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Abstract Ecosystem respiration (Reco) arises from interacting autotrophic and heterotrophic processes
constrained by distinct drivers. Here, we evaluated up‐scaling of observed components of Reco in a mature
eucalypt forest in southeast Australia and assessed whether a land surface model adequately represented all the
fluxes and their seasonal temperature responses. We measured respiration from soil (Rsoil), heterotrophic soil
microbes (Rh), roots (Rroot), and stems (Rstem) in 2018–2019. Reco and its components were simulated using the
CABLE–POP (Community Atmosphere‐Biosphere Land Exchange–Population Orders Physiology) land
surface model, constrained by eddy covariance and chamber measurements and enabled with a newly
implemented Dual Arrhenius and Michaelis‐Menten (DAMM) module for soil organic matter decomposition.
Eddy‐covariance based Reco (Reco.eddy, 1,439 g C m− 2 y− 1) was slightly higher than the sum of the respiration
components (Reco.sum, 1,295 g C m− 2 y− 1) and simulated Reco (1,297 g C m− 2 y− 1). The largest mean
contribution to Reco was from Rsoil (64%) across seasons. The measured contributions of Rh (49%), Rroot (15%),
and Rstem (22%) to Reco.sum were very close to model outputs of 46%, 11%, and 22%, respectively. The modeled
Rh was highly correlated with measured Rh (R

2 = 0.66, RMSE = 0.61), empirically validating the DAMM
module. The apparent temperature sensitivities (Q10) of Reco were 2.22 for Reco.sum, 2.15 for Reco.eddy, and 1.57
for CABLE‐POP. This research demonstrated that bottom‐up respiration component measurements can be
successfully scaled to eddy covariance‐based Reco and help to better constrain the magnitude of individual
respiration components as well as their temperature sensitivities in land surface models.

Plain Language Summary Ecosystem respiration (Reco) represents losses of carbon from the land to
the atmosphere and consists of aboveground plant respiration and belowground root and microbial respiration.
Because respiration processes increase exponentially with temperature, understanding their contributions to
Reco is critical to predicting carbon cycle responses to warming. We used field observations to test and improve
the modeling of respiration components of an evergreen eucalypt forest in Australia. Field measurements
indicated that the model adequately captured the quantitative contributions of respiration components to Reco. In
particular, the improved microbial version of the model was in good agreement with measurements. However,
improvements are needed for modeling and measuring the autotrophic components from roots, stems, and forest
canopy. This study highlights that scaling up individual respiratory sources and their temperature responses
provides insights to understanding ecosystem scale carbon cycle‐climate feedbacks.

1. Introduction
Ecosystem respiration (Reco), the second largest carbon flux between the biosphere and the atmosphere after gross
primary productivity, plays a critical role in the response of terrestrial ecosystems to changing climate (Fried-
lingstein et al., 2023; IPCC, 2022; Zhang et al., 2021). Reco is the sum of autotrophic respiration by plants (Ra),
often partitioned into leaf, stem, and root components, and heterotrophic respiration by micro‐organisms (Rh).
Each of these components responds differently to environmental drivers and thus to global change factors
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(Loveys et al., 2003; Trumbore, 2006; Wang et al., 2014). Soil, air, and plant surface temperature affect the
different components of Ra, while soil biophysical environment (temperature and moisture) and soil carbon
substrate availability primarily affect Rh (Davidson et al., 2006; Sihi et al., 2018). Measuring Reco concurrently
and its components can improve our understanding of the controlling factors and thus reduce uncertainties in
modeled predictions of future ecosystem carbon cycling and functioning (Carbone et al., 2016; Oikawa
et al., 2017; Phillips et al., 2017).

The contributions of respiratory components to Reco vary across temporal and spatial scales differently depending
on environmental drivers and plant phenological patterns (Brændholt et al., 2018). In particular, temperature
sensitivity, which can be defined with several metrics, is commonly used in respiration models (Johnston
et al., 2021). In a mature eucalypt forest, we recently demonstrated unrealistically high apparent thermal response
of Reco compared to soil respiration (Rsoil) (Renchon et al., 2021) suggesting that the aboveground components
such as leaf respiration (Rleaf) may respond more sensitively to temperature changes in the study site than
belowground components. However, a meta‐analysis demonstrated that Rh can have a stronger and more sus-
tained response to warming than Ra (Wang et al., 2014) but it has also been shown that presence of roots increases
temperature sensitivity of Rsoil (Li et al., 2020). Clearly, temperature sensitivities of respiration differ among
components: leaves and roots across several ecosystems (Loveys et al., 2003); roots and microbes in a temperate
forest (Noh et al., 2017); stems (Noh et al., 2021), roots, and soil in various forest ecosystems (Wang et al., 2006);
leaves, stems, and soil in subtropical forests (Chi et al., 2020); and roots, mycorrhizal hyphae, and microbes in a
temperate forest (Makita et al., 2021). These differences suggest that more concurrent measurements of respi-
ratory components and related mechanisms of temperature sensitivity are needed to improve modeling of Reco

dynamics and future climate (Liu et al., 2022; Qubaja et al., 2020; Renchon et al., 2021; Sun et al., 2023).

Several techniques are used to estimate Reco in forest ecosystems, but often they do not agree, contributing to
uncertainties in global carbon cycle models (Wang et al., 2017). The most widely used method is the direct top‐
down estimation by the eddy covariance technique which measures net ecosystem exchange (NEE) as the sum of
vertical turbulent flux and change in storage in a control volume (Aubinet et al., 2012; Baldocchi, 2014). Eddy
covariance Reco (Reco.eddy) can then be derived from NEE using flux partitioning algorithms (Isaac et al., 2017;
Tramontana et al., 2020). In addition, Reco can be estimated by bottom‐up approaches (Reco.sum) as a sum of
chamber‐based measurements of multiple respiratory components that have been scaled‐up to the ecosystem level
(Law et al., 1999; Wang et al., 2017). Although labor‐intensive and prone to sampling biases in space and time,
chamber methods have an advantage over the eddy covariance technique because of their ability to distinguish
CO2 emissions from components such as soil, foliage, and woody tissue (Barba et al., 2018). Moreover, common
problems and biases for eddy covariance partitioning occur when turbulence is insufficient (Aubinet et al., 2012)
and when simple temperature functions such as Q10 (a parameter of the temperature sensitivity by which
respiration rate increases with a 10°C increase in temperature) are used to extrapolate from nighttime to daytime
(Wohlfahrt & Galvagno, 2017). These empirical challenges contribute to a longstanding mismatch between up‐
scaled Reco.sum and top‐down Reco.eddy that has yet to be resolved (Phillips et al., 2017; Speckman et al., 2015;
Wang et al., 2017). Therefore, chamber‐based measurements are essential to estimate the contribution and un-
certainty of each component flux to the overall Reco and can be insightful for validating eddy covariance data and
models (Liu et al., 2022; Qubaja et al., 2020; Renchon et al., 2021; Wang et al., 2017).

A recent analysis demonstrated that modeled Reco rates were significantly more uncertain than eddy covariance
observations and that the estimated temperature sensitivity was lower in the models than observations (Sun
et al., 2023). Robust predictions of terrestrial carbon‐climate feedbacks require new research to address these
uncertainties and biases at various scales. The Community Atmosphere‐Biosphere Land Exchange model–
Population Orders Physiology (CABLE‐POP, Haverd et al., 2018) is a land surface model that can be applied
at site or ecosystem scales and is used for global simulations that contribute to the annual global carbon budget
assessment (Friedlingstein et al., 2023). All respiration components in the model are temperature dependent on
daily timescales and Ra acclimates to seasonal changes in growth temperature (Aspinwall et al., 2016; Atkin
et al., 2015; Haverd et al., 2018). The default model version uses standard empirical relationships to represent the
effects of soil temperature and moisture on Rh. However, the response of Rh to temperature relies in part also on
variations in substrate availability (Davidson & Janssens, 2006). Therefore, we implemented the Dual Arrhenius
Michaelis‐Menten (DAMM) framework (Davidson et al., 2012) into CABLE‐POP which accounts for the
combined effects of substrate, temperature, and moisture on Rh. DAMM improved estimates of decomposition
fluxes in moisture‐limited forests in the northeastern US (Sihi et al., 2018), informed soil CO2 efflux estimates in a
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eucalypt forest exposed to elevated CO2 (Drake et al., 2018), and enhanced the validity of warming effects on soil
carbon when incorporated into the Terrestrial Ecosystem Model (Hao et al., 2015).

In this study, we evaluated the scaling of bottom‐up (chamber‐based) and top‐down (eddy covariance‐based)
estimates of respiratory CO2 fluxes in a warm‐temperate eucalyptus forest in southeast Australia, the Cumberland
Plain near Sydney. We measured the seasonal variability in Reco and its components using automatic chambers
and eddy covariance techniques and compared the measurements with simulations using an improved version of
CABLE‐POP that includes soil organic matter decomposition fluxes via the DAMMmodel. We aimed to quantify
the apparent temperature sensitivities and the contribution of each observed respiration component to total Reco in
order to reduce uncertainties and improve the modeled representation of respiratory processes from components
to ecosystem scales.

2. Materials and Methods
2.1. Site Description

This study was conducted in the Cumberland Plain forest where the EucFACE and flux tower sites are located
(latitude − 33.6152, longitude 150.7236, 23 m above sea level), near Sydney, Australia. Ecosystem component
respiration rates were measured at the EucFACE study site, within the same patch of mature dry sclerophyll
forest, ∼1.4 km from the flux tower (Renchon et al., 2021). The flux site is a Terrestrial Ecosystem Research
Network (TERN) OzFlux SuperSite (Fluxnet code: AU‐Cum). The plant community of the study sites has
remained unmanaged for at least the past 90 years (Jiang et al., 2020) and undisturbed by fire in >20 years
(Renchon et al., 2021). The tree canopy was dominated by Eucalyptus tereticornis Sm.; stand density varied
between 600 and 1,000 trees ha− 1 with trees ranging from 18 to 23 m tall and mean diameter at breast height of
18.8 ± 0.6 cm (S.E.) (Noh et al., 2021). The understory vegetation consisted of a subcanopy dominated by
Melaleuca decora (Salisb.) ex Britten, a shrub layer dominated by Bursaria spinosa Cav. and Breynia oblon-
gifolia Müll.Arg., and ground cover of grasses and forbs. Standing aboveground biomass at both sites was
∼4,700 g C m− 2, and total net primary production was about 600 g C m− 2 yr− 1 averaged across 2014–2017
(Renchon et al., 2021).

The mean (1994–2021) annual temperature was 17.7°C and mean annual precipitation was 741.1 mm (Bureau of
Meteorology, station 067105 in Richmond, NSW Australia, http://www.bom.gov.au). During the study period
(2018–2019), the temperature was higher than average (18.6°C in 2018 and 18.7°C in 2019) while the precipi-
tation was below average with 524 mm in 2018 and 514 mm in 2019.

2.2. Flux Measurements

2.2.1. Measurements of Rsoil, Rh, and Rroot

Measurement methods and abbreviations are summarized in Table S1 of the Supporting Information S1 for
reference. We measured half‐hourly CO2 fluxes from soil surface (Rsoil) using three automated CO2 flux mea-
surement systems (LI‐8100A infrared gas analyzers, LI‐COR Environmental, Lincoln, NE, USA) each coupled to
an automated soil respiration chamber of 20 cm diameter (Li‐8100‐103) at three different ambient plots (rings) at
EucFACE (n = 3, separated by >200 m) (Drake et al., 2018). The raw data were quality controlled with a
threshold criterion of coefficient of variation (<0.13) and coefficient of determination of the fit (R2 > 0.97). We
retained 52%, 54%, and 61% of potential data from chamber one to chamber three, respectively, due to mechanical
interruptions or quality control checks. We gapfilled the data from each of the three chambers individually using
the semi‐mechanistic Dual Arrhenius and Michaelis‐Menten kinetics (DAMM) model (Davidson et al., 2012;
Renchon et al., 2021) and averaged the three independent chamber time‐series to produce a continuous data set of
Rsoil.

Soil heterotrophic respiration (Rh) was measured near the LI‐8100 auto‐chambers using three forced diffusion
(FD) chambers (Eosense eosFD, Dartmouth, Nova Scotia, Canada) (Figure S1 in Supporting Information S1).
Root exclusion involved excavating soil pits by horizon to 45‐cm depth, removing roots, and replacing root‐free
soil and the intact litter layer into PVC pipe (20‐cm diameter) in January 2018. Data were collected every 30 min
for 18 months from February 2018 to August 2019. We only used the Rh data starting 7 months after root
exclusion treatment to avoid disturbance artifacts. The three chambers collected 89%, 96%, and 92% of the study
period. Flux data were removed when malfunction events were flagged by the eosFD software (e.g., power
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outages, negative values as measurement errors). Root respiration was estimated as the difference between Rsoil

and Rh with an assumption that the LI‐8100 and FD chambers have no artifacts with respect to each other
(Nickerson et al., 2013; Risk et al., 2011). Negative values (4.9% of total measurements) were excluded.

2.2.2. Measurements of Rstem

Wemeasured CO2 flux from the main stem surface (Rstem) for nine even‐sized canopy dominant trees (three trees
in each of the three ambient plots at EucFACE) using CO2 flux measurement systems (LI‐8100, Licor Envi-
ronmental, Lincoln, NE, USA) coupled to a respiration chamber of 10 cm diameter (LI‐8100‐102) on PVC collars
permanently attached to stems at 0.75 m height (Noh et al., 2021) (Figure S1 in Supporting Information S1). Rstem

was measured during daytime hours (between 08:00 and 17:00) and 12 campaigns were conducted between
January 2018 and February 2019 to achieve a wide temperature range across an entire year. Rstem was measured
six times per tree within each campaign over 3 days to establish tree‐specific relationships between Rstem and
temperature. Rstem was calculated for each plot as the mean of the three trees and upscaled to the stand level on a
per m2 ground area basis by using the mean ratio of stem axial surface area per unit of soil surface area
(0.572 m2 m− 2) from terrestrial LiDAR (Jiang et al., 2020; Noh et al., 2021). The averaged scaling factor was
applied to all three plots. Rstem was also measured continuously during day‐ and night‐time using three forced
diffusion (FD) chambers (Eosense eosFD, Dartmouth, Nova Scotia, Canada) by attaching them to the main stem
at 1 m height (Figure S1 in Supporting Information S1). Data were collected every 30 min for the duration of the
study period. We collected 93%, 70%, and 99% of the study period and non‐gapfilled data were used to calculate
apparent Q10, a temperature sensitivity metric derived from spatial and temporal changes in temperature (Sec-
tion 3). Flux data were removed when malfunction events were flagged by the eosFD software.

2.2.3. Eddy Covariance Based Estimates of Reco

Net ecosystem exchange (NEE) was measured at the Cumberland Plain flux tower with a CSAT sonic
anemometer (Campbell Scientific, Inc., Logan UT), LI‐7500A infrared gas analyzer (Licor, Inc., Lincoln, NE),
and profiler system integrated into PyFluxPro pipeline and processed according to TERN‐OzFlux protocols
(Isaac et al., 2017). Briefly, raw (10 Hz) data were cleaned and filtered (u* > 0.2 m s− 1) with EddyPro (Burba
et al., 2013) within the SmartFlux‐2 processing unit (Licor, Inc., Lincoln NE) to provide half‐hourly fluxes of
NEE (Griebel et al., 2020). Quality‐controlled NEE was gapfilled using incoming short‐wave radiation (29 m
height; CNR4 radiometer, Kipp&Zonen, Delft, the Netherlands), vapor pressure deficit, air temperature (29 m
height; HMP45, Vaisala, Finland), soil temperature (5 cm depth; Campbell T‐107 thermocouple Logan, UT,
USA), and soil water content (5 cm depth; CS616, Campbell Scientific, Logan UT) before partitioning NEE into
Reco.eddy and GPP components utilizing the SOLO neural network from PyFluxPro (Isaac et al., 2017). SOLOwas
trained on air temperature, soil temperature, and soil moisture; however, non‐gapfilled data were used for Q10

estimation (Section 2.2.5).

2.2.4. Meteorological Drivers for Reco and Its Respiration Components

At the EucFACE site, air temperature (Tair), stem surface temperature (Tstem), leaf temperature (Tleaf), and soil
temperature (Tsoil) were measured at half‐hourly resolution. Tair was measured at 2 m height at six locations using
HMP155 sensors (Vaisala, Vantaa, Finland). Tstem was measured with copper‐constantan type‐T thermocouples
inserted to a 3 cm depth into the three stems and 5 cm below the stem collars. Tleaf was measured half‐hourly on
canopy surfaces of 24 trees (one sensor per tree) using infrared thermometers (SI‐121‐L10, Apogee Instruments,
Inc., USA). Tsoil was measured at 5 cm soil depth within 1 m of the auto‐chambers. The soil volumetric water
content (θ) was measured half‐hourly at six different locations with two sets of probes installed at 5 and 35 cm soil
depths (ThetaProbes ML2x, Delta‐T Devices Ltd, Cambridge, UK).

2.2.5. CABLE‐POP Modeled Respiration Components

The land surface model CABLE‐POP (Haverd et al., 2018) simulates exchanges of carbon, water, and energy
between the land surface and the atmosphere. The twomain components are a biogeophysical core module (Wang
& Leuning, 1998) and a biogeochemistry module (Wang et al., 2010), which simulates carbon, nitrogen, and
phosphorous cycling at a daily time step. The model simulates Rh from soil carbon and litter pools and Ra from
growth and maintenance respiration from leaves, stems, and fine roots separately, as described in detail below
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(Haverd et al., 2018; Wang et al., 2010). In the new version used here (r7523), Rh was calculated following the
DAMM model (Davidson et al., 2012; Sihi et al., 2018). Modeled Reco was defined as sum of Rh and Ra.

CABLE‐POP distinguishes three soil carbon pools (microbial, slow, passive) and three litter pools (metabolic,
structural, coarse woody debris) which differ with respect to their turnover times. Daily heterotrophic respiration
of soil carbon (Rh,soil) is calculated as:

Rh,soil = ∑

npool

p=1
ksoil,p · Csoil,p (1)

where ksoil,p (day
− 1) is the turnover rate for soil pool p and Csoil,p (kg C m− 2) is the carbon content of pool p. ksoil

for each soil pool is given by:

ksoil,mic = xsoil · kbase,mic · (1.0 − 0.75 · ( fsilt + fclay)) (2)

ksoil,slow = xsoil · kbase,slow (3)

ksoil,pass = xsoil · kbase,pass (4)

where xsoil is a rate modifier, kbase is a base turnover rate (day
− 1) for each soil pool (see Table S2 in Supporting

Information S1), fsilt and fclay are soil fractions of silt and clay, respectively. The rate modifier xsoil was calculated
according to the DAMM model (Sihi et al., 2018):

xsoil = 10α · f(T) · f(M) (5)

where α is a pre‐exponent factor representing base respiration and f(T) and f(M) are temperature and moisture
response functions, respectively:

f(T) =
exp (− Ea

Rgas ∗ Tsoil
)

exp (− Ea
Rgas ∗Tref

)
(6)

f(M) =
[Enz]

Kenz + [Enz]
·

[O2]

KO2 + [O2]
(7)

where Ea is the activation energy (62,000 J mol− 1) (Table S2 in Supporting Information S1), Rgas is the universal
gas constant (8.314 J mol− 1 K− 1), Tsoil is the root fraction‐weighted average soil temperature (K), and Tref is the
reference temperature (283 K). [Enz] is the modeled concentration of active enzymes (mg C cm− 3) dependent on
the thickness of soil water films (Sihi et al., 2018):

[Enz] = EnzPool ×Dl × θ3 (8)

where Dl is the diffusivity of enzymes in liquid and θ is the volumetric soil water content (Table S1 in Supporting
Information S1). EnzPool (the enzyme pool in the soil solution, mg C cm− 3; Table S2 in Supporting Informa-
tion S1) and α were constrained by calibrating CABLE‐POP against quality filtered observations of evapo-
transpiration, and net ecosystem production (from eddy covariance data) and soil respiration (from chamber
measurements) at the site from 2014 to 2017 using the PEST optimization package (model‐independent
Parameter Estimation and Uncertainty Analysis, http://www.pesthomepage.org/) (Renchon, 2019). For the
optimization and all subsequent simulations, the model was forced with meteorological data measured at the site.
[O2] is the oxygen concentration (mol mol− 1), and Kenz (mg C cm− 3) and KO2 (mol mol− 1) are the Michaelis‐
Menten constants for active enzymes and O2, respectively. [O2] in the soil is calculated as:

[O2] = Dva · fair4/3 (9)
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where Dva is the diffusion coefficient for O2 in air and fair is the air‐filled porosity of the soil. We accounted for the
temperature dependency of Dva following Haverd and Cuntz (2010). The power function represents tortuosity in
diffusion path length for O2 in soil. For more information, see Davidson et al. (2012) and Sihi et al. (2018).

Equivalent formulations have been implemented for respiration of the three litter pools (metabolic, structural,
coarse woody debris) whose turnover rates are calculated in the same way as the slow and passive soil pools
(Equations 3 and 4) but with different base turnover rates (kbase, see Table S2 in Supporting Information S1).
Calculation of the DAMM rate modifier for litter was assumed identical to the one for soil (xlitter = xsoil;
Equations 6–9). Simulated Rh is summed across soil and litter components.

Ra is the sum of maintenance respiration (Rmain) and growth respiration (Rgrowth). CABLE‐POP simulates
maintenance respiration from leaves, stem components, and fine roots separately. Leaf maintenance respiration
(Rmain,leaf; μmol m− 2 s− 1) depends on the maximum carboxylation capacity at 25°C (Vcmax,25; μmol m− 2 s− 1) and
acclimates to temperature (Atkin et al., 2015). For evergreen broadleaf trees, the following relationship is used:

Rmain,leaf = 1.2818 + 0.0116 ∗ Vcmax,25 − 0.0334 ∗TWQ ∗ fRd (10)

where TWQ is the air temperature of the warmest quarter (°C) and Vcmax,25 is modeled as a function of leaf N
content following Walker et al. (2014). fRd is calculated as:

fRd = (3.09 − 0.043 (
Tleaf + 25.0

2
))

(
Tleaf − 25.0

10 )

∗ fwsoil ∗ Π ∗ fPAR (11)

where Tleaf is leaf temperature (°C), fwsoil is a water stress scalar (Haverd et al., 2013), Π is a factor describing the
scaling from leaf‐to‐canopy level (Wang & Leuning, 1998), and fPAR is a function accounting for light inhibition
of Rmain,leaf (Brooks & Farquhar, 1985). The temperature response for Rmain,leaf (first term in Equation 11) was
calculated following Atkin et al. (2015).

Note that Rmain,leaf is the only respiration component that is calculated at the half‐hourly time scale in the model,
while all other components (i.e., stem and fine roots) are calculated at daily time scales.

Maintenance respiration of stem (including coarse roots) and fine roots is given by:

Rmain,x = cr,x · rbase,x · exp(308.56 · (
1.0
56.0

−
1.0

T + 46.02 − 273.15
)) (12)

where cr,x is a component‐specific respiration coefficient depending on temperature and tissue nitrogen content
(gN m− 2), rbase,x is the base maintenance respiration rate. The subscript x represents stems and fine roots,
respectively. The temperature response is modeled as a hyperbolic response function where T (°C) represents air
temperature for Rmain,stem, and soil temperature for Rmain,fine root. See Table S2 in Supporting Information S1 for a
list of parameter or variable values.

Growth respiration is calculated at the whole plant level:

Rgrowth = (1 − Geff) · (GPP − Rmain) (13)

where Geff is the efficiency of growth respiration which is estimated from the ratio of leaf phosphorus content to
leaf nitrogen content (PNleaf):

Geff = 0.65 + 0.2
PNleaf

PNleaf+1/15
(14)

For this study, Rgrowth was divided into leaf, stem, and fine root components by assuming that the fraction of
Rgrowth attributed to a specific plant component x equals the fraction of NPP allocated to the respective component
(fCalloc,x):
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Rgrowth,x = fCalloc,x · Rgrowth (15)

3. Data Analyses
While we use Arrhenius and hyperbolic temperature functions in the models, we use the more simplistic apparent
Q10 metric to compare measured respiration rates to reported literature values and across observed and simulated
R components. The term “apparent” is used to indicate that these are observed or model‐output temperature
responses that may also be affected by other confounding environmental factors, such as soil moisture, vapor
pressure deficit or substrate supply, and do not necessarily reflect intrinsic temperature sensitivities of the en-
zymes when unlimited by other environmental constraints (Davidson & Janssens, 2006). The exponential
function was applied only to non‐gapfilled observations:

Rcomponent = a · ebT (16)

where Rcomponent is the CO2 flux per unit surface area (g C m− 2 d− 1) from respiration components, T is either leaf,
stem, root, or soil temperature (°C), a and b are fitting parameters. We calculated the apparent temperature
sensitivity of respiration rates by using non‐gapfilled data in the following exponential function:

Q10 = e10×b (17)

where b is the fitting parameter from Equation 16. We also calculated normalized R10 at measurement temper-
ature of 10°C as a basal respiration rate of each component. R at any measured temperature T is predicted using
the following equation:

R = R10 · Q10
(T− 10)/10 (18)

where R10 and Q10 are basal respiration and apparent temperature sensitivity for each component.

Direct, canopy‐scale respiration (Rcanopy) measurements were not possible so they were calculated from leaf
respiration (Rleaf) and scaled by temperature and leaf area (Ouimette et al., 2018). Rleaf was measured over a leaf
temperature (T) gradient for the study years and used to fit the following equation:

Rleaf = R25 · kT(T− 25)/25 (19)

where R25 was R at 25°C, the value of which was taken as 1.3 μmol m− 2 s− 1 for the night time, and
0.9 μmol m− 2 s− 1 during the daytime, and kT was a regression coefficient of 0.078 (Yang et al., 2020). Daily Rleaf

was upscaled to Rcanopy at the stand level with hourly average air temperature used as T and daily values of
overstory leaf area index (0.20–1.42 m2 m− 2, Figure S2 in Supporting Information S1) for the study period of
2018–2019 (Yang et al., 2020). Estimates of apparent Q10 and R10 of Rcanopy were recalculated using Equation 17,
where b was kT, and Equation 18, respectively.

To estimate annual R rates, we gapfilled using hourly T from stem, canopy, air, and soil at 5 cm‐depth throughout
the entire year. Microbial respiration (Rh) was gapfilled with the DAMM model (Arrhenius temperature sensi-
tivity modified by substrate supply). The remaining root, stem, and canopy R components were gapfilled with
observed apparent Q10 functions. Measured Reco at stand level (Reco.sum) was determined as the sum of its
gapfilled components (Rh, Rroot, and Rstem) and Rcanopy.

4. Results
4.1. Seasonal Variations in Temperature and Soil Moisture

The seasonal patterns of air, leaf, stem, and soil temperature were characterized by a warm spring/summer/
autumn period from October to March and a cool period from April to September (Figures 1a and 1b). During the
study period, daily mean temperature varied between 5.2 and 31.2°C for air, 6.2 and 31.8°C for leaf, 8.1 and
31.2°C for stem in 15 July 2018 and 7 January 2018, respectively, and between 8.8°C (16 July 2018) and 30.6°C
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Figure 1. Seasonal variations in daily values of (a) temperature (T) of air and soil, (b) T of leaf and stem surface, (c) rainfall, (d) soil volumetric water content (θ), and
(e) daily mean respiration rate (R). Ecosystem respiration is estimated by eddy covariance method and gapfilled with a neural network, soil respiration is measured by
auto‐chambers (Li‐8100A), heterotrophic respiration and stem respiration are measured by Forced diffusion auto‐chambers (eosFD), and root respiration is estimated by
the difference between total soil respiration and heterotrophic respiration.
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(18 January 2019) for soil. The volumetric soil moisture fluctuated with rainfall (Figures 1c and 1d) and varied
between 2.9% and 18.6% at 5 cm soil depth and 8.0% and 17.2% at 35 cm soil depth.

4.2. Seasonal Variations in Reco and Its Components

Most Reco components showed a similar seasonal trend to that of temperature throughout the year with the lowest
respiration rates during the cold season and the highest rates during the warm season (Figure 1e). The highest
daily mean Reco.eddy was 14.3 g C m− 2 d− 1 (22 January 2019) with peaks in mid‐summer coinciding with the
highest daily mean Rsoil of 5.8 g C m− 2 d− 1 (22 January 2019) and Rh of 4.6 g C m− 2 d− 1 on 23 January 2019. The
second phase of peaks in Reco.eddy was observed in autumn (March–April), coinciding with the highest daily mean
Rroot of 1.5 g C m− 2 d− 1 (3 April 2019) and highest daily mean Rstem of 2.8 g C m− 2 d− 1 (5 April 2019) although
Rroot above 1.0 g C m− 2 d− 1 and Rstem above 2.0 g C m− 2 d− 1 were mainly observed in summer.

4.3. Responses of Respiration Components to Temperature

Reco and its components increased with increasing temperature and the apparent Q10 of Reco.eddy from eddy flux
observation was 2.15, comparable to that of the sum of the components (2.22) (Table 1, Figure S3 in Supporting
Information S1). Apparent Q10 values were 2.38 for Rsoil, 2.45 for Rh, 1.86 for Rstem, and 4.33 for Rcanopy (Table 1;
Figure S2 in Supporting Information S1). Apparent Q10 values inferred from CABLE‐POP outputs for Rcanopy,
Rstem, and Rroot were all considerably lower than those based on non‐gapfilled observations, whereas apparent Q10

of Rh of 2.34 inferred from CABLE‐POP was comparable to the field‐measured apparent Q10 of 2.45.

4.4. The Measured Contributions of Respiration Components to Reco

Reco.sum and its components all generally followed the seasonal pattern of temperature with spikes following wet‐
up events (Figures 1 and 2a). The mean contribution of respiration components to annual Reco.sum was 64.5% for
soil, 22.5% for stem, and 13.0% for canopy leaves (Table 1). The mean contribution of Rh to total Rsoil was 76%
and that of Rroot was 24%. The contribution of respiration components to the Reco.sum differed between the
seasons. Rsoil (Rh + Rroot) contributed from 42% to 77% of Reco.sum across the study period, while Rstem

contributed up to 42% of Reco.sum during the colder months of August and September and 14% of Reco.sum in
March (Figure 2b). Rcanopy showed a high seasonality in its contribution to Reco.sum contributing 4%–37% of Reco.

sum across the study period. Rroot also showed strong seasonality but smaller magnitude contributing 4%–10% of
Reco.sum.

Table 1
Measured and Simulated Basal Respiration Per Unit Ground Area (R10, mg C m− 2 d− 1), Apparent Temperature Sensitivity
(Q10) of Non‐Gapfilled Respiratory Components, Annual Respiration Rate Per Unit Ground Area (R, g C m− 2 yr− 1), and the
Percent Contribution of (Gapfilled) Respiratory Components to Ecosystem Respiration Estimated From September 2018 to
August 2019

R component

Field measurements CABLE‐POP

R10 Q10 R2 Annual R % cont. R10 Q10 R2 Annual R % cont.

Rcanopy
a 0.10 4.33 0.951 168 13.0 0.56 1.41 0.584 276 21.3

Rstem 0.47 1.86 0.145 291 22.5 0.60 1.37 0.721 284 21.9

Rsoil 0.93 2.38 0.562 811 64.5 1.09 2.00 0.901 737 56.8

Rh 0.74 2.45 0.584 636 49.1 0.75 2.34 0.898 595 45.9

Rroot
b 0.15 2.65 0.344 200 15.4 0.36 1.09 0.065 142 11.0

Reco.sum 1.75 2.22 0.833 1,295 100 2.46 1.57 0.850 1,297 100

Reco.eddy 1.93 2.15 0.552 1,439 –
aRcanopy was scaled fromQ10 (2.18) and R10 (0.37) of Rleaf and continuously measured leaf area (Yang et al., 2020); see Figure
S2 in Supporting Information S1. bRroot was determined as the difference of Rsoil − Rh.
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4.5. Comparisons of Measurements to Modeled Respiration Rates

Chamber measurements and temperature response functions were used to scale up from soil, stem, and leaf to
the stand level (Reco.sum) for comparison with Reco.eddy and Reco.CABLE (Table 1). On an annual basis, outputs
of CABLE‐POP model were lower than the chamber‐based respiration rates, by 2.4% for stem, 6.5% for
heterotrophs, and 29.0% for root, whereas the CABLE‐POP output for Rcanopy was 64.2% higher than that
estimated as a function of temperature, leaf Q10 and leaf area (Table 1). The CABLE‐POP model did not
capture the range of observations for the Ra components (Figures 3a–3c and 3e) but modeled values gave
reasonable fits to observed Rh (R2 = 0.673, RMSE = 0.606) and Rsoil (R2 = 0.656, RMSE = 0.749)
(Figures 3c and 3d). The DAMM module fit observed Rh better than other decomposition algorithms including
Lloyd and Taylor and the default CASA approach when slope biases are taken into account (Figure S4 in
Supporting Information S1).

The annual Reco.sum calculated as the sum of the components (1,295 g C m− 2 yr− 1) was similar to that
predicted by the CABLE‐POP model (1,297 g C m− 2 yr− 1), and these estimates were both about 10% lower
than the Reco.eddy calculated based on eddy covariance measurements (1,439 g C m− 2 yr− 1) (Table 1). There

Figure 2. (a) Estimates of measured seasonal respiratory components of Reco and (b) their contributions to Reco. Estimates
were calculated from empirical temperature relationships (the coefficients of R10 and Q10 for each component shown in
Table 1. The percentage values in (b) indicate the average daily contribution for each component during the measurement
period. Note that Rroot was estimated as the difference between Rsoil and Rh.
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were significant correlations among observed and simulated respiration rates (all p < 0.001, R2 > 0.55,
RMSE < 0.857 mg C m− 2 d− 1, Figure 4). The agreement between Reco.eddy and Reco.sum was very good with
slope of 0.95 (Figure 4a), whereas relationships with modeled Reco demonstrated that CABLE‐POP over-
estimated low values and underestimated high values compared to observations (Figures 4b and 4c).

Figure 3. Comparison of CABLE‐POP model outputs with non‐gapfilled measurements of the respiration components. (a) Canopy respiration (Rcanopy.Q10, the plotted
data were reproduced from an empirical model using Q10 of canopy leaves and canopy temperature as inputs), (b) stem respiration (Rstem.obs, continuously measured by
eosFD, black circles, and Rstem monthly measured by Li‐8100, purple circles), (c) soil respiration (Rsoil), (d) heterotrophic soil respiration (Rh), and (e) root respiration
(Rroot). The black and colored lines indicate 1:1 line and linearly fitted regression line, respectively. The R

2 and root mean square error (RMSE) are shown in the panels.

Figure 4. Relationships for daily measured and modeled Reco in a mature eucalypt forest. Reco.sum was calculated as the sum of heterotrophic, root, stem, and canopy
respirationmeasurements, Reco.eddy was derived frommeasured and gapfilledNEE at theAU‐Cum flux tower, andReco.CABLEwas output fromCABLE‐POP. (a) Reco.eddy
versus Reco.sum, (b) Reco.sum versus Reco.CABLE, (c) Reco.eddy versus Reco.CABLE. The black and blue lines indicate 1:1 line and regression line, respectively. The equation of
the regression, R2 and root mean square error (RMSE) are shown in the panels.
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5. Discussion
At our warm‐temperate eucalypt‐dominated site, net C uptake occurs in cool months and net loss occurs during
summer when Reco dominates NEE (Renchon et al., 2018) providing motivation for improved understanding of
the contributions of component fluxes. The present investigation found that concurrent scaled chamber mea-
surements agreed with flux tower observations to within 10% and that soil microbial decomposition (Rh) is by far
the largest respiratory pathway. We implemented the Dual Arrhenius Michaelis‐Menten substrate availability
function for Rh into the CABLE‐POP land‐surface model, and the simulations of the Rh component matched the
observations better than the autotrophic components of roots, stems, or canopy. Apparent Q10 values estimated
from observations were generally higher than those that emerged from CABLE‐POP output, except for Rh,
indicating a need for further improvements in observing, scaling, and modeling Ra. Scaling direct observations of
component fluxes and their drivers to the ecosystem level allowed testing and improvement of a land‐surface
model which in turn helped identify and reconcile discrepancies between bottom‐up and top‐down methods.

5.1. Quantifying and Scaling Components of Reco

Our field measurements identified a large contribution (49%) of Rh to Reco.sum in this mature forest which was
close to 46% from CABLE‐POP model outputs (Table 1). The contribution of Rsoil to Reco.sum (64%) across the
seasons in this study site is within the range of 30%–80% described for forest ecosystems (Davidson et al., 2006).
We also observed variations in the contributions of Rsoil to Reco.sum which reached a minimum of about 33% in the
early spring and increased up to 70% in autumn when fine root biomass showed peak values (Piñeiro et al., 2020)
and substrate for heterotrophic respiration in litter layer increased (Brændholt et al., 2018; Davidson et al., 2006).
Our estimated contribution of Rstem to annual Reco.sum was approximately 22% which was higher than 8%–18%
observed in 67‐year‐old pine and oak forests (Khomik et al., 2010; Rodríguez‐Calcerrada et al., 2014). We also
observed variations in the contributions of Rstem to Reco.sum, which reached a minimum of about 14% inMarch and
increased up to 42% in September, which is comparable to 6%–23% observed in a 115‐year‐old beech forest
(Guidolotti et al., 2013). The contribution of Rh to Rsoil was approximately 78% which is high compared to
63%± 16% based on global soil respiration database in 2007–2014 (Bond‐Lamberty et al., 2018). Our Rh estimate
could be overestimated by artifacts of root exclusion method due to increased soil water content in trenched plots
(Savage et al., 2018). The estimated contribution of Rroot was higher during cooler months, whereas that of Rcanopy

was higher during warmer months (Figure 2b), suggesting seasonal variations in carbon allocation to above-
ground and belowground biomass that could be incorporated into future model versions (Merganičová
et al., 2019; Renchon et al., 2024).

5.2. Temperature Sensitivities of Reco and Its Components

Temperature sensitivity of Reco is a crucial parameter for predicting the fate of CO2 under global warming, and
Earth system models are moving away from using a constant Q10 value of 2 to generate carbon dynamics in
terrestrial ecosystems (Davidson et al., 2006; Johnston et al., 2021; Mahecha et al., 2010). Recently, Niu
et al. (2021) reported that the average apparent Q10 of Reco.eddy derived from multiyear observations was 1.94
across 74 FLUXNET sites. Our estimate of 2.15 for the apparent Q10 of Reco.eddy is close to the average reported
by Niu et al. (2021). The Q10 of Rsoil (2.38) was comparable to that of Reco.eddy which makes sense because Rsoil is
the main component of Reco in our site (Barba et al., 2018; Renchon et al., 2021; Figure 2). Despite widespread
evidence for global coherence of Q10 for Reco (Mahecha et al., 2010), recent studies suggest the need to consider a
thermal optimum (Chen et al., 2023) or a sigmoidal function with lower temperature response at high temper-
atures (Zhang et al., 2021). These approaches recognize fundamental biochemical properties of enzymes (Fanin
et al., 2022; Liang et al., 2018) and demonstrate an increasingly mechanistic understanding of temperature
sensitivity at the ecosystem level.

Our observed value for apparent Q10 of Rcanopy was unrealistically high (4.33) as Rleaf was upscaled to stand level
with overstory leaf area varying seasonally (Table 1, Figure S2 in Supporting Information S1). This indicates that
apparent Q10 of Rcanopy upscaled based on empirical leaf‐level Q10 (2.18 for unit leaf area; Yang et al., 2020)
includes seasonal changes in leaf surface area or biomass (Figure S2d in Supporting Information S1). It may be an
overestimate also considering that upper‐canopy leaves were measured at our site and have significantly higher
temperature sensitivity than lower in the canopy, due to their higher nitrogen concentrations (Turnbull
et al., 2003). On the other hand, the inferred Q10 (1.41) of Rcanopy from CABLE‐POP outputs is more in line with
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theoretical expectations given the mean annual temperature at our site. This value could emerge because the
model encapsulates appropriate physiological functions including nitrogen, substrate supply, light inhibition, and
thermal acclimation (Equation 10) (Haverd et al., 2018).

Chamber measurements of apparent Q10 for individual leaves (2.18; Yang et al., 2020), stems (1.86), and roots
(1.69 for detached roots; Figure S5 in Supporting Information S1) were less sensitive to temperature changes than
observed for non‐gapfilled Rh (2.45) (Table 1). Respiratory metabolism in environments with wider fluctuations
of air temperature can exhibit an increased acclimation capacity to temperature changes compared to the narrower
fluctuations of soil temperature (Tjoelker et al., 2009). A review by Wang et al. (2006) found significant dif-
ferences in mean Q10 among respiratory components of non‐photosynthetic organs and soils of forest ecosystems
showing the trend of soil (2.74) > root (2.40) > stem (1.91). A recent field study in subtropical forests reported
that Q10 of respiratory components decreased along the vertical gradient of soil > stem > leaf (Chi et al., 2020).

For the component fluxes at our study site, the apparent Q10 of Rstem was lower than other components since it had
a low seasonal amplitude (Noh et al., 2021), while the apparent Q10 of our inferred Rroot (2.65) was higher than
other components due to low rates at low temperature supporting the finding that roots can enhance the Q10 of
total Rsoil (Li et al., 2020). But as the Rroot was estimated as the difference between Rsoil and Rh, its magnitude and
apparent Q10 could be affected by seasonal changes in fine root production and standing biomass observed at this
site (Piñeiro et al., 2020) and by artifacts of the trenching method. Indeed, the apparent Q10 estimated in this way
(2.65) was higher than from detached roots (1.69, Figure S5 in Supporting Information S1) because it includes the
effects of seasonal variation in root growth, allocation of photosynthate to existing roots and mycorrhizae in
addition to the temperature sensitivity per gram root and responses of root respiration to confounded changes in
soil drying and wetting through time (Vargas & Allen, 2008). Thus, the apparent Q10 estimate for Rroot reflects
multiple processes that covary with temperature and does not represent the temperature sensitivity of the res-
piratory enzymes alone. The root Q10 inferred from CABLE‐POP (1.09) was surprisingly low, potentially because
allocation fractions to roots and other plant components in the model were relatively constant through the year
(Table 1; Figure S5 in Supporting Information S1). Clearly, additional work is needed to reconcile observed and
modeled estimates of root respiration and its temperature sensitivity.

The emergent Q10 value for Rh derived from the CABLE‐POP output was remarkably similar to that based on
root‐exclusion soil respiration measurements suggesting that the incorporation of the semi‐mechanistic DAMM
model approach adequately predicts soil respiration dynamics. It should be noted that the Rh data were not used to
parameterize CABLE‐POP. However, the field‐based estimates of apparent Q10 values for Rcanopy, Rstem, Rsoil,
Rroot, and Reco.sum were all higher than those estimated from CABLE‐POP outputs. These differences suggest that
apparent Q10 estimates simplify the responses of physiological processes to multiple interacting environmental
conditions operating on variable temporal and spatial scales, particularly as regulated by substrate supply
(Davidson et al., 2006). Alternative formulations for estimating temperature sensitivity from observations, such
as the sigmoidal approach used for Reco (Zhang et al., 2021), should be tested for component respiration.
Temperature sensitivity and fluxes in CABLE‐POP could be improved by specifying seasonal dynamics of leaf
area and fine root biomass in relation to confounding drivers such as soil water content (Merganičová et al., 2019;
Piñeiro et al., 2020; Renchon et al., 2024).

5.3. Data‐Model Comparisons Demonstrate How To Reconcile Top‐Down and Bottom‐Up Estimates

Reconciling the discrepancy between eddy covariance and scaled chamber respiration estimates in forest eco-
systems remains a difficult challenge due to spatial and temporal variability of each respiration component
(Renchon et al., 2021). In our study, the annual Reco.sum of 1,297 g C m− 2 yr− 1 was about 10% lower than
1,439 g C m− 2 yr− 1 for Reco.eddy. By contrast, a recent synthesis reported 13% larger average annual Reco summed
from components than estimated by eddy covariance in temperate forests, likely due to advective losses (Wang
et al., 2017). Nevertheless, Reco summed from components was reported to be slightly lower than estimated by
eddy covariance in a 74‐year‐old boreal aspen forest (Griffis et al., 2004) and 4‐ to 67‐year‐old temperate white
pine forests (Khomik et al., 2010). Our lower Reco.sum might be explained by the empirical Rcanopy not accounting
for understory vegetation. The annual Rcanopy (168 g C m− 2 yr− 1) estimated by empirical Q10 function was also
less than that estimated by CABLE‐POP (276 g C m− 2 yr− 1) modeled only for overstory vegetation (Table 1)
indicating a mismatch in measuring and scaling of overstory Rleaf rates (Figure S2c in Supporting Informa-
tion S1). The CABLE‐POP model accounted for acclimation response of Rleaf to temperature (Atkin et al., 2015),
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but it applied the same thermal acclimation response to leaf, root, and stem respiration despite different pro-
portions of nitrogen and phosphorus contents in these components (Haverd et al., 2018), and despite the fact that
the acclimation response used here has not been tested for components other than leaves. Unlike most models,
CABLE‐POP did account for light inhibition which therefore cannot explain the discrepancies between the two
estimates (e.g., Campioli et al., 2016). Additionally, upscaled Rcanopy observations may have been underestimated
if our leaf area measurements were too low, if the Rleaf measurements were not representative of the full tem-
perature range, and/or if the Q10 function inadequately captured variations due to thermal acclimation (Ouimette
et al., 2018; Tjoelker et al., 2009). More research on Rleaf and Rroot throughout forest canopies and belowground
including both overstory and understory plants is required to improve both field measurement and modeling
estimates, particularly in regions of fluctuating water availability (Renchon et al., 2024). Nevertheless, the results
demonstrate that simultaneous chamber measurements can help verify flux tower observations (Campioli
et al., 2016; Ouimette et al., 2018).

We also found a modest underestimation by modeled Reco (1,297 g C m− 2 yr− 1) compared to Reco.eddy

(1,439 g C m− 2 yr− 1) partly due to the low simulated contribution of Rroot (11.0%) compared to observations
(15.4%). Modeling Rroot is more difficult than other components due to complexity in spatial and temporal
variability in root‐traits and their measurements (McCormack et al., 2017). It should be remembered that modeled
Rroot included only fine roots (<2 mm) whereas the field observations of soil respiration included all roots;
including coarse root respiration in the modeled Rstem contributes errors to both component fluxes. Other possible
reasons for the underestimation of Rroot include unrealistic representation of fractional carbon allocation to fine
roots as well as fine root turnover rates. Indeed, fine roots at the site include a large component of understory
species which vary seasonally in response to water availability (Piñeiro et al., 2020). These processes are treated
as relatively constant over time and are thus likely over‐simplified in the model. Thus, the role of Rroot in
ecosystem carbon cycling would be better understood if biosphere models and field observations both included
specific Rroot according to root size, structure and function, and seasonal dynamics of fine root biomass (Piñeiro
et al., 2020; Warren et al., 2015).

We found an inconsistency between modeled and observed Rstem (Figure 3c) with potential uncertainties in
upscaling Rstem when we assumed that the stem surface area‐based respiration rate at a certain point is constant
throughout the stem. However, since previous studies reported that Rstem was greater inside the crown or near
roots than at our measurement height of 1‐m (Araki et al., 2010; Tarvainen et al., 2014; Zhao et al., 2018), actual
Rstem may be greater than our observed estimate. Further, modeling Rstem should include monitoring multiple
driving factors such as sap flow, xylem and soil water potential, and nonstructural carbohydrates (Salomón
et al., 2020). Additional analyses of the seasonal variation of processes that contribute to observed apparent
temperature sensitivities will be useful to inform formulations of thermal acclimation of root and stem respiration
in models, which is a key uncertainty in predicting global carbon dynamics (Atkin et al., 2008; Lombardozzi
et al., 2015; Noh et al., 2020).

Although temperature was one of major factors driving temporal variability of the components of Reco, phenology
is the dominant driver of canopy and photosynthesis processes (Renchon et al., 2024), which, in turn, are the
critical drivers of respiration (Ouimette et al., 2018). The temperature response of respiration covaries with this
phenology of photosynthesis and leaf growth which is partly why the apparent Q10 values are generally higher
than 2. Therefore, other environmental factors such as water availability affecting phenology for leaves and roots
should be considered for interpreting data‐model comparisons (Guidolotti et al., 2013; Li et al., 2022; Matteucci
et al., 2015). Indeed, water availability was found to be the key driver of Rh in water limited regions, based on
machine learning results from a global data product (Yao et al., 2021). At our site, Drake et al. (2018) showed that
apparent Q10 of Rsoil increased from ∼1.6 at low θ up to ∼3 at high θ, possibly indicating covariation of tem-
perature with substrate supply at higher water content (Davidson & Janssens, 2006). The CABLE‐POP model
outputs of Rh matched the observations well, which may be because the new DAMM module incorporated the
relevant biophysical factors of substrate availability, temperature, and effects of soil water content including
oxygen limitations for decomposition of soil organic matter.

6. Conclusions
This research demonstrated that bottom‐up respiration component measurements can be successfully scaled to
eddy covariance‐based and simulated ecosystem fluxes. Cross‐validation of Reco.eddy estimates by summing
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chamber‐based component measurements indicated that agreement within 10% (this study; Ouimette et al., 2018)
to 15% is possible (Yuan et al., 2018). By comparing component respiration rates among field measurements,
flux‐tower observations and model estimates, this study provided mechanistic insights that are relevant to model
development. In particular, including substrate limitation to Rh using the DAMM model improved CABLE‐POP
relative to four other approaches to estimating microbial respiration. However, a mismatch between observations
and simulations for canopy and root components could be explained by challenges of estimating their temperature
sensitivity in the field. Further model‐data integration and modeling improvements should consider dynamic
carbon allocation to different components, including root growth, exudation, mycorrhizae (Vargas &
Allen, 2008), and storage (Montane et al., 2017), and thermal acclimation responses for simulating seasonal
variations in autotrophic respiration, in particular for stem, root and mycorrhizal respiration (Atkin et al., 2008;
Hopkins et al., 2013).

Data Availability Statement
All figures were made in the statistical software R version 4.2.3 (R Core Team, 2020). Field measurements and
observation data sets for CO2 fluxes and their drivers are available with CC BY 4.0 access (Pendall & Noh, 2024).
The CABLE‐POP code (r7523) is available on a public data repository (https://trac.nci.org.au/trac/cable/
browser#branches/Users/jk8585/gm_acclim_coord).
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