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grafts whose dimensions were provided by current stent graft manufacturers, construct

timber structures and perform precision peg insertion tasks (see Figures 2.5d to 2.5f).

Some researchers chose benchmark models for assembly-associated tasks to evaluate their

proposed method (see Figures 2.5g and 2.5h). These include the U.S. National Insti-

tute of Standards and Technology assembly board #3 [54] and the Cranfield benchmark

model [55]. The latter has been used primarily for peg insertion capabilities [33, 36, 56].

The remaining 45 studies have used industry-unrelated objects. These include arbitrary

toy parts or generic machined and 3D-printed components.

(a) RJ-45 connec-
tor [43] (b) USB stick and power plug [57]

(c) HDMI connec-
tor [47, 48]

(d) personalised stent
grafts [51]

(e) timber structure
assembly [52]

(f) micro-scale peg
insertion [53]

(g) NIST assembly
board #3 [58]

(h) Cranfield bench-
mark [36]

Figure 2.5: Related use cases

In terms of industrial relevance, some efforts are worth mentioning owing to their outstand-

ing experimental setups. As illustrated in Figure 2.6a, Kramberger et al. [52] proposed a

LfD platform in which the so-called teaching and execution cells were separated, leading

to increased execution space and improved productivity. Huang et al. [51] extended the

reachability of two surrounding robotic serial arms through an actuated assembly base,
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allowing sewing motions on all sides of the object (see Figure 2.6b). Challenged by mi-

croscale assembly, Ma et al. [53] emphasised LfD precision capabilities and built a set-up

incorporating a three translational Degrees of Freedom (DoF) manipulator achieving a

resolution of 1µm. Furthermore, the three rotational DoF platform was equipped with a

force torque sensor that reaches a force resolution of approximately 1
128N and two micro-

scopic cameras with zoom lenses surround the workspace to precisely measure the poses

of the components. A similar system was proposed by Qin et al. [49].

(a) teaching and execution cell sepa-
ration [52]

(b) extended reachability through rotating
objects [51]

(c) micro-scale precision assem-
bly [53]

Figure 2.6: Outstanding experimental setups

2.2.3 Assembly Skills

In a general sense, the assembly process can be described by superimposed steps of mating

and joining parts. Nof et al. [23] refer to mating skills as all those motions that bring two

(or more) parts into contact or align with each other. In turn, joining skills are responsible

for the final fastening of parts to hold them together. Both are usually necessary to perform

the assembly successfully and ensure the designated function of the final product for its

expected lifetime.
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As pursued in the applied search strategy (see Section 2.1.1), various forms of mating

and joining skills are considered associated with assembly-related skills. The 61 analysed

studies provide experimental evaluations on 11 distinct assembly skills with a total of 77

references. These include peg insertion, pick-and-place, stacking, and bin picking/sorting

as instances of mating skills, as well as the joining skills of screwing, bolting, gluing, wiring,

hammering, interlocking, and sewing. Compared to the applied search strategy, no evi-

dence has been reported in the studies on the remaining considered joining skills, including

jamming, riveting, fastening, welding, retaining, press fitting, snap fitting and crimping.

Figure 2.7 illustrates the statistical distribution of the experimental evidence on the as-

sembly skills investigated and shows the allocation to the level of practicalability discussed

in Section 2.2.2. As can be seen, the skill of peg insertion attains exceptional dominance

in academic research. In general, 46.8% of all experimental references conducted this spe-

cific mating skill, followed by general pick-and-place skills, covering 23.4% of all reported

evaluations. Stacking and bin picking/sorting were considered in 7 and 3 experiments,

respectively. Joining capabilities are significantly less explored, with only 16.9% of the 77

assembled skills discovered. There is a slight preference for screwing skills. In terms of

practicability, all assembly skills were primarily explored using unrelated use cases.
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(a) mating skills
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practical related unrelated

(b) joining skills

Figure 2.7: Classification of assembly scenario according to investigated assembly skills
and their practicability level

The following provide further qualitative insights, with an emphasis on targeted challenges,

methodological approaches, and achievements.
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2.2.3.1 Mating

The most examined mating skill in the reviewed studies is the insertion of an object or

part of an object, in this context, colloquially called a ‘peg’, into its dedicated hole. Al-

though seemingly simple in nature, the challenge of peg insertion lies particularly in the

high-precision requirements often demanded due to tight clearances between the objects.

It is considered one of the most essential skills required to be solved for automated assem-

bly [56, 59, 60]. Equally necessary and, in fact, inevitable for the completion of the mating

operation, the skill of picking up an object from one location and placing it elsewhere is

arguably the most widely used skill in general robot manipulation tasks. Although often

requiring less strict tolerances to be maintained, pick-and-place operations are challenged

by the complexity of grasping different objects safely and performing large motions with-

out colliding with surrounding obstacles. Stacking, bin picking, and sorting are considered

special cases of pick-and-place skills with additional requirements for the positioning of

the object with respect to others.

In the context of bringing two parts into contact and achieving their alignment while in con-

tact, peg insertion is mainly challenged by task uncertainties. These occur due to variable

grasps of the peg, inprecise locations of the hole, and unmodeled manufacturing defects

of the involved components [61]. To encounter such slight deviations from the assumed

poses, several studies investigated the use of compliant controllers, including variations of

admittance [33, 49, 56, 62] and impedance [36, 42, 63–65] control methods that allow an

adjustment of the robot motion based on measured contact forces. Although some exper-

iments relied on learning from a single demonstration, for example [56], trajectory-based

methods show a decrease in the success rate when the spatial parameters of the execu-

tion deviate significantly from the demonstration poses [60]. Therefore, others proposed

the consideration of multiple demonstrations to create generalised [64] or prescribed [42]

force profiles that cover a wider spectrum of potential conditions. Furthermore, Wang et

al. [47, 48] developed a compliant control policy based on RL in combination with a nominal

motion trajectory through a hierarchical imitation learning framework, while [63] investi-

gated the applicability of the recently developed generative adversarial imitation learning

approach to high-precision peg insertion. The idea of compliant controllers was further-

more evaluated in robot systems with reduced capabilities, including industrial robots with

non-backdrivable mechanisms and strict tolerance requirements [66], position-controlled in-

dustrial robots [67], or even without a force sensor using ergodic exploration [61]. Beyond

the dominant case of single-peg insertion, several achieved multi-peg insertion by reacting

on force measurements [53, 62, 68].
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In contrast to tackling task uncertainties with compliant controllers, some studies investi-

gated strategic approaches to carry out the peg insertion successfully. Wan et al. [40] sug-

gested the calculation of an optimal path by mathematically reducing the demonstrated

motion to the alignment of the axis. Ti et al. [39] defined an intermediate three-point

contact state with a representation of the assembly angle for round peg insertion tasks.

Abu-Dakka et al. [56] proposed an exception strategy for systematic hole search by ini-

tially starting with deterministic translational variation followed by a stochastic search

with random increments. In case of misalignment or external disturbance, Stepputtis et

al. [62] combined a phase estimator with an admittance controller to enable the robot to

correct or even reverse the progress of the task. Taking into account the differentiation of

errors parallel and perpendicular to the assembly surface, Ahn et al. [69] developed two

separate trajectory generators to respond to the alignment and insertion processes.

A common approach to tackling motions beyond contact-rich skills is the development

of appropriate subskills or subgoals that are separately learnt and joined afterwards to

achieve the expected assembly outcome. The distinction between different assembly opera-

tions motivated the definition of distinguished image-featured guided and force-constrained

motions [49] or approaching and assembling motions [45]. The latter was created based

on the idea that within the industrial field, the generalisation ability to environmental

constraints is of more importance during the approaching phase, while object constraints

matter during the assembly phase. Sefidgar et al. [41] developed a tangible programming

technique with predefined objects to indicate subskills that translate into a sequence of

robot functions, including instances of pick-up-from-top, pick-up-from-side, place-at, and

drop. In contrast to this deterministic approach, Wang et al. [50] proposed an automatic

programming method for robotic assembly that estimates the present assembly skill and

the parts involved in a recorded video segment. This framework distinguished between

the predefined skills of placing, screwing, taking, pushing, and labelling. In the context of

stacking capabilities, Kang et al. [70] defined reaching, picking, carrying, and placing as

base skills and argued that the skills connecting those are challenging to obtain via demon-

strations due to their arbitrary nature. Therefore, the proposed base skills were acquired

using expert demonstrations, while the bridge skills were trained through RL. Pinosky et

al. [71] proposed a similar idea, where actions were artificially synthesised when the policy

was uncertain, i.e. regions where expert demonstration was lacking. A more abstract

approach was pursued by Liu et al. [72], who modelled manipulation tasks as a series of

what-where-how elements, reducing the attention to the selected object and action for

improved adaptability. Finally, Savarimuthu et al. [33] created a sophisticated three-level

architecture that extends the adaptation of sensorimotor skills [36] with keyframe-based
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semantic and pre- and postconditioned planning levels. Additional techniques for self-

learning and human interaction were incorporated to facilitate efficient decision-making.

An alternative stream of research efforts investigated the automatic extraction of the

required action sequence based on determined keyframes [46, 73], goal images [74, 75],

positions of interest [38], and key hand points [76]. Duque et al. [37] investigated the

applicability of Petri nets to automatically generate work plans according to the available

objects within the workspace and to generalise to new scenarios. To capture the complex-

ity and possible transitions when performing multistep assembly tasks, Chen et al. [77]

developed a universal functional object-orientated network that optimised the assembly

sequence from multiple demonstrations. Similarly, Guo et al. [78] proposed a framework

evaluated on an inspection and bin-sorting task that established coordination schemes to

select the correct sequence of skill primitives, ensuring an appropriate grasp orientation.

Wu et al. [75] achieved zero-shot generalisation to unseen tasks through a novel method of

rearrangement of image data, while Eiband et al. [79] specialised in an automated segmen-

tation method of trajectory data into logical and classified skills. These were implemented

using symbolic pre-/post-conditional recognition and data-driven sliding windows, respec-

tively.

Motivated by the idea of minimal demonstration input, Berscheid et al. [74] proposed a

method that learns from goal state images allowing them to succeed in generic pick-and-

place and peg insertion tasks with 1mm tolerance. Evaluating comprehensively practical

assembly tasks that incorporate peg insertion, (bin-) picking, and placing skills, Ji et

al. [32] used similarly passive observation to reduce human effort to automate robotic

assembly. Based on the extracted assembly sequence, state transitions, grasping modes

and involved objects, the proposed framework automatically generates a robot assembly

script considering the different embodiments by utilising pre-trained robot skills, self-

exploration, self-reproduction, and self-improvement capabilities. Such self-driven learning

after the initial human demonstration is common practice for LfD methods based on RL

techniques. While defining distinctive primitive skill libraries for the hole search and peg

insertion, Cho et al. [59] used RL to optimise the generated motion based on previously

experienced or newly defined skill instances. Davchev et al. [43] applied model-free RL to

learn a residual correction policy. The RL-based controller by Wang et al. [57] is capable of

learning the control policies of a specific class of complex contact-rich insertion tasks based

on the trajectory profile of a single instance that enables generalisation to similar objects.

Considering the cost and burden on the human operator of each demonstration, Ma et

al. [53] artificially increased the number of demonstrations, reducing the required number
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to one third for the consecutive RL-based self-learning assembly phase. Although studies

highlighting the above capabilities assume the existence of perfect demonstrations, Pervez

et al. [80] explored the situation in which the operator may not provide multiple complete

demonstrations. The developed stochastic model allows the execution of the given task

based on one full demonstration and multiple incomplete/inconsistent attempts.

In addition to the fundamental concepts above for generic pick-and-place-related skills,

several studies target specific capabilities that promise valuable contributions to the ro-

bustness of LfD approaches in practical environments. Of particular interest is the secured

performance in dynamic situations. Ghalamzan et al. [81] emphasised the dynamic work

environment in which the robot was capable of avoiding collisions with moving obstacles.

Motivated by reducing the execution time, Meszaros et al. [34] investigated an interactive

correction method to iteratively speed up the non-zero-velocity picking skills of objects.

Wang et al. [82] optimised an LfD technique to eliminate errors from human demon-

strations by smoothing reproduced motions into appropriate segments. To improve the

robustness of the robot’s performance, Iovino et al. [83] introduced additional verbal in-

teraction to clarify potential disambiguation in the scene, e.g., when identical objects are

present in the workspace, and Wu et al. [84] developed a method that enabled the robot

to quantify its learning progress and guide the user to efficient demonstrations. Incorpo-

rating external forces, Zhang et al. [85] proposed a method that reduced the impact of

external disturbances, which was demonstrated by the example of task completion despite

physical interaction with the robot arm. Alternatively, Ugur et al. [86] suggested the use

of external forces in uncertain situations to manually adjust the ongoing movement by

physical interaction with the robot.

2.2.3.2 Joining

As indicated in Figure 2.7, screwing was the most investigated joining skill in the re-

viewed studies with four experimental evaluations. Ji et al. [32] and Wang et al. [50]

developed comprehensive assembly systems, both using passive observation with consecu-

tive assembly skill estimation, part recognition, and robot embodiment strategies, capable

of performing distinctive assembly skills, including bolting and screwing, respectively. Ex-

perimental evaluations provide limited information on their performance, in addition to

mentioning failed attempts [50] and identified issues attributed to insertion tolerances [32].

Using toy components, Gu et al. [35] evaluated an assembly sequence including bolting,

hammering, and screwing skills through passive observation of human performance. To

reach the state of the finished screw assembly, eight turns were required. The repetitive
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turning characteristic was tackled by two identical markers on the screw that allowed 180-

degree rotations to be performed in either configuration. In this setup, screwing was iden-

tified as the most challenging skill due to complex motion in addition to small screw slots,

while hammering was considered the simplest task due to the simplicity of the movement

and the accuracy of the loose strike. Putting emphasis on unstructured demonstrations,

Niekum et al. [87] proposed a method for automatic skill segmentation and interactive

human intervention. In terms of the assembly of table legs with protruding screws, the

system performed the screwing task after interactive correction using recovery behaviour

for difficult grasping angles or distant leg locations. Based on a skill library that includes

screwing (clockwise + anticlockwise) and stacking, Yu et al. [88] proposed an RL-centred

method that maps new scenarios to a sequence of a few library instances. The evaluation

was carried out using a simplified task design with loose clearances and no contact with

the environment, limiting the practicability evaluation of the method for realistic screwing

tasks.

Motivated by precision assembly challenges, Qin et al. [49] demonstrated gluing capabilities

on a sleeve-cylinder assembly task after insertion using a predefined force-constrained

motion action class. As described in Section 3.2.2, (Eiband et al., 2023) focused on the

automatic segmentation of the demonstration data where the gluing motion was abstracted

to a sliding skill with slight pressure against the surface. The experimental gluing motion

was performed under loose spatial or task-related requirements.

In the case of wiring, it requires handling and routing of deformable wires. Keipour et

al. [58] developed a spatial representation graph that enables wire rerouting, considered

a pick-and-place task, towards a goal configuration. Emphasising the enhancement of

kinaesthetic teaching through online impedance shaping, Meattini et al. [89] evaluated its

method on a wiring task consisting of the pick-up of a cable’s extremity and inserting it

into a connector. The execution behaviour was furthermore altered at run-time through

physical interaction to perform a rerouting of the cable.

Although sewing represents a highly repetitive task and is considered the most challenging

skill in the manufacture of personalised stent grafts, Huang et al. [51] developed a robotic

system capable of extending a single demonstrated stitch cycle to the whole stitching task

through design specifications, rigid transformations, and an actuated mandrel. Kram-

berger et al. [52] investigated a robotic interlocking method that enables timber-timber

joinery without the need for additional steel fasteners through the optimal structural truss

design and a particular rotational insertion strategy.
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2.2.4 Generalisability

The capability of generalising and expanding to unseen scenarios is one of the key aspects

distinguishing LfD concepts from intuitive programming techniques and promises to enable

robotic systems to deal with dynamic environments and product variations in industrial

settings. In the context of assembly-related application scenarios, six major generalisation

capabilities were identified, which have been explored in the reviewed studies. These

include the ability to reproduce the task under distinct spatial or temporal requirements

(execution scaled to demonstration), cope with task uncertainties, adjust the path or

skill sequence, and execute the task with objects similar but not equal to the one used

for demonstration (transferability). Note that the following quantification only reflects

capabilities that have been evaluated in physical experiments and does not necessarily

show all capabilities of the underlying learning method.

With 46 reported evaluations, spatial scaling is the most common generalisation capability

explored in LfD methods, incorporating distinguished start and goal poses for trajectories

and object positions. While assuming that the robot knows the theoretical location of the

objects, the existence of task uncertainties has mainly driven the field of LfD methods

applied to peg insertion tasks. 18 experimental reports have contributed to counteracting

measures. Commonly addressed with RL-techniques, path optimisation was mentioned in

eight applications to improve robot execution, while graph-based sequence optimisation

was only explored twice in experimental reports [77, 78]. Although an equally intrinsic

feature as spatial scaling of LfD learning methods, temporal scaling capabilities are often

neglected, reaching two mentions in the reviewed studies [43, 90].

Generalising over similar objects has mainly emerged as an investigated capability in most

recent studies. Experimental contributions examined similar objects with distinguished

properties [40, 53], objects of the same task class but distinguished shapes [43, 57, 59,

69] or entirely unknown objects [34, 74]. Depending on the learning method, the LfD

approach may not necessarily require any generalisation process [59, 69], only a few update

steps [43] or interactive adaptation [34]. In general, adapting existing knowledge to slightly

distinguished situations/objects is promoted with less required effort than demonstrating

the task from scratch.



Chapter 2. Literature Review 29

2.2.5 Performance Evaluation

To provide a valid experimental evaluation of a proposed method, different performance

metrics were used in the reviewed studies. These include, in particular, the reporting of the

success of a task or its success rate over several attempts, accuracy analyses, effectiveness

compared to competing approaches, and achievable efficiency. Although all studies present

at least one successful physical execution, a total of 41 studies report achieved success

rates over at least three attempts (seven have not specified the number of attempts used

to determine the success rate). The success rate reported on the number of attempts is

visualised in Figure 2.8 using the classification of mating and joining skills. As can be

seen, mating skills tend to be evaluated using more attempts and generally achieve higher

success rates.

In the special case of peg insertion, success was often challenged by tight tolerances that

are required to overcome. In total, 26 peg insertion skills with specified tolerances were

assessed (ten did not provide specifications). In general, tolerances between 0.006mm [63]

and 6mm [67] with an average of 0.708mm were considered. Furthermore, some studies

chose specifications according to the ISO 286 standard [65, 66], interference or clearance

fit [49, 53] or a hole chamfer of 1mm [66]. Further accuracy analyses with respect to other

skill classes reflect the analysis of trajectory deviations from the demonstrated motion [76,

91] as well as the final pose errors in tasks such as pose alignment [49, 91] or placement [74].
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Based on a deep background in LfD research, evidence of the effectiveness of the proposed

method compared to competitive approaches is a common evaluation practice. This can

be the ground truth for automated recognition [35, 79], comparable techniques [64, 72, 84],

the baseline method when extended [43, 68], or the comparison to other representative LfD

approaches [67, 69].

In addition, some studies reported performance assessments towards procedure efficiency.

In addition to reports on a reduced number of required execution steps [57] or sequenced

actions [77], several researchers provide evidence of an improved execution speed [34, 36,

43, 59, 64]. Through interactive correction techniques, Meszaros et al. [34] extend ef-

ficiency evaluation to training time, reporting a four-fold faster approach compared to

the initial demonstration method. Similar demonstration-time reduction efforts were pro-

moted by [57, 72]. Wang et al. [47] used simulation before training to reduce the time

required on the real robot. As reducing computing time is equally important for improved

efficiency, Wang et al. [82] optimised the underlying learning technique and Keipour et

al. [58] developed a routing method efficient enough to run online. On the other hand,

Xu et al. [92] raised performance concerns regarding the proposed RL-centred method

when confronted with more complicated tasks. Specifically targeting 3C product assembly

operations with optical motion capture, Hu et al. [44] proposed a performance evaluation

protocol including performance indicators for static and trajectory evaluations.

2.3 Comparison to Industrial Practice

In addition to the technical competence proposed by LfD solutions, the integration of

the new technology into existing processes is considered an equally important factor in

analysing its applicability to industrial practice. In this context, mimicking the capabilities

of human operators to learn and execute new tasks is assumed beneficial to promote the

acceptance of LfD technology in the traditional assembly industry [24].

Traditional industrial assembly is based on well-established and historically preserved

methodologies for instructing human operators that have proven great effectiveness. In

traditional manual industrial assembly, instruction refers to the systematic learning of

knowledge and skills to perform a task that operators are expected to perform in a pro-

duction environment, but have not previously fully known or mastered [93]. Instruction

concepts are a measure of operator qualification and human resource development, and

the theoretical concepts are correspondingly diverse. A primary distinction can be made
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between training on the job, along the job, near the job, and off the job [94]. According to

Schelten et al. [95], instruction procedures can be further differentiated depending on the

learning domain (sensorimotor, sensorimotor and cognitive, cognitive) and the degree of

participation (instructor emphasised, instructor and learner involved, learner emphasised).

As described in Section 2.2, research efforts towards LfD solutions for assembly-related

applications emphasise on-the-job instructions for sensorimotor capabilities. This pro-

motes the comparison of state-of-the-art LfD trends with the so-called four-step method,

an industrially relevant and well-established method. It is based on the principles of

the Training within Industry (TWI) approach, which was developed in the USA dur-

ing the Second World War [96] and has been considered in Germany since the 1950s as

the ‘REFA-Vierstufenmethode’ for work instruction [97, 98]. It focusses on repetitive,

relatively short-cycled and simplistic tasks that must be performed repetitively accord-

ing to a standardised sequence, allowing a certain degree of transferability to automated

practice [98]. The subsequent discussion highlights identified synergies and discrepancies

between the four-step method and LfD trends.

Preparation

In the first phase of the four-step method, the learning location is prepared for the instruc-

tion, and a suitable learning objective is defined based on the learner’s existing knowledge.

Attention must be paid to the interpersonal factors that enable the instructor to arouse

the interest and motivation of the learner.

The reviewed LfD approaches show, in principle, transferable competencies to deal with

workplace requirements, including varying settings and dynamic environments. Therefore,

the preparation of the learning location is considered comparable. However, effective in-

teraction with the robotic system relies on the instructor’s active involvement with the

programming method, understanding the system’s capabilities, limitations, and expected

performance. This changes the necessary recognition of interpersonal factors to the in-

structor’s interest and motivation, which must be aroused by a suitable design of the

robotic system. The emerging interest in advanced generalisability, that is, the transfer

of knowledge and skills to similar objects and situations, is an essential prerequisite to

imitating the prior knowledge repertoire of humans.
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Demonstration and Explanation

This step requires a high level of performance from the instructor and involves the physical

demonstration of the task. The instructor performs the task while explaining the reasoning

and important details verbally. These help the learner to improve their understanding of

the assembly task and achieve high quality during self-performance.

The active demonstration of the task corresponds to the first phase of the characteristic

LfD procedure (see Figure 1.1). The applied demonstration method determines the re-

quired level of participation of the robotic system. Using passive observation techniques

provides a method comparable to conventional human instruction with no involvement of

the physical robot. Furthermore, the four-step method promotes simultaneous physical

demonstration and verbal explanation. In contrary, most research efforts rely on a single

predefined channel (see Figure 2.3a) that limits the instructor’s communication abilities.

An additional distinction emerges from the ability to fully understand the task, as most

LfD approaches target the acquisition of sensorimotor skills. Only few investigations pro-

vide ideas on communicating the robot’s understanding to the instructor, immediately or

subsequently, to increase the instructor’s confidence in the perceived demonstration.

Execution and Explanation

After passively observing the instructor’s demonstration of the task, this step involves

mimicking the task by the learner and justifying the key aspects in the learner’s own

words. The instructor observes and intervenes when necessary. An important aspect is to

ensure that learning objectives are met and understood.

Incorporating the transition of the robotic system from a passive observer to an active ex-

ecutor corresponds to the second phase of the characteristic LfD procedure (see Figure 1.1.

Synergies are identified, in particular, regarding the performance of the task on the basis

of the robot’s own understanding and skills. Several studies have also presented ways of

communication between the robot and the instructing human operator during execution

to reason the actions performed, communicate the learning progress, or visualise the task

understanding. This often involves the creation of collaborative situations with intentional

interaction that allows the human operator to intervene and improve the understanding

of the task until the learning objective is met.
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Practice

The last step of the four-step method has the purpose of providing the opportunity for the

learner to practice the new skill and apply the acquired knowledge. This step is important

for solidifying learning, building confidence, and becoming more efficient. The goal is to

achieve a defined performance under the premise of error-free assembly.

The learning behaviour of humans can generally be illustrated by learning curves [93, 99].

These show the learning progress, i.e. the time required per execution, as a function of

the number of repetitions. During the process of understanding the required contexts

and actions, the curve drops at first. The learning effect then decreases steadily with an

increasing number of repetitions until a routine of working is finally developed, and the

assembly process is increasingly internalised. The description of the functional relationship

of the learning curve is based on the task to be performed, as well as a variety of factors

that depend on the learner [100].

Promoting the teacher-independent task performance, this step aligns with final phase of

the characteristic LfD procedure in which the robot reproduces the task with minimal

human intervention (see Section 1.1). In light of the usually targeted challenges in LfD

approaches, this phase consolidates on the robot’s capability to provide generalisability and

meet certain performance criteria. As outlined in Section 2.2.5, the performance is often

quantified by the success rate performing the same task repeatedly. The generalisability

capabilities enable the robot to cope with changes in task, motion and environment.

Compared to the practise required in conventional settings, most LfD approaches provide

the ability to start at a higher performance level from the beginning. However, due to

the strongly narrow cognitive abilities and hardware limitations, most of the proposed LfD

solutions have rather flat learning curves. The ability to improve their own performance in

a self-controlled manner can be observed in ML-based solutions, which has been applied

for this purpose in various studies, and can be named a key enabler. In the reviewed

literature, no prediction of expected efficiency has been discussed.

2.4 Identified Obstacles

Although several synergies with the four-step method have been identified that promote

reasonable potential, some fundamental aspects are lagging behind in creating a smooth

integration of LfD solutions into industrial practices. Based on the findings above, the
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following provides an educated summary of identified obstacles in LfD research to drive its

progression toward meaningful deployment. These include aspects regarding practicability,

task complexity and diversity, generalisability, performance evaluation, and integration

concepts.

Practicability

The practical evaluation of promising solutions that have emerged from research marks a

pivotal moment in gauging their potential interest for industrial sectors. Demonstrating

significant advantages, along with robustness to withstand industrial conditions, instils a

willingness to invest in the proposed technologies.

Academic advances in the field of LfD over the course of the last decades exhibit a ro-

bust level of maturity within the research landscape. State-of-the-art studies successfully

demonstrate the features of popular techniques and expand their interest in niche chal-

lenges. However, the analysis of practicability reveals that only very few studies have pre-

sented the application of the proposed LfD methods in practical or related task designs,

resulting in a severe limitation in evaluations using mainly unrelated tasks and objects.

This is particularly evident in methodologies based on ML techniques. The consecutive

transition to realistic scenarios is presumed to work smoothly.

Moreover, the identified practical and related application scenarios can be characterised as

tasks which are predisposed for automation. Exploring the potential expansion of a robot’s

functionalities into tasks that currently fall outside the scope of automation, particularly

those involving assembly situations primarily carried out by human operators, remains an

area that requires more comprehensive exploration. While practical LfD solutions for the

currently emphasised capabilities continue to proliferate and promise valuable influence in

the assembly industry, extension to tasks carried out predominantly manually can have

an exceptional impact on industrial practice.

Task Complexity and Diversity

The advantage of LfD-equipped robotic systems, as opposed to specialised machinery de-

signed for defined assembly operations, lies in their improved user experience and increased

applicability. The latter requires a high degree of adaptability to different complexities

and varieties of tasks, which must be anchored in the applied LfD solution.
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Contrary to this industrial requirement, the literature review discloses that the developed

solutions predominantly focus on individual assembly skills with a strong bias toward peg

insertion. While the latter covers a certain portion of industrially performed tasks, there

exists a significant shortcoming in the development of LfD methods that address other

skills, particularly joining skills, which are necessary for the completion of many assembly

tasks.

Studies investigating pick-and-place-related tasks offer conceptual ideas for handling com-

pound tasks, including automatic extraction of abstract task interpretation and appropri-

ate sequencing of skills. However, the proposed frameworks possess mostly limited skill

repertoires that were designed for specialised assembly situations. To address the needs of

the industrial sector, it is crucial to expand the scope of the capabilities of LfD methods

to have a higher degree of achievable task complexity and a wider range of assembly skills.

Generalisability

In addition to the necessary adaptability to different complexities and varieties of tasks, the

incorporation of LfD solutions in the industrial sector holds, in particular, the promise of a

significant degree of adaptability to various tasks and environmental conditions. Expected

generalisability is seen as one of the key advantages of the LfD frameworks to manage the

predicted shift from mass production to mass customisation.

The analysis of the generalisability of state-of-the-art LfD solutions shows that recent stud-

ies focus on experimental evaluations of encounters with changes in motion (see Table 1.1).

This includes, in particular, the spatial scaling which considers relocating objects between

the demonstration and reproduction phases. The results are perceived as appropriate in

the context of current industrial requirements.

Furthermore, the qualitative analysis shows an emerging cluster dealing with realistic

changes in the environment, especially in pick-and-place-related contexts. The learning of

corresponding skill sequences contributes decisively to generalisation capabilities favouring

the seamless transfer to realistic industrial tasks.

However, these features represent only a fraction of the cognitive abilities that human

operators possess. Transferability to similar tasks, in terms of similar component groups

or sequence structures, is an essential property that increases the applicability of LfD

solutions in the field of industrial assembly. This is particularly true with regard to the

ability to handle product variants, which is one of the decisive challenges in the automation
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of industrial assembly. To address this feature, further research is to be carried out in the

area of cross-product generalisation skills.

Performance Evaluation

The primary objectives of industrial assembly lie in its pursuit of efficiency, productivity,

and cost-effectiveness [23]. An established method to analyse the economic benefits of

automation solutions is given by the Overall Equipment Effectiveness (OEE) that incor-

porates productivity losses caused by setup and waiting times, reduced execution speeds,

scrap and rework [101]. Alternative performance metrics are provided by standardisation

organisations such as the National Institute of Standards and Technology [102].

The literature review conducted revealed the use of different performance metrics to eval-

uate the proposed LfD solutions. These include, in particular, quantifying success rates

and mastered tolerances in the case of peg insertion tasks. Furthermore, common practice

is to compare against competitive LfD approaches assessing the methods’ effectiveness.

Only a small part deals with the efficiency of the system, which was evaluated based on

the processing or execution time. To promote the viability of LfD solutions for industrial

deployment, a more comprehensive evaluation of the performance of the system as a whole

is necessary.

Integration Concepts

Since their invention, collaborative robots have been an emerging technology that is

steadily migrating into the industrial world to assist humans with their work tasks. For

a seamless integration of such systems, human safety is essential. Apart from physical

hazards, ethical, social, and psychological aspects are equally important [103]. Framing

factors outside of technical solutions will determine the ability to transfer research results

to industrial environments.

The literature review conducted reveals a dominant focus on understanding sensorimotor

skills to succeed in physical tasks. However, for systematic integration into the working

environment, it is equally important to develop a comprehensive framework that con-

siders aspects beyond technical succession. Consequently, further research potentials are

emerging in the context of integration concepts.
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2.5 Summary and Framework Outline

The literature review conducted aimed to explore the factors that discourage the limited

adoption of LfD solutions within the repetitive assembly industry. Physical experiments

were quantitatively and qualitatively analysed to determine current trends, interests, and

achievements within the relevant contributions of the past decade. A comparison was

made with the industry-established four-step instruction technique for human operators

to identify synergies and discrepancies of LfD solutions with industrial assembly practice.

Promising synergetic concepts were found in demonstration methods, approaches for the

interactive elaboration of the task’s understanding, and the subsequent improvement dur-

ing independent execution. However, the remaining obstacles were identified primarily in

real-world applicability with respect to the practicability and complexity of the tasks. In

summary, the research field of LfD has developed to a point where its potential and capa-

bilities have been shown to be valuable in laboratorial environments and highly promising

for a variety of applications. However, further research is required to promote the appli-

cability of the concept to industry-relevant assembly scenarios.

In light of the situation identified, this work focuses on contributing to the field of LfD

research by addressing several aspects of the remaining obstacles that hinder the transition

of LfD to industrial deployment for repetitive assembly tasks. Although not guided by an

industry-driven use case, the primary interest lies in the development of industry-inspired

methods with enhanced robustness to increase future transferability to industrial practice.

With the goal of enhanced robustness, this thesis presents a framework that explores

improvements in the three phases of the characteristic LfD procedure (see Figure 1.1).

In detail, it contributes by developing techniques for efficient demonstration, assembly-

specific learning, and robust reproduction. These align with the identified obstacles as

follows:

• The efficient demonstration technique focuses on the human operator and primarily

explores how to make the demonstration more practicable compared to the prevail-

ing approach. It takes into account that the intended application scenario favours

efficient solutions to minimise the workload for the human operator. This implicitly

addresses the psychological aspect of the integration challenges for the human oper-

ator, who may feel increased frustration if the demonstration takes too long or does

not lead to the expected behaviour.

• The assembly-specific learning technique explores how the learning phase of an LfD

can be improved to meet the requirements of the repetitive assembly industry. This
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mainly addresses the complexity and diversity of potential tasks that may occur in

industrial settings.

• Robust reproduction takes into account dynamic situations during the reproduction

phase. It aims at practicality in realistic industrial environments by improving the

prevailing methods in terms of their generalisability with respect to motion and

environmental changes.

Finally, the developed hardware demonstrator is designed to provide intuitive and user-

friendly communication that touches on the identified hurdle with respect to concepts of

integration. In future work, further proposed improvements for effective integration and

evaluation are discussed to eventually create an industry-relevant LfD framework.
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Guided Demonstration for Robust

Transferability

In the first phase of the characteristic LfD procedure, the human operator actively demon-

strates the desired task. Although this can be accomplished in several ways, recent statis-

tics (see Figure 2.3a) show a tendency towards methods that involve guiding the reproduc-

ing robot through the task. Most LfD solutions restrict the demonstration to occur on the

robot using kinaesthetic teaching (illustrated in Figure 3.1a), where the human operator

physically moves the robot in a gravity-compensating mode. Performing the intended task

directly on the robot has the benefit that its kinematic capabilities and constraints are con-

sidered at any time, resulting in guaranteed faithful motion reproduction. However, such

an approach presents some disadvantages in relation to expected efficiency and productiv-

ity when considered for deployment in realistic industrial scenarios, e.g., the application

scenario described in Section 1.3. Relying on kinaesthetic teaching requires the presence

of the robot and the human operator to rethink the task from the robot’s point of view.

Depending on the task, this may necessitate the inconvenient movement of multiple joints

simultaneously for multihanded or complex motions [5] or being particularly difficult with

bulky robots performing precise assembly tasks [39]. As a result, the demonstration of the

task may be perceived as impractical, lengthy, or too intricate. Furthermore, some resis-

tance may be encountered in industrial practice due to the difference from conventional

instruction techniques (see Section 2.3).

Based on these limitations of kinaesthetic teaching and teleoperation, the use of passive

observation (illustrated in Figure 3.1b) is encouraged in the application scenario under

39
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consideration. The passive observation method has several advantages in terms of prac-

ticability and productivity. Performing the demonstration through the human operator’s

own motion directly is considered more user-friendly and intuitive. Furthermore, a demon-

stration phase that occurs in the absence of the robot enables the utilisation of the robot

in other tasks in parallel.

(a) Demonstration using kinaesthetic
teaching

(b) Demonstration relying on passive
observation

Figure 3.1: Illustrations of preferred demonstration methods in LfD research

Allowing the demonstration to be performed on a system different from the reproducing

system generates further motivating context: an unconstrained mock-up of a heavy/-

dangerous tool detached from the robot can be used to demonstrate comfortably, or a

dangerous/labour-intensive task can be demonstrated on a smaller/safer robot contrary

to a reproducing powerful robot. However, preserving this independence can result in

demonstrated motions that are not reproducible by the reproduction system due to its

different kinematic structure. In the present context, reproducible motion refers to a faith-

ful reproduction by the reproducing system without deviating from the demonstrated path

or colliding with the environment or itself. As a consequence, non-reproducible motions

are typically considered failure and only discovered during the reproduction phase, which

may cause a safety hazard or require repeated demonstration. Such unnecessary iteration

through the LfD procedure reduces the efficiency of the method and potentially increases

the level of frustration of the human operator.
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Assuming a kinematically constrained reproduction system, this Chapter explores how the

motion of the human operator can be artificially restricted to demonstrate motions that

are reproducible on the robot in mind. In the absence of the physical reproduction system,

the objective is defined by achieving robust transferability between the systems to reduce

the number of failed reproduction attempts and therefore increase the productivity of the

proposed LfD method.

In light of the goal described above, Section 3.2 formulates the problem in a generalised

setting. It results in the necessity of determining the region of reproducible motions acces-

sible to the reproducing system. Leveraging on an existing motion planning framework,

Section 3.3 describes how such regions can be found. The presentation of the acquired in-

formation to the human operators preventing them from demonstrating non-reproducible

motions is discussed in Section 3.4. A visualisation in the form of an interactive Graphical

User Interface (GUI) was chosen. The explanation of the utilised LfD learning framework,

consisting of so called Dynamic Movement Primitives is outlined in Section 3.5. Finally,

Section 3.6 provides experimental results of the proposed method, including a validation

and a comprehensive user study, and Section 3.7 summarises the presented contribution.

This Chapter was derived from [25].

3.1 Related Work on Transferability

The transferability of a specific motion presented by a demonstration system, e.g. a hand-

held tool, a distinctive robot or the human’s tracked motion, to a reproducing robot that

differs in its physical embodiment is known in LfD research as one of the correspondence

problems [5] (see Section 1.1).

A common strategy is to design the demonstration method to track movements in relation

to the intended end-effector trajectory of the robot. This is achieved by using simplified

mock-ups of the robot’s end-effector tool [38, 51] or sensor-enhanced replicas of the part to

be assembled [39, 40]. Alternatively, the human operator’s hand and / or the movement

of the manipulated object is recorded directly and translated to the desired end-effector

motion [32, 44, 74, 76, 77, 92]. All methods result in a common representation of the

motion that can be interpreted [8, 9], but are not necessarily reproducible by the target

system due to its kinematic limitations.

An approach often found to implicitly reduce the likelihood of erroneous movements re-

produced is the use of a redundant robot for motion reproduction [32, 38, 44, 46, 51, 70,
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74, 75, 77]. These robots have more DoF than dimensions that exist in the task space [104]

and can use null-space control methods. As a consequence, kinematic constraints, such as

avoiding obstacles, singularities, and joint limits, may be better satisfied whilst maintain-

ing faithful reproduction of the demonstrated end-effector motion [5].

In many applications, especially in the context of industrial use, a non-redundant arm

may be preferable for reproduction over a redundant arm, for example a six-DoF over a

seven-DoF, due to being relatively lower cost, exhibiting higher payload-to-weight ratio

and having simpler kinematics for control and planning. However, in certain cases, these

arms cannot exploit null-space control [104] due to their kinematic structure and, as a

consequence, may require large joint changes between intermediate points of a demon-

strated trajectory to satisfy kinematic constraints. Despite their similar prominence in

physical LfD research [33, 37, 39–41, 50, 58, 66, 76, 92], potential constraints to avoid

unfaithful reproduction are typically neglected. Instead, tasks are intentionally designed

to succeed by specifying clear limitations of the method and informing the human operator

of any avoidable behaviour prior to the demonstration phase, e.g., placing objects outside

a predefined workspace [33, 41, 46].

A more robust and practicable alternative is seen in artificially restricting the motions of

the demonstrator during the physical demonstration. Some work explored this approach

by providing additional visual information using a GUI [105] or augmented reality [106–

108]. However, these methods usually only consider verifying, adjusting, or adding loosely

defined workspace / task constraints, and do not directly consider the kinematic constraints

of the target system.

This work builds on the trend to guide the human operator during the demonstration

phase, preventing non-reproducible motions from being demonstrated. This promises to

increase the efficiency of the underlying LfD framework and improve the practicability of

the method for industrial use.

3.2 Problem Formulation

Based on the envisioned goal of guiding the human operator during demonstration through

motions that are reproducible by the reproduction system in mind, the following presents

a generalised formulation of the investigated problem. It extends to the broader non-

trivial LfD scenario in which a motion demonstrated on one system shall be successfully
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reproduced on another system with different kinematic structure. While the demonstra-

tion system can be anything, including the demonstrator’s hand, a mock-up tool, or a

passively moved robot, the reproduction system is typically considered a robot with kine-

matic constraints, for example, providing only six DoFs.

The problem is framed around assumptions about the environment, the demonstration

system, and the reproduction system. Figure 3.2 provides an illustrative example of the

problem setup. The environment consists of static elements, such as fixtures and equip-

ment, that are known a priori and physically present during demonstration and repro-

duction. Dynamic objects can be added and removed in real-time during demonstration

and kept static during reproduction. The demonstration system is defined as Sdem and

can move freely within the demonstration space Cdem. The desired motion is captured

during the demonstration as a set of discrete states over time λdem = {ti,Γi}
∣∣T
i=0

with

Γi ∈ Cdem. λdem is fed to a policy-driven LfD learning framework capable of interpreting

and processing the information to generate a trajectory λrep for reproduction. The calcu-

lated trajectory is reproduced on the reproduction system Srep within Crep which consists

of the subset of its reachable space and a predefined operational space. With Srep selected

prior to the demonstration, its kinematic model is assumed to be accessible at any time.

Furthermore, it is assumed that Cdem and Crep are in a common representation space that

is chosen as SE(3) since motions within this space can be interpreted by all anticipated

systems. The apparent assumption of Cdem ∩ Crep ̸= ∅ is necessary to allow for any repro-

ducible motion. To realise the motion reproduced on the reproduction system Srep it is

necessary to interpret λrep and generate executable controls, Π : λrep 7→ πrep, where πrep

is a sequence of control actions.

Following the setup above, the problem arises once Sdem and Srep provide different kine-

matic structures and Crep may not entirely cover Cdem, that is, (Cdem ∩ Crep) ⊂ Cdem.

Furthermore, not all λdem are reproducible on Srep. Thus, to improve the robustness of

the reproduction process, Cdem is expected to be artificially constrained such that it is

bounded within Crep and any λdem within this constraint space is reproducible by Srep.

More concretely, the reproducible motion is defined as λdem such that the resulting λrep

when mapped through Π results in a short, smooth and collision-free path in Crep. Ac-

cordingly, the problem can be formulated as follows:

Problem 1 (Region of reproducible motions). Find a region R ⊂ Cdem such that it is

contained within Crep and any λdem through this region is a reproducible motion. In the

case that multiple distinct regions exist, find R∗ that maximises coverage of the anticipated

operational space.
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(a) Demonstration with mock-up tool
(for better readability, Cdem is limited
to the reachable space of the demon-

strator’s right arm)

(b) Reproduction on six-DoF robot (for
better readability, Crep is limited to an ap-

proximated workspace)

Figure 3.2: Illustration of the problem’s setup

3.3 Finding Regions of Reproducible Motions

In Section 3.2, the challenge faced by potential unfaithful reproduction after performing a

robot-independent demonstration was translated into the problem of finding the region of

reproducible motions with the highest coverage, R∗. Demonstrating motions within this

space promotes robust transferability to the reproducing system in mind.

To solve the stated Problem 1 of finding R∗ based on the assumptions defined in Sec-

tion 3.2, an existing robotic manipulator planning framework called Hausdorff approxi-

mation planner (HAP) [109] was used. Originally developed to effectively sequence tra-

jectory queries, HAP enables motion planning in a user-defined task space (end-effector

poses) with an emphasis on planning and execution time efficiency. This is achieved by an

underlying algorithm that determines one or more distinctive subspaces of the given task

space such that the path between two points close to each other maps to a short, smooth,

and collision-free configuration space trajectory. As a result, continuous task space tra-

jectories can be constructed through these subspaces, which translate into configuration

space trajectories with a bounding relation in terms of trajectory distance. This mapping

between metric spaces is called the ϵ-Gromov-Hausdorff approximation (ϵ-GHA) [109].
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In the context of this work, these subspaces with the properties described correspond to

the desired regions of reproducible motions. As formulated in Problem 1, the subspace

that occupies most of the user-defined operational space is considered the desired region

of reproducible motions R∗. Any demonstrated λdem contained within this region of

Crep ⊂ SE(3) satisfies the reproducibility condition, assuming that the generated λrep is

spatially identical to λdem.

The HAP method for finding subspaces is described in the following, with an illustra-

tive example shown in Figure 3.3. First, the models of the reproducing robot and the

environment encountered including all static elements are defined (see Figure 3.3a) and

introduced into the framework. Based on a set of granularity parameters, the anticipated

operational space is discretised, representing the task space of interest (see Figure 3.3b).

An undirected graph is then constructed over the discrete task space, where poses within

a ball radius of each other are connected by an edge. An optimisation routine then iter-

atively maps unique configurations to each pose while ensuring that neighbouring poses,

i.e. those connected by an edge, are within some specified bounded distance. Kinematic

constraints, such as avoiding collisions and remaining within joint limits, are also consid-

ered. The ϵ-GHA that minimises the sum of all path costs through the graph is kept.

This process can be repeated multiple times with a penalty added to the paths that pass

through previously mapped poses to find multiple distinct subspaces (see Figure 3.3(c)

and (d)). The subspace with the highest percentage of task space covered is selected as

the desired region of reproducible motions R∗, i.e. the subspace depicted in Figure 3.3c.

Following the procedure to determine R∗, a constraint space within the task space is found

which is bounded within Crep and any λdem through this region is reproducible by Srep. The

resulting outcome of HAP is a set of discrete six-dimensional poses in SE(3) - translation

and orientation, which quantify R∗. The remaining task space consists of poses that do not

meet the transferability condition and are referred to as R∗. Poses belonging to R∗ can be

assigned to one of three reasons for producing non-reproducible motions, i.e. failure during

reproduction, when considered within the HAP subspace currently under consideration.

Figure 3.4 illustrates, through colour-coded voxels, all three cases for different orientations

of the end-effector in the given example of 3.3. The green voxels behind the wall are

blocked due to requiring a large change about the wrist to avoid collision with the wall or

workbench, which would violate the condition for a region of reproducible motions. The

red voxels indicate regions where no inverse kinematics (IK) solution is possible without

environmental collision. The blue voxels indicate regions outside the reachability of Srep.
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(a) six-DOF UR5 robot model in static
workbench environment

(b) An operational space expressed as
discretised task space

(c) A region found with 66% coverage
and mapped ’wrist-out’ configuration

(d) A region found with 35% coverage
and mapped ’wrist-in’ configuration

Figure 3.3: Illustrative procedure of finding regions of reproducible motions (green)
using HAP

Extending on HAP, dynamic objects in the scene were accounted for by performing an

update to R∗ rather than completely recomputing R∗, which is computationally expensive.

This update is performed by iterating over all mapped configurations and checking that

they are still collision-free, and if not, they were removed from R∗.

3.4 Visual Guidance during Demonstration

In order to obtain an efficient demonstration method, the information accessible through

R∗ and R∗ is used to demonstrate motions that can be faithfully reproduced by the re-

producing system in mind. This is achieved by guiding the human operator during the

demonstration to perform motions such that λdem ⊂ R∗. In other words, preventing the

human operator from moving Sdem into the regions of R∗ promises a successful reproduc-

tion afterward.
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Figure 3.4: Illustration of orientation-dependent regions of non-reproducible motions

In the context of this work, a user-friendly GUI was designed to guide human operators

through the demonstration by informing them about regions that may affect transferability.

The design of the interface is crucial to promote its acceptance for use. In light of the

application scenario described, it was designed to be intuitive enough for a non-expert

human to interpret and make effective use of it without any knowledge of the underlying

kinematics of Sdem. Therefore, the following design choices were made with respect to the

appearance of the physical components in action, the transferability information condensed

in R∗ and R∗, and additional adjustments for improved readability.

The physical components of interest include the static environment, dynamic objects, the

demonstration system, and the reproduction system. The static environment is considered

an exact replica of the physical components encountered by the human operator during the

demonstration. While still displayed for reference, its visibility is reduced by a monotonous

grey colouring. The rendering of dynamic objects, on the other hand, is considered to be

more important, and accordingly acknowledged through a colourful appearance. In terms

of visualising the human-controlled Sdem, its location in the scene is reduced to a simple

blue arrow instead of displaying an entire model of Sdem. This was chosen to effectively
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reduce the chance of occluding regions of interest. Following the same reasoning, the robot

model Srep, although fully accessible, was intentionally removed from the GUI. Besides

potential occlusion, it may also distract the human operator from the actual task.

In addition to the physical components of interest, the core information to effectively guide

the human operator is found in R∗ and R∗, which combined are considered overwhelming

and mostly redundant. In light of their opposing characteristic, the visualisation of only

R∗ was chosen to improve the visibility of the free space in which Sdem can be moved.

However, to perform motions such that λdem ⊂ R∗, it is not necessarily relevant to pro-

vide information about the different types of failure (see Figure 3.4), especially since the

human operator may not be familiar with their meaning. Therefore, the colour coding was

translated to a uniform red representation with reduced opacity.

As R∗ and R∗ are quantified as sets of poses in the six-dimensional space, its proper

visualisation on a two-dimensional interface is crucial for acceptable readability. As can be

seen in Figure 3.3, displaying a static dense grid of arrows is considered to be too cluttered

and confusing for the user to follow. Instead, the six-dimensional space was compacted into

three dimensions by dynamically activating the regions in R∗ when necessary. This is the

case for all red voxels in poses that are within a similar orientation to the current pose of

Sdem. The similarity is computed by taking the dot product between the forward pose axes

of Sdem and R∗ and only showing voxels corresponding to poses within a given similarity

threshold. The result is that red voxels appear to the human operator in positions in

the environment to indicate a potential violation of the transferability condition once

penetrated from Sdem in its current orientation. Similarly, these red voxels may disappear

when the human operator changes the orientation of Sdem so that the region becomes

accessible again. An example of this activation and deactivation that occurs for different

end-effector orientations was shown in Figure 3.4. This activation occurs in real time and

in response to the human operator moving Sdem.

Based on the explained approach, the interactive GUI displays static and dynamic envi-

ronmental elements, the pose of Sdem in real-time, as well as Sdem-dependent regions of

red voxels, which indicate where the transferability condition may be violated. Confronted

with the apparent challenge of visualising a three-dimensional space on a two-dimensional

screen, further design decisions were made to improve readability. If Sdem is in proxim-

ity to any currently activated red voxel, the appearance of the Sdem-representing arrow

changes from blue to luminous red. In addition, any voxel separated by a certain distance

from the current pose of Sdem was further reduced in opacity and all layers above Sdem’s

current height were completely removed. A representative example of the interactive GUI
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developed to guide human operators confidently through demonstrations of reproducible

motions is shown in Figure 3.5.

Figure 3.5: Representative example of the GUI presented to the human operator for
guidance during demonstration

3.5 LfD Learning Framework

Guided by the interactive GUI during demonstration, the human operator is able to per-

form motions that reflect the intended task while avoiding regions of non-reproducible

motions such that λdem ⊂ R∗. As a result, the recorded demonstration is represented

as λdem = {ti,Γi}
∣∣T
i=0

with Γi being Cartesian poses, i.e., positions xi and quaternions

qi. With the given common representation space of SE(3) it suggests itself to source a

policy-driven LfD method for learning with trajectorial outcome. This also aligns with

the prevailing trend in recent LfD research (see Figure 2.3). Moreover, the most preva-

lent technique, the so-called Dynamic Movement Primitives (DMPs), was selected as the

applied LfD learning framework. DMPs are a compact, single shot, deterministic mo-

tion learning algorithm that incorporates spatial and temporal scaling capabilities and

generates smooth and continuous trajectories.

Originating from research around movement imitation with nonlinear dynamical sys-

tems [110–113], DMPs were first formally introduced by S. Schaal, J. Peters, J. Nakanishi,
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and A. Ijspeert in 2003 [114–116]. Promoted as an efficient framework for robot con-

trol, planning, learning, and imitation, DMPs were established for discrete and rhythmic

motion control policies. Due to the exclusive usage of discrete DMPs in the remainder

of this thesis, the term DMPs refers to this variation if not stated otherwise. Based on

observations of converging force fields in frogs [117], Hoffmann et al. proposed in 2008

a revised, biologically-inspired DMPs formulation which tackled the original’s failure in

the case of coinciding start and goal positions [118]. Since then, several modifications

have been proposed for various application-specific adjustments [90, 119–126] and DMPs

continue to be a popular subject in ongoing research [127–130]. However, the original and

biologically-inspired formulations remain the most applied forms of DMPs in the context

of LfD.

The classic learning and smooth reproduction of a single dimension using the DMPs frame-

work is based on a set of non-linear differential equations, called the transformation system

(3.1) and the canonical system (3.2):

τ ˙̃v = K ( xT − x ) − D ṽ − K ( xT − x0 ) s + K f(s) (3.1)

τ ẋ = ṽ

τ ṡ = − αs s (3.2)

where x and ṽ are the motion variables for the position and the velocity scaled by τ , x0 and

xT are the initial and final trajectory values, and K and D represent stiffness and damping

gains. The parameter τ facilitates the temporal scaling capability where as the phase

variable s creates the system’s time independence through the canonical system, which is

parameterised with αs. The force variable f(s) that preserves any nonlinear characteristic

of the given demonstration is modelled as a linear combination of N weighted nonlinear

Radial Basis Functions (RBFs), such that:

f(s) =

∑N
n=1 ψn(s) ωn∑N
n=1 ψn(s)

s with : ψn(s) = e− hn ( s− cn )2 (3.3)

with ωn, cn, hn being the i’s RBFs weight, centre, and width, respectively. Common

practice is to parameterise DMPs according to the following guidelines for guaranteed

convergence, critical damping and RBFs equally distibuted in time:

τ > 0 ; D = 2
√
K ; cn = e−αs

n−1
N−1 ; hn =

1

(cn+1 − cn)2
; hN = hN−1 (3.4)
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To learn a specific motion, the transformation system computes the unknown RBFs weights

ωn based on the demonstrated trajectory {ti, xi, vi, v̇i}
∣∣T
i=0

(if not available, vi, v̇i are typ-

ically approximated numerically) using Locally Weighted Regression. Task-specific infor-

mation is compactly stored in the weights ωn and the parameters K, D, N , αs. During

reproduction, the transformation system is reversed using the learnt weights ωn to calculate

the accelerations, resulting in a smooth and continuous trajectory of the given dimension

[127].

Processing multiple independent dimensions, such as joint configurations or Cartesian po-

sitions, is achieved by vectorising the transformation system (3.1) while sharing the same

one-dimensional canonical system (3.2) for temporal synchronisation. However, rotational

dimensions such as unit quaternions or rotation matrices are of a constrained nature. The

first attempt of quaternion-DMPs explored the independent calculation of each quaternion

element with a post-normalisation step [131]. Subsequent studies proposed to express them

in a single vectorised formulation to appropriately incorporate the constrained character-

istic of quaternions [132–136]. In 2014, Ales̆ Ude et al. proposed in [133] formulations for

quaternions and rotation matrices and formally introduced the nomenclature of CDMPs.

In the context of this thesis, the term CDMPs is used for DMPs covering poses in the

robot’s operational space, expressed as positions x and quaternions q. In detail, the LfD

learning framework is based on the revised biologically-inspired CDMPs formulation by

Koutras et al. [136, 137] which is considered state-of-the-art. It consists of transformation

systems for translational and rotational dimensions that read as follows:

τ ˙̃vx = Kx ( xT − x ) − Dx ṽx − Kx ( xT − x0 ) s + Kx fx(s) (3.5)

τ ẋ = ṽx

τ ˙̃wq = −Kq eq − Dq w̃q − Kq 2 log(qT ∗ q̄0) s + Kq fq(s) (3.6)

τ ėq = w̃q

where x, ṽx are the vectorised variables of translational motion and q ∈ SO(3) represents

a unit quaternion. eq is defined as the quaternion error between the current and goal

orientation values and is calculated as follows:

eq = 2 log(qT ∗ q̄). (3.7)

Its derivative scaled by τ is given by w̃q. The parameters x0, xT , q0, qT , K
i, Di and the

force variable f i are vectorised variations of the expressions x0, xT , K, D, f introduced
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above for each transformation system. All dimensions remain synchronised using the one-

dimensional canonical system in (3.2) and build on the linearisation in (3.3).

Following the procedure described above with a given λdem, CDMPs are applied to generate

a continuous smooth motion λrep represented as Cartesian poses in SE(3) over time. On a

redundant robot, this information can be fed to a local null space control to achieve physical

motion. However, considering the kinematic constraints of the reproduction system Srep

in mind, an additional motion generator was developed to translate λrep into a sequence

of reproducible arm configurations, πrep = {ϕ1, ϕ2, ..., ϕT }. However, the poses in λrep are

in a continuous space where as the ϵ-GHA mapping is defined over a discrete task space.

Therefore, to remain within R∗ a configuration is assigned to each ϕ ∈ πrep that is close

to the ϵ-GHA mapping. This is achieved by computing all IK solutions for each Γ ∈ λrep

and choosing the IK solution that minimises the Euclidean distance to any of the k closest

mapped configurations in R∗. The approach described integrates tightly the CDMPs and

HAP frameworks and results in robust transferability of the generated motions λrep that

are spatially identical to λdem.

3.6 Experimental Evaluation

By preventing the human operator during demonstration from infiltrating regions of non-

reproducible motions R∗ with Sdem, the developed method based on HAP and CDMPs

promises to generate reproducible motions on a structurally different Srep. The follow-

ing experimental evaluation, including a validation experiment and a comprehensive user

study, presents the proposed guided demonstration approach for an efficient and robust

LfD framework on two distinct setups. In the context of this evaluation, special attention

is paid to the demonstration phase in which the method is applied. This includes how

the method can be used to circumvent poor decisions in situations that can be considered

trivial, as well as how the intuitive GUI helps to make the demonstration process more

efficient and robust. The detailed functionality of CDMPs used in LfD for learning and

reproducing the motion are comprehensively examined in the following Chapters.

3.6.1 Validation Experiment

Envisioning an application in which two kinematically distinct robot arms are used, the

validation experiment is designed to demonstrate the non-trivial challenge of transferring

motions acquired on a redundant robot to a reproducing kinematically constrained robot.
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In this context, a seven-DoF Sawyer arm was used as the demonstration system and moved

kinesthetically during demonstration (see Figure 3.6). The reproducing system is a sim-

ulated six-DoF UR5 (see Figure 3.3a). Both exist within an identical static environment

consisting of a workbench and an obstructive wall obstacle. The modelling of the envi-

ronment, kinematics, and collisions as well as motion control for the UR5 is performed in

a high-fidelity simulator called OpenRAVE. In case of a naive approach, that is, without

using the proposed method for robust transferability, the motion reproduction is generated

by a local Cartesian space controller.

Figure 3.6: Demonstration setup for validation experiment

In this experiment, the operator’s task is to perform a circular motion around the wall

obstacle with the Sawyer’s end-effector while remaining as close as possible to the wall and

workbench. The motion demonstrated is then processed through CDMPs and transferred

to the UR5 with the goal of obeying its kinematic constraints. The task is considered

successful when the end-effector of the UR5 performs a movement identical to the demon-

stration. For this task, the operational space was designed with all poses pointing roughly

down with variations of 45◦, as exemplified in Figure 3.3b, resulting in R∗ in Figure 3.3c.

For a better explanation of accessible R∗, the GUI was used without the additional mea-

sures for depth visualisation discussed in Section 3.4.

The first attempt represents the naive approach, in which no help is provided during

demonstration regarding the motion’s feasibility. The naive operator intuitively hugs the

wall with the Sawyer end-effector in a downward facing orientation. The interactive GUI
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that was not accessible to the operator in this attempt clearly indicates in the sequence

in Figure 3.7(a)-(d) how multiple red voxels, representing regions of non-reproducible

motions, were crossed. As a result, the simulated UR5 performs a poorly reproduced

end-effector trajectory, as can be seen on the black line in the exemplary sequence of

reproduced states in Figure 3.7(e)-(h). The explanation for this is that the UR5 must

perform several large configuration changes along the trajectory, reorienting its wrist and

shoulder to avoid collision with the wall. The UR5 is unable to faithfully reproduce the

demonstrated motion, which was conveniently demonstrated on the Sawyer, afforded by

its extra DoF.

(a) 1/4
demonstration

(b) 2/4
demonstration

(c) 3/4
demonstration

(d) 4/4
demonstration

(e) 1/4
reproduction

(f) 2/4
reproduction

(g) 3/4
reproduction

(h) 4/4
reproduction

Figure 3.7: Example sequence of the naive, unguided approach: (a)-(d) hidden GUI
and (e)-(h) simulative reproduction on UR5

In contrast, the operator informed by the proposed method is able to actively avoid these

problematic regions, as shown in the exemplary sequence in Figure 3.8(a)-(d). On reach-

ing the right side of the wall, the interactive GUI assists in finding a strategy to carry

out the task faithfully. By pivoting the wrist forward, several red voxels disappear and

non-restricted space behind the wall becomes accessible (compare Figures 3.8(a)/(b)).

However, even after doing so, two red voxels remain and block the path (see Figure 3.8b).

As a result, the GUI allows the operator to assess the new situation and intentionally trace

a path around this region before approximating the workbench again and continuing the

task. As can be seen in the reproduction sequence in Figure 3.8(e)-(h), the UR5 is able to

reproduce the demonstrated motion faithfully.

This observed behaviour validates the proposed method for this particular scenario and

confirms the claim that reproduction can fail if the kinematics of the reproduction system

is not considered during demonstrations, even in a relatively simple environment.
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(a) 1/4
demonstration

(b) 2/4
demonstration

(c) 3/4
demonstration

(d) 4/4
demonstration

(e) 1/4
reproduction

(f) 2/4
reproduction

(g) 3/4
reproduction

(h) 4/4
reproduction

Figure 3.8: Example sequence of the approach using the proposed method: (a)-(d)
guiding GUI and (e)-(h) simulative reproduction on UR5

3.6.2 User Study

After showcasing the importance of considering the kinematics of the reproducing system

in Section 3.6.1, a subsequent user study was conducted to evaluate the usability of the

proposed method. To remove any physical limitation arising from demonstrating kinaes-

thetically on a robot, Sdem was embodied by a freely movable 3D printed mock-up tool

tracked by a VICON motion capture system. The reproduction system Srep and the static

environment were kept identical to the setup of the validation experiment. A physical

hardware setup of the reproducing system was also prepared to showcase successful repro-

duction. An additional dynamic object is introduced into the scene for the purpose of the

given task. In total, nine users participated in the study consisting of three women and

six men, five of whom had little or no experience with robot arms.

In this experiment, the users were asked to perform a mock weld operation along a pre-

defined marked edge on the dynamic object. For this purpose, the object is to be placed

within the available space on the workbench so that a reproducible motion that mimics

welding can be demonstrated. Although the object can be repositioned as often as desired,

once a location is selected, the weld motion is to be performed in full on the stationary

object. After the demonstration, the validity of the demonstrated motion is evaluated in

simulation and, if successful, reproduced on the physical robot. The goal is to perform

a weld motion that is transferable to the given reproduction system. Figure 3.9 shows

an example of a demonstration (left), which was guided by the proposed interactive GUI

(top) and afterwards reproduced on the physical UR5 (right).
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Figure 3.9: Experimental setup for the user study

The user study was conducted as follows: First, each user was asked to perform the

task without the guidance of the interactive GUI. They were given a maximum of three

attempts, which involved carrying out the demonstration and then verifying that it was

reproducible on a simulated UR5 in the same environment. If successful, the reproduction

was carried out on the real UR5 robot. Subsequently, the user was asked to perform

the same task with the guidance of the proposed GUI, again with a maximum of three

attempts. If the user was successful in the unguided attempt, the task goal was amended

to find an alternative valid placement of the weld object.

Due to the experimental setup, two demonstration scenarios are valid. These include

the placement of the box close to the maximum reach of the UR5 with the edge facing

the wall (see Fig. 3.10a) and a placement near the wall with the edge facing away (see

Fig. 3.10b). Alternatively, the UR5 fails to reproduce the motion by performing large

configuration changes (see Figure 3.10c) or reaching its physical limits and deviating from

the demonstrated path (see Figure 3.10d).

The main advantage provided by the accessible information through the interactive GUI

was that it helped users make an informed decision about where to place the weld object.

Furthermore, users were able to place the object and then update the region of feasible

motion before carrying out the demonstration. As a result, a potential failure was identified

very early without the need to go through the whole process. Figure 3.11a shows the

distribution of the number of trials required to successfully demonstrate the weld task.

As can be seen, five participants were unable to successfully perform the task within the

given three trail and error attempts. In comparison, six succeeded in the first guided
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(a) Success 1
demonstration

(b) Success 2
demonstration

(c) Failure 1
demonstration

(d) Failure 2
demonstration

(e) Success 1
reproduction

(f) Success 2
reproduction

(g) Failure 1
reproduction

(h) Failure 2
reproduction

Figure 3.10: Types of successful and failed attempts observed in the user study

reproduction attempt after several repositioning of the box and explorations of feasible

regions. In total, 36 reproduction attempts were conducted of which 13 were successful

(seven by placing the object near the wall as in Figure 3.10b), 22 failed due to required

large configuration changes (see Figure 3.10c), and two failed for demonstrating outside the

UR5’s reach (see Figure 3.10d). All reproduction attempts are shown in the Appendix B.1.

In addition to the quantitative analysis of the required attempts, the usability of the

proposed method was evaluated using the subjective metric applied in a previous usability

study on socially assistive robots [138]. Their study categorised their evaluation metrics

into effectiveness, efficiency, and satisfaction with which users were able to perform given

tasks [139]. In a similar fashion, the users were asked to rate on a 5-point scale how

confident they were, how easy it was to carry out the task with and without the GUI and

how surprised they were with the reproduced trajectory. The full questionnaire of this

user study is provided in Appendix B.2.

Figure 3.11b shows the percentage of increase and decrease in each of the metrics ques-

tioned. As can be seen, almost all participants were more confident in carrying out the

task when using the guidance of the GUI. The ease of use was comparable, which is a

positive result considering the additional component of the GUI during demonstration.

And users were less surprised by the reproduced motions when using the GUI, which can

be explained by the absence of large spontaneous joint changes.

Users were additionally asked the following questions on a 5-point scale specifically about

the effectiveness and design of the GUI:
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Figure 3.11: Quantitative results of the user study

• How effective was the GUI at improving your decision of where to place the weld

object?

• How intuitive was the GUI in assisting with the task?

• How effective was the GUI in providing spatial awareness, i.e., avoid red voxels?

• Is the extra effort to use the GUI worth it over trial and error (without any guidance)?

On average, users gave a rating of 4 and above, which indicates that our GUI design was

overall effective and intuitive enough for assisting with the given task. Furthermore, all

participants rated the last question with a 5, which reinforces the value of our method

over a trial-and-error approach.



Chapter 3. Guided Demonstration for Robust Transferability 59

In terms of qualitative feedback, some participants desired more suggestive guidance. For

example, providing recommended object placements to the user. Other suggested im-

provements included receiving more information on the source of failure when entering a

red voxel and the option to display the simulated robot in the GUI.

3.7 Summary

In contrast to the prevailing tendency to demonstrate a desired task on the system that

is expected to reproduce, significant advantages regarding applicability and practicability

are envisioned for demonstrations conducted in the absence of the reproduction system.

However, naively transferring a demonstrated motion to a system with differing kinematic

structure withholds the potential of generating motions which differ drastically from the

initial intention.

This Chapter presented a novel demonstration method that ensures the reproducibility

of a demonstrated motion on the reproduction system in mind. To achieve this, an ex-

isting robotic manipulator planner was used to compute regions of reproducible motions.

An intuitive GUI was designed to intuitively and effectively inform the human operator

during demonstration about these regions preventing the performance of non-reproducible

motions. The results of the conducted validation experiment and user study showcased

the importance of being able to demonstrate reproducible motions reliably without the

presence of the physical target system.





Chapter 4

Assembly-tailored Learning

Framework

The second phase of the characteristic LfD procedure is determined by the robot’s learning

capabilities. During the previous demonstration phase, the human operator demonstrates

a task that is to be learnt by the robot. The demonstrations performed are collected and

function as input to the LfD learning framework. While passive monitoring by or active

assistance from the human operator can be incorporated in this phase (see Figure 1.1),

it typically focusses on the robot’s self-driven ability to acquire a comprehensive under-

standing about the desired behaviour from the given demonstration data. As described

in Section 1.1, learning frameworks can be categorised according to their outcomes in the

form of policies, plans, or cost/reward functions. Recent statistics on assembly-related LfD

research suggest a prevailing tendency towards policy-driven approaches that generate re-

production trajectories (see Figure 2.3). In this context, Dynamic Movement Primitives

(DMPs) have been successfully applied to a variety of assembly-related use cases.

As introduced in Section 3.5, DMPs have several beneficial properties that favour their ap-

plication within an LfD framework for assembly-related tasks. Given a single demonstrated

trajectory, DMPs utilise a deterministic algorithm to generate a smooth and continuous

trajectory representing an efficient one-shot learning method [127]. Furthermore, DMPs

provide the ability to scale spatially and temporally between the demonstrated and repro-

duced trajectory. Such generalisability is achieved by alternating some of the parameters

used in the transformation system (see (3.5) and (3.6)) between learning and reproduc-

tion. The learning set consists of the start/end points of the demonstrated trajectory as

x0,xT and the selected time constant τdem which is typically chosen as the duration of the

61
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demonstration Tdem in seconds. Changing x0 and/or xT results in spatial scaling while

remaining topologically similar to the demonstrated trajectory [140]. Temporal scaling is

achieved by selecting a time constant τrep ̸= τdem. In other words, increasing τrep results

in a proportionally extended reproduction duration. Figure 4.1 shows a simplified illus-

tration of this generalisability using translational dimensions. Spatial scaling is visualised

by amending the given positions x0 = xT = (0, 0, 0)T to x0/T = (0, 0,±0.5)T (see Fig-

ure 4.1a). Similarly, τrep was set to 0.5τdem, creating a motion with a similar path, but

twice the speed as seen in Figure 4.1b. This behaviour is similarly applicable to rotational

dimensions by alternating q0,T and the shared time constant τrep.

(a) spatial scaling exemplified in the
z-dimension

(b) temporal scaling exemplified in
the x-dimension

Figure 4.1: Example of spatial and temporal scaling capabilities of DMPs

As a representative trajectorial-based learning framework, DMPs provide the ability to

reproduce movements accurately with generalisation applicable to a new set of desired

bounding poses and duration. However, handling complex tasks remains a major bottle-

neck of DMPs and other trajectory-driven approaches [141] as distinctive parameterisation

may be desired throughout the course of reproduction. An example of such a scenario is

depicted by a pick-and-place task as illustrated in Figure 4.2a. Alternating the object’s ini-

tial location while keeping its goal location and speeding up only a portion of the resulting

trajectory is considered not achievable with the original DMPs formulation.

In contrast, the second most applied category of learning frameworks with outcomes in

the form of plans typically extracts a sequence of key states that include their required

pre / post conditions from given demonstrations (see illustration in Figure 4.2b). As a
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(a) trajectory-based learning: accurate
motion reproduction achievable, but no
separate relocation or partial velocity ad-

justment

(b) plan-based learning: sequential ad-
justments achievable, but no accurate

motion reproduction

Figure 4.2: Illustration of conceptual limitations for trajectorial and plan-based learning
frameworks

result, hierarchies, rules, and loops of complex tasks can be sequentially expressed, but

accurate motion reproduction is limited, as reproduction relies on a set of predefined basic

controllers [6]. This characteristic distinction between LfD learning frameworks based on

trajectories and abstract plans has a long history [6]. The merging of both approaches is

considered necessary to adequately learn and reproduce complex tasks [5, 110].

In light of the targeted application scenario (see Section 1.3), the prevailing DMPs learning

framework provides suitable characteristics with respect to motion-related requirements.

However, its standalone abilities do not adequately meet the requirements for desired task

complexity and diversity encountered in assembly-related tasks (see Section 2.4). This

Chapter investigates how DMPs can be extended by an abstract discretisation system to

achieve increased generalisability tackling expected task complexity and diversity. In the

context of this work, a discretisation system refers to a symbolic finite library of skills that

can be sequenced to adequately describe assembly tasks. Compared to previous attempts

with rudimentary discretisation systems, this work explores the use of preexisting systems

that have been successful for abstracting assembly movements in an industrial context.

Such a system provides several benefits, including its proven sophisticated level for ap-

propriate coverage and abstraction, as well as its familiarity in industry, which promotes

smoother integration into practical processes. Providing application-specific requirements,

a suitable discretisation system is used to inform and structure the underlying sequence

of individual DMPs that accurately fit motion-related characteristics. As a result, an

assembly-tailored learning framework is established that promotes improvement with re-

spect to the requirements considered essential for the practicability and applicability of

LfD in the industrial environment.

This Chapter is structured as follows: Section 4.1 reviews the possibilities of expanding
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DMPs with a discretisation layer and discusses approaches that have been explored in

the past. Section 4.2 reviews existing industry-related discretisation systems for assembly

tasks and selects the most suitable with respect to the context described. Its integration

with the trajectory-based DMPs is proposed in Section 4.3 to establish the assembly-

tailored LfD learning framework. Finally, Section 4.4 provides experimental results and a

summary is given in Section 4.5. This Chapter was derived from [26].

4.1 Related Work on DMPs Complexity Enhancement

To achieve more complex motions than those produced by a single DMPs’ expression, the

literature suggests two major approaches [127]. One approach is built on the introduction

of via-points as intermediate checkpoints with defined state constraints. This allows, in

addition to the generalisability given by DMPs, the consideration of further constraints at

specified states over the course of the reproducing motion. This approach was initiated by

Kober et al. [119] who proposed a modification of DMPs to incorporate non-zero velocity

conditions for the start and goal state. Ning et al. extended this idea by learning DMPs

based on artificially generated sample trajectories that meet certain via-point criteria [142].

Weitschat et al. translated the desired via-points into via goals that were expressed as

Gaussian kernels in a time-varying goal function that activated them in sequence [143].

The most recent contribution proposed so-called via-point movement primitives in which

DMPs were extended by the probablistic framework of Probablisitic Movement Primitives

(ProMPs) [144] to generate better inter- and extrapolation results.

Alternatively, complex motions can be achieved by combining separately processed DMPs

to create a unifying reproducing motion. Saveriano et al. summarised in [145] three ways

to merge DMPs. The first represents the trivial case in which any segment expressed via

DMPs starts and ends in a steady state, allowing for unmodified sequential processing

of the given DMPs. An intended ‘handover‘ between DMPs with non-zero velocity at

the point of transition is built upon [119] and is modelled as reaching a moving target

that coincides with the desired ‘handover‘ state. The third option is based on [146] and

merges multiple DMPs into a single more complex mathematical expression, eliminating

any transition between separate reproducing algorithms.

In the context of this work, considering merging consecutive DMPs is desirable as it allows

access to the modelling and generalisation abilities of DMPs in each segment independently.

This has been investigated in several recent studies, as reviewed in full in Section 2.2.3.
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Explored task representations that extend policy-driven learning frameworks are typi-

cally designed to meet an application-specific narrative. As a result, various abstract

naming of reproduction segments with varying points of interest were proposed. Exam-

ples include trajectorial properties such as contact-rich/-poor [49] or approaching/assem-

bling [45], robot-inspired skills such as place-at/move-to [41, 110, 147], and high-level

assembly-related skills such as screwing/placing/reaching [50, 70]. While reasonable task

representations have been discussed for potential exploitation of generalised applicability,

none are based on a sophisticated industry-proven structure, limiting their probability

to endure realistic industrial assembly operations. Furthermore, proposed sequences of

DMPs show only limited exploitation of their full potential for individualisation.

The presented work explores the usability of industry-related discretisation systems that

have been applied to model practical industrial assembly movements. Such a sophisti-

cated baseline in combination with the DMPs trajectorial generalisability and adaptability

promises to establish an assembly-tailored learning framework that embodies the capabil-

ities expected in practical environments.

4.2 Selection of Discretisation System

As stated above, several benefits arise from using an existing discretisation system instead

of developing a new one. The approach of selecting a system that is or has been used in an

industrial context for a similar purpose ensures the system’s sophisticated robustness and

capability to discretise most of the encountered assembly tasks. It is also assumed that

it is familiar to human operators who may be confronted with the proposed LfD learning

framework, making the eventual interaction more intuitive. Furthermore, as an elaborate

system used in industrial practice, it may incorporate additional features that could be

used in the learning framework.

Selecting a discretisation system from an industrial context is also feasible, as the assembly

sector provides a sophisticated knowledge base that spans many decades. Influences from

many disciplines and the persistent desire to shift towards automated solutions in the

industry have produced a variety of potential starting points. In the following, several

discretisation systems encountered in industrial practice are examined and evaluated with

regard to their applicability in the context under consideration. This includes the criteria of

providing a finite library of basic movements capable of modelling complex assembly tasks,

being sufficiently granular for the framework in mind, providing intuitively understandable

skill representations, and ideally being recognisable from human operators.
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With the intention of translating a human-performed task to a robot, discretisation systems

were exploited from human-centred and automation-centred methods. The first category

includes, in particular, the so-called Predetermined Motion Time System (PMTS), which

emerged mainly in the twentieth century and provide tools for modelling and analysing

manual workflows found in industry. This is achieved by predefined sets of basic human

movements with unique characteristics and distinct influential factors. Building on such a

finite library of skills, most workflows encountered in industrial practice can be expressed

as a discretised sequence or structure of elementary motions. Workflow analysis is carried

out on the basis of scientifically benchmarked standard times for each elementary motion.

This enables the evaluation and planning of existing or future workflows. The most pop-

ular PMTS in industrial practice are MTM, Work Factor (WF), and Maynard Operation

Sequence Technique (MOST).

Methods-Time Measurement (MTM) was first introduced by H. B. Maynard et al. in

1948 [2] and distinguishes ten basic elements to model human movements in industrial

environments (see Table 4.1). The average time to execute the actions after sufficient

practice depends on different factors. For example, the length of movement and the pre-

cision at the goal state influence the standard time of move and reach, while the object’s

shape, position, and dimensions are decisive for grasp operations. As MTM is designed for

detailed operation analysis, it is commonly considered for repetitive short-cycle assembly

tasks during mass production. The profound set of rules established in this system allows

the discretisation of complex tasks and even tool-assisted operations using the predefined

basic elements in Table 4.1. In addition to its industrial importance for manual work-

flow analysis, recent research efforts explore its automated classification and transfer to

automated systems [148–153]. Today, several variations exist, including MTM-1 (MTM),

MTM-2, MTM-UAS, MTM-MEK, and MTM-SAM, which extend to different levels of

granularity for diversified assembly scenarios.

With similar intentions, Quick et al. proposed in 1962 the Work Factor (WF) system [154].

Its original form consists of eight fundamental elements, which are listed in Table 4.1. In

this system, the time required to perform the skills is affected by four main variables.

These include the body part used, the distance travelled, the weight or resistance, and

the type of manual control. Compared to MTM, it takes particular account of the mental

component that occurs during the performance of assembly tasks. Today, several variations

were proposed and are used in industry to cope with different levels of detail, including

DWF, RFW, AWF, VWF, and BWF.
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MTM-1 WF Basic MOST

Reach
Grasp Grasp Gain Control
Move Transport Controlled Move
Position Assemble Alignment
Release Release Placement

Use
Action Distance

Turn
Apply Pressure
Disengage (separate) Disassemble
Body, legs, and foot Motions Preposition Body Motion
Eye Times Mental Process Process Time

Table 4.1: Elementary operations of considered Predetermined Motion Time Systems

Like the systems described above, the Maynard Operation Sequence Technique (MOST)

is based on the idea that human movements in industrial assembly tasks can be described

by repetitive movement sequences [155] and proposes a set of seven elementary operations

(see Table 4.1). It was first released in Sweden in 1972 and has been known in the

United States as Basic MOST since 1974. It was soon extended by two variations called

Mini MOST and Maxi MOST. Contrary to MTM and WF, this method focuses on the

sequence characteristic of assembly tasks and determined three essential building blocks

that include a predefined sequence of elementary operations. The building blocks are the

general move sequence, the controlled move sequence, and the tool use sequence.

Alternative discretisation systems are sourced from automation-centred taxonomies. Un-

der the umbrella of effects on material flows, the VDI 2860 [156] provides a consistent de-

scription of automated handling processes using solution-neutral (device- and manufacturer-

independent) motion modules. It was developed by the Association of German Engineers

(VDI - ‘Verein Deutscher Ingenieure’) and first published in May 1990. The latest version

from 2003 divides industrial handling activities into five functional areas of storage, vari-

ation of quantities, movement, security, and inspection. Subordinate to this classification

are seven elementary functions which are represented through standardised symbols (see

Figure 4.3a). These include divide, unite, turn, displace, stop, release, and test. Further

functions were defined to represent industrially relevant compound handling processes that

sequence multiple elementary functions.

Within the set of standards for manufacturing processes, the DIN 8593 presents a taxon-

omy for the joining capabilities encountered in industrial practice [157]. It consists of a

discretisation system that covers the skill categories of putting together, filling, pressing
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on/in, shapeless forming, forming, welding, soldering, bonding, and textile joining. Each

subgroup is further divided into elementary functions, which are listed in Figure 4.3b using

putting together and pressing as examples.

(a) Elementary handling functions after [158]

(b) Joining elements after [157]

Figure 4.3: Taxonomies provided by selected standards

Some research efforts have also investigated the merging of human-centred and automation-

centred approaches. Based on the MTM system, Richard P. Paul and Shimon Y. Nof

invented the Robot Time and Motion (RTM) system in 1979 to transfer the human-

centred motion system to robot capabilities [159–161]. Its taxonomy consists of eight

elements, including MTM-related reaching, moving, grasping, and releasing, as well as

required robot-related vision, stopping on error/force, and process time-delay functions.

Consecutive research investigated the usability of RTM in industrial scenarios [162–164].

In 1991, RTM was extended through elementary operations for mobile platforms [165] and

recently for human-robot collaboration [166, 167].
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The evaluation and selection of the most suitable discretisation system is driven by its ap-

plicability to the intended LfD learning framework for assembly tasks. Given the applica-

tion scenario in mind and the trajectory-based CDMPs for skill learning and reproduction,

the considered discretisation systems are reviewed according to their skill library, ability

to abstract industry-relevant physical movements, and intuitiveness for human operators.

Promising systems were sourced mainly from human-centred PMTS and automation-

centred standards. The latter provide profound and proven sets of elementary functions,

but appear less intuitive for ordinary assembly tasks and are not directly related to ex-

pected physical movements, e.g. test. These disadvantages are not observed in PMTS

approaches, which were designed to map and analyse human movements in an industrial

context. Additionally, PMTS provide an established time analysis system that allows the

exploration of predictive human-robot comparison. Based on the elementary operations

listed in Table 4.1, MOST is not sufficiently detailed and its translation into robot move-

ments is considered limited. Similarly, the decisive feature of WF is its consideration of

mental factors that are not relevant for physical robot movements. MTM, on the other

hand, provides a consistent set of elementary operations that are linked to reproducible

physical movements on a robot. Even if human operators are not familiar with MTM-1

itself, the nomenclature used is considered intuitively understandable. Its modification

for the automation-inspired discretisation given by RTM is seen as not advantageous as

functionalities such as vision and process time delay were embedded that do not reflect

human-based movements.

As a result, MTM-1 was selected as the most suitable discretisation system for the intended

LfD learning framework. In the context of this work, assembly tasks are expected to be

performed within a small workbench space (see Section 1.3). This reduces the explored

set of predefined skills to the first five elementary operations of MTM-1, including reach,

grasp, move, position, and release.

4.3 MTM-inspired CDMPs Learning Framework

With the goal of developing an LfD learning framework that is tailored to industry-

orientated assembly tasks, this Section explores the combination of trajectory- and plan-

based methods to source advantageous features of both approaches into one unified learn-

ing method. For this purpose, an enhancement of the prevailing CDMPs method with

a discretisation system is envisioned. Based on the selection process in Section 4.2 that
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identified MTM-1 as the most suitable system, the following explains the proposed MTM-

inspired CDMPs learning framework. First, the basic elements given by MTM for manual

workflow modelling are translated into robot-centred skills that exploit different customi-

sation features of CDMPs. Then, two approaches for the sequential distinction between

those skills from human demonstrations are discussed, followed by the derivation of a

mechanism to cope with relocated objects.

4.3.1 MTM-inspired CDMPs skills

As explained in Section 4.2, this work is based on an assumed limited workspace that

narrows the focus to the first five basic elements of MTM-1. A typical MTM-1 assembly

cycle is depicted by the task of transporting an object of interest from an initial indeter-

minate location to a defined location relative to other objects. As such, assembly tasks

are discretised following the illustrative sequence of reaching to a workpiece, grasping the

workpiece, moving the workpiece in proximity of its desired location relative to an as-

sembly point, positioning the workpiece accurately at its assembly point, and releasing

it securely. This sequence is repeated if several workpieces are involved in the assembly

process or alternated by given MTM-1 rules to discretise distinct motions, such as tool

handling. The predominant purpose of the MTM-1 elements and the factors that influence

manual workflows are summarised in Table 4.2. Details on the predetermined time data

for MTM-1 are provided in Appendix C.1.

Basic
element

Predominant purpose Influencing factors
(manual workflow)

Reach move the hand to a destination
or general location

distance of motion, condition of the
target object, and pre/post velocity
of the hand

Grasp secure sufficient control of one or
more objects with the fingers or
the hand

properties of the object such as the
size of the available contact area and
its surroundings

Move transport an object to a destina-
tion

transported object, and pre/post
velocity of the hand

Position align, orient, and engage one ob-
ject with another object

insertion tolerance, joining pressure,
and the object’s symmetry

Release relinquish control of an object by
the fingers or hand

opening the fingers or letting go

Table 4.2: Properties of MTM-1 basic elements after [2]
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The conventional trajectory-based CDMPs learning framework provides several opportu-

nities to customise the reproduced motion according to the desired behaviour. As de-

scribed above, CDMPs allow spatial and temporal scaling by alternating the parameters

x0,xT ,q0,qT , τrep. The smoothness and precision of the reproduced CDMPs trajectory

are indirectly determined by the parameter N that defines the number of RBFs to model

the forcing terms f i(s), i ∈ {x,q}. Increasing N results in a more accurate imitation of the

demonstrated motion, but also proportionally increased computational costs, which result

from the calculation of the weights ωn, since the matrices used by the locally weighted

regression are of higher rank. Furthermore, several enhancements of the original CDMPs

have been explored in previous studies that allow real-time path adjustments during repro-

duction, including external forces measured or artificially introduced and machine learning-

based optimisation. These features are valuable for unique customisation of the CDMPs

and their suitable applicability will be discussed without further details on their imple-

mentation. However, the particular ability to incorporate real-time collision avoidance is

investigated in depth in Chapter 5 for robust reproduction.

The following derive unique CDMPs for each MTM-1 element to establish a finite skill

library to learn and reproduce compound assembly tasks. The proposed framework is ex-

plained in detail below and summarised in Figure 4.4. Remark : the proposed framework

provides only suggestions toward relative amendments (increase/decrease) for CDMPs pa-

rameterisation as optimal values are subject to the robot’s capabilities and the application’s

requirements.

Reaching

As introduced above, the typical MTM-1 assembly cycle begins with approaching a work-

piece that needs to be transported, aligned, and positioned relative to its assembly point.

The spatial shape of motion is dictated by the starting position of the given demonstration

system and the initial location of the workpiece. The expected duration to perform this

element is mainly influenced by the distance between these two locations.

Translated into custom CDMPs, the focus is on the efficiency and adaptability of move-

ment. The latter is achieved by using the spatial scaling capability of CDMPs. A new

location of the workpiece serves as the goal pose of the reach model to adapt to the new

scene (see Section 4.3.3). Since the distance travelled influences efficiency during reaching,

the temporal scaling property of CDMPs becomes valuable, especially when the task was
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Figure 4.4: MTM-inspired CDMPs learning framework

demonstrated at reduced speed due to an inconvenient demonstration method. Reduc-

ing the time constant τrep provides an effortless adjustment of the robot’s end-effector

speed during reproduction. Since imitating the motion demonstrated with high precision

is considered less important when approaching the object, it is recommended to choose a

reduced number of RBFs. In doing so, a smoother trajectory is created and computational

costs are reduced. The result of partially deviating from the demonstrated path is desir-

able, as unintentional noise that is not required for the success of the skill gets reduced.

Considering that human demonstrations may not be optimal for robot kinematics due to

the different kinematic structure, weights ωn can be further optimised using Reinforcement

Learning [127]. Additionally, CDMPs provide the functionality to further generalise by

adjusting the resulting trajectory in case obstacles appear on its path (see Chapter 5).
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Grasping

After reaching proximity to the object of interest, the basic element grasping commences.

In contrast to reaching, this element typically takes place in a smaller space. However, it

requires higher precision as a distinguishing characteristic, which dictates its success.

Based on this requirement, custom CDMPs replicating the demonstrated grasping are

modelled with a higher number of RBFs (N). To reduce the risk of damage due to

inertia forces or control limitations, a reproduction speed similar to or slower than the

motion demonstrated is desirable and achievable by increasing the time constant τrep.

As any relocation of the object is considered during reaching, the alternation does not

affect grasping. As long as the hardware configuration allows, additional visual or force

feedback may be considered to further improve accuracy, especially in the event of expected

task uncertainties (see Section 2.2). Furthermore, gripper actuation may be reproduced

through a set of DMPs, depending on the gripper’s DoF, using the same canonical system

to guarantee correct actuation timing.

Moving

Once grasped and lifted sufficiently to allow free movement, the move element starts to

transport the object into proximity to the assembly point. As this basic element also

reflects a large motion in which precision is considered less relevant, the same efficiency

and generalisation ideas apply as introduced in the basic element reach. However, the

properties of the transported object must be considered. This may include its weight,

dimensions, and fragility.

In light of the requirements, the time constant τrep is adjusted appropriately. Reducing this

parameter results in improved efficiency. A reduced number of RBFs (N) to reproduce the

demonstration trajectory allows smoothing of shaky demonstration motions and reduces

computational costs. When optimising the weights ωn of the forcing terms f i(s) through

RL, as discussed for the reaching skill, the dimensions, fragility and weight of the object

influence the reproduction. Regarding generalisation capabilities, the starting pose is

provided by the ending pose of the preceding positioning CDMPs outcome. Adjustments

to the end pose may be incorporated in real time, as discussed for the reaching skill.

Similarly to RL augmentation, the dimensions of the workpiece affect collision avoidance

methods (see Chapter 5).
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Positioning

The position basic element describes the most challenging aspect of an assembly task. It

covers the alignment, orientation, and engagement of the grasped object with its designated

location relative to the assembly point. Similarly to the grasp element, precision is a vital

factor for the success of this skill. However, a fundamental characteristic during positioning

is the appearance of contact wrenches, which can significantly influence the appropriate

execution.

To improve accuracy, a high RBFs density is recommended to replicate the demonstrated

motion. Since accurate execution is of greater importance than its speed, a suitably

low time constant τrep may be selected. Beyond the achievable spatial precision, the

consideration of contact wrenches promises to enhance the robustness of the positioning

skill. CDMPs provide different ways of incorporation [127].

Releasing

The position basic element terminates when the workpiece is aligned and orientated suc-

cessfully and no interference wrenches are recorded. Once this state is reached, the release

skill commences by actuating the gripper and ends after collision-free disengagement from

the workpiece. Like the preceding positioning skill, a continued high precision and reduced

reproduction speed characterise the releasing skill. An assessment of noticeable forces may

be used to ensure that no intervention is made with the workpiece during disengagement.

4.3.2 Sequencing of MTM-inspired CDMPs skills

After establishing MTM-inspired CDMPs skills that are customised in their properties,

their merging in transition states is discussed to be applied sequentially in complex as-

sembly tasks. Given the method for determining standard times in MTM-1 by analysing

recorded human workflows, transition states were elaborated based on changes in human

states between consecutive frames. As such, the basic elements reaching and moving

are distinct from others surrounding elements by incorporating any ‘noticable motion’ [2].

Taking into account the challenge associated with the basic element positioning, it includes

also minor motion to perform the intended assembly step. This motion is quantified by a

length of less than 1 inch. Any assembly motion that exceeds this threshold is treated as

a separate moving element.
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In the context of this work, transition states are redefined to suit the aimed LfD framework.

Two options are envisioned to specify the transition states. The first option is based on

the active manual specification of the human operator. This can be achieved in different

ways, including additional input during the demonstration, such as vocal expressions, or

generating characteristic behaviour that is identifiable in the recorded demonstration. This

approach assumes that the human operator is familiar with the five predefined skills and

their incorporated functionality.

Alternatively, the transition states can be automatically extracted from the given demon-

stration using the distances between relevant objects. As such, the human operator is not

required to provide additional information or to know about the underlying skills. With

respect to the five skills discussed in Section 4.3.1, this approach requires the tracking of

the demonstration device, the workpiece and the assembly point. With this information,

the L2-Norm is selected to calculate the distances between the relevant points. The case

presented involves the distance between the demonstration device and the workpiece, the

initial and current position of the workpiece, and the workpiece and the assembly point.

Plateaus of identical distances over a longer time period are determined in each time series.

Based on the nature of predefined skills and a common skill sequence, several plateaus are

expected to occur, which are summarised in Table 4.3. Using a distance threshold for the

workpiece and the assembly point, the plateaus inform the determination of the transition

states.

distance:
demonstration device
and workpiece

distance:
workpiece’s initial
and current position

distance:
workpiece and
assembly point

reaching
distance decreases distance plateau distance plateau

grasping

distance plateau distance increases distance decreases
moving

positioning

releasing distance increases distance plateau distance plateau

Table 4.3: Characteristic patterns in the distances between entities of interest

The transition states between individual skills are determined from the information ac-

quired above. In detail, the transition state between reaching and grasping is calculated

from the starting state of the distance plateau between demonstrated motion and the
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workpiece, and the latest penetration of the workpiece’s proximity threshold. This ensures

that multiple approaches without grasping the workpiece do not lead to false transitions.

Similarly, the grasping skill transitions to the moving skill once the workpiece’s barrier is

penetrated again with the grasped workpiece (distance plateau between demonstrated mo-

tion and assembly point). The transition state from moving to positioning is determined

from the final distance plateau between the workpiece and the assembly point and the

latter’s proximity threshold. As indicated in Table 4.3, the release skill begins once the

final distance plateau starts between the workpiece and the assembly point. The remaining

demonstrated motion is classified as either a releasing skill or a reaching skill based on

the penetration of the assembly point’s proximity threshold. A representative illustration

of the transitions given is shown in Figure 4.5.

Figure 4.5: Illustration of distance based transition states for MTM-sequencing

After determining the transition states from a demonstrated motion, individual CDMPs

skills are merged in the appropriate sequence. Section 4.1 discussed three options to

combine CDMPs according to their initial and goal states. In the course of this work, the

first option has been applied in all implementations, which requires a steady state at the

transition states. Although this is partially not guaranteed in the sequencing approaches

listed above, experimental tests show that low velocities at the transition states do not

lead to negligible effects.

It should be noted that by defining the transition states distinct from the original MTM-1

system, an appropriate time comparison between assembly motions using MTM-1 methods-

time data (see Appendix C.1) is not feasible. Although it promises additional advan-

tages for industrial practice, the appropriate automatic classification of the basic MTM-1
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elements of human motions recorded is non-trivial and subject of current research ef-

forts [150, 152, 153]. The proposed learning framework and its applicability for comparison

with manual labour will greatly benefit from the use of such an automatic and accurate

classification algorithm, which will be investigated in future work.

4.3.3 Relocating Objects during Reproduction

The introduction of intermediate transition states, enables extended generalisation ca-

pabilities during reproduction compared to the conventional approach of learning and

reproducing a demonstrated motion with a single CDMPs. Using amended values for the

CDMPs parameters for initial and goal poses, the proposed learning framework is capa-

ble of coping with changes in motion resulting from distinct locations of the workpiece

and the assembly point or alternated starting and end poses of the demonstration during

reproduction.

The spatial scaling to a new setup is achieved by calculating the relative translational

and rotational changes between demonstration and reproduction. Given the workpiece’s

absolute pose during demonstration xdem,qdem and its absolute pose at the time of repro-

duction xrep,qrep, the relative relocation is given by

xrel = xrep − xdem (4.1)

qrel = qrep · q−1
dem (4.2)

which applies similarly to the assembly point. The acquired relative poses are applied to

the relevant goal parameters of the CDMPs skills, as illustrated in Figure 4.6. In detail, a

relative change in the location of the workpiece affects the reaching, grasping, and moving

goal states. The relocation of the assembly point results in a relative change of the moving,

and positioning goal states. The alternate start and goal states of the desired motion are

applied to the reaching initial state and the releasing goal state, respectively. As reduced

accuracy may result in slightly deviated goal poses, the start pose of each skill is set to

the previous CDMPs goal state.

4.4 Experimental Evaluation

By enhancing the trajectory-based CDMPs for learning and reproduction with a discreti-

sation system allows the creation of distinctive motion segments that represent necessary
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Figure 4.6: Illustration of how object relocation is translated into the goal states of the
MTM-inspired CDMPs

skills for the success of the overall assembly task. The MTM-inspired learning framework

proposed in Section 4.3 leveraged the preexisting industry-established discretisation sys-

tem called MTM-1, which is commonly used to analyse and plan manual workflows in

industry. As such, the developed framework used the finite library of defined basic ele-

ments, consisting of the reaching, grasping, moving, positioning, and releasing to propose

inspired CDMPs skills to mimic human workflows by a robotic system. Unique skills were

established using unique parameterisation and extensions, and different options of merging

the skills to a compound assembly task were discussed.

This Section presents an experimental evaluation of the proposed learning framework on

a simplified pick-and-place task. The workpiece is given by a toy dice with an equal

edge length of 8cm. The assembly point is embodied by a 3D printed part with a recess

measuring 9cm×9cm×1cm. The experimental setup consists further of a Universal Robots

UR5e robot equipped with an OnRobot RG6 gripper and an ATI Axia80 F/T sensor that

is installed beneath the assembly point. The setup is shown in Figure 4.7. Data points

including the robot’s end-effector poses and the Axia80’s wrenches were recorded at 100 Hz.

Offline processing of the demonstration data and CDMPs was carried out in MATLAB.

As discussed in Section 4.3.3, the proposed framework allows for the relocation of dice

and/or the assembly jig, compared to the conventional one-model-fits-all approach, which

is showcased in Chapter 6. Furthermore, the extension of CDMPs for collision avoidance

is discussed in more detail in Chapter 5. Additional features that were expressed in
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Section 4.3 but are not evaluated in any experiment are considered beyond the scope of

this study and will be explored in future work.

Figure 4.7: Experimental Setup

The human operator is tasked to pick up the dice from its initial location and place it

on the stationary assembly jig. To do so, the UR5e is kinaesthetically moved during the

demonstration phase using its free-drive mode. The desired transitions between the five

skills were communicated by the human operator by briefly interrupting the movement.

Once positioned to grasp or release the object of interest, the gripper is actuated manually

using the teach-pendant. Given the single demonstration provided by the human oper-

ator performing the pick-and-place task, the proposed MTM-inspired CDMPs learning

framework is compared to the conventional one-model-fits-all approach, in which a single

CDMPs representation is used to imitate the entire motion demonstrated.

In view of the promising properties established from skill-dependent parameterisation, the

proposed framework uses distinct values for the given MTM-inspired skills. The CDMPs

were empirically parameterised to suit the given experimental setup and the task require-

ment. The applied values are summarised in Table 4.4. In detail, temporal scaling and

reduced precision levelling were applied to the reaching and moving skills by alternating

the temporal constant τ and the number of RBFs N . The spatial scaling property is incor-

porated by introducing an offset of +3cm in each translational dimension to the starting

position of the demonstration data. All other parameters were kept the same for all skills,

including stiffness gains and the canonical system parameter.
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As the transition states between skills are introduced manually by interrupting movement,

the naive sequencing approach of Section 4.3.2 was applied to merge the CDMPs into a

compound task motion. In addition to alteration of the initial reproduction position, the

goal pose of each skill served as the initial pose of its consecutive CDMPs (x0,rep = xT,pre).

reaching grasping moving positioning releasing

temporal
scaling: τrep

1
2τdem τdem

1
2τdem τdem τdem

reproducing
precision: N

10 200 10 200 200

spatial
scaling: x0,rep

x0,dem + (0.03, 0.03, 0.03)T xT,pre

stiffness
gains: Ki 100 for all i

canonical
system: αs

T ln

all other
parameters

see guidelines in (3.4)

Table 4.4: Parameterisation of the MTM-inspired CDMPs learning framework

The proposed framework was benchmarked against two conventional one-model-fits-all

CDMPs. As such, the selected parameters determine the characteristic of the entire re-

produced motion. The conventional models were implemented with two different precision

levels quantified by the number of RBFs N = 10 and N = 200 per skill, respectively. No

spatial or temporal scaling was applied to these models.

Given the demonstrated motion, both methods were processed to generate reproducing

motions. The resulting comparison of the translational dimensions reproduced from the

proposed framework and the one-model-fits-all approach with a low number of RBFs is

shown in Figure 4.8, including the transition states and duration of each skill (see Ap-

pendix B.3 for all dimensions and models). As can be seen in Figure 4.8, the partial

alteration of the temporal constant τ in the proposed learning framework during reaching

and moving results in a reduced reproduction time of 10seconds. The 3cm offset intro-

duced in each translational dimension were eliminated during reaching skill, demonstrating

the ability of CDMPs to cope with alternate initial positions (green circles).

A jerky motion was recorded after approximately 30 seconds of demonstration (blue cir-

cles). Considered an unnecessary disturbance, approaches with a low number of RBFs

demonstrate a smoothing characteristic that reduces the magnitude of the disturbance.
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As appeared during the moving skill, this beneficial behaviour is reported in the proposed

framework and the respective one-model-fits-all approach. However, the latter generates

critical dips in the z-dimension in situations that require high precision, as highlighted

by the red circles in Figure 4.8. On the contrary, the conventional one-model-fits-all ap-

proach with 200 RBFs per skill matches the demonstrated motion accurately, including

the recorded disturbance (see Appendix B.3). Its computational costs to calculate the

CDMPs weights ωn were 36% higher than for the alternative low-precision one-model-

fits-all approach. Compared to the low-precision approach, the MTM-inspired CDMPs

learning framework increased computational costs by only 6%.

Figure 4.8: Trajectory comparison in translational dimensions

Given the additional F/T sensing capability at the assembly point, a qualitative assump-

tion was derived from the assembly process. Figure 4.9 shows the measured forces in

the z-direction during the position skill of the proposed learning framework. Based on a

post-assessment of the force profile, the data verifies that the dice was successfully placed

onto the assembly point through an identical end value. Furthermore, the forces that

occurred during reproduction did not exceed those during the demonstration, suggesting

a damage-free task reproduction. It is to be noted that the reduced force was not actively

achieved but resulted from slight positional deviation during reproduction that turned out
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favourably. In case a larger force is recorded, its active incorporation into CDMPs may be

necessary as proposed in Section 4.3.

Figure 4.9: Recorded forces in z-dimension during positioning skill

In summary, the distinction between the five basic elements of MTM-1 and the design of

characteristic CDMPs brings the decisive benefit of focussing on their unique requirements,

paving the way for tackling complex and compound assembly tasks.

4.5 Summary

Following the dominant trend in assembly-related LfD approaches in applying learning

methods with trajectorial outcome, these techniques lack the ability to reproduce complex

tasks. Previous proposed extensions with predefined skill sets are often use case-specific

and not appropriately defined for the variety of tasks potentially encountered during in-

dustrial assembly. Furthermore, the full potential of trajectory-based learning frameworks

is rarely exploited in the design of discrete skills.

This Chapter presented a novel LfD learning framework that addresses these limitations

by leveraging an industry-established discretisation system. Given the targeted applica-

tion scenario and the accessible features of the systems, the Methods-Time Measurement

(MTM-1) framework was determined to be the most suitable due to its intuitive skill set,

its profound industry-proven compactness, and its potential extension to time analysis.

By distinguishing discrete skills reaching, grasping, moving, positioning and releasing, the

proposed MTM-inspired CDMPs learning framework defines unique CDMPs for each skill

using their parameterisation and proven extensions. As a result, greater generalisabil-

ity, comparison with human workflows, and time efficiency are promoted. The proposed

method was evaluated on a pick-and-place assembly task, showing decisive benefits com-

pared to the conventional one-model-fits-all CDMP approach. These include appropriate
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time management, appropriate accuracy in the relevant periods of the assembly task, and

force monitoring at the relevant times.





Chapter 5

Dynamic Potential Fields for

Robust Reproduction

The last phase of the characteristic LfD procedure involves translating the learnt task

understanding into physical motion on the robotic system, a step called reproduction.

This is accompanied by the expectation that state-of-the-art LfD frameworks are capa-

ble of autonomously dealing with new circumstances without tedious reprogramming. A

prominent aspect in this context is to incorporate an adequate response to changes in

motion, which refers to spatial and temporal adjustment of the reproducing trajectory.

The learning framework presented in Chapter 4 addressed this type of change through the

inherent generalisability of CDMPs in combination with the discretisation system. As a

result, demonstrated motions are translated to topologically similar reproduction motions

considering new situations that are spatially and/or temporally scaled.

An additional beneficial capability of LfD solutions is depicted in coping with changes in

the environment. In envisioning its application to realistic industrial scenarios, obstacles

may be introduced during reproduction due to the dynamic surrounding or by relocating

the objects of interest such that naive reproduction following a topologically similar path

results in collision. An illustrated example of the latter situation is shown in Figure 5.1, in

which the relocation of the workpiece and assembly point causes a motion that penetrates

an environmental obstacle. As a result, a dynamic response during reproduction in new

environments is necessary to deal effectively with environmental changes. As discussed

in Chapter 4, this challenge is particularly present in larger displacements that occur

during the proposed reaching and moving skills. As such, the proposed learning framework

promoted the application of collision avoidance techniques in these custom CDMPs.

85
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Figure 5.1: Illustrative example of topologically similar reproduction resulting in colli-
sion with the environment

In light of the depicted scenario, existing extensions of CDMPs for collision avoidance

show promising approaches to encounter changes in the environment during reproduction.

However, these methods consider a point-based trajectory that results in a purely trans-

lational deviation of the given path. Furthermore, only physical obstacles are considered,

which limits the ability to adequately model the situation encountered. This Chapter

investigates how learnt CDMPs-based trajectories can be increased in robustness during

reproduction when faced with changed environmental situations by following one of the

prevailing approaches that is based on potential fields. These are generated from mod-

elled obstacles using superquadrics as volumetric approximations, resulting in repulsive

forces that act on the reproducing path. The presented reproduction method extends

existing approaches by representing the moving object of interest, in this case the robot’s

end-effector, as a volumetric entity. This allows for the exploitation of rotational devia-

tions (provided that the application allows for it), making the reproduced motion more

effective. Furthermore, the environmental model is extended by an imaginary workspace

boundary and an attractive goal state. These are applied to robustly restrict the deviating

path within the robot’s expected workspace and create an attractive well for assisting the

CDMPs-driven convergence to the desired final state.

This Chapter is structured as follows: After reviewing existing approaches to avoid colli-

sions using CDMPs in Section 5.1, some technical fundamentals of the applied methods

are presented in Section 5.2. Extending existing work, Section 5.3 proposes an approxima-

tion scheme of the environment with superquadrics by defining four types of object and
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their separation distances. The latter serve as driving variables in the consecutive estab-

lishment of potential fields, and repulsive / attractive wrenches acting on the end-effector

(see Section 5.4). The method developed for robust reproduction based on potential fields

is evaluated in Section 5.5 and summarised in Section 5.6. This Chapter was derived

from [27].

5.1 Related Work on Obstacle Avoidance with DMPs

Due to its benefits for safe operation of robots, obstacle avoidance is a highly researched

field in robotics. Motion planning techniques to encounter changes in the environment

differ predominantly based on their computational complexity, local or global considera-

tions, and determinism versus probabilistic characteristic [168]. Solutions can be classified

into five main categories: graph-based path planner, data-driven control, optimal control,

collision control, and deterministic reactive obstacle avoidance. In the context of industrial

scenarios, local, fast and deterministic approaches are preferable which is predominantly

achieved by techniques within the latter category. Such techniques have also been domi-

nantly investigated to create deviating motions that are directly incorporated into DMPs.

A significant share of proposed approaches for extending DMPs with collision avoidance

is held by real-time consideration of artificial forces acting on the reproducing trajectory

through an additional forcing term in the DMPs transformation system. Illustrated on

the single dimension formulation after (3.1), the extended transformation system reads

τ ˙̃v = K ( xT − x ) − D ṽ − K ( xT − x0 ) s + K f(s) + φã (5.1)

τ ẋ = ṽ + φṽ

where the additional variables are commonly referred to as coupling terms on the acceler-

ation level φã and on the velocity level φṽ. Methods exploiting this approach differ in the

way the coupling term is calculated. Two approaches in particular have proved popular

in research, utilising so-called potential fields and steering angles.

The first approach was promoted by Park et al. in 2008 [169], in which existing work

on potential fields [170, 171] was applied to DMPs to avoid punctiform obstacles. The

artificial potential field was sourced from the relative distance between the pointwise-

modelled end-effector’s and obstacle’s positions and used to compute repulsive accelera-

tions to manoeuvre the end-effector. The expression of initially point-based objects to
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generate potential fields was recently extended by Ginesi et al. to non-pointwise, volu-

metric obstacles [172, 173]. To achieve this, a mathematical approximation of the object’s

contour was considered by modelling them with the so-called superquadrics. These meth-

ods were applied to different use cases, such as avoiding link collision by considering several

points along the structure of the robot arm [174], joint manoeuvring of two robots due to

task-required coupled motion [175–177], or navigating an arm-base robotic system around

obstacles [178]. It has further inspired the development of application-specific potential

fields [124] and the artificial online adaptation of the goal that converts to its destination

while avoiding collision with a disturbing obstacle [179].

A similarly popular alternative was first introduced to DMPs by Hoffmann et al. [118] in

2009, who applied a modelled human-inspired behaviour for collision avoidance after [180].

This approach computes the steering angle between the end-effector’s current velocity

vector and the relative position vector between the end-effector and the obstacle. This

approach was applied to various use cases, including bimanual tasks using coupling terms

on the velocity and acceleration level [121, 181], and the navigation of mobile [182] and

continuum robots [183, 184]. The original steering angle method was also extended with

an impedance mechanism for smooth manoeuvring [185], for consideration in a hybrid

joint / Cartesian framework [186] and with an appropriate parameterisation method to

result in more effective avoidance trajectories [187, 188]. Recent approaches proposed its

combination with superquadrics for effective consideration of volumetric obstacles [189]

and with potential fields to merge both prevailing collision avoidance methods [190].

Some alternative approaches were proposed in addition to the prevailing methods discussed

above. The so-called stylistic DMPs proposed by Matsubara et al. extend the set of path-

shaping weights ωn with a style parameter expressed by a probability distribution [191].

Based on multiple demonstrated trajectories, Stulp et al. developed a selection algorithm

for the most suitable path to avoid collision with a given obstacle [192, 193]. Finally, a

set of methods investigates ML-driven collision avoidance [194–198]. However, the latter

typically requires an additional learning phase in order to respond appropriately to distinct

environmental scenarios, which is not in the interest of the aimed efficient LfD framework

and therefore not considered in the scope of this thesis.

Solutions utilising potential fields and steering angles have reached a solid standing in

DMPs research for collision avoidance. The steering angle approach provides the advantage

of guaranteed convergence to the goal position for arbitrarily-many static obstacles [199].

However, it is only applicable in ambient space (not joint space), and the repulsive forces

sourced from obstacles are not dependent on its distance, giving any obstacle the same
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importance which may result in oscillatory behaviour [172]. On the contrary, collision

avoidance using potential fields does not always guarantee convergence, as the moving

point may become caught in local minima [173, 200]. However, this is only possible if

multiple obstacles occlude the path [201] and may be solved by introducing an additional

perturbation term that releases the trajectory from these local minima in a way similar to

that in which repulsive forces are integrated into the DMPs [172].

In terms of the recent trend of using superquadrics for the volumetric representation of ob-

stacles [172, 173, 189, 201–203], it provides a decisive advantage in contrast to the previous

representation of obstacles by points. Incorporating the volumetric expansion of obstacles

using point clouds can lead to significant computational costs, making an instant response

more challenging [189], and selecting critical points may result in non-smooth behaviour

due to the need of reselecting in real time [173]. Therefore, the compact mathematical

approximation of volumetric objects with superquadrics is considered beneficial, which

further allows the fitting of most generic shapes with a low number of required parame-

ters [172].

Considering the prevalent advantages that can be attributed to potential fields sourced

from volumetric obstacle representations with superquadrics, this work elaborates further

promising features to improve its effectiveness and robustness in realistic scenery. This

includes, particularly, the modelling of the end-effector as a volumetric entity. While pre-

vious approaches considered the end-effector’s expansion in artificially inflated volumetric

obstacles or more conservative parameterisation of the coupling term, this approach repre-

sents the environment more accurately and enables the exploitation of rotational deviation

for improved efficiency. Additionally, the set of considered object types emitting poten-

tial fields is extended to an imaginary workspace boundary and an attractive goal. This

Chapter investigates these beneficial features and proposes an extension of CDMPs that

promotes robust reproduction in alternated environmental scenery using potential fields

between multiple superquadrics.

5.2 Fundamentals on Potential Fields and Superquadrics

Potential fields applied within the context of DMPs are generally based on the idea of

expressing an increase in the calculated potential value when the distance between two

entities decreases. Considering the intention of avoiding a collision of the robot’s end-

effector at position x with an obstacle, Khatib et al. initially proposed the application of
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a simplified Force Inducing an Artificial Repulsion from the Surface (FIRAS) function for

a potential field [170], which reads:

Ustat,p(x) =


ζ
2(

1
p(x) −

1
p0
)
2

p(x) ≤ p0

0 p(x) > p0

(5.2)

where p(x) is the shortest distance between the end-effector and the obstacle and p0

represents the region of desired influence. Park et al. outlined in [169] an issue of such

a static potential field as non-smooth behaviour may be produced and suggested the

inclusion of the end-effector’s velocity v and direction of movement relative to the object’s

location θ. As a result, the following dynamic potential function was proposed.

Udyn,p(x,v) =

λ(cos(θ)ι
∥v∥
p(x)

π
2 < θ < π

0 0 ≤ θ ≤ π
2

with cos θ =
vTx

∥v∥p(x)
(5.3)

Due to the disadvantages encountered with point-based object approximations, Ginesi et

al. introduced in [172, 173] superquadrics as a volumetric approximation of obstacles

to compute potential fields, following the trend of related contributions [201, 204]. Su-

perquadrics are a family of parametric shapes that were initially proposed for computer

graphics design [205] and incorporate shapes such as superellipsoids, superhyperboloids,

and supertoroids [206]. Following its prominence in the literature, this work refers to su-

perquadrics as a synonym for applied superellipsoids. They are mathematically expressed

by the so-called inside-outside function F (xB) [206] that reads

F (xB) =

[(xB
a

) 2
ε2 +

(yB
b

) 2
ε2

] ε2
ε1

+
(zB
c

) 2
ε1 (5.4)

where the parameters a, b, c are the volumetric expansion in each dimension (radii) and ε1,2

represent the shape parameters that determine the superquadrics’ roundness. Figure 5.2

shows some examples of superquadrics with distinct roundness parameters. Given any

point at the location xB in the superquadric’s canonical coordinate system, F quantifies

the isometric distance from its surface to that point. In detail, F = 1 indicates that the

point lies on the superquadric’s contour, while F < 1 and F > 1 specify that it is inside

or outside the shape, respectively.

Given any point at xB, the scaled vector to this point that intersects the surface of the

superquadrics is called rs and is defined by rs = βxB with F (rs) = 1. The scalar β is
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(a) ε1 = 0.1,
ε2 = 0.1

(b) ε1 = 0.1,
ε2 = 1.0

(c) ε1 = 1.0,
ε2 = 1.0

(d) ε1 = 2.0,
ε2 = 2.0

Figure 5.2: Examples of superquadrics with different εi

derived according to [206] as follows:

F (βxB) =

[(
βxB
a

) 2
ε2

+

(
βyB
b

) 2
ε2

] ε2
ε1

+

(
βzB
c

) 2
ε1

= F (rs)
!
= 1

⇒ β = F (xB)
ε1
2 (5.5)

To express the inside-outside function of any superquadric with its absolute position x =

[x, y, z], orientation q = [qx, qy, qz, qw] and the position of the point p = [px, py, pz] in a

given coordinate system, the following homogeneous transformation proposed by [201, 207]

is applied to determine xB in its canonical coordinate system:
xB

yB

zB

 =


q2x − q2y − q2z + q2w 2(qxqy + qzqw) 2(qxqz − qyqw)

2(qxqy − qzqw) −q2x + q2y − q2z + q2w 2(qyqz + qxqw)

2(qxqz + qyqw) 2(qyqz − qxqw) −q2x − q2y + q2z + q2w


︸ ︷︷ ︸

A(q)


x− px

y − py

z − pz

 (5.6)

Leveraging on the property of superquadrics to generate spherical isopotential contours at

large distances and shape-mimicking isopotentials in proximity [204], Ginesi et al. applied

in [172] the Yukawa function [204] as the mathematical expression for a static potential

field, which reads

Ustat,vol(x) =
Ae−ζC(x)

C(x)
(5.7)

where C(x) denotes the distance between the robot’s representing point and the surface of

the obstacle, i.e. C(x) = F (xB) − 1. Mimicking the dynamic potential function (5.3) for

point-based potential fields, the converted formula for volumetric obstacles was proposed
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as [173]:

Udyn,vol(x,v) =

λ(− cos θ)β ∥v∥
Cη(x)

π
2 < θ < π

0 0 ≤ θ ≤ π
2

with cos θ =
⟨∇C(x),v⟩
∥∇C(x)∥∥v∥

(5.8)

Independent of the utilised potential field, the guiding repulsive force to avoid collision

with the modelled obstacle is generated by the negative derivative of the given potential

function:

φã = −∇x [Ui] with ∇x =

[
∂

∂x
,
∂

∂y
,
∂

∂z

]
(5.9)

5.3 Scene Approximation using Superquadrics

Based on the intended goal of improving robustness and effectiveness when encountering a

new situation during robot reproduction, this Section presents an extended modelling ap-

proach to approximate the environmental scene. Contrary to the simplified interpretation

of previous approaches, effectiveness is achieved through the consideration of a volumetric

robot end-effector allowing the simultaneous exploitation of its translational and rotational

freedom of movement. Following the prominent approach of approximating any physical

obstacle in the scene of interest [173], the set of object types is extended by an imaginary

workspace boundary and an imaginary shape specifying the end-effector’s final state.

These four types of volumetric shapes are approximated by superquadrics to generate a

simplified representation of the scene, which is illustrated as an example in Figure 5.3. To

achieve robust reproduction, the end-effector is to manoeuvre in the given space such that

its volume remains at any time outside of the volume occupied by the obstacle, within the

volume representing the workspace, and finally converges toward the volume given by the

goal shape. For simplification, the following references to any type of object refer to the

volume approximated by its superquadric if not otherwise specified.

Following the general idea of potential fields, a collision-avoiding motion in a scene as

illustrated in Figure 5.3 is driven by the distance between the given entities. Considering

that the scene is created from multiple volumetric shapes, the separation distance be-

tween those is affected by their relative position and orientation, which is referred to as

the attitude-distance effect in [201]. As such, the inside-outside function of each given su-

perquadric is translated from its typical canonical coordinate system to a specified world

coordinate system with absolute poses. Following the homogeneous transformation in
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Figure 5.3: Illustration of the approximated scene encountered during reproduction
based on superquadrics representing the end-effector, obstacles, workspace, and the goal

state

(5.6), the inside-outside function for the four types of object reads:

Fi =

[(
xB,i

ai

) 2
ε2,i

+

(
yB,i

bi

) 2
ε2,i

] ε2,i
ε1,i

+

(
zB,i

ci

) 2
ε1,i

, xB,i = A(qi) ∗ (xi − p)

Fi(xi,qi,p) =

[
H1,i(xi,qi,p)

2
ε2,i +H2,i(xi,qi,p)

2
ε2,i

] ε2,i
ε1,i

+H3,i(xi,qi,p)
2

ε1,i (5.10)

where i refers to the end-effector ee, the obstacle obs, the workspace ws, or the goal state

g and p is the absolute position of any point of interest.

In this work, it is assumed that the robot’s end-effector is dynamically moving in the

given space while the three other shapes remain stationary. Therefore, the separation

distance of interest is defined between the end-effector and the other affecting shapes.

Badawy et al. proposed in [201] four different approaches to approximate the distance with

superquadric shapes. In the given context concerning the separation distance between two

superquadrics, the so-called rigid body radial Euclidean distance applies. This method

determines the separation distance between two superquadrics along the line that passes

through the centre positions xi of each superquadric. Following the illustrative derivation

for the case of an affecting obstacle given in Figure 5.4a, the distance dobs between the

shape of the end-effector and the obstacle is calculated from the distance between the
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centres cee,obs and the intersecting vectors rs,i of both superquadrics and reads

dobs = ∥cee,obs∥ − ∥rs,ee∥ − ∥rs,obs∥ (5.11)

By utilising the centre’s position of the opposite’s superquadric as the point of interest

p in (5.10) and applying (5.5), (5.11) is simplified by expressing the intersecting vector

through the inside-outside function and the scalar βi. The separation distance between

the end-effector and an obstacle is quantified as follows:

dobs = ∥cee,obs∥ − βee∥cee,obs∥ − βobs∥cobs,ee∥

= ∥cee,obs∥ ·
[
1− Fee,obs(xee,qee,xobs)

−
ε1,ee

2 − Fobs,ee(xobs,qobs,xee)
−

ε1,obs
2

]
(5.12)

with cee,obs = [xee − xobs , yee − yobs , zee − zobs]
T

With the intention of keeping the end-effector within the space occupied by the workspace,

the separation distance between the end-effector and the workspace boundary is derived

in a similar fashion. Here, the superquadric’s symmetry property is applied, in which any

intersecting vector rs as in (5.5) is equal in length with the vector facing in the opposite

direction. This is used to quantify the approximate distance between the superquadric’s

contours, as illustratively derived with the given approach in Figure 5.4b. It results in

the following equation for dws, simplified with the inside-outside functions and the scaling

parameter βi:

dws = ∥rs,ws∥ − ∥rs,ee∥ − ∥cee,ws∥

= βws∥cws,ee∥ − βee∥cee,ws∥ − ∥cee,ws∥

= ∥cee,ws∥ ·
[
Fws,ee(xws,qws,xee)

−
ε1,ws

2 − Fee,ws(xee,qee,xws)
−

ε1,ee
2 − 1

]
(5.13)

with cee,ws = [xee − xws , yee − yws , zee − zws]
T

The attractive goal is envisioned to function as a well that pulls the end-effector towards

the volume occupied by its superquadric. Since in this case the overlapping of the two

superquadrics is desired, the separation distance from the end-effector to the goal state

volume is defined between the goal facing contour of the end-effector and the goal’s contour

on the opposite side. Using the approaches discussed above, this distance is quantified by
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(a) physical obstacle obs (b) imaginary workspace ws

(c) imaginary goal g

Figure 5.4: Illustration of the applied methods to approximate the seperation distances
between the end-effector and surrounding environmental volumes

the method illustrated in Figure 5.4c and reads

dg = ∥cee,g∥ − ∥rs,ee∥ + ∥rs,g∥

= ∥cee,g∥ − βee∥cee,g∥ + βc∥cg,ee∥

= ∥cee,g∥ ·
[
1− Fee,g(xee,qee,xg)

−
ε1,ee

2 + Fg,ee(xg,qg,xee)
−

ε1,g
2

]
(5.14)

with cee,g = [xee − xg , yee − yg , zee − zg]
T

Applying the proposed distance approximation to the envisioned scene, the separation dis-

tances between the end-effector and the surrounding environmental volumes are quantified

by the mathematical expressions given in (5.12), (5.13), and (5.14) and illustratively vi-

sualised in Figure 5.5. Over the course of motion, the inside-outside functions concerning

the obstacle (Fee,obs,Fobs,ee) remain > 1, the functions including the workspace boundary
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remain < 1 and the goals’ functions eventually shift from values above one to zero.

Figure 5.5: Illustration of the approximated distances within the given scene

5.4 Reactive Control using distance-driven Potential Fields

Following the established approximation of an encountered scene discussed in Section 5.3,

four types of objects were introduced. Their relationship in the form of an analytically

formulated separation distance was approximated using the rigid body radial Euclidean

distance approach. In this Section, the distance is applied in a proposed modification for

the creation of potential fields and their driving repulsion and attraction under considera-

tion of the end-effector’s six-dimensional freedom of motion. The method’s application to

CDMPs during LfD reproduction is formulated to manoeuvre a dynamic volume collision-

free through the encountered scene and converging toward its final state.

Based on the existing work, the dynamic potential field after (5.8) is considered for the

given path planning task. This function was originally derived from the following desired

properties P1-3, as stated in [173]:

• P1 : The magnitude of the potential decreases with the distance of the system from

the obstacle

• P2 : The magnitude of the potential increases with the velocity of the system ∥v∥
and is zero when the system is not moving.
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• P3 : The magnitude of the potential decreases with the angle between the current

velocity direction v/∥v∥, and the direction towards the obstacle; and, if the system

is moving away from the obstacle, the potential should vanish.

Mimicking this in the given context using the separation distance between the end-effector

and the obstacle or the workspace boundary di with i ∈ (obs, ws) creates the potential

field function

Uee,i = − λ (− cos θi)
ι︸ ︷︷ ︸

P3

P2︷︸︸︷
∥v∥
dηi︸︷︷︸
P1

with cos θi =
⟨∇di,v⟩
∥∇di∥∥v∥

(5.15)

for π
2 < θi < π which translates to repulsive forces acting on the end-effector by apply-

ing (5.9) such that

φ = −∇x [ Uee,i ]

= −∇x

[
λ(− cos θi)

ι ∥v∥
dηi

]
= −λ∇x [(− cos θi)

ι]
∥v∥
dηi

+ (− cos θi)
ι∇x∥v∥

[
1

dηi

]
(5.16)

To exploit the full potential of the end-effector’s movement, the method discussed in Sec-

tion 5.3 modelled the end-effector as a volumetric entity. As such, the expressed repulsion

is to be computed for a six-dimensional wrench that covers translational and rotational

variables. As this work assumes a dynamic movement of the end-effector and station-

ary obstacles, workspaces, and goals, the derivation refers to the absolute pose variables

of the end-effector. Therefore, the original derivation operator in (5.9) is extended to

rotational dimensions as expressed in (5.17). Concerning the properties P2/3 in (5.15),

the rotational dimensions are also embedded in an extended velocity vector v̌ as defined

in (5.18). Note that the fourth rotational dimension is indirectly considered due to the

intrinsic dependence of the quaternion variables [201].

∇x,q =

[
∂

∂xee
,

∂

∂yee
,

∂

∂zee
,

∂

∂qx,ee
,

∂

∂qy,ee
,

∂

∂qz,ee

]T
(5.17)

v̌ = [v, ėq]
T (5.18)

Furthermore, a modified approach is proposed to reduce the complexity resulting from

∇ cos θi when determining an analytical solution of the repulsive wrench. To achieve the

same characteristic expressed in P1-3 for the repulsive wrench, a modified combination of
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the potential field / repulsive wrench is proposed. Instead of considering the property P3

expressed by cos θi at the level of the potential function, it is transferred to the level of

the repulsive wrench. As a result, the common approach expressed in (5.15) and (5.16)

translates into the following modification:

Uee,i(xee,qee, v̌ee,xi,qi) = − λ
∥v̌∥

dηi (xee,qee,xi,qi)

φã = −(− cos θi)
ι ∇x,q Uee,i(xee,qee, v̌ee,xi,qi) (5.19)

where λii, ι, η are parameters to scale each dimension, shape the direction dependency,

and steepness of the potential field, respectively. Note that with this modification, the

property P3 is still accomplished, but the originally influencing derivation of the velocity

direction given by ∇x cos θi is no longer taken into account. However, it is considered to

provide more value than the comparable approach in which simplification is applied by

limiting the superquadrics to pre-selected roundness parameters ε1,2 [173].

Following this method, the analytical expression is further broken down to the effected

separation distances. The following provides the explanation using the example of repulsive

wrenches emitted from an obstacle (for clarity of reading, the dependence of relevant pose

variables of the objects has been omitted).

φobs = −(− cos θobs)
ι ∇x,q Uee,obs

= λ(− cos θobs)
ιη∥v̌∥ 1

dη−1
obs︸ ︷︷ ︸

Λ

∇x,q [dobs]

= Λobs ∇x,q

[
∥cee,obs∥ ·

[
1− F

−
ε1,ee

2
ee,obs − F

−
ε1,obs

2
obs,ee

]]
= Λobs

[
∇x,q [∥cee,obs∥] ·

[
1− F

−
ε1,ee

2
ee,obs − F

−
ε1,obs

2
obs,ee

]]
+ Λobs∥cee,obs∥ ·

[
ε1,ee
2
F

−
ε1,ee

2
−1

ee,obs ∇x,q [Fee,obs] +
ε1,obs
2

F
−

ε1,obs
2

−1

obs,ee ∇x,q [Fobs,ee]

]
(5.20)
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In similar fashion is the repulsive wrench emitted from the workspace boundary effecting

the end-effector’s motion derived to

φws = Λws

[
∇x,q [∥cee,ws∥] ·

[
F

−
ε1,ws

2
ws,ee − F

−
ε1,ee

2
ee,ws − 1

]]
+ Λws∥cee,ws∥ ·

[
−ε1,ws

2
F

−
ε1,ws

2
−1

ws,ee ∇x,q [Fws,ee] +
ε1,ee
2
F

−
ε1,ee

2
−1

ee,ws ∇x,q [Fee,ws]

]
(5.21)

Considering a scene with multiple obstacles, and workspace boundaries, the wrenches

influencing the end-effector’s motion are superposed such that

φrepulsive =
O∑

o=1

φobs,o +
W∑
w=1

φws,w (5.22)

In addition to the repulsive wrenches discussed above, approaches using potential fields also

explored the creation of attractive wells that generate wrenches to guide the manoeuvring

entity to its final location. In the literature, several types of static potential fields have

been proposed to generate attractive wells, including linear, quadratic, parabolic, conical,

and hyperbolic shapes [201, 204].

In the context of this work, an attractive wrench emitted from the modelled goal shape is

derived using the quadratic potential field after [204] to support the CDMPs in converging

faster to the desired goal state. As such the static potential field is expressed using the

separation distance dg and is given by

Uattr =

κ · dg · dg ∥cee,g∥ ≤ c0

0 ∥cee,g∥ > c0

(5.23)

with c0 being the desired radius of influence and κii the scaling parameters for each di-

mension. The resulting attractive wrench derives with (5.9) and (5.17) to

φattractive = −∇x,q [Uattr]

= −2κ · dg︸ ︷︷ ︸
Λg

∇x,q [dg]

= Λg

[
∇x,q [∥cee,g∥] ·

[
1− F

−
ε1,ee

2
ee,g + F

−
ε1,g
2

g,ee

]]
+ Λg∥cee,g∥ ·

[
ε1,ee
2
F

−
ε1,ee

2
−1

ee,g ∇x,q [Fee,g]−
ε1,g
2
F

−
ε1,g
2

−1
g,ee ∇x,q [Fg,ee]

]
(5.24)
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Given the nature of some expressions, the following simplifications apply to the derivation

with respect to the end-effector’s pose variables:

∇x,q [∥cee,i∥] =
1

∥cee,i∥
· [xee − xi , yee − yi , zee − zi , 0 , 0 , 0]

T

∇q [Fi,ee] = [0 , 0 , 0]T as ∇q [A(qi)] = [0 , 0 , 0]T for i ∈ (obs, ws, g) (5.25)

The quantified wrenches of repulsion and attraction guide the entity represented by the

end-effectors superquadric through a collision avoiding path. In the context of this work,

the application to LfD is discussed which build on CDMPs as learning and reproduction

framework. Therefore, repulsive wrenches are introduced on the acceleration level of the

transformation system, while attraction applies to the velocity level to reduce overshooting.

Due to the possible simultaneous exploitation of translational and rotational deviations,

the wrenches are applied to both transformation systems after (3.5) and (3.6) which now

read

τ ˙̃vx = Kx ( xT − x ) − Dx ṽx − Kx ( xT − x0 ) s + Kx fx(s) + φrepulsive,x (5.26)

τ ẋ = ṽx + φattractive,x

τ ˙̃wq = −Kq eq − Dq w̃q − Kq 2 log(qT ∗ q̄0) s + Kq fq(s)− φrepulsive,q (5.27)

τ ėq = w̃q − φattractive,q

5.5 Experimental Evaluation

By modelling the encountered scene through the four defined types of volumetric entities

and computing repulsive and attractive wrenches from established potential fields, the

proposed method promises to generate a collision-avoiding path for the end-effector. Its

volumetric representation allows furthermore to exploit both translational and rotational

movement capabilities. The following experimental evaluation showcases the ability of the

developed method to produce robust reproduction for LfD in two simulated scenarios (see

Figure 5.6).

The first experiment is tailored to demonstrate the functionality of the scaling parameters

that allow one to restrict dimensions of the wrenches induced on the end-effector. Given a

simulated demonstration of a straight path along the x direction, an obstacle is introduced

in proximity (see Figure 5.6a), such that collision-avoiding wrenches are generated. By

amending the scaling parameters λii of the repulsive wrench in (5.20), different reproducing
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(a) Experimental setup for showcasing
translation- and rotation-specific devia-

tion

(b) Experimental setup for showcasing
collision avoidance using all types of con-

sidered objects

Figure 5.6: Simulated setups including scene and environmental objects of validation
experiments

motions are produced and introduced to the underlying CDMPs following (5.26) and

(5.27). The applied parameters are reported in Appendix B.3.

Figure 5.7 illustrates the resulting motions generated for different parameter settings. A

comparison is made between purely translational, which is the prevailing obstacle-avoiding

approach in related work, purely rotational, enabled by the volumetric representation of the

end-effector, and a combination of both movements. As can be seen, all three successfully

generate deviating paths to avoid collision with the present obstacle. However, limiting

to translational deviation, a considerable free space is necessary in the z direction (see

Figure 5.7a). An alternative is depicted by the use of pure rotational deviation if the use

case allows for this. As can be seen in Figure 5.7b, no additional free space is required, but

the end-effector’s shape pivots forward in proximity to the obstacle. The combination of

both cases shows the most effective form of deviation, in which both movement possibilities

are used and lead to smaller deviations compared to their individual use (see Figure 5.7c).

The second experiment showcases the combination of all the features promoted by the

proposed method. A demonstrated trajectory that follows the shape of an e2-function

reaching 1.0 m height and taking 20 seconds is used for reproduction in the new scene,

which is presented in Figure 5.6b. The scene includes three obstacles of different shapes,

one workspace as a surrounding boundary, and an attractive goal in the final pose of the

demonstrated path. The applied parameters are listed in Appendix B.4.
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(a) λii,x = 1, λii,q = 0 (b) λii,x = 0, λii,q = 1

(c) λii,x = 1, λii,q = 30

Figure 5.7: Illustrative experiment showcasing the effect of the wrench scaling parame-
terisation

Figure 5.8 illustrates representative snapshots of the evolving path resulting from repulsive

and attractive wrenches (see Figure 5.9) that force the dynamic volume to deviate. As

can be seen, the first obstacle is occluding the path close to the starting pose of the end-

effector. Due to the orientation of the obstacle, an initial downward motion is produced. It

is quickly reversed upward due to the workspace boundary and the demonstrated upward

movement (see Figure 5.8a). The second obstacle induces a slight pivoting behaviour on

the end-effector while it reaches around the shielding its potential field (see Figures 5.8a

and 5.8b). Circular motion is interrupted at an approximate height of 1.0 m due to the

bounding workspace, which also prevents naive reproduction from reaching a height of

1.2 m (see Figure 5.8c). After successful avoidance of the third obstacle by exploiting a

translational deviation in the +y direction, the end-effector shape reaches the final goal (see

Figure 5.8d). With the elaboration of an imaginary goal volume that generates attracting

wrenches acting on the end-effector’s volume, the proposed method assists the CDMPs-

based dynamic system to converge faster to the final state. In the given experiment,

the translational accuracy of 0.001mm is achieved after 25.08 seconds when applying the

attractive wrench on the velocity level compared to a duration of 36.48 seconds without

the goal attraction.
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(a) t = 6.77s (b) t = 9.97s (c) t = 12.46s (d) t = 25.08s

Figure 5.8: Snapshots of the deviating reproduction path avoiding collision with present
obstacles, workspace boundary and attracting to the goal shape

(a) Repulsive forces (b) Repulsive torques

(c) Attractive forces (d) Attractive torques

Figure 5.9: Repulsive and attractive wrenches emitted by environmental objects (ver-
tical lines mark the snapshot times of Figure 5.8)

The presented experiments demonstrate how key functionalities of the proposed method

using multi-superquadric potential fields allow CDMPs-based reproduction to effectively
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avoid collisions and converge faster to the final state. An application to a realistic scenario

is presented in Section 6.4.

5.6 Summary

During the reproduction phase, the previously taught task is carried out independently

by the robot. State-of-the-art LfD solutions are expected to not only mimic an identical

behaviour but rather be capable of generalising in unseen situations. Such robustness

refers, in particular, to the adaptability to new scenarios caused by changed environments.

DMPs feature a significant body of research on collision avoidance, where the latest trend

explores the volumetric representation of physical obstacles.

This Chapter presented an extension to the prevailing method of potential field-based re-

pulsive forces by proposing additional volumetric representations using superquadrics to

better approximate the scene encountered during reproduction. A set of four different

object types was proposed, which extends the existing volumetric representation of obsta-

cles by an end-effector, workspace boundaries, and an attractive goal. Emitting repulsive

and attractive wrenches from potential fields between these volumetric entities allow ro-

bust and effective manoeuvring of the end-effector around present obstacles, within the

given workspace, and towards the final state. Simulative experiments were designed to

demonstrate the key functionalities of the proposed method and showcased its validity.
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LfD-IA Framework Evaluation

The previous three Chapters examined the phases of the characteristic LfD procedure in-

dividually and discussed methods that benefit their applicability in an industry-orientated

assembly scenario. As a result, the demonstration was enhanced with visual guidance that

assists the human operator in finding reproducible motions considering a reproduction

system with distinct kinematics (see Chapter 3). The learning framework, proposed in

Chapter 4, established a method that merges the industry-known MTM-1 discretisation

system with the prominent CDMPs learning technique to allow the processing of com-

plex motion sequences. Coping with alternate scenes during reproduction is discussed in

Chapter 5, which proposed an extension of CDMPs for online collision avoidance based

on distance-driven potential fields between multiple volumetric entities modelled as su-

perquadrics. Collectively, these methods comprise the Learning from Demonstration for

Industrial Assembly (LfD-IA) framework aimed at in this thesis which provides the visual

guidance during demonstration, the learning of the motion following the MTM-1 system

and the collision avoidance capability during autonomous reproduction of desired subskills.

This Chapter presents an exemplified hardware setup to apply the proposed LfD-IA frame-

work and provides a comprehensive summary of its discussed functionalities based on a

showcased pick-and-place task. The Chapter is structured as follows: Section 6.1 begins

with an explanation of a representative experimental setup and discusses the necessary

preparation for use. Following the characteristic LfD procedure, the consecutive Sec-

tion 6.2 describes how the demonstration phase is designed for the given task applying

the features discussed in Chapter 3. The learning abilities of the framework sourced from

Chapter 4 are presented in Section 6.3. Upon encountering a changed scene during repro-

duction, Section 6.4 demonstrates the framework’s ability to produce a robust and effective

105
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reproducing path according to the methods proposed in Section 4.3.3 and Chapter 5. A

summary is provided in Section 6.5.

6.1 Experimental Setup

The three components of the LfD-IA were designed to be robot and hardware indepen-

dent by mainly processing and communicating via trajectories in Cartesian space. The

possibilities for hardware configuration to utilise the framework are therefore manifold.

The following showcasing of the framework’s functionalities is conducted with the hardware

configuration shown in Figure 6.1. As promoted in Chapter 3, the demonstration is carried

out with a robot-independent demonstration device, which is tracked by a Vicon motion

capture system along with the task-relevant workpiece and assembly point (introduced

in Section 4.4). A television provides the human operator with the graphical interface

developed in Chapter 3. Furthermore, a second monitor displays a novel LfD-IA graphical

interface designed to intuitively guide the human operator through the LfD process, pro-

viding sufficient information for proper supervision of the procedure. The reproduction

system consists of an Universal Robot UR5e with an OnRobot RG6 gripper. The indi-

vidual components of the framework run on three different PCs, including a Windows 10

PC for Vicon Tracker 3.9 software, an Ubuntu 18.04 PC for the software associated with

the visual guidance of Chapter 3, and an Ubuntu 20.04 PC for the remaining components,

including the LfD-IA interface. All components are configured to communicate within one

local network through Robot Operating System (ROS).

6.2 Demonstration

The demonstration phase of the proposed LfD-IA solution is carried out with a robot-

independent demonstration device while being guided through the method developed in

Chapter 3. The intended pick-and-place task similar to Section 5.5 is facilitated by a cus-

tomised demonstration device that was designed as a passive replica of the robot’s gripper

(see Figure 6.2a). This simplifies the kinematic inequality between the gripper and the

human hand during grasping and informs the human operator of the robot’s grasping

capabilities. Passive grasp functionality is achieved by a combination of rubber bands, a

toothed gear, and detachable pins, as can be seen in Figure 6.2b. The guiding interface

that provides information on the non-reproducible region of the kinematically constrained
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Figure 6.1: Hardware configuration for the experimental evaluation of the developed
LfD-IA framework

UR5e is computed using the same static environment as introduced in Section 3.6 (Fig-

ure 3.3a), which mimics the real-world setup (see Figure 6.1). However, for the purpose of

the intended example, the task space required by HAP was adjusted to consider only ori-

entations roughly facing downward and being in the perspective of the grasped workpiece,

which has an offset of approximately 27 cm from the tool flange.

The developed LfD-IA GUI is designed to guide the human operator through the LfD pro-

cedure. This is supported by indicative texts and the selective activation and deactivation

of buttons and selection features based on executable processes and displayed information

relevant to the supervision of progress. By specifying an intended LfD series ID and

Task ID (see Figure 6.1), the Check button either activates learning and/or reproduc-

tion options for a previously recorded demonstration or activates the Record button if
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(a) RG6 gripper and its passive replica (b) CAD design

Figure 6.2: Designed demonstration device for pick-and-place tasks

the IDs have not been used yet. Pressing the latter displays the assisting GUI of Chap-

ter 3 on television to guide the human operator through reproducible motions, while the

robot-independent demonstration device, workpiece, and assembly point are tracked with

the Vicon system (the device’s finger motion is not tracked intentionally to avoid the

mimicking of unnecessary finger actuation). Due to the applied CDMPs learning method,

a single demonstration is sufficient for the consecutive LfD procedure. A snapshot of a

performed pick-and-place demonstration is shown in Figure 6.3a. Figure 6.3b presents

an illustrative example of a recorded motion of the workpiece (green) and the tool flange

(blue) surrounded by the simulated static environment and the region of non-reproducible

motions in the perspective of the workpiece.

After recording, an automated data processing algorithm is initiated, which synchronises

all recorded time series and removes any stationary intervals at the beginning and end of

all trajectories. The time series plots of each recorded object are presented to the human

operator with the intended cropping intervals (vertical lines) as exemplified in Figure 6.4

for the above example. It allows the human operator to preliminarily verify the suitability

of the demonstration performed, indicated by a smooth motion of the demonstration device

and workpiece within the cropped time frame while the assembly point remains stationary.
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6.3 Learning

The recorded, synchronised, and cropped demonstration trajectories of the objects in

the scene serve as input to the learning phase. If the learning process is performed for

the first time, pressing the Learn button initiates the skill classification as described in

Section 4.3.2. The exemplary demonstration in Figure 6.4 results in the relevant distances

(a) human operator per-
forming a demonstration

(b) resulting motion of the tool flange (blue) and the
workpiece (green) surrounded by R∗ (red)

Figure 6.3: Guided demonstration during pick-and-place task and its resulting motion

Figure 6.4: Recorded motion of all tracked objects during demonstration displayed to
the human operator for verification
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shown in Figure 6.5. The transition states are calculated from identified plateaus and are

indicated by vertical red lines in the diagram of their determining distance. Furthermore,

the gripper actuation is timed on the basis of the distance between the object and its latest

initial and earliest final state and indicated with vertical purple lines (see Figure 6.5).

The classification algorithm expects a series of skills, that is, reaching, grasping, moving,

positioning, releasing, and reaching. If not identified, the demonstration is classified as a

single generic skill, which is parameterised as a moving skill.

Figure 6.5: Distances between relevant coordinate systems to segment skills after Sec-
tion 4.3.2

Once the skill classification was performed and the identified skill trajectories are stored,

Learn automatically generates custom CDMPs for each identified skill. The LfD-IA in-

terface provides in the learning phase a selection of the desired accuracy mode σ, which

is predefined by the options low, moderate and high (see Figure 6.1). These are linked

to selected values that quantify the number of RBFs applied (N) during grasping, po-

sitioning and releasing dependent on the demonstration length such that N = σ · Tdem.

The remaining parameters for the custom CDMPs are predefined according to the values

summarised in Appendix B.5 and applied considering (3.4). The timing of gripper actu-

ation is translated into the associated value of the phase variable s, which allows correct

actuation despite temporal scaling (in case of more complex tools, their actuation may

be translated into additional DMPs). After creating and learning skill-based CDMPs, a

learnt motion of the tool flange with no spatial or temporal scaling is displayed to the hu-

man operator. Similarly to the displayed time series of the demonstrated motion, it allows

the human operator to validate the robot’s understanding and expected performance of

the demonstrated task. Figure 6.6 shows the results for the given example with a selected

low-accuracy mode. As can be seen, unnecessary jerky motion is smoothed out, especially
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in the last skill, while accurate mimicking of relevant motion during grasping, positioning,

and releasing is achieved.

demonstrated motion

reproduced motion
x

y

qw

qy

sec

z

qx

qz

sec

Figure 6.6: Learning outcome displayed to the human operator for verification
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6.4 Reproduction

Once the human operator is satisfied with the mimicking behaviour of the robot, the

learnt motion can be applied to autonomous reproduction within generalised situations,

considering spatial and temporal scaling as well as scene-aware collision avoidance. The

former scaling functionality is enabled by the MTM-inspired CDMPs learning framework

presented in Chapter 4. The temporal scaling of each skill is quantified through selecting

the reproduction mode on the LfD-IA interface. The three modes are linked to the tem-

poral parameter τrep of the skills according to the following scheme: ‘testing’ results in a

reproduction four times slower than demonstration, ‘collaborative’ scales the reproduction

speed to a maximum speed of 250mm/s during reaching and moving, and 100mm/s for

grasping, positioning, and releasing, and ‘industrial’ performs reproduction at the same

speed as that demonstrated. Spatial scaling is enabled similarly by incorporating the rel-

ative relocation of the workpiece and the assembly point following the method proposed

in Section 4.3.3. As naive relocation may result in poses that are outside the region of

reproducible motion, the LfD-IA interface provides the option of accessing the GUI for

guided demonstration by pressing Relocate. At this stage, the interface is designed to

display the objects dynamically in the presence of the region of non-reproducible motion.

As such, it allows the human operator to make an informed decision about where the

objects can be placed, or to verify desired poses for the kinematically constrained robot

in mind. An example of relocation is given in Figure 6.7 in which the workpiece was

moved approximately 15cm in -x direction and the assembly point by 5cm in -y direction

in combination with a rotation of 30 degrees around the z axis.

(a) Initial locations during demon-
stration phase

(b) Verified relocation during repro-
duction phase

Figure 6.7: Guiding interface for relocating the workpiece (green) and assembly point
(blue) allowing spatial scaling during reproduction
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After naturally interacting with the scaling capabilities of the LfD-IA framework, the

topologically similar trajectory may collide during autonomous reproduction with pre-

existing or newly introduced obstacles or result in motions that penetrate the region of

non-reproducible motion. To ensure robust reproduction, the LfD-IA framework incor-

porates the collision avoidance method presented in Chapter 5. With a given sequence

of skills, customised collision avoidance scenes are applicable to individual skills following

their unique requirements. This may include distinct volumetric approximations of the

end-effector, such as with or without grasped workpiece, or activation and deactivation of

environmental shapes depending on their relevance. An end-effector model with a centre

not being at the robot’s tool flange is recognised using a transformation between the TCP

and point of interest, which is applied to the repulsive/attractive wrench calculation and

their effect on the tool flange’s motion.

In the example of the demonstration provided in Figure 6.3, the skills of moving, po-

sitioning, and final reaching (the initial reaching skill produces reproducible motion) are

designed to incorporate collision avoidance. The skill-dependent scenes used are illustrated

in Figure 6.8. The applied parameters are summarised in the Appendix B.5. Due to the

additional information provided by HAP about the region of non-reproducible motion for

the grasped workpiece, the artificial workspace shape is extended by imaginary obstacles

representing the discrete voxels. As such, these are relevant during moving and releasing,

and repulsive wrenches are calculated based on the volumetric replica of the workpiece

depicted in Figure 6.8c (right). As a result, the tool flange remains within the region of

non-reproducible motion while simultaneously avoiding collision with physical obstacles.

The final autonomous reproduction of the learnt task with the desired spatial and tem-

poral adjustments under given environmental constraints is initiated by pressing the Re-

produce button on the LfD-IA interface. The checkbox Simulation/Hardware allows

the human operator to select between a preliminary simulated test or direct control of

the connected robotic system. In both cases, the Vicon motion capture system scans the

current scene and provides the updated location of the workpiece, the assembly point,

and the newly introduced obstacle to the reproducing algorithm. Figure 6.9 shows the

simulation result displayed for the given example, including a trajectory comparison be-

tween the demonstration and the reproduction within the volumetric scene considered.

A time series of the reproducing robot compared to the motion initially demonstrated

by the human operator in a set of representative images is presented in Figure 6.10. As

can be seen, the relocated workpiece is successfully grasped (Figure 6.10e) followed by a

collision-avoiding behaviour that results in translational and rotational deviation due to
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the newly introduced obstacle and the voxels representing the region of non-reproducible

motion (Figure 6.10f). After the workpiece is successfully placed at the assembly point

(Figure 6.10g), a translational deviation is induced to prevent the robot from exiting the

predefined workspace (Figure 6.10h).

6.5 Summary

The presented Chapter demonstrates how the novel methods elaborated in Chapters 3 to 5

are unified to the aimed LfD-IA framework promoting LfD for assembly-orientated tasks.

While the framework is robot- and hardware-independent, a physical configuration was

discussed and utilised to showcase the framework’s functionality. This includes methods

for interactive guidance during demonstration to perform motions transferable to the robot

in mind, MTM-inspired learning of complex assembly motions, and robust reproduction

under desired scaling of motion and changes in the environment.
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(a) Reaching

(b) Moving

(c) Positioning

Figure 6.8: Skill-dependent scene approximation using physical obstacles (red), attrac-
tive goal (blue), workspace boundary (yellow), imaginary obstacles for the region for

non-reproducible motion (yellow voxels) and end-effector shapes (transparent)
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Figure 6.9: Displayed result of simulated test in updated scene with relocated objects
after Figure 6.7b with demonstrated path (red), reproduction path (blue), and object

path (green)

(a) demonstra-
tion 1

(b) demonstra-
tion 2

(c) demonstra-
tion 3

(d) demonstra-
tion 4

(e) reproduc-
tion 1

(f) reproduc-
tion 2

(g) reproduc-
tion 3

(h) reproduc-
tion 4

Figure 6.10: Images of the real-world human demonstration and robot reproduction
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Conclusion

This thesis has presented the elaboration of an LfD framework that overcomes some iden-

tified obstacles for assembly-related tasks with the aim to further promote its future de-

ployment in the industrial sector. In light of the long-standing history in LfD research

and numerous contributions in related contexts, this thesis examined currently prevailing

methods applied in a research environment with respect to requirements and expectations

in the field of application. As a consequence, key obstacles that characterise the gap be-

tween research contributions and industry requirements were identified. These informed

the focus of the investigations on three novel methods by enhancing preexisting approaches

with application-specific characteristics and functionalities. Promoting improvements in

all three phases of the common LfD procedure, this thesis discussed effective demonstra-

tion, assembly-tailored learning, and robust reproduction to improve the applicability of

LfD solutions in industrial settings. These individually developed components formed

the basis for the development of the unified LfD-IA framework, which was presented in

an experimental physical demonstrator. The presented investigations demonstrate that

practicability, robustness, and consideration of task-specific requirements are key enabling

factors to leverage the prevailing LfD approaches towards industrial assembly capabilities

and outline the response to the formulated research question.

This Chapter concludes the thesis presented by outlining insights to the following: A

summary of the methods that contribute to the state-of-the-art in LfD for assembly-

related tasks is provided in Section 7.1. Section 7.2 discusses the identified limitations of

the presented work and explores avenues for future research. A concluding remark is given

in Section 7.3.
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7.1 Summary of Contributions

The following provides a summary of the main contributions that emerged from the work

associated with this thesis that were foreshadowed in Section 1.4 and illustrated in Fig-

ure 1.2. These are aligned with the structure of the thesis and include an application-

specific systematic literature review (Chapter 2), an effective demonstration technique

(Chapter 3), an assembly-tailored learning technique (Chapter 4) and a robust reproduc-

tion technique (Chapter 5).

7.1.1 Application-specific systematic literature review

Since the first ideas of programming robots naturally from human demonstrations in the

1980s, LfD has grown into a multi-discipline concept with constantly growing application

potentials. It is often motivated by the desire to simplify and increase effectiveness in

real-world scenarios. As such, it promotes similar increased benefits for the industrial as-

sembly industry that is faced with emerging challenges of coping with mass customisation,

labour shortage, and increased demands. Although LfD has been constantly discussed

in assembly-related research, its potential has not yet gained significant foothold in the

industrial sector.

Chapter 2 and the associated publication [24] contribute to the field with a comprehen-

sive literature review that identified the state-of-the-art of LfD for assembly-related tasks.

Using a systematic approach, relevant studies were thoroughly analysed with respect to

the techniques used in LfD, the use cases applied, and the results achieved in real world

experiments. A consecutive comparison to industrial practice for the introduction of a

new assembly task outlined synergies and differences between the common characteristics

of LfD solutions and traditional human operator instructions. Both aspects informed the

determination of key obstacles in current LfD research that hinder the smooth integration

of proposed solutions into industrial practice. As such, involved research parties, as well as

industry beneficiaries, gain a clear understanding of prevailing solutions and their achiev-

able performance while being guided towards targeted investigations resulting in effective

progression.
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7.1.2 Effective Demonstration through Robust Transferability

Advances in technology have established three fundamental approaches to capture human

motion when demonstrating the desired task. The ability of collaborative robots to be

guided passively through motion, also known as kinaesthetic teaching, is predominantly

used in the research field. While this significantly simplifies further processing for the

generalised reproduction movement of the robot, this medium is still to a certain extent

unnatural for people unfamiliar with robots and requires rethinking of the task into the

robot’s perspective. The alternative, in which the demonstrating human performs a task

in its own way and independently of the robot, is assumed to be more user-friendly in an

industrial context. However, as the movements of humans can extend beyond the robots’

capabilities, motions may be demonstrated that are not reproducible by the intended

robot.

Chapter 3 and the associated publication [25] contribute to research with investigations

on how robust transferability between two kinematically distinct systems is achievable.

A generalised problem was formulated, resulting in the aim of finding a region of non-

reproducible motions. The presented solution leverages the HAP motion planning frame-

work, which computes the area of smooth and collision-free paths for a given environment,

workspace, and robot model. The information gained about accessible regions was incor-

porated into a novel GUI that effectively provides the essential information to the human

operator during the demonstration. As such, the user becomes capable of making informed

decisions without the need of rethinking the task, passively moving a robot, or even hav-

ing the robot available. While the proposed approach was motivated and evaluated in the

context of LfD for assembly-related tasks, it is applicable to scenarios beyond LfD where

any performed motion needs to be translated to a kinematically distinct/constrained sys-

tem. Furthermore, HAP provides the ability to consider additional constraints, such as a

minimum manipulability, that promote the application to contact-rich or other narrative

use cases.

7.1.3 Assembly-tailored Learning through MTM-inspired skills

Research efforts in the field of LfD show great interest in assembly-orientated challenges.

Motivated by individual skills, such as peg insertion, or conceptual ideas for general pick-

and-place operations, promising contributions have emerged that demonstrate the the-

oretical strength of LfD and its justified recognition as a future-orientated technology.

However, in comparison with the requirements found in practical industrial assembly, a
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fundamental lack of attention is evident towards complex tasks involving a series of various

skills and multi-piece handling. Given the historically evolved distinction in LfD solutions

between trajectory-based and state-driven task representations for learning and reproduc-

tion, a combination of both is considered essential for achieving appropriate results.

Chapter 4 and the associated publication [26] contribute to the field of LfD research with

the concept of merging the prevailing trajectory-based CDMPs learning framework with

an abstraction level sourced from an industry-relevant discretisation system. A thorough

selection process led to the discretisation system associated with MTM-1 that was used to

define five distinct skills, including reaching, grasping, moving, positioning, and releasing.

Leveraging on the multifaceted customisation ability of CDMPs resulted in unique models

that adequately incorporate the individual characteristics of each skill. In addition to

its proven value in the practical context, the MTM-1 method also provides reference to

the standard duration of each skill when performed in manual workflows. Furthermore,

reverting to methods used in the application-specific industry has the advantage that

beneficiary parties familiar with the method may be more willing to use the presented

robotic solution.

7.1.4 Robust Reproduction through Dynamic Potential Fields

Compared to conventional programming methods applying ‘record-and-playback’, LfD in-

corporates the decisive advantage of generalising the initially learnt behaviour to new

situations. This includes mainly the ability to perform the same task despite introduced

changes in motion (spatial and/or temporal adjustments), environment (appearing obsta-

cles), or task (similar but not identical objects). The second represents a particularly

essential functionality to establish robust and reliable performance in dynamic environ-

ments anticipated in industry. In the given LfD context, such a situation is possible when

the scene between demonstration and reproduction changes. Considering the prominent

trend of utilising potential fields from volumetric representations of physical obstacles, re-

pulsive forces are calculated that affect the robot’s motion. However, deviations are only

produced translationally with no particular bounding characteristic.

Chapter 5 and the associated publication [27] contribute to the research on collision

avoidance using potential fields with an extended scene approximation scheme using su-

perquadrics as volumetric representations. In addition to physical obstacles, the suggested

scheme incorporates a dynamically moving end-effector shape, which allows exploitation

of all its DoF, making necessary deviations more effective. In addition, an imaginary
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workspace boundary is presented that emits repulsive wrenches on the end-effector main-

taining it within the designated space. To increase efficiency, a volumetric goal shape was

introduced that functions as an attracting entity. By approximating the named shapes

with superquadrics and applying the rigid body radial Euclidean distance calculation, an

analytical solution was presented for the calculation of repulsive and attractive wrenches

affecting the end-effectors path. Furthermore, its incorporation into the prominent CDMPs

learning framework demonstrates its applicability to the LfD context. Although presented

and promoted in the discussed context, the proposed scene approximation scheme can be

considered for general collision avoidance, which is a prominent research field in robotics.

7.2 Discussion on Limitations and Future Work

The presented work shows a targeted approach to developing an LfD solution towards

industrial use. While relevant narratives have been discussed and novel methods proposed,

there are some limitations which need to be overcome before the framework can be fully

realised in non-laboratory environments. This Section outlines identified limitations and

explores promising avenues for future research.

7.2.1 Physical Demonstrator

The first point of discussion is the hardware setup used to evaluate the proposed methods

and, in particular, the unified framework in Chapter 6. It exemplifies the physical real-

isation using several necessary components, including a Vicon motion capture system to

track the human demonstration, locate the workpiece, assembly point, and obstacles in

the environment. It is clear that the use of such a motion capture system is not practical

for most genuine industrial applications. However, as explained in Section 6.1, the design

of the framework is not dependent on this specific sensing modality, and the necessary

demonstration path can be acquired differently. Other sensing systems, such as RGBD

cameras, lidars, and other technologies, may be used as alternatives. Such sensors are be-

coming common in industrial settings, in particular for applications involving human-robot

collaboration.

The evaluation was also performed on simplified tasks, which was mainly caused by avail-

able hardware. As discussed in Section 1.3, the focus of the thesis was on diversifiable

contributions in the broader context of LfD which are not limited to an industry-specific
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niche. Given this scope, a comprehensive evaluation of the targeted industrial assem-

bly tasks was not attainable, but a suitable evaluation was still achievable for the aimed

methodological improvements. The pursuit of such an investigation in future work is of

considerable benefit to the presented work. In this context, a performance evaluation is

envisioned in which the LfD-IA driven teaching of a new task is compared to teach-pendant

programming with respect to efficiency, comfort, and user-friendliness.

7.2.2 Human Operator Experience

The development and design of the developed framework is orientated closely to the as-

sumed needs of task-experienced non-robot experts, such as the achieved robot-independent

demonstration phase. The analysis of relevant information that requires an interaction be-

tween humans and the LfD-IA framework resulted in the physical demonstrator presented

in Chapter 6. However, future improvements are envisioned to further enhance the expe-

rience of the human operator, considering the following aspects.

The presented framework uses graphical interfaces to provide an augmented model of the

environment during the demonstration and to navigate the LfD process. Although these

are considered user-friendly, the use of augmented reality and sound-based communication

suggests an increase in intuitiveness and a positive experience for the human operator. The

latter is also applied when instructing human workers (see Section 2.3) and may present

benefits for integration due to the common ground between teaching humans or robots.

An investigation of their impact on the willingness to apply LfD in industrial practice is

a fundamental aspect to guide future integration concepts. The user study presented in

Section 3.6.2 further revealed that guiding suggestions on where to place objects would

be beneficial to successfully and effectively perform the intended task, which is another

important avenue to improve usability. Similarly, the selected verification method is a

potential improvement aspect. As introduced to inform the human operator about the

robot’s learning result and intended reproduction performance, these may be substituted

by more visually attractive simulations.

Providing a physical demonstrator is built suitable for industrial use, an extensive user

study with real human operators in a realistic scenario is a promising measure to identify

and elaborate further framework improvements. This research may involve the integration

of multiple areas, such as ethical, social, and psychological considerations, as well as the

selection of appropriate hardware and the development of expected software results.
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7.2.3 Applied Simplifications in Framework Implementation

Throughout the development of the LfD-IA framework, some simplifications were applied

that are valid in the given context but may appear as obstacles once confronted with

real-world challenges. This concerns the orientations in HAP, the sequencing of individual

CDMPs, and the distance approximation between superquadrics.

The current embedding of the HAP framework to inform the human operator about re-

gions of non-reproducible motions is limited to poses approximately oriented in a nominal

direction. Allowing for any greater deviations from this nominal direction results in am-

biguous guidance in the GUI. For example, it may be possible to rotate the end effector

about a point in the workspace in one direction, but rotating in the other direction may

require a large change of joint angle to avoid self-collision or joint limits. However, this

is a limitation of the GUI rather than the proposed method of finding R∗. In order to

handle this, there would need to be some notion of trajectory history encoded in the GUI.

A valid workaround is to define multiple task spaces with the required nominal directions

and then to carry out demonstrations independently for each of these.

Motivated by the advantages offered by MTM-1, the presented work exploited the primary

classification into basic elements as the underlying discretisation system. The potential

beyond this is evident in the more precise specification of the elements, the temporal com-

parison to manual workflows, the optimisation of skill sequences and workplace arrange-

ment, and the use to map more complex workflows (including tool handling). However,

this requires a revision of the specific assumption of manual or distance-based skill seg-

mentation (see Section 4.3) and closer alignment to the original MTM-1 specifications.

Due to the expected benefits, further exploitation of the MTM-1 method is considered a

promising path to explore.

The presented method for robust reproduction applies currently the approximation method

called the rigid body radial Euclidean distance to compute the distances between two su-

perquadrics. It is considered computationally inexpensive and provides an analytical solu-

tion. Determined along the line between the volumes’ centres, its approximation becomes

less accurate for elongated shapes. While such situations can be overcome by conservative

parameterisation, a more practical and robust solution is envisioned by computing the

actual minimal distance. In addition, an extension to link collision may also benefit the

robustness and is seen as a relevant aspect for future research.
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7.2.4 Prerequisite Task Specification

Despite the propagated generalisability and broad applicability of most LfD-related tech-

niques, their implementation usually requires specific adaptation and pre-engineered set-

tings. This also applies to the presented LfD-IA framework, which includes empirically

defined parameter sets and method-related design choices that do not fall at current stage

into the category of natural programming and hence have to be specified by a person

experienced in the system.

A set of such prerequisite task specifications is given by the input required from HAP,

including the assumed static environment, a discretised task space, and a robot model.

Manual quantification of the static environment can be substituted by automatic mapping

using alternative sensing systems, such as RGBD cameras (see Section 7.2.1). A graphical

representation of the real-time environment encountered may be presented within sim-

ulated environment that allows visual verification and the incorporation of a selection

scheme for different robotic systems. The tracking of the dynamic environment can also

be used to approximate the environment using superquadrics, eliminating the currently

cumbersome manual specification required for robust reproduction.

Another set of pre-defined parameters is required for CDMPs. The presented work already

promotes a user-centric parameterisation scheme that is suitable for all tasks encountered.

Here, a user-selected accuracy mode σ is defined that calculates the actual number of RBFs

required by the CDMPs using the duration of the demonstration such that N = σ · Tdem.

Further parameterisation rules for CDMPs may support more robust behaviour for a wider

variety of use cases and therefore present an interesting avenue for future research.

7.2.5 Artificial Intelligence

The main purpose of the presented thesis was to analyse in detail the possibilities around

LfD in the assembly industry and to promote its progress towards practical application.

As discussed in Section 1.3, some constraints had to be applied to make the technical scope

attainable. However, this does not imply an equivalent limitation in the applicability of

the presented contributions (see Section 7.1) nor a forced exclusion of other methods to

achieve the aspired goal.

A fundamental aspect to mention is the potential seen in AI and ML-based methods.

Although considered outside the scope of this work, these techniques represent an increas-

ingly prominent branch of research in the context of LfD and robotics as a whole. In
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the given context, their ability to generalise is assumed to be significantly better than

the trajectory-based method used by DMPs. This may be particularly relevant once the

generalisation towards changes in task is of interest, e.g. the robot is expected to assemble

similar but not identical objects to the ones being assembled during human demonstration.

It also promotes the idea of not requiring a single fully efficient demonstration trajectory

but rather learning from sparse or partial demonstrations which are optimised afterwards.

While several beneficial properties are linked to AI-based solutions, the present work has

identified the deterministic DMPs to be effective for the given use case. One major bottle-

neck seen in AI-based contributions remains their low achievable accuracy which is a key

requirement for assembly tasks. However, this does not reduce the value of AI for potential

incorporation in LfD solutions for industrial assembly tasks as an interesting avenue for

future research.

7.3 Concluding Remark

The assembly industry is constantly interested in improving its effectiveness, cost-efficiency,

and productivity to remain competitive. Current challenges including the transition into

mass customisation and the labour shortage due to a demographic change promote the

application of flexible, intuitively programmable robotic systems. As such, LfD promises

significant advantages that may assist in keeping the assembly industry functional. This

thesis investigated how LfD can be leveraged for industry practice and presented three

novel methods unified in the aimed LfD-IA framework that promotes increased practi-

cability and robustness. As a result, LfD is one step closer to becoming a reasonable

candidate for the challenges of the future assembly industry. However, more work is re-

quired in terms of sophisticated solutions successfully evaluated in realistic scenarios. It

is hoped that the motivation and contributions of this thesis inspire future research and

industry efforts to bring both worlds together and strongly benefit from each other.
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A Material supporting the Literature Review

Table A.1: Overview of included References and their characteristics 1/2 (*rate/attempts)

[68] – Kinaesthetic Teaching 10 Costs/Rewards -

Trajectory Optimisation

[69] – Kinaesthetic Teaching unspecified Costs/Rewards -

Trajectory Optimisation

[79] – Kinaesthetic Teaching 1 Policy - Trajectory

[52] 6 Kinaesthetic Teaching ”several” Plan - Primitive Sequence

[45] 3 Kinaesthetic Teaching ”multiple” Policy - Trajectory

[43] 3 Teleoperation single Policy - Trajectory

[85] 3 Kinaesthetic Teaching 4 Policy - Trajectory

[208] 3 Kinaesthetic Teaching ”few” Policy - Trajectory

[51] 2 Passive Observation ”multiple” Policy - Trajectory

[57] 2 Kinaesthetic Teaching 5 Policy - Trajectory

[39] 2 Passive Observation ”multiple” Policy - Trajectory

[53] 1 Teleoperation 8 Costs/Rewards -

Trajectory Optimisation

[61] 1 Kinaesthetic Teaching ”set” Policy - Low-level Actions

[42] 1 Teleoperation 10 Policy - Trajectory

[34] 1 Teleoperation +

Kinaesthetic Teaching

single

[76] 0 Passive Observation 15 Policy - Trajectory

[84] 0 Kinaesthetic Teaching 4 Policy - Trajectory

[62] 0 Teleoperation 30 Policy - Trajectory

[38] 0 Passive Observation single Policy - Trajectory

[71] 0 Teleoperation 3 Costs/Rewards -

Trajectory Optimisation

[70] 0 Passive Observation 30 Plan - Primitive Sequence

[78] 0 Kinaesthetic Teaching 6 Plan - Primitive Hierarchy

[58] 0 Passive Observation single Plan - Primitive Sequence

[89] 0 Kinaesthetic Teaching single Policy - Trajectory

[60] 0 Kinaesthetic Teaching single Policy - Trajectory

Ref. Avg. Citations Demonstration Method Demonstration Quan-

tity

Learning Method

Continued on next page
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Table A.1: Overview of included References and their characteristics 1/2 (*rate/attempts) (Continued)

[67] 0 Teleoperation single Policy - Trajectory

[83] 0 Kinaesthetic Teaching 3 Plan - Primitive Sequence

[88] 0 Kinaesthetic Teaching unspecified Costs/Rewards -

Trajectory Optimisation

[209] 0 Kinaesthetic Teaching 7 Policy - Trajectory

[92] 0 Passive Observation unspecified Costs/Rewards -

Trajectory Optimisation

[77] 0 Passive Observation 3 Plan - Primitive Sequence

[72] 0 Teleoperation 15 Plan - Primitive Sequence

[75] 0 Passive Observation 10 Plan - Primitive Sequence

[91] 10 Kinaesthetic Teaching 30 Costs/Rewards - Inverse Reinforce-

ment Learning

[47] 4.5 Teleoperation 8 Policy - Trajectory

[32] 4.5 Kinaesthetic Teaching +

Passive Observation

unspecified Plan - Primitive Sequence

[44] 4 Passive Observation 9 Policy - Trajectory

[82] 3.5 Kinesthaetic Teaching 5 Policy - Trajectory

[48] 3 Teleoperation 8 Policy - Trajectory

[74] 7.3 Passive Observation single Costs/Rewards -

Trajectory Optimisation

[86] 6.3 Kinaesthetic Teaching 9 Policy - Trajectory

[59] 5 Kinaesthetic Teaching 8 Policy - Trajectory

[65] 4 Kinaesthetic Teaching 5 Policy - Trajectory

[63] 3.3 Teleoperation 8 Policy - Low-level Actions

[37] 14.3 Passive Observation 10 Policy - Trajectory

[49] 7 Teleoperation 4 to 7 Plan - Primitive Sequence

[33] 8.2 Passive Observation +

Teleoperation

single Plan - Primitive Hierarchy

[81] 6.4 Kinaesthetic Teaching 2 Policy - Trajectory

[35] 4.4 Kinaesthetic Teaching +

Passive Observation

”multiple” Plan - Primitive Sequence

[90] 4.4 Passive Observation 99 Policy - Trajectory

[50] 3.4 Passive Observation single Plan - Primitive Sequence

[73] 7.5 Teleoperation single Plan - Primitive Sequence

[40] 6.2 Passive Observation single Policy - Trajectory

[64] 5.8 Kinaesthetic Teaching 100 Policy - Trajectory

[80] 5.5 Teleoperation 4 Policy - Trajectory

[41] 4.8 Passive Observation unspecified Plan - Primitive Sequence

[46] 3.2 Passive Observation single Plan - Primitive Sequence

[66] 6.7 Passive Observation 50 Policy - Trajectory

[87] 16.3 Kinaesthetic Teaching 8 Policy - Trajectory

[36] 10.9 Teleoperation +

Kinaesthetic Teaching

single Policy - Trajectory

[56] 5.1 Kinaesthetic Teaching single Policy - Trajectory

Ref. Avg. Citations Demonstration Method Demonstration Quan-

tity

Learning Method
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Table A.2: Overview of included References and their characteristics 2/2

[68] peg insertion (0.2

mm tolerance)

unrelated – spatial scaling +

task uncertainties

success rate (100% / 10)*

+ efficiency + effectiveness

[69] peg insertion (0.1

mm tolerance)

unrelated – spatial scaling +

similar object

success rate (96% /

100 same object, 95% /

100 similar object)* +

effectiveness

[79] gluing pick-and-

place

unrelated – unspecified success rate (83% / 6)* +

effectiveness

[52] interlocking related timber structure

assembly

spatial scaling +

task uncertainties

success rate (93% / 100)*

[45] peg insertion (0.5

mm tolerance)

practical PCB assembly spatial scaling success rate (100% / 9)* +

efficiency + effectiveness

[43] peg insertion (0.4

mm tolerance)

related RJ-45 connector spatial scaling +

temporal scaling +

similar object

success rate (86.9% / -)* +

efficiency + effectiveness

[85] pick-and-place unrelated – spatial scaling success

[208] peg insertion

(tolerance not

specified)

unrelated – unspecified success

[51] sewing related personalised stent

grafts

spatial scaling +

task uncertainties +

path optimisation +

similar objects

success

[57] peg insertion (1

mm tolerance)

related USB stick and

power plug

spatial scaling +

similar objects

success rate (90% / 20)* +

efficiency

[39] peg insertion (0.3

mm tolerance)

unrelated – spatial scaling success rate (93.8% / 80)*

+ effectiveness

[53] peg insertion

(0.01 mm toler-

ance, interference

fit)

unrelated – similar object success rate (100% / 20)*

+ effectiveness

[61] peg insertion

(0.89 mm

tolerance)

unrelated – spatial scaling +

task uncertainties

success rate (100% / 20)*

+ efficiency

[42] peg insertion (0.1

mm tolerances)

unrelated – spatial scaling success + effectiveness

[34] pick-and-place unrelated – spatial scaling +

similar object

success rate(82% / 50)* +

efficiency

[76] pick-and-place unrelated – unspecified success rate (90% /

10)* + accuracy error of

trajectory

[84] pick-and-place unrelated – spatial scaling success rate (85% / 20)* +

efficiency + effectiveness

[62] peg insertion (6

mm tolerance)

unrelated – spatial scaling +

task uncertainties

success rate (90% / 30)* +

effectiveness

[38] pick-and-place unrelated – path optimisation success rate (100% / 10)*

[71] stacking unrelated – spatial scaling success + effectiveness

[70] stacking unrelated – unspecified success rate (100% / 5)*

[78] pick-and-place /

bin-sorting

unrelated – spatial scaling +

sequence optimisation

success rate (100% / 20)*

+ effectiveness

[58] wiring related NIST Assembly

Board #3

spatial scaling success + efficiency

[89] wiring unrelated – task uncertainties success rate (100% / 10)*

Ref. Assembly Skill Practicability Application

Scenario

Generalisability Performance Measure

Continued on next page
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Table A.2: Overview of included References and their characteristics 2/2 (Continued)

[60] peg insertion (1.8

mm tolerance)

unrelated – spatial scaling success rate (62.5% / -)*

[67] peg insertion (2

mm tolerance)

unrelated – spatial scaling +

task uncertainties

success rate (96% / 50

moving hole, 98.6% / 80

error added at known loca-

tion)* + effectiveness

[83] pick-and-place unrelated – spatial scaling success rate (75% / 4)*

[88] screwing /

stacking

unrelated – spatial scaling +

path adjustment

success

[209] peg insertion

(tolerance not

specified)

unrelated – spatial scaling success + effectiveness

[92] stacking unrelated – spatial scaling success rate (96% / -)* +

effectiveness

[77] stacking unrelated – sequence optimisation success rate (77% / -)* +

efficiency

[72] stacking / pick-

and-place

unrelated – spatial scaling success rate (100% / 7

stacking, 100% / 7 pick-

and-place)* + efficiency +

effectiveness

[75] stacking unrelated – spatial scaling success rate (>90% /

10 trained tasks, >50%

/ 10 unseen tasks)* +

effectiveness

[91] pick-and-place unrelated – spatial scaling success + accuracy

[47] peg insertion (1

mm tolerance)

/ peg insertion

(unspecified)

practical /

related

condenser assem-

bly /

HDMI insertion

task uncertainties success rate (100% / 20)*

+ efficiency + effectiveness

[32] peg insertion

(0.3mm toler-

ances) / peg

insertion (0.01

mm tolerance)

/ bin-picking /

bolting

practical power breaker as-

sembly + set-top

box assembly

spatial scaling +

path optimisation

success rate (98% / 100

grasping, 97% / 100

inserting)*

[44] peg insertion

(0.42 mm

tolerance)

practical PCB assembly spatial scaling success

[82] pick-and-place unrelated – spatial scaling +

path adjustment

success + efficiency +

effectiveness

[48] peg insertion (1

mm tolerance)

/ peg insertion

(unspecified)

practical /

related

condenser as-

sembly / HDMI

connector

task uncertainties success

[74] pick-and-place

/ peg insertion

(1mm tolerance)

/ bin-picking

unrelated – spatial scaling +

path adjustment +

similar objects

success rate (95% / -

grasping, 72% / 10 peg

insertion, 86% / - se-

lect trained objects)* +

accuracy

[86] pick-and-place unrelated – path adjustment success

[59] peg inser-

tion (0.2mm

tolerance)

unrelated – spatial scaling +

task uncertainties +

similar objects

success + efficiency

Ref. Assembly Skill Practicability Application

Scenario

Generalisability Performance Measure

Continued on next page
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Table A.2: Overview of included References and their characteristics 2/2 (Continued)

[65] peg insertion

(20mm H7f7

tolerance)

unrelated – spatial scaling +

task uncertainties

success rate (100% / 3)*

[63] peg insertion

(0.006 mm

tolerance)

unrelated – task uncertainties success

[37] peg insertion

(tolerance not

specified)

unrelated – spatial scaling success rate (86.7% / 30)*

[49] peg insertion

(0.01 mm clear-

ance fit) / gluing

/ peg insertion

(0.05 mm clear-

ance fit)

practical sleeve-cavity

and coil-cylinder

assembly

spatial scaling +

task uncertainties

success + accuracy +

effectiveness

[33] peg insertion

(tolerance not

specified)

related Cranfield bench-

mark assembly

spatial scaling +

task uncertainties

success rate (50% / -)*

[81] pick-and-place unrelated – spatial scaling +

path adjustment

success rate (100% / 5)*

[35] hammering

/ bolting /

screwing

unrelated – spatial scaling success rate (90% / 20

hammering, 60% / 20

screwing, 75% / 20 bolt-

ing)* + effectiveness

[90] peg insertion

(tolerance not

specified)

unrelated – spatial scaling + tempo-

ral scaling

success + accuracy

[50] pick-and-place /

screwing

practical Switch assembly spatial scaling success rate (100% / 4

pick-and-place, 75% / 4

screwing)*

[73] pick-and-place unrelated – unspecified success rate (100% / 10)*

[40] peg insertion

(0.04 mm

tolerance)

unrelated – similar object success

[64] peg insertion (1

mm tolerance)

unrelated – spatial spacing +

task uncertainties

success + efficiency +

effectiveness

[80] peg insertion

(tolerance not

specified)

unrelated – spatial scaling success rate (100% / 4)*

[41] pick-and-place unrelated – spatial scaling success rate (90% / 20)/*

[46] pick-and-place practical PCB assembly spatial scaling success + effectiveness

[66] peg insertion

(25mm H7h7

tolerance + 1mm

chamfer)

unrelated – spatial scaling +

task uncertainties

success rate (98% / 25)*

[87] screwing unrelated – spatial scaling success rate (90% / 10)*

[36] peg insertion

(tolerance not

specified)

related Cranfield bench-

mark assembly

spatial scaling +

task uncertainties

success rate (86% / 50)* +

efficiency

[56] peg insertion

(tolerance not

specified)

related Cranfield bench-

mark assembly

spatial scaling +

task uncertainties

success rate (100% / 50

shaft and round pegs, 96%

/ 50 square pegs)*

Ref. Assembly Skill Practicability Application

Scenario

Generalisability Performance Measure
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B Material supporting Conducted Experiments

(a) Reproduction attempts of user 1

(b) Reproduction attempts of user 2

(c) Reproduction attempts of user 3
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(d) Reproduction attempts of user 4

(e) Reproduction attempts of user 5

(f) Reproduction attempts of user 6
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(g) Reproduction attempts of user 7

(h) Reproduction attempts of user 7

(i) Reproduction attempts of user 9

Figure B.1: Reproduction attempts during user study
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Figure B.2: Questionnaire template for user study
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Figure B.3: Reproduced trajectories of developed MTM-inspired CDMPs learning
framework and conventional one-model-fits-all approaches
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Volumes a, b, c ε1, ε2 x0 xT q0 qT

end-effector 0.10, 0.10, 0.25 1.0, 1.0 [0.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1, 0, 0, 0] [1, 0, 0, 0]

obstacle 0.1, 0.5, 0.1 0.1, 0.1 [0.5, 0.0,−0.35] [1.0, 0.0, 0.0, 0.0]

Wrenches λx,ii λq,ii β η

obs - trans 1.0 0.0

2.0 2.0obs - rot 0.0 20.0

obs - both 2.0 60.0

LfD αs Kii N τrep

CDMPs 7.0 600.0 40 τdem

Table B.3: Applied parameter values in validation experiment 1 of potential field based
robust reproduction method

Volumes a, b, c ε1,2 x0 xT q0 qT

end-effector 0.05, 0.05, 0.10 1.0, 1.0 [0.2, 0.0, 0.2] [1.2, 0.0, 0.2] [1, 0, 0, 0] [1, 0, 0, 0]

obstacle 1 0.1, 0.08, 0.07 0.5, 0.1 [0.45, 0.05, 0.25] [0.71, 0.5, 0.2,−0.3]

obstacle 2 0.05, 0.1, 0.08 1.0, 0.1 [0.6,−0.1, 0.7] [0.6,−0.2, 0.9, 0.5]

obstacle 3 0.05, 0.1, 0.08 1.0, 0.5 [0.8, 0.0, 0.7] [0.8, 0.1,−0.4, 0.2]

workspace 0.6, 0.5, 0.5 0.1, 0.1 [0.7, 0.0, 0.6] [1.0, 0.0, 0.0, 0.0]

goal 0.05, 0.05, 0.1 1.0, 1.0 [1.2, 0.0, 0.2] [1.0, 0.0, 0.0, 0.0]

Wrenches λx,ii λq,ii β η κii c0

obstacle 1 50.0 3000.0 1.0 1.0 – –

obstacle 2 20.0 700.0 1.0 2.0 – –

obstacle 3 10.0 200.0 2.0 2.0 – –

workspace 5.0 1.0 1.0 1.0 – –

goal – – – – 10.0 0.1

LfD αs Kii N τrep

CDMPs 7.0 500.0 80 τdem

Demo Traj 0.2 + e−0.1∗(t−T/2)2

Table B.4: Applied parameter values in validation experiment 2 of potential field based
robust reproduction method
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CDMPs αs Kii
N

Tdem
(low/mod/high)

τrep
τdem

(test/coll/ind)

reaching 6.9 70.0 1.0 / 1.0 / 1.0 4.0 / 1.0 / 250mm/s

grasping 6.9 70.0 1.0 / 5.0 / 10.0 4.0 / 1.0 / 100mm/s

moving 6.9 500.0 1.0 / 1.0 / 1.0 4.0 / 1.0 / 250mm/s

positioning 6.9 500.0 1.0 / 5.0 / 10.0 4.0 / 1.0 / 100mm/s

releasing 6.9 70.0 1.0 / 5.0 / 10.0 4.0 / 1.0 / 100mm/s

reaching 6.9 500.0 1.0 / 1.0 / 1.0 4.0 / 1.0 / 250mm/s

Endeffector a, b, c ε1,2 x q

moving 0.08, 0.04, 0.06 0.1, 0.1 xTCP + 0.25|z qTCP

positioning 0.04, 0.04, 0.04 0.1, 0.1 xTCP + 0.27|z qTCP

reaching 0.106, 0.021, 0.04 0.1, 0.1 xTCP + 0.18|z qTCP

for voxels 0.04, 0.04, 0.04 0.1, 0.1 xTCP + 0.27|z qTCP

Environment a, b, c ε1,2 x q

wall 0.3, 0.03, 0.08 0.1, 0.1 [0.0,−0.35, 0.087] [1.0, 0.0, 0.0, 0.0]

obstacle 0.033, 0.033, 0.09 0.1, 1.0 [−0.05,−0.48, 0.09] [1.0, 0.0, 0.0, 0.0]

voxels 0.04, 0.04, 0.04 0.1, 0.1
[
0.65
0.85

, -0.35
0.35

, 0.063
0.363

]
[1.0, 0.0, 0.0, 0.0]

workspace 0.4, 0.4, 0.2 0.1, 0.1 [0.0,−0.58, 0.213] [1.0, 0.0, 0.0, 0.0]

goal 0.04, 0.04, 0.04 0.1, 0.1 xTCP,T + 0.27|z [1.0, 0.0, 0.0, 0.0]

Wrenches β η c0 λ / κ

wall 1.0 1.0 – [4.0, 4.0, 0.0, 0.0, 0.0, 500.0]

obstacle 1.0 1.0 – [4.0, 4.0, 0.0, 0.0, 0.0,−1000.0]

voxels 1.0 1.0 – [0.0, 0.0, 5.0, 0.0, 0.0, 0.0]

workspace 1.0 1.0 – [0.0, 0.0, 5.0, 0.0, 0.0, 0.0]

goal – – 0.01 [100.0, 100.0, 0.0, 50.0, 50.0, 50.0]

* [0.65− 0.85,−0.35− 0.35, 0.063− 0.363]

Table B.5: Applied parameter values in validation experiment of LfD-IA framework
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C Materials supporting Discretisation Systems

(a) Methods-time data
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(b) Methods-time data (continued)

Figure C.1: Methods-Time Data of MTM-1 discretisation system
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Norbert Krüger, and Aleš Ude. Adaptation of manipulation skills in physical contact

with the environment to reference force profiles. Autonomous Robots, 39(2):199–217,

2015. ISSN 15737527. doi: 10.1007/s10514-015-9435-2.

[37] David A. Duque, Flavio A. Prieto, and Jose G. Hoyos. Trajectory generation

for robotic assembly operations using learning by demonstration. Robotics and

Computer-Integrated Manufacturing, 57(July 2017):292–302, 2019. ISSN 07365845.

doi: 10.1016/j.rcim.2018.12.007.
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[52] Aljaz Kramberger, Anja Kunic, Iñigo Iturrate, Christoffer Sloth, Roberto Naboni,

and Christian Schlette. Robotic assembly of timber structures in a human-robot

collaboration setup. Frontiers in Robotics and AI, 8(January):1–14, 2022. ISSN

22969144. doi: 10.3389/frobt.2021.768038.

[53] Yanqin Ma, Yonghua Xie, Wenjun Zhu, and Song Liu. An efficient robot precision as-

sembly skill learning framework based on several demonstrations. IEEE Transactions

on Automation Science and Engineering, 20(1):124–136, 2022. ISSN 15583783. doi:

10.1109/TASE.2022.3144282.

[54] NIST. Assembly performance metrics and test methods, 2018. URL

https://www.nist.gov/el/intelligent-systems-division-73500/

robotic-grasping-and-manipulation-assembly/assembly.

[55] K. Collins, A. J. Palmer, and K. Rathmill. The development of a european

benchmark for the comparison of assembly robot programming systems. In Robot

Technology and Applications: Proceedings of the 1st Robotics Europe Conference

Brussels, June 27–28, 1984, number 2, pages 187–199. Springer, Springer Berlin

Heidelberg, 1985. ISBN 0903608715.

[56] Fares J. Abu-Dakka, Bojan Nemec, Aljaž Kramberger, Anders Glent Buch, Nor-
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