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ABSTRACT

Stroke is one of the leading causes of death worldwide. Accurate assessment of

stroke severity plays a pivotal role in precise diagnosis, development of treatment

plans, and efficient allocation of healthcare resources. The assessment of stroke in

hospitals is usually conducted manually by clinicians. However, it is labor-intensive,

time-consuming, and sometimes unreliable.

With the continuous development of artificial intelligence (AI) techniques in

recent years, applying them to automate clinical assessment in EHRs has attracted

much interest. In this thesis, we outline an innovation pathway to advance stroke

healthcare from ontology construction, clinical named entity recognition (CNER)

with pre-training, to LLM-driven automatic quantitative stroke assessment.

The journey begins with the development of “StrokePEO”, a stroke clinical

ontology co-designed with specialists using advanced natural language processing

(NLP) and deep learning techniques. StrokePEO successfully represents clinical

terms and relationships in stroke assessment, demonstrating applicability in diverse

medical contexts.

Building on this foundation, we develop a deep learning-based framework to

automatically assess stroke severity through Chinese CNER and domain-adaptive

pre-training. We first construct a new dataset “Chinese Stroke Clinical Records”

(CSCR) and pre-train a Chinese clinical embedding “CliRoberta” for CNER. Then, a

dictionary-based mapping method is developed to map CNER results into quantitative

scores. Comprehensive experiments demonstrate the effectiveness and reliability of

the CNER model with our domain-adaptive pre-training. Ultimately, our automatic

NIHSS scoring approach achieves excellent inter-rater agreement and intra-class

consistency with the ground truth, with significantly improved efficiency.

We further advance toward cutting-edge LLMs with a prompting paradigm

“GAPrompt” to empower the generic LLMs to assess diagnostic notes and generate



quantitative evaluation results. GAPrompt assesses the suitability of LLMs for

specific tasks through prompting for LLM selection, facilitates their comprehension

of task-specific knowledge derived from the constructed knowledge base, enhances

the accuracy of knowledge retrieval and demonstration through summary-based

generation-augmented retrieval (SGAR), improves LLM inference precision via hier-

archical chain-of-thought (HCoT), strengthens generation robustness, and mitigates

LLM hallucinations through ensembling. Experimental findings underscore the

effectiveness of our approach in empowering LLMs to achieve automated stroke

assessment based on EHRs.

Collectively, these works contribute integrative and innovative AI-driven solu-

tions for stroke healthcare, shifting from traditional methods to state-of-the-art

LLM techniques, addressing knowledge representation, automated assessment, and

quantitative analysis, with broad applications in medical research and practice.

Dissertation directed by A/Prof. Wenjing Jia and Prof Massimo Piccardi

School of Electrical and Data Engineering
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Chapter 1

Introduction

Stroke is a prevalent disease with a significant global impact. Effective assessment of

stroke severity is vital for an accurate diagnosis, appropriate treatment, and optimal

clinical outcomes. The National Institutes of Health Stroke Scale (NIHSS) [17]

is a widely used scale for quantitatively assessing stroke severity. However, the

current manual scoring of NIHSS is labor-intensive, time-consuming, and sometimes

unreliable. Applying artificial intelligence (AI) techniques to automate the quantita-

tive assessment of stroke on vast amounts of electronic health records (EHRs) has

attracted much interest.

This thesis describes our attempts in applying advanced AI techniques for auto-

matic, quantitative stroke severity assessment. Our research pipeline evolves through

firstly constructing a stroke ontology, followed by automating the entire NIHSS

scoring process on Chinese clinical named entity recognition (CNER) with a domain-

adaptive pre-trained CliRoberta embedding, and finally empowering large language

models (LLMs) with a novel prompting paradigm.

1.1 Automatic Quantitative Stroke Severity Assessment

Clinically, stroke patients are subjected to specialized tests to characterize the

severity of their conditions at admission. When assessing treatment efficacy and

care quality, clinicians need to retrospectively analyze patients’ previous conditions

recorded in EHRs to assess changes in their condition, either improved or deteriorated.

Measurement scales (abbreviated as scales) play an important role in this assessment
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process. They can be used to score diagnostic records with precise numerical values,

intuitively and accurately reflecting the patient’s condition in all aspects, and reach

a comprehensive understanding of the level of severity.

There are more than 70 scales to evaluate stroke severity from different perspec-

tives [42]. Among them, the NIHSS [17] is a widely accepted, clinically validated

assessment tool for clinicians to mark the stroke patients’ prognosis and disability

level [63]. Especially, it is proven to be reliable and valid for retrospective scoring

using data from the existing health records [136]. However, NIHSS scoring takes time

and experience. It requires an experienced neurologist to spend at least 5 minutes to

complete, and even longer for junior clinicians.

Previous researchers have proposed various automatic algorithms to replace the

time-consuming, labor-intensive and unreliable manual assessment method [63,98,144].

However, they either only recognize NIHSS scores that are already recorded and

reported in the EHRs, or require external equipment and data to make predictions.

To date, there is no existing approach available that achieves automatic, quantitative

stroke severity assessment directly from the patients’ diagnostic notes in EHRs.

Therefore, it is necessary to develop a novel automatic assessment method using

data captured in EHRs to improve the accuracy and efficacy of stroke severity

assessment. This motivates us to undertake a series of research to achieve this goal

step by step, including constructing a stroke ontology, building a stroke-specific

dataset, constructing CNER model with domain-adaptive pre-trained embeddings,

developing a dictionary-based automated NIHSS scoring approach, and advancing

the foundation LLMs to facilitate the automated quantitative stroke assessment

through a novel prompting paradigm.
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1.2 Key Challenges of Stroke Severity Assessment and Core

Scientific Problems

In this section, we identify the key challenges and core scientific problems on the

automatic quantitative stroke severity assessment.

1.2.1 Lack of Ontologies for Physical Examination of Stroke

Clinical ontology is a standardized medical knowledge representation model that

facilitates the integration and analysis of a large amount of heterogeneous EHR data.

Using ontologies to represent clinical terms can improve data integration to build

robust and interoperable medical information systems.

In the medical domain, ontology has successfully supported many important

application scenarios, including precision medicine [43,93], clinical decision support

systems [7,35], recommender systems [55,89]. Using ontology to represent clinical

terms can standardise data and enable data integration. Thus, ontologies have been

applied to build robust and interoperable medical information systems, meeting the

needs of reusing, sharing, and transmitting medical data, and provide statistical

aggregation based on various semantic standards [109].

There are many challenges that are yet to be resolved in clinical ontology research.

Among them, insufficient disease coverage, i.e., a lack of high-quality annotated

databases for certain diseases, e.g., stroke, remains the biggest obstacle to the

advancement of research and applications of clinical ontologies [109]. Literature

[6, 16, 41, 68, 84, 125] suggests that none of the publicly available stroke ontologies

have modeled the information related to physical examination of stroke.
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1.2.2 Limitation of CNER Models and Pre-trained Embeddings

In recent years, there have been major breakthroughs in the application of

successful CNER techniques to process natural languages in Chinese EHRs. The

achievements include the application of BERT and its variants [32, 80, 121,122,145],

i.e., BiLSTM-CRF [77, 78, 155, 156, 159], BIGRU-CRF and CNN-LSTM-CRF [58,

100, 152]. However, there are notable gaps in applying high-accurate CNER to

EHRs. Training a CNER model requires a considerable amount of labeled data.

However, the availability of annotated datasets in the Chinese language is severely

limited [22, 47, 150, 151], and there is currently no annotated dataset specifically

tailored for stroke assessment. Moreover, the sparsely annotated entity classes in

previous studies cannot capture all the valuable information needed for quantitative

stroke severity assessment using NIHSS [17].

Pre-trained Embeddings: A word embedding is a vector representation that

encodes the meaning of words for text analysis. It has been shown to improve the

performance of NLP tasks including CNER [86, 101, 102, 104]. Since 2018, BERT-

based embeddings have become the mainstream of text representation because their

performance has surpassed the earlier traditional text vector representations [32].

Specifically, for Chinese text representation that plays a critical role in CNER, many

Chinese-based BERT and variant models have been developed in recent years. For

example, Cui et al. [31] proposed several Chinese BERT variants including MacBERT,

Chinese ELECTRA, Chinese XLNet, and Chinese-Roberta.

With this increasing interest, research advancements have been made in the

Chinese biomedical field that implements BERT-based embeddings, including MC-

BERT [151], FT-BERT [77], EMBERT [19], and SMedBERT [154]. However, most

of these embeddings are not publicly available, limiting their practical applicability

in clinical research. Also, a large amount of training data was crawled from the
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Internet, mixed with a lot of general languages rather than pure clinical language,

resulting in no guaranteed performance for stroke-specific EHRs [19,77,154,155].

1.2.3 Limitations of Automated NIHSS Scoring

With the advancement of AI techniques, an increasing number of researchers

have endeavored to explore its potential in mining valuable insights from the vast

realm of clinical EHRs for quantitative stroke research. Zhang et al. [63] introduced

an automated stroke severity prediction model based on machine learning techniques.

Their model takes hospital service parameters as input variables, such as discharge

information, length of stay and mortality risk to estimate the overall severity level.

Compared with NIHSS scoring that directly examines the diagnostic symptoms

exhibited by patients, the estimated overall stroke severity level is not as reliable

and accurate as NIHSS scoring that directly from diagnostic symptoms exhibited by

patients. Park et al. [98] used signals acquired from special sensors to automatically

grade the motor level of stroke patients. This method only covers a small portion

instead of a full set of the quantified assessment items in NIHSS and therefore cannot

provide a comprehensive stroke severity assessment. Another constraint is that it

requires the use of additional external equipment.

Recently, Yang et al. [144] attempted to develop an automatic approach to

identify the NIHSS items and scores reported in EHRs. This method has a restricted

application scenario as it necessitates fully recorded NIHSS scores in EHRs, which

can only be fulfilled by less than 5% of all clinical stroke EHRs. Therefore, it is

useful to further develop automated quantification method for improving frequency

and accuracy of stroke severity assessment.
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1.2.4 Applying LLMs in Clinical Domain and Its Limitations

Recently, LLMs have demonstrated remarkable ability in natural language under-

standing (NLU) and natural language inference (NLI) [104,105]. Unlike traditional

approaches, LLMs can comprehend questions and provide answers directly from the

given text, without the need for sentence-by-sentence or word-by-word processing

and annotation [18]. This surpasses the capabilities of classical machine learning and

deep learning methods in complex text-understanding tasks. Therefore, leveraging

advanced LLMs to enhance the analysis of EHRs, specifically in the context of

quantitative assessment of a patient’s condition, holds great promise.

Despite the impressive NLU capabilities of LLMs, their direct applicability in

real-world domain-specific scenarios is not without challenges [70, 113]. Most LLMs

are trained on general language data and lack proficiency in understanding domain-

specific text, such as medical EHRs [127]. Additionally, the very few existing medical

domain LLMs are often proprietary and not publicly available [65, 117, 118], and

they focus primarily on question-answering tasks while lacking robust quantitative

assessment capabilities.

Considering the time and computational resources required to train a domain-

specific LLM, it is often impractical for academic researchers and clinical practi-

tioners. Consequently, the most promising approach is to leverage the power of

foundation LLMs while enhancing their capability through prompting strategies.

The retrieval-augmented generation (RAG) and prompt engineering techniques are

thus introduced [73]. RAG is a strategy that combines information retrieval and

LLM generation and has been proven to be capable of enhancing the quality and

relevance of generated content by incorporating task-specific information retrieved

from the external knowledge base [73]. Prompt engineering refers to the process of

designing and refining the input queries or instructions given to LLMs, optimizing
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the performance of the LLM for a specific task. Previous studies indicate that

prompt engineering can significantly enhance the performance of foundation LLMs,

particularly in domain-adaptive scenarios [36, 131, 143]. In this study, we propose

a prompting paradigm for automated assessment of EHRs based on LLMs. It can

automatically assess diagnostic notes in EHRs and provide quantitative assessment

results based on the generation-augmented knowledge base.

1.3 Contributions in This Thesis

In this section, we present an overview of the contributions of this thesis.

1.3.1 StrokePEO: Construction of a Clinical Ontology for Physical Ex-

amination of Stroke

Clinical ontology serves as a standardized model for representing medical knowl-

edge, facilitating the integration and analysis of diverse EHR data. Utilizing ontologies

to depict clinical terms enhances data integration, contributing to the development

of robust and interoperable medical information systems. To date, there exists no

ontology specifically designed to represent medical knowledge related to the physi-

cal examination of stroke. This absence has hindered stroke physicians from fully

leveraging clinical information within EHR data to comprehend the health status of

stroke patients and devise effective medication and rehabilitation strategies.

In this thesis, we collaboratively design a stroke clinical ontology, “StrokePEO,”

with two stroke clinical specialists. Leveraging advanced natural language processing

and deep learning techniques, we extract terms and their relationships from actual

clinical EHRs provided by a tertiary hospital in China. Our experimental results

demonstrate that our methods and the output of StrokePEO hold applicability in

diverse medical contexts where the extraction of medical knowledge from EHRs is

crucial for decision-making.
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The contributions of this chapter are as follows.

• We contribute a clinical ontology StrokePEO dedicated to stroke physical

examination. StrokePEO provides an essential component for the construc-

tion of large stroke knowledge graph, complements the mainstream stroke

ontology research and facilitates the development of AI-based diagnosis and

recommendation systems.

• We contribute methods and approaches for engaging the domain experts -

clinical specialists - into co-designing the ontology StrokePEO, and various

advanced natural language processing (NLP) and deep learning techniques to

extract the terms and relationships from raw clinical record data to construct

the StrokePEO.

• We integrate StrokePEO with globally recognized stroke ontologies, e.g. Stroke

Ontology (STO) [41] and National Institutes of Health Stroke Scale Ontology

(NIHSS) [16].

1.3.2 Automatic Quantitative Stroke Severity Assessment based on Chi-

nese Clinical Named Entity Recognition with Domain-Adaptive

Pre-trained Large Language Model

In this chapter, we apply various NLP technologies from multiple perspectives

attempting to address the challenges. First, to tackle the problem of lacking a labeled

stroke-specific data set, we collaborate with stroke clinicians from three top hospitals

in China, collect and construct a disease-specific dataset named Chinese Stroke

Clinical Records (CSCR). Then, we generate a Chinese clinical word embedding

model through domain-adaptive pre-training of the open-source, large amount of

clinical EHRs. We validate the high performance of our CNER model through

the comprehensive evaluation of its performance against multiple SOTA deep neu-
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ral networks. Finally, we develop a dictionary-based NIHSS mapping method to

automatically assess stroke severity levels using the learned CNER.

This chapter has made the following three key contributions:

• For clinical stroke research, we construct a CNER dataset named CSCR, based

on which fine-grained Chinese clinical entities are annotated. Different from

most existing CNER datasets, entities in our CSCR dataset are semantically

associated, intensively annotated and expert-verified. It allows excavating

as much valuable information as possible from the EHRs for stroke severity

assessment.

• We propose a Chinese clinical embedding “CliRoberta” through domain-

adaptive pre-training to boost the performance of the CNER model. Ex-

periment results on a public dataset and our CSCR dataset both demonstrate

that our pre- trained “CliRoberta” has the best performance compared with

the existing embeddings.

• We develop an automatic stroke severity assessment method based on the

CNER model trained on the CSCR dataset. Through extracting relational

entity triples, developing relational entity chains, and constructing scoring

dictionaries and dictionary-based NIHSS mapping, we demonstrate a successful

practice of applying NLP techniques for automatic stroke severity assessment.

The effectiveness of the proposed method is proved by achieving an excellent

reliability of 82.69% Kappa agreement and 0.9907 intra-class consistency co-

efficient in NIHSS scoring with the golden standard benchmark established

by stroke specialists. This has far exceeded the accuracy of less experienced

clinicians with significantly reduced task time.
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1.3.3 Empowering LLMs for Automated Quantitative Assessment of

EHRs through Retrieval-Augmented Generation and Hierarchical

Chain-of-Thought

Understanding and extracting valuable information from EHRs holds significant

importance in the medical domain, benefiting both clinical practice and medical

research. The emerging LLMs have shown promise in natural language understanding

(NLU) and inference tasks, making them suitable for automating the often labor-

intensive, time-consuming, and tedious analyzing task in EHRs. However, due to the

scarcity of publicly available medical LLMs and the complexity of domain-specific

fine-tuning, designing appropriate prompting strategies to advance the capacity of

foundation LLMs is a promising solution.

This chapter proposes a prompting paradigm for automated analysis of EHRs

using foundation LLMs. By leveraging the few-shot in-context learning (ICL) abilities

of LLMs, our proposed prompting paradigm enhances the power of foundation LLM

through GAR and HCoT prompting, overcoming the limitations of foundation LLM

in analyzing domain-specific medical text.

The key contributions of this chapter are as follows:

• We introduce a prompt-driven LLM selection process that effectively and

efficiently selects the best foundation LLM for the current task.

• We develop a novel generation-augmented retrieval (GAR) method to dy-

namically retrieve task-specific knowledge and demonstrations from the self-

constructed, generation-augmented knowledge base. Our proposed RAG

• We propose a hierarchical chain-of-thought (HCoT) prompting strategy to inte-

grate the macro sequential chain with the micro chain-of-thought. Experiment

results demonstrate the capability of our method to automatically assess EHRs
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and generate quantitative results with HCoT prompting.

1.4 Organization of This Thesis

The rest of this thesis is organized as follows:

1. Chapter 2: This chapter reviews the related works of automated stroke as-

sessment techniques, including the existing methods for quantitative stroke

assessment, ontology construction techniques, current CNER models, pre-

trained language models, and state-of-the-art LLMs and prompting strategies.

2. Chapter 3: This chapter designs with two stroke clinical specialists a stroke

clinical ontology “StrokePEO” using advanced natural language processing

and deep learning techniques to extract terms and their relationships from real

clinical case records provided by a tertiary hospital in China. We apply the

W3C Resource Description Framework (RDF) data model to represent these

clinical terms and relationships, and successfully store all case data in a graph

database with StrokePEO.

3. Chapter 4: This chapter develops an automatic, quantitative stroke severity

assessment framework through automating the entire NIHSS scoring process

on Chinese clinical EHRs.

4. Chapter 5: This chapter develops a prompting paradigm for automated analysis

of EHRs using foundation LLMs. We first select LlaMa2-70b as the foundation

LLM through a prompt-driven LLM selection process. Subsequently, we

develop a novel retrieval-augmented generation (RAG) method to dynamically

retrieve task-specific knowledge and demonstrations from the self-constructed,

generation-augmented knowledge base. Finally, we propose a hierarchical

chain-of-thought (HCoT) prompting strategy to integrate the macro sequential

chain with the micro chain-of-thought.
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5. Chapter 6: A brief summary of the thesis contents and its contributions are

given in this chapter. Recommendation for future works is given as well.
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Chapter 2

Literature Review

In this chapter, we review the related works of automated stroke assessment with ad-

vanced AI techniques. We first discuss the existing methods of automatic quantitative

stroke assessment in Section 2.1, which is followed by a detailed review of ontology

construction techniques shown in Section 2.2. Then we discuss the state-of-the-art

CNER models and existing pre-trained embeddings in Section 2.3. At last, the

cutting-edge LLMs and prompting strategies are presented in Section 2.4.

2.1 Automatic Quantitative Stroke Assessment

With the advancement of AI techniques, an increasing number of researchers

have endeavored to explore its potential in mining valuable insights from the vast

realm of clinical EHRs for quantitative stroke research. Zhang et al. [63] introduced

an automated stroke severity prediction model based on machine learning techniques.

Their model takes hospital service parameters as input variables, such as discharge

information, length of stay and mortality risk to estimate the overall severity level.

Compared with NIHSS scoring that directly examines the diagnostic symptoms

exhibited by patients, this approach is neither reliable nor accurate. Park et al. [98]

used signals acquired from special sensors to automatically grade the motor level

of stroke patients. This method only covers a small portion of the quantified

assessment items in NIHSS and therefore cannot provide a comprehensive stroke

severity assessment. Also, it requires the use of additional equipment.

Recently, Yang et al. [144] attempted to develop an automatic approach to
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identify the NIHSS items and scores reported in EHRs. This method has a restricted

application scenario as it necessitates fully recorded NIHSS scores in EHRs, which

can only be fulfilled by less than 5% of all clinical stroke EHRs. In this study,

we address the limitations of previous research by developing an automatic and

quantitative stroke severity assessment framework. This framework accurately scores

NIHSS directly from diagnostic notes in Chinese EHRs, eliminating the need for

pre-existing NIHSS reports or external equipment.

2.2 Ontology Construction

In this section, we summarize the existing stroke ontologies and the technologies

for constructing medical ontologies from natural language. The existing research

commonly breaks the task of constructing a medical ontology into four key steps,

namely text preprocessing, term extraction, relationship extraction, and ontology

integration. Below we summarize the existing technologies for each sub-task.

2.2.1 Existing Stroke Ontologies

From the world’s largest biomedical ontology portal “BioPortal” [12], we have

found two public stroke ontologies. The first is Stroke Ontology (STO) [41]. It has

1,712 classes, 69 instances and 35 properties, covering the knowledge of stroke as

suggested by expert review. Currently, it is the largest, most comprehensive and

most internationally recognized stroke ontology. The other is NIHSS Ontology [16],

which has been linked to STO as a subclass of the “Scales” class. It focuses on

quantitative assessment of stroke severity, including 18 classes, 106 instances and 22

properties.

Some academic research on stroke ontology is available. Townsend et al. [125]

firstly designed a Neural Motor Recovery Ontology “NeuMORE” to represent the

stroke patients’ neuromotor function recovery status. Teresa et al. [84] built a Stroke
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Diagnostic Ontology (DStrokeOnto), which contains 456 classes, 77 restrictions

and 233 properties. It contributes the formalized medical knowledge for stroke

diagnosis. Radhi et al. [6] created an ontology to represent knowledge for upper limb

stroke rehabilitation in the patient information system. This ontology overcomes

the problem of information inconsistency from various assessments. Soonhyun et

al. [68] proposed a stroke medical ontology based on brain anatomies, lesions and

stroke-related disease, aiming to assist the AI-based stroke prediction system.

The literature suggests a lack of effort to construct a comprehensive stroke physical

examination ontology. This motivates our research to focus on developing a specific

StrokePEO ontology to represent stroke physical examination as a complement to

the Stroke ontology research field.

2.2.2 Text Preprocessing

The first step to construct a domain ontology from text is data preprocessing.

This can be achieved by applying the common method of natural language processing

(NLP) [109] for text parsing. Several successful NLP tools provide mature functions

to accomplish these tasks.

The Natural Language Toolkit (NLTK) [13] is an open source platform that

provides general text preprocessing capabilities such as sentence segmentation, word

tokenization, stemming, part-of-speech (POS) tagging, parsing, and semantic rea-

soning. FreeLing [96] is another widely used library that supports high-level NLP

parsing functions such as word sense disambiguation and semantic role labeling.

Unlike English, Chinese words usually consist of more than two Chinese characters,

so special word tokenization methods are required. Jieba [60] is a widely recognized

Chinese word tokenization module that provides functions such as word segmentation

and part-of-speech tagging. It supports customized dictionaries which is quite helpful

for specific domain text processing. HanLP [49] is a multilingual NLP library that
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is primarily designed for Chinese text processing. It offers deep parsing functions

including semantic dependency parsing, constituency parsing, semantic role labeling

and abstract meaning representation (AMR) parsing.

2.2.3 Term and Relationship Extraction

The basic unit of an ontology is often represented in the form of triples, where

two associated terms (classes) are described as < term 1, relationship, term 2 >.

The main task during the construction of a medical ontology is to extract terms and

relationships from unstructured data.

2.2.3.1 Term Extraction

In the early years, people used manual extraction to collect relevant terms through

experts according to certain rules. However, due to the high cost of manual extraction,

automatic term extraction has become a research hotspot, known as “named entity

recognition (NER)”. The NER task is usually taken as a sequence labeling problem.

Hence, classic machine learning methods such as Hidden Markov Model (HMM),

Maximum Entropy Markov Model (MEMM) and Conditional Random Field (CRF)

are widely applied to the task [132,139]. With the increase in computing power, deep

learning methods attract more and more attention and show their good performance.

A bidirectional LSTM with a CRF layer (BiLSTM-CRF) gains much attention by

achieving state-of-the-art performance on many CNER datasets [58,77,78,156].

2.2.3.2 Relationship Extraction

Relationship Extraction (RE) is closely related to the NER task, which classifies

the relationship between the entities identified in the text. The task is typically

formulated into a classification problem that takes a piece of text and two entities

in this text as inputs and the possible relation between the entities as output. The

existing methods of RE can be roughly divided into two categories, i.e., traditional
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methods and neural network approaches. The former is based on feature-based [110]

or kernel-based [149] approaches. These models usually spend a lot of time on feature

engineering. Neural network methods can extract the relation features without

complicated feature engineering. e.g., recurrent capsule network and domain invariant

convolutional neural network [112]. However, these methods cannot utilize joint

features between entity and relation, resulting in lower generalization performance

when compared with joint learning methods.

2.2.3.3 Joint Term and Relationship Extraction

Compared with pipeline methods, joint learning approaches are able to capture

the joint features between entities and relations [76]. State-of-the-art joint learning

methods can be divided into two categories, i.e., joint tagging methods and parameter-

sharing methods. Joint tagging methods transform NER and RE tasks into sequence

tagging tasks through a specially designed tagging scheme, e.g., a novel tagging

scheme proposed by Zheng et al. [160]. Parameter-sharing methods share the feature

extraction layer in the models of NER and RE. Compared to joint tagging methods,

parameter-sharing methods are able to effectively process multi-map problems. The

most commonly shared parameter layer in the medical domain is the Bi-LSTM

network [74]. However, compared with the language model, the feature extraction

ability of Bi-LSTM is relatively weaker, and the model cannot obtain pre-training

knowledge through a large number of unsupervised corpora, which further reduces

the robustness of extracted features.

To improve the performance of the BiLSTM-CRF model, word embedding tech-

niques such as Word2Vec [86], GloVe [101], fasttext [14] and BERT [32] were

investigated. Among these embedding methods, BERT obtains better word rep-

resentations compared to the traditional methods. Moreover, domain-specifically

fine-tuned embeddings can further improve the performance of medical NER and
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RE tasks [142].

2.2.4 Ontology Integration

Ontology integration is the process of organizing the high-level knowledge obtained

from different sources and involves data integration, disambiguation, reasoning

verification, updating and other steps under the same framework specification.

Ontology integration can be subdivided into intra-class alignment and ontology

linkage with other ontologies. Intra-class alignment determines whether classes in

multi-source heterogeneous data point refer to the same object in the real world

by considering instances and their attribute similarity. Ontology linkage starts

from “ontology matching”, i.e., matches the semantic similarity of classes in one

ontology with those in the other ontologies [116]. As an ontology grows in size

and becomes more complex in structure, the classes, attributes, entities and their

interrelationships are also taken into consideration. In the medical field, Dieng-Kuntz

et al. [34] converted medical databases into medical ontology, and then used semi-

automatic language tools for semantic extraction from other text corpora, extended

and completed ontology building manually, using heuristic rules.

Although there are some meaningful attempts (e.g. [21]), it still requires a lot

of manual processing to integrate ontologies in the medical field; therefore, further

research is required to develop effective technology for efficient ontology integration

in this setting.

2.3 CNER and Pre-trained Embeddings

The foundation technique of automated stroke assessment is to extract and map

the key terms of symptoms, locations of a clinical presentation, level of severity, etc.,

to ontology-based entity classes, which is called clinical named entity recognition

(CNER). In this section, we summarize the existing CNER models and pre-trained
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embeddings that can further improve the performance of CNER.

2.3.1 Existing CNER Models

In recent years, there have been major breakthroughs in the application of

successful CNER techniques to process Chinese EHRs. The notable achievements

include the application of deep neural networks to efficiently extract biomedical

entities from free text with high accuracy. For example, the bidirectional Long

Short-Term Memory (LSTM) [53] with a CRF [69] layer (denoted as “BiLSTM-

CRF”) has achieved state-of-the-art performance on many NER tasks [77,78,156,159].

Some recent works [58,100,152] integrated the bidirectional Gated Recurrent Unit

(BiGRU) or Convolutional Neural Network (CNN) module with CRF layers, and

have achieved competitive results with BiLSTM-CRF. Wan et al. [126] proposed an

ELMO-ET-CRF model that used fine-tuned domain-specific ELMO as the input,

Transformer ET as the encoder, and CRF as the decoder. Their model demonstrates

competitive performance with the SOTA results on the CCKS2019 dataset. Zhang

et al. [157] designed a multi-level representation learning model for CNER, which

yielded better performance than the CNN-BiLSTM-CRF models.

The above CNER models are all trained on general medical datasets, and lack

of training data specific to the stroke clinical domain, resulting in the inability to

accurately identify the unique terms in the stroke clinical assessment. Moreover, the

pre-defined entity categories are relatively sparse and cannot contain all valuable

information for assessing stroke severity. Therefore, to address the above deficiencies,

in this thesis, we first construct a CNER dataset specifically for stroke clinical research

with well-defined and densely annotated fine-grained entity types. Then we evaluate

SOTA neural network models, i.e., BiLSTM-CRF [77], BIGRU-CRF [100] and

CNN-LSTM-CRF [152], and identify the baseline CNER model for the subsequent

automatic stroke severity assessment.
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2.3.2 Pre-trained Embeddings

An essential approach to improve the performance of CNER models is to embed

the EHR text with the embeddings pre-trained on large text corpora. The most

popular embeddings can be categorized into three groups: traditional, discriminative

and generative embeddings.

The traditional embeddings, in this thesis, serve as a broad category, encom-

passing all language models that predate the current state-of-the-art discriminative

and generative language models. It includes Word2Vec [86], GloVe [101], fast-

text [14], etc., generating static word embeddings using statistical, count-based,

and prediction-based methods. The discriminative embeddings, represented by

BERT [32], ERNIE [121,122], Roberta [31], ELECTRA [25], etc, are mostly encoder-

based, BERT-style models for identifying masked words within the given text. The

generative embeddings are decoder-based, GPT-style models for generating next

words beyond the given text [144], including GPT-(1-4) [18,94,104,105], Palm [24],

LLaMA [124], etc. Considering the application domain of the embeddings and our

specific application scenario of high-accuracy CNER in Chinese EHRs, we deem that

the encoder-based, discriminative embeddings are the most suitable choice for our

task.

Previous studies [19, 77, 106, 151,154] have suggested that domain-specific embed-

dings can represent domain terms more accurately than general embeddings. The

barrier is the limited amounts of publicly available pre-trained Chinese clinical embed-

dings and their uncertain performance on new stroke-specific EHRs [19, 77, 154, 155].

However, considering the difficulty in obtaining high-quality domain-specific corpora,

they crawl large amounts of low-quality medical data from the web sites as training

corpora. Thus another concern is raised: should one prioritize the quantity or quality

of the training corpus in domain-adaptive pre-training? In this thesis, we overcome
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the shortfall of clinical domain-specific embeddings, and explore the answer to the

above concern, by pre-training a Chinese clinical embedding based on the existing

SOTA embeddings using specially collected Chinese clinical EHRs.

2.4 LLMs and Prompting Strategies

2.4.1 Large Language Models (LLMs)

Large language models (LLMs) refer to the foundation language models that

can understand and generate natural language. They are based on the transformer

architecture [137] and pre-trained on a large amount of data, typically containing

hundreds or billions of parameters [15]. These include GPT-3.5 [105], GPT-4 [5],

Meta’s Llama model [124], Google’s PaLM model [117], etc.

Many advanced proprietary LLMs have exhibited versatility in handling a wide

array of tasks, including those in the field of health and medicine [67,90,91]. Fur-

thermore, specific LLMs have been meticulously fine-tuned for medical applications,

such as Med-PaLM [117], and Med-PaLM 2 [118]. This dual capability of general

applicability and domain-specific refinement underscores the potential of LLMs in

health and medicine.

Currently, some open-source LLMs have demonstrated excellent performance even

comparable to state-of-the-art (SOTA) proprietary LLMs across various tasks [79,

81]. These models include LlaMa2 [124], BLOOM [138], Falcon [57], Alpaca [123],

MedAlpaca [46], and many notable open-source Chinese LLMs, such as Baichuan [10],

Qwen [9] and XVERSE [56]. Some LLMs with fewer parameters are specifically

fine-tuned on Chinese medical data, such as DoctorGLM [140], and HuatuoGPT [130].

Performance assessments of these models are typically conducted on benchmark

datasets with specific tasks, such as MMLU [51], MBPP [8], GSM8K [27], Math [52],

to test the model’s multilingual knowledge capabilities, translation, mathematical
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reasoning, coding, and other capabilities [61,97]. However, these evaluations may not

be adequate for identifying the applicability and performance of LLMs in real-world

applications such as clinical assessment using EHRs. To address this, we have

designed a set of prompt-driven LLM selection templates to effectively identify the

foundation LLMs that align with our specific task requirements (see Section 5.2.1

for more details).

2.4.2 Retrieval Augmented Generation (RAG)

Retrieval augmented generation is a technique aimed at enhancing the performance

of LLM generation by incorporating valuable information and demonstrations from

an external knowledge base. This external knowledge base can be existing databases

and structured resources with domain-specific knowledge [99,115]. However, building

and maintaining a knowledge base suitable for LLMs is a labor-intensive task that

demands significant human and time resources. This effort is also susceptible to errors

and omissions, which can subsequently impact the effectiveness of the generated

content in various tasks [158]. Leveraging the powerful generation capability of LLMs,

the technique of generation-augmented self-construction of the external knowledge

base has been proposed to address the above challenges and proved to be very efficient

and effective [91, 133].

Various retrieval methods can be employed to extract content relevant to the query

from the knowledge base. These include classic matching methods such as TF-IDF

and BM25 [20], dense representation-based retrieval [40], and other embedding-driven

retrieval mechanisms, like KNN [91] and DPR [62]. However, due to the limited

information provided in sentence-level queries and the inherent information loss from

fixed-sized embeddings in the document-level knowledge base, traditional retrieval

methods are prone to fail in precisely identifying the most relevant records [82].

Generative-augmented retrieval (GAR) is introduced to mitigate these limitations by
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enhancing the semantics of queries, leading to a substantial improvement in retrieval

accuracy [83].

This study employs a generation-augmented approach to construct an external

knowledge base for stroke assessment. Leveraging the generative capabilities of LLMs

and referencing dataset labels, our approach ensures the efficient generation of a

high-quality external knowledge base, validated through a final verification process.

Furthermore, to ensure a high retrieval accuracy, we develop an innovative summary-

based GAR method to replace the full-text embeddings with LLM-generated summary

indexes in which only key terms are extracted and embedded. This effectively

enhances retrieval accuracy and the performance of the ultimate task.

2.4.3 Prompt Engineering

Prompt engineering entails the strategic design of effective prompts to guide

LLMs in accomplishing downstream tasks. It plays a pivotal role in successful LLM

generation. With the rapid development of LLMs, numerous prompting methods

have emerged [4, 18, 111, 134, 158]. In this section, we review existing prompting

techniques based on their order of effectiveness in three stages: in-context learning

(ICL), logical reasoning, and subsequent optimization. Through comparison and

discussion, we identify the optimal prompting methods for our tasks.

2.4.3.1 In-context Learning

In-context learning (ICL) is a capability of LLMs to learn and generate responses

based on the context of the conversation without fine-tuning. The main prompting

methods based on ICL include zero-shot prompting and few-shot prompting.

Zero-shot prompting enhances the use of LLMs by eliminating the need for

extensive training data [105]. Instead, it uses carefully crafted prompts to guide the

model on new tasks. The model receives a task description in the prompt without
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labeled data for specific input-output mappings. It then relies on its pre-existing

knowledge to generate predictions based on the given prompt.

Few-shot learning is a key ICL capability of LLMs [18]. It teaches an LLM to

learn from only a small number of labeled examples to generate a new, unseen, but

similar result. Even a few high-quality examples can significantly improve model

performance on complex tasks. However, this approach requires additional tokens to

include the examples, which can be a limitation for longer text inputs. Additionally,

the selection and composition of prompt examples are crucial as they can significantly

influence the model’s behavior [111].

2.4.3.2 Logical Reasoning

Numerous studies have shown that breaking down complex tasks into steps and

allowing LLMs to perform logical reasoning is an extremely effective prompting

method [111, 134, 158]. The most representative of these is the Chain-of-Thought

(CoT) prompting [134]. It encourages an LLM to “think step by step”, entering a

mode of reasoning where it systematically breaks down complex tasks into a sequence

of ordered steps. This prompting method has improved the accuracy and coherence

of the generated outputs [134,158], and is entitled CoT to provide a vivid portrayal

of the model’s sequential thinking process.

Building on the foundation of CoT, numerous logical reasoning prompting methods

have emerged, such as automatic chain-of-thought (AutoCoT) [158], Tree-of-Thoughts

(ToT) [146], Graph-of-Thoughts (GoT) [148], Thread of Thought (ThoT) [161]. These

logical reasoning prompts are suitable for various application scenarios. In this study,

considering the sequential nature of EHRs and the challenges posed by long texts,

we propose the Hierarchical Chain of Thought (HCoT) method. By decomposing

tasks at the paragraph level and applying CoT at the sentence segments level, HCoT

significantly improves the performance of LLMs in automatic stroke assessment.
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2.4.3.3 Optimization

Due to the inherent uncertainty and potential hallucinations in LLMs when

generating responses, their inferences can sometimes produce unexpected biases.

To address this issue, researchers have proposed optimization prompting methods,

including ReAct prompting [147], Chain-of-Verification (CoVe) [33] and ensembling [4].

Among these, ensembling is one of the most widely used techniques. It combines

the outputs of multiple individual models or multiple generations by one LLM with

different degrees of randomness to produce a more accurate and reliable result,

instead of relying on a single reasoning output [91].

Well-designed prompting strategies have demonstrated comparable or even supe-

rior performance than specific fine-tuning methods [91, 119]. However, to date, there

is little report on the successful implementation of the emerging prompt engineering

techniques in clinical assessment tasks using the EHR data.

To address this methodology gap, we develop a set of generation-augmented

prompting strategies and formulate a prompting paradigm entitled “GAPrompt”.

This paradigm is designed to support foundational generic LLMs in achieving the

objectives of specific tasks. These strategies include few-shot prompting, chain-of-

thought, and ensembling.

Based on the requirements of our task for automatic quantitative stroke assess-

ment and considering the challenges identified in the literature review, we adopt a

progressive approach to achieve our goal. We begin by developing a stroke-specific

ontology, followed by utilizing neural network-based CNER models and pre-trained

embeddings for entity extraction from EHRs, and completing the NIHSS scoring with

a dictionary-mapping algorithm. Finally, leveraging the state-of-the-art LLM tech-

niques, we propose the GAPrompt paradigm to facilitate LLMs in automating stroke

assessment based on EHRs. More details are described in the following chapters.
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Chapter 3

StrokePEO: Construction of a Clinical Ontology

for Physical Examination of Stroke

Clinical ontology is a standardized medical knowledge representation model that

facilitates the integration and analysis of a large amount of heterogeneous electronic

health record (EHR) data. Using ontologies to represent clinical terms can improve

data integration to build robust and interoperable medical information systems. To

date, there is no ontology existing to represent the medical knowledge for physical

examination of stroke, which has inhibited the stroke physicians to make full use

of clinical information captured in EHR data to understand stroke patient’s health

status and plan effective medication and rehabilitation treatment.

In this chapter, we co-design with two stroke clinical specialists a stroke clinical

ontology “StrokePEO” using advanced natural language processing and deep learning

techniques to extract terms and their relationships from real clinical case records

provided by a tertiary hospital in China. We apply the W3C Resource Description

Framework (RDF) data model [3] to represent these clinical terms and relationships,

and successfully store all case data in a graph database with StrokePEO. Our

experiment results suggest that our methods and the output of StrokePEO can be

applied in various medical contexts that require extraction of medical knowledge from

free text for decision making. These include, but not limited to, physical assessment,

drug and rehabilitation treatment outcome evaluation, medication effect analysis,

and patient risk prediction.
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3.1 Background

In today’s age of information and big data, EHRs are being created and collected

at an unprecedented rate in medical setting [43]. As the volume of data has grown

exponentially, so has the scope and depth of the stored EHR data, which often include

patient demographics, diseases, diagnoses, symptoms, medications, treatments, and

other health service data. Therefore, observational electronic health record data is a

large treasure chest that waits to be explored and utilized. However, there are also

many flaws, such as incomplete, inconsistent or incorrect data, and insufficient data

details and missing data in EHR, data from different information systems owned

by different healthcare providers can be very different. Therefore, EHR data needs

to be handled with special caution to ensure their appropriate use to generate high

performing algorithms. It is important to ensure safe and ethical use of EHR that

will improve patient safety, healthcare quality and efficiency. To avoid ambiguity

and ensure data quality, a standardised data representation that can be recognized

by both machines and humans is needed. An ideal data representation needs to

standardize knowledge in the relevant health domain and can facilitate analysis and

integration of heterogeneous data from diverse data sources. This calls for ontology.

Physical examination is a key step in stroke diagnosis. Through physical exami-

nation at admission, doctors can obtain a preliminary understanding of the patient’s

condition. Based on this, they will further prescribe complex diagnostic tests and

treatment plans, e.g. medication or rehabilitation treatment. Stroke rehabilitation

can reduce or remove the direct pathogenic impact factors for stroke, e.g., ischemia

or cerebral hemorrhage. Image tests, such as neuroimaging, are typically aimed at

identifying the pathogenic areas but cannot determine whether a patient has recov-

ered from stroke. Only detailed physical examination can provide a comprehensive

assessment of the recovery status of various physical functions of the patient.
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In this research, we construct a clinical ontology dedicated to stroke physical

examination, called “StrokePEO”, which focuses on stroke assessment. Different

from the existing ontologies for stroke [16, 41], our source data comes from the

real clinical case records of the Third Affiliated Hospital of Sun Yat-sen University,

Guangzhou, China. The ontology schema, term classes, relationships, etc. are

co-designed and validated by two stroke specialists. The terms and relationships

in the StrokePEO are represented in the Resource Description Framework (RDF)

data model [3]. The annotated dataset is used for training, evaluating and testing

of the deep learning-based term relationship extraction methods. Experiments

show that our approach can effectively mine clinical terms and relationships critical

for stroke physical examination. We conduct ontology integration, including term

alignment and linkage with other ontologies, to enhance the robustness, consistency

and scalability of the StrokePEO in stroke ontology research.

The rest of this chapter is organized as follows. In Section 3.2 we provide a

detailed description of our approach to construct the StrokePEO. Section 3.3 presents

the dataset and the experiment results. Finally, the chapter concludes in Section 3.4.

3.2 Methodology

In this section, we illustrate in detail the key steps we take in constructing the

StrokePEO. Following the seven-step approach of ontology construction recommended

by a Stanford research group [92], we use Protégé [87] to build the StrokePEO i.e.,

to determine scope, consider reuse, enumerate terms, define classes, define properties,

define constraints and create instances.

Figure 3.1 shows the pipeline of our construction of StrokePEO. We apply

advanced NLP technologies, including sentence segmentation, word tokenization,

named entity recognition and relationship extraction models, to accomplish the tasks

at each step. i.e., text preprocessing, ontology schema definition, joint term and
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relationship extraction, term alignment and ontology integration.

ProvideHospitals ExpertsEHRs

Text preprocessing

NLP
Techniques:

including
segmentation,
tokenization,

NER,
RE
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Ontology Schema

Joint Term and relationship
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Term Alignment

IntegrateOntology Integration

Execute

Public
Ontology

Construct

Verify

Verify

Figure 3.1 : The pipeline of constructing StrokePEO. It illustrates the process

from hospital-provided EHRs to an expert-verified ontology using advanced NLP

techniques.

3.2.1 Text Preprocessing

We apply a series of NLP techniques to preprocess the raw clinical text data.

These include unifying format, removing the staleness, sentence segmentation and

word tokenization with POS tagging.

Unlike the common article sentence, the structure of medical record text usually
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does not have a complete and standard syntactic structure, but lists multiple subject-

predicate phrases in a sentence. This inhibits the effective application of the semantic

dependency parsing method to process these clinical records. Therefore, instead of the

common practice for English in using “period” as the delimiter, we use “comma” or

“semicolon” as the delimiter to divide sentences. The resultant segmented sentences

are short in length, but still contain single or multiple terms to form the triples of

“subject, predicate and object” (SPO).

To tokenize Chinese words, we adopt the Jieba [60] package with self-defined

dictionaries. Two dictionaries are imported to help enhance the accuracy of word

tokenization. The first is a dictionary named “THUOCL-medical” [44] produced by

Tshinghua University, with medical words and their frequency annotated. The other

is annotated by us and reviewed by clinical experts, to handle special terms with

POS tagging suitable for stroke physical examination records.

3.2.2 Ontology Schema Definition

Through in-depth analysis of the structure and concepts of stroke terms, we

develop a schematic ontology representation and represent the terms using the

Resource Description Framework (RDF) data model [3]. Its atomic data format is

called RDF triple, which consists of three entities in the form of “subject, predicate,

object” to show the semantic statement of “term 1 has relationship with term 2”.

Specifically, in our StrokePEO, triples are composed of fine-grained terms and

relationships, to express the knowledge as precisely and as accurately as possible. To

construct our StrokePEO, we define seven classes of terms, i.e., Anatomy, Inspection,

Symptom, Position, Binary, Change and Degree. Twelve relationships are defined

among the term classes. The detailed ontology representation schema is shown in

Figure 3.2.



31

Inspection

Symptom

Change

Binary

Anatomy

Position

Degree

part-of part-of

ha
s

has

has

results

conducts

locates

level

level

ex
ist
s

p
re
se
nt
s

Figure 3.2 : The schematic representation of our StrokePEO.

3.2.3 Joint Term and Relationship Extraction

To construct the StrokePEO, we mine useful terms and their relationships from

a large amount of raw clinical EHR text data, using two hot research techniques

in the field of text mining, i.e., Named Entity Recognition (NER) and Relation

Extraction (RE). With the continuous development of machine learning and deep

learning to reach maturity level, many mature NER and RE algorithms are now

publicly available.

We co-define with the two stroke specialists in our team the ontological repre-

sentation of each concept for stroke physical examination. Due to that a sentence

usually contains multiple RDF triples, we apply multi-relational classification for

model training and prediction. We first classify the relationship constraint. Then we

put the same term into different classes in accordance with the relational constraint

in a relevant sentence to resolve the ambiguity of semantic relationships expressed

by the same term in different context.

We apply the TensorFlow-based Entity and Relation Extraction model [2], a

schema-based pipeline entity-relation extraction model. This model has achieved

excellent performance comparable to the SOTA model in the “2019 Language and
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Intelligence Challenge” [1] and has been widely recognized by high popularity stars

in GitHub.

This approach leverages a joint term and relationship extraction model based

on Bert-BiLSTM-CRF architecture. Different from other models that first perform

NER and then extract relationships. This model addresses term and relationship

extraction tasks using a pipelined approach. Initially, a multi-label classification

model assesses the relationship types within sentences. Next, both the sentence and

potential relationship types serve as input for a sequence labeling model. This model

identifies terms (entities) within the sentences. Finally, the predicted relationship

is combined with the entity output to form an entity-relationship triples: (term 1,

relationship, term 2).

To improve the model accuracy, instead of using the original model, we adopt a

more advanced Chinese embedding named Chinese Pre-trained BERT with Whole

Word Masking (ROBERTA wwm large ext) [30]. It significantly outperforms the

standard BERT embedding for our entity relationship extraction task. We discover

as broadly and comprehensively terms as possible, resulting in many terms with

similar or even the same semantic meaning.

3.2.4 Term Alignment

The purpose of this step is to unify the synonymous terms into one standardised

term to ensure atomicity of the concept classes in the constructed StrokePEO. To im-

prove accuracy, we combine the open source Chinese synonym tool “Synonyms” [128]

with the word2vec model [107] to process the clinical data. As both models have

fully learned the context information embedded in the adjacent and distant words

during training, they can infer, to a large extent, the original meaning of words and

their relationships.

We use these two models to obtain the ten most similar terms for each extracted
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term, respectively. After filtering out terms with different term classes, the remaining

terms are marked as synonyms of the standardised term. Finally, clinical experts are

called upon to validate accuracy of the machine-generated thesaurus.

3.2.5 Ontology Integration

We set up the scope of the StrokePEO ontology as the diagnostic physical

assessment of stroke patients in clinical setting to address this gap in Chinese stroke

ontology. Based on the systematic review of existing ontologies and previous research

work, our StrokePEO can be recognized as a complement to the research field of stroke

ontology, which can be directly integrated into the current most authoritative Stroke

ontology (STO) [41], under the “Stroke-Diagnosis-Evaluation of stroke-Physical

Examination” class.

The clinical experts in our team expect the StrokePEO to have the ability to be

integrated with other stroke ontologies to meet the needs of real-world applications

and research. For example, when there is a clinical requirement to assess the severity

of a patient’s stroke condition, the clinicians usually use the international standard

NIHSS [16]. In order to align with the NIHSS international standard, we integrate

the two ontologies, StrokePEO and the NIHSS ontology.

As mentioned in the literature section, there is no fully automatic ontology fusion

algorithm in medical domain; therefore, manual fusion has to be conducted in this

project. The NIHSS is composed of 11 classes, including consciousness level, eye

movement, motor arm and leg, speech, etc. It has less classes than our StrokePEO.

Thus, with the guidance and quality control of the clinical experts, we manually

match the classes of StrokePEO with those in the NIHSS ontology. This integration

mainly consists of two tasks, one is to match the “Inspection” class in StrokePEO with

the classes in NIHSS, and the other is to match the “Symptom” class in StrokePEO

with the value set in NIHSS. After integration, the resulted StrokePEO will afford
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people even without professional training to acquire a quantitative assessment score

of a patient’s stroke condition by observing the patient’s clinical manifestations.

3.3 Experiments

To efficiently extract the terms and relationships from the large amount of text

data, we apply the advanced deep learning-based techniques to automatically recog-

nize the terms and classify their relationships in each sentence. As supervised learning

requires a batch of data annotated with correct labels to train the algorithm, we first

introduce our approach to acquire the annotated dataset, and then report the setting

and performance of the two algorithms used for term extraction and relationship

classification. Finally, we evaluate the quality of the constructed StrokePEO.

3.3.1 Dataset

The study dataset is collected and labeled from the clinical case records of physical

examination results for stroke patients from the Third Affiliated Hospital of Sun

Yat-sen University, China. The definition of ontology schema, including the classes

of terms and relationships are all guided and approved by two stroke experts. The

dataset contains 89,351 annotated samples, and are randomly split into training set,

evaluation set and test set at a ratio of 4:1:1. Each annotated sample is composed

of the raw text and lists of SPO (“subject, predicate, object”) triples to show the

terms and relationships. As a pipeline model, both term extraction and relationship

classification algorithms are trained on the same dataset. Therefore, we add the term

type into the SPO triples, indicating the subject type and object type. For example,

the sentence “右侧肢体肌力5级” is extracted into three RDF triples, i.e., (subject:

“肢体”, subject type: “Anatomy”, predicate: “locates”, object: “右侧”, object type:

“Position”), (subject: “肢体”, subject type: “Anatomy”, predicate: “conducts”,

object: “肌力”, object type: “Inspection”), and (subject: “肌力”, subject type:
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Table 3.1 : The statistics of the annotated terms and relationships.

Subject Term Type Relationship Object Term Type Count

Inspection results Symptom 85,893

Inspection conducts Anatomy 11,968

Anatomy presents Symptom 15,888

Anatomy locates Position 24,096

Binary has Symptom 10,393

Binary has Inspection 26,657

Binary has Change 386

Symptom exists Change 3,219

Symptom level Degree 7,187

Change level Degree 893

“Inspection”, predicate: “ results”, object: “5级”, object type: “Symptom”). Table 3.1

shows the statistics of the annotated terms and relationships in the dataset.

3.3.2 Relationship Classification Results

We conduct a multi-class classification model to predict the possible relationships

in a sentence. The input of this model is raw texts from training samples, which

are first tokenized and embedded by a BERT layer. We have found that, replacing

the BERT embedding with the ROBERTA embedding [30] has led to much better

performance. The embedding sequences are then passed to the multi-class classifier,

which outputs the predicted set of possible relationships in the text.

To evaluate the accuracy of relationship classification, we compare the predicted

relationships with the golden set. If the predicted relationship matches the golden

set, it is marked as “Correct”. If the output set is equal to or greater than the golden
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Table 3.2 : Relationship classification results

Output Results Count Total Numbers Accuracy (%)

Correct 8125 8228 98.7482

Superset 52 8228 0.6320

Subset 13 8228 0.1580

set, it is marked as a “Superset”. Finally, a “Subset” result indicates that the output

set contains only a part of the correct relationships in the golden set. Table 3.2

shows the results. As it can be seen that, the classification algorithm can effectively

identify all possible relations in sentences with more than 98% accuracy. In a few

cases of inaccurate predictions, partially correct relationships can also be identified

with a small number of redundant or missing predictions.

3.3.3 Term Extraction Results

We run a sequence labelling model to extract the terms from the input text, i.e.,

the relationship classification results. First, the model converts a training sample

with multiple labels into multiple samples, so that the mapping between the original

text and label in each sample is one-to-one relationship. Then the predicted subject

and object terms are constrained by the classified relationships to suit their types.

To evaluate the performance of the term extraction algorithm, we calculate

the accuracy of the predicated SPO triples. A “correct SPO” indicates that the

predicated SPO triples are exactly the same as the golden set regarding the terms,

types and relationships. We also report the number of predicted SPO triples and the

number of SPO triples in the golden set. Finally, we evaluate the performance of the

term extraction model using the common metrics, including Precision (P ), Recall
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Table 3.3 : Term extraction results

Correct SPO num 14,114 Submitted SPO num 14,567

Golden set SPO num 15,086

Task Precision (%) Recall (%) F1-score (%)

Term extraction 96.89 93.56 95.19

(R) and F1-score (F1), which are defined by:

P = TP/(TP + FP )

R = TP/(TP + FN)

F1 = (2× P ×R)/(P +R),

where TP is the number of true positives, FP is the number of false positives, and

FN is the number of false negatives.

The detailed results of term extraction are shown in Table 3.3. For all of the

evaluation metrics, the larger the values, the better the algorithm performs.

3.4 Summary

For the first time, this study has developed and validated a clinical ontology

“StrokePEO” for physical examination of stroke using real clinical case record data.

We have applied multiple NLP techniques to preprocess the raw text records and

have adopted advanced deep learning techniques to successfully extract the terms

and relationships pertaining to the physical examination of stroke. Our method offers

a rapid and robust approach for constructing new medical domain ontologies using

advanced NLP techniques. Notably, it substantially reduces the labor costs associated

with manual construction and can be extended to other diseases. Moreover, our
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approach and the resulting StrokePEO ontology provide a useful machine learning

model and base for the further development of diverse clinical decision support

systems that generate knowledge from rich clinical text. These include, but are

not limited to, physical assessment, drug and rehabilitation treatment outcome

evaluation, medication effect analysis, and patient risk prediction.

Crucially, the StrokePEO serves as a foundational resource for extracting medical

terms, playing a pivotal role in our endeavor for automated stroke assessment. It

enhances our deep learning-based clinical named entity recognition (CNER) approach

and facilitates the automated scoring of NIHSS, a framework that will be elaborated

upon in the next chapter.
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Chapter 4

Automatic Quantitative Stroke Severity

Assessment based on Chinese Clinical Named

Entity Recognition with Domain-Adaptive

Pre-training

The previous chapter presents our constructed StrokePEO ontology, which compre-

hensively defines the clinical terms and relationships related to stroke assessment.

This lays the foundation for leveraging advanced AI technologies to achieve auto-

mated entity extraction and ultimately automate the assessment process. In this

chapter, we develop an automatic, quantitative stroke severity assessment framework

through automating the entire NIHSS scoring process on Chinese clinical EHRs.

Our approach consists of two major parts: Chinese clinical named entity recognition

(CNER) with a domain-adaptive pre-trained embedding and automated NIHSS

scoring. To build a high-performing CNER model, we first construct a stroke-specific,

densely annotated dataset “Chinese Stroke Clinical Records” (CSCR) from EHRs

provided by our partner hospital, based on our constructed StrokePEO ontology (see

the previous chapter) that defines semantically related entities for stroke assessment.

We then pre-train a Chinese clinical embedding coined “CliRoberta” through domain-

adaptive transfer learning and construct a deep learning-based CNER model that

can accurately extract entities directly from Chinese EHRs. Finally, an automated,

end-to-end NIHSS scoring pipeline is proposed by mapping the extracted entities to

relevant NIHSS items and values, to quantitatively assess the stroke severity.

Results obtained on a benchmark dataset CCKS2019 and our newly created

CSCR dataset demonstrate the superior performance of our domain-adaptive pre-
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trained embedding and the CNER model, compared with the existing benchmark

embeddings and CNER models. The high F1 score of 0.990 ensures the reliability of

our model in accurately extracting the entities for the subsequent automatic NIHSS

scoring. Subsequently, our automated, end-to-end NIHSS scoring approach achieved

excellent inter-rater agreement (0.823) and intraclass consistency (0.986) with the

ground truth and significantly reduced the processing time from minutes to a few

seconds.

Our proposed automatic and quantitative framework for assessing stroke severity

demonstrates exceptional accuracy and reliability through directly scoring the NIHSS

from diagnostic notes in Chinese clinical EHRs. Moreover, this study also contributes

a new clinical dataset, a pre-trained clinical embedding, and an effective deep learning-

based CNER model. The deployment of these advanced algorithms can improve

the accuracy and efficiency of clinical assessment, and help improve the quality,

affordability and productivity of healthcare services.

4.1 Background

With the expanded use of EHRs across healthcare organizations, research interest

has grown dramatically in the application of artificial intelligence (AI) and natural

language processing (NLP) technologies to automatic disease assessment utilizing the

extensive volume of data captured in EHRs [54, 63, 98, 141, 144]. Among them, a key

technique is to identify and extract clinical terms from doctors’ free-text diagnostic

notes, which is known as Clinical Name Entity Recognition (CNER). Many advanced

deep learning-based approaches have emerged to tackle the CNER tasks, motivating

researchers to apply the state-of-the-art (SOTA) CNER technology to the automatic

assessment of diseases.

In terms of stroke assessment, studies have emerged to extract quantitative

measurement of stroke severity using CNER and machine learning techniques [63,98,
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144]. However, they either only recognize NIHSS scores that are already recorded

reported in the EHRs, or require external equipment and data to make predictions.

To date, there is no existing approach available that achieves automatic, quantitative

stroke severity assessment directly from the patients’ diagnostic notes in EHRs.

These limitations have severely hindered the effective utilization of the vast

amount of clinical EHR data for quantitative stroke assessment.

To fill the gap, in this research, we develop an automatic framework for quan-

titatively assessing stroke severity directly from diagnostic notes in Chinese EHRs,

which has the potential to replace the often time-consuming, tedious and unreliable

manual assessment widely practiced in clinical settings. Specifically, our first step

is to address the insufficiency of a CNER dataset for stroke assessment, where we

construct a stroke ontology-based, densely annotated dataset “CSCR”, meaning that

most words in each sentence in the dataset are annotated with entity labels. We

then address the insufficiency of existing language models in representing Chinese

clinical EHRs through domain-adaptive pre-training of a clinical domain-specific

embedding coined “CliRoberta”. Subsequently, inspired by the successful appli-

cations of mapping-aided methods in quantitative clinical research [29, 59, 66], we

define an entity-to-NIHSS mapping that links the extracted entities to relevant items

and values in the NIHSS [17]. Finally, we design and implement an end-to-end

pipeline to automatically calculate the NIHSS scores based on the defined mapping.

A series of experiments and evaluations conducted on real-world data demonstrate

the excellent reliability and superior efficiency of our proposed automatic stroke

severity assessment framework.

The rest of this chapter is organized as follows. In Section 4.2, we present the

details of our proposed approach, encompassing the construction of datasets and

mappings, the development of Chinese CNER with embedding, and the automated
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end-to-end NIHSS scoring. The experimental results of our embedding-based CNER

and NIHSS scoring are presented in Section 4.3. In Section 4.4, we analyze the key

findings, compare our work to prior studies, and discuss its limitations. Finally,

Section 4.5 summarizes our work.

4.2 The Proposed Method

Our automatic stroke severity assessment framework comprises two key compo-

nents: building the embedding-based CNER model, and automated NIHSS scoring.

To accomplish these two tasks, we first construct the CSCR dataset and entity-

to-NIHSS mapping dictionary. Then, we pre-train a domain-specific embedding

“CliRoberta” through domain-adaptive transfer learning on Chinese clinical EHR

data, and develop a deep learning-based Chinese CNER model to accurately extract

entities. Finally, these entities are mapped to NIHSS scores through an automated,

end-to-end entity-to-NIHSS mapping pipeline.

Figure 4.1 illustrates the steps of the proposed automatic stroke severity assess-

ment: (i) constructing the CSCR dataset (in green); (ii) constructing entity-to-NIHSS

mapping dictionary (in yellow); (iii) domain-adaptive pre-training of a Chinese clini-

cal embedding (in blue); (iv) generating the CNER model (in red); and (v) automated

NIHSS scoring (in purple).

4.2.1 Construction of CSCR Dataset and Entity-to-NIHSS Mapping

Applying NLP techniques for automatic stroke severity assessment requires a

disease-specific and densely annotated dataset. To the best of our knowledge, there is

no publicly available annotated Chinese EHR dataset for stroke assessment. In this

study, we construct a stroke-specific, intensively annotated dataset, CSCR (detailed

below), in close collaboration with the stroke specialists from three top hospitals

in China, i.e., the Third Affiliated Hospital of Sun Yat-sen University, the First
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Figure 4.1 : The procedure of the proposed automatic quantitative stroke severity

assessment framework. Green color: constructing the CSCR dataset; yellow color:

Constructing entity-to-NIHSS mapping dictionary

; blue color: domain-adaptive pre-training of Chinese clinical embedding; red color:

generating the CNER model; purple color: automated NIHSS scoring.

Affiliated Hospital of Jinan University, and the First Affiliated Hospital of Fujian

Medical University. Subsequently, we establish an entity-to-NIHSS mapping to

facilitate the automated NIHSS scoring for quantitative stroke severity assessment.

4.2.1.1 CSCR Dataset Construction

Our CSCR dataset is built from the Chinese clinical stroke EHRs provided by

our partner hospital “The Third Affiliated Hospital of Sun Yat-sen University”. It

consists of de-identified admission and discharge notes of 1,133 patients, including in

total 1,067 admission records and 864 discharge records. To construct this dataset,

these source EHRs are annotated into clinical terms describing the conditions of

stroke patients, referred to as entities. Different from the sparsely annotated entities

in existing studies [22, 47, 150, 151], we construct a stroke-specific, densely annotated

CNER dataset in which most words of each sentence are assigned with entity labels.
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Towards this end, we first define seven types of stroke ontology-based entities and

then propose a semi-automatic approach to annotate the source Chinese clinical

stroke EHRs, which are further validated by clinical specialists, detailed below.

Entity Definition. Based on the stroke ontology [39] and the standardized

protocols for NIHSS assessment [17], we identify seven types of semantically related

entities, which, when used in combination in the diagnostic notes, can accurately

describe stroke symptoms.

As shown in Table 4.1, these entities are: Inspection (ISP), Symptom (SPT),

Position (POS), Binary (Bin), Anatomy (ANT), Change (CHG), and Degree (DEG).

Among them, the ISP and SPT entities, representing the specific inspection item

and the corresponding symptom (i.e., the assessing result of the inspection item)

of a patient, are the two most prevalent entities in our CSCR dataset, accounting

for 38.1% and 30.9% of the annotated entities, respectively. The POS and ANT

entities describe the location of a stroke symptom in a certain body part, accounting

for 12.7% and 7.3% of the annotated entities, respectively. The remaining three

entities, i.e., BIN, DEG, and CHG, describe the existence and degree of changes

of the inspected symptoms.

Entity Annotation. We then develop a semi-automatic approach to annotate

the entities in the source EHRs using the BIO (Begin, Inside, Outside) format.

Taking the SPT entity as an example, the label “B-SPT” implies the start of a

symptom entity, and “I-SPT” marks the character inside the entity. Characters that

do not belong to any entities are annotated by “O”.

This automatic pre-annotation process proceeds by programmatically automating

the annotation of entities to the EHRs, supplemented by the manual revisions of spe-

cialists to ensure accuracy and reliability. Various NLP techniques are applied during

the automatic pre-annotation, including sentence segmentation, word segmentation,
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Table 4.1 : The entities, definitions, count, and percentage of occurrence in the

constructed CSCR dataset.

Entity Name Examples Definition Count Percentage

Inspection

(ISP)

“意识” (consciousness),

“肌力” (muscle strength)

Specific inspect

item
37,964 38.1%

Symptom

(SPT)

“流利” (fluent),

“麻木” (numb)

Sign of a body

condition
30,769 30.9%

Position

(POS)
“左” (left), “右” (right)

Location of an

anatomy
12,656 12.7%

Binary

(BIN)
“有” (has), “无” (no) Existence or not 7,139 7.1%

Anatomy

(ANT)

“眼睛” (eye),

“上肢” (arm)

Structure of the

body
7,283 7.3%

Degree

(DEG)

“明显” (significant),

“稍微” (slight)
Level of change 1,993 2.0%

Change

(CHG)

“变差” (worsen),

“恢复” (recovered)
Treatment effect 1,857 1.9%

and part-of-speech tagging, which are first conducted to preprocess the EHRs, with

the support of the Jieba library [120] and Chinese clinical dictionaries [45]. Then,

based on the preprocessed EHRs, we revise the segmentation results according to the

stroke ontology [39]. Next, we repeat this ontology-based automatic pre-annotation

process on all EHRs. Finally, the annotation results are reviewed and verified by the

stroke specialists. The CSCR dataset (shown as the green module in Figure 4.1) is

thus constructed. In total, there are 347,637 Chinese characters with 99,661 word

entities annotated in the CSCR dataset.
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Different from the existing CNER datasets [22,47,150,151], this is the first stroke-

specific CNER dataset with intensively annotated, semantically related entities for

extracting clinical terms from Chinese stroke EHRs. Its more intensive annotation and

the semantically associated entities show strong potential in supporting quantitative

assessment in clinical research compared with previous works [100,135].

4.2.1.2 Constructing Entity-to-NIHSS Mapping Dictionary

According to the prescribed guidelines for conducting NIHSS evaluations [17], each

score needs to be jointly determined by multiple entities with semantic dependencies.

Thus, in order to produce a simple, yet complete mapping to fully represent the

semantic relationship and be friendly for query, we design four modules in the mapping,

i.e., the Core module M core, the Categorical module M cat, the Supplementary

module M sup and the Synonym module M syn.

Using our trained CNER model and the relational entity triple (RET) extraction

method (Algorithm 4.4), we extract the ISP-SPT triples from the stroke clinical

EHRs to form the Core module M core. Each “ISP-SPT” entity pair is associated

with its corresponding NIHSS element and a score. For the “BIN-SPT” entity pairs,

we also provide the reverse score named score r. For example, NIHSS element 9

aims to assess language ability in understanding and reading, ranging from 0 to

3. “言语” (speech)-“不清” (unclear) scores 1 point, “言语” (speech)-“困难” (hard)

scores 2 points, “失语” (aphasia) and “昏迷” (coma) both score 3 points.

The Categorical module M cat consists of three types of entities, i.e., POS,

ANT, and ISP to categorize the core triples to the corresponding NIHSS items. In

combination, these three entities can accurately identify the corresponding NIHSS

element. For example, “左” (left: POS)-“上肢” (arm: ANT) and “肌力” (inotrope:

ISP) belongs to the 5a element of NIHSS, the strength of left upper arm. The POS

entity represents location of certain symptom, thus can justify the weighting score.
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For example, in NIHSS element 2, “左” (left: POS)-“眼睛” (eye)-“凝视” (gaze)

scores 1, while “双侧” (both sides: POS)-“眼睛” (eye)-“凝视” (gaze) scores 2.

The Supplementary module M sup consists of three types of entities, i.e., BIN,

CHG and DEG, indicating the existence and degree of changes. The BIN entity

denotes existence or not. Existence entities such as “存在” (has) and “发现” (witness)

do not change the score of the ISP-SPT REPs. No existence entities such as “不存

在” (not exist) and “无” (no), would suggest no symptom, thus impact on the score;

therefore, score r in D core needs to be take into consideration in stroke severity

assessment. The CHG entities reflect changes in specific symptoms. The higher the

NIHSS score, the more serious or positive of the stroke symptom. Positive changes,

e.g,“恢复” (recovery), “改善” (improvement), etc. score -1. For negative changes,

such as “恶化” (deterioration) and “加重” (aggravation), the corresponding score is

1. The DEG entity is a weight value that helps to precisely score the CHG entity.

The Synonym module M syn is a thesaurus including the synonym pairs of

the standard terms for all entities annotated in CSCR [129]. For example, “意识”

(consciousness: ISP) is a KIE and it has synonyms, e.g. “神志” (sane) and “神智”

(sanity). During the evaluation, this mapping is used to map the recognized entity

to its corresponding NIHSS score, detailed in Section 4.2.3.

4.2.2 Chinese CNER with Domain-Specific Pre-trained Embedding

To boost the performance of CNER on stroke clinical EHRs, we pre-train a

Chinese clinical embedding through domain-adaptive transfer learning on Chinese

clinical EHRs. Then, we evaluate the SOTA deep learning models with multiple pre-

trained embeddings on a public dataset and the CSCR dataset. The best-performing

model that produces the most accurate and reliable CNER results is acquired to

extract the relevant entities for the subsequent automatic stroke severity assessment,

detailed below.
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Figure 4.2 : The architecture of our baseline CNER model with pre-trained embed-

ding. For the convenience of non-Chinese readers, the input sentence in Chinese is

accompanied with a word-by-word gloss in English.

4.2.2.1 Domain-adaptive Pre-training of Chinese Clinical Embedding

An accurate clinical embedding is critical to high-performing CNER and accurate

extraction of entities in EHRs, given that clinical documents typically contain a large

number of medical terms that rarely occur and are weakly represented in general

language models [19, 77, 106,151,154].

Inspired by the previous research that uses domain-adaptive pre-training, a

transfer learning mechanism in cross-domain migration [32, 100, 135], we evaluate

domain-adaptive pre-training based on the existing SOTA Chinese embeddings and

Chinese clinical EHRs and select the Roberta-wwm [31] as the base model in training

our clinical embedding. Different from previous research [19, 77, 151] that crawl

general medical data from the Internet for pre-training, we use professional clinical

EHRs from two data sources: EHRs provided by the partner hospital, and validated

EHRs presented at the top Chinese medical conferences [22,150,162]. Therefore, it is

much more relevant to real-world clinical practice than the other datasets, allowing
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us to use a relatively small amount of EHRs to develop a clinical domain-specific

embedding. We only use the training set of each dataset for pre-training, so that we

could evaluate the test performance accurately on the test set.

Table 4.2 shows the pre-training corpora of our proposed CliRoberta and four

baseline language models: word2vec [85], BERT-base [32], Roberta-wwm [31] and

MC-BERT [151].

Table 4.2 : The pre-training corpora of language models. The training tokens are

counted by Chinese characters.

Embeddings
Corpora

Size

Training

Tokens
Data Source

Word2vec 10.2MB 1.9M
EHRs from the training set of CCKS

and CSCR datasets

BERT-base - 0.4B Chinese Wikipedia

ROBERTA-wwm-ext - 5.4B
Chinese Wikipedia, news, Q&A,

medical encyclopedia, etc.

MC-BERT - 20.1M1
Chinese medical corpora, including

Q&A, encyclopedia, EHRs, etc.

CliRoberta 72.3MB 8.0M

Selectively collected Chinese clinical

EHRs from CBLUE, ChineseBLUE,

CCKS, CHIP and CSCR datasets

1 The training corpora of MC-BERT are reported by sentences rather than tokens [151].

2 The corpora size with a ”-” mark means no exact corpora size was reported.

The Word2vec embedding is derived from the classic Gensim library [108] based

on EHRs from the training set of CCKS and CSCR dataset. It exhibits a corpora
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size of 10.2MB, trained on 1.9 million tokens sourced from Electronic Health Records

(EHRs) within the training sets of both CCKS and CSCR datasets. The BERT-

base is the baseline Chinese BERT embedding generated by Google from Chinese

Wikipedia [32]. The ROBERTA-wwm-ext is a SOTA variant of BERT with a larger

training set size and better representative ability [31]. The reported training tokens

for BERT-base and ROBERTA-wwm-ext are 0.4B and 5.4B, respectively, without

specifying the exact corpora size ∗. Both BERT-base and ROBERTA-wwm-ext

utilize Chinese Wikipedia as their foundation for pre-training corpora. However,

ROBERTA-wwm-ext incorporate extended data, such as medical encyclopedias,

news, and question-answering (Q&A) data obtained through web crawling†. The

MC-BERT is a Chinese clinical language model by continual pre-training on a large

volume of Chinese medical corpora, including biomedical question answering, medical

encyclopedia, EHRs, and so on [151]. The training corpora are reported to encompass

of 20.1M sentences. Our CliRoberta embedding is obtained through domain-adaptive

pre-training based on ROBERTA-wwm-ext, using selectively collected Chinese clinical

EHRs from publicly validated datasets, including CBLUE [150], ChineseBLUE [151],

CHIP [22], and the training set of CCKS [162] and CSCR datasets. Together it has

a size of 72.3MB, with a token count of 8.0M, measured in Chinese characters.

The training corpora are first preprocessed with a tokenizer [31] to fit the input

requirements of the base model. We set the chunk size, i.e., the maximum sentence

length of the training data, to be 128, and the language model probability to 0.150,

allowing up to 15.0% of words to be replaced with the “MASK” token in one sentence.

The processed dataset consists of a training set of 120,000 text sequences and a

validation set of 13,000, with a token count of 8.0M Chinese characters and a batch

∗https://github.com/ymcui/Chinese-BERT-wwm

†https://meta.wikimedia.org/w/index.php?

title=List of Wikipedias/zh&uselang=zh
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size of 32. The maximum number of epochs is set to 100 until early stop criteria are

triggered. For the use of the downstream task CNER, we save the embedding layers,

forming a Roberta-style embedding, which we named “CliRoberta”.

4.2.2.2 CNER with Pre-trained Embeddings

Based on the literature [58, 77, 78, 100, 152, 156, 159], we evaluate three widely-

adopted deep learning-based CNER models: BiLSTM-CRF, BiGRU-CRF, and

CNN-LSTM-CRF, and compare their performance on two datasets, CCKS2019 and

CSCR.

As shown in Figure 4.2, the baseline CNER model consists of an input layer

to process raw text sequences of EHRs into the model; a pre-trained embedding

module using CliRoberta to represent the words into embedding vectors; an encoding

module that consists of both a forward and backward LSTM to encode the semantic

association among words in one sentence; a decoding module including a categorical

layer to decode the sequence using a softmax loss function, and a CRF layer to

regularize the categorization results using a CRF loss [75]; and an output layer to

predict the sequence of labels using the Viterbi algorithm [71].

4.2.3 Automated NIHSS Scoring

Thus, with the embedding-based CNER model, all the entities that link to the

relevant NIHSS items and their values are extracted. Based on these extracted

entities, the automated NIHSS scoring is conducted in an end-to-end pipeline in

three steps: extracting relational entity triples (RETs), constructing relational entity

chains (RECs), and executing entity-to-NIHSS mapping.

4.2.3.1 Extracting Relational Entity Triples (RETs)

First, semantically associated entities must be paired into RETs according to

their relationship or dependency. The existing Chinese dependency parsing methods
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BIN

DEG

CHGSPTISPANTPOS

Priority order: CHG > SPT > ISP > ANT > POS

Figure 4.3 : The semantic dependency schema and priority order. The schema

consists of seven types of entities and twelve relationships. The priority order defines

the selection rule during the extraction of relational entity triples.

such as hanLP [50] and DDParser [153] are mainly based on word segmentation

and part-of-speech (POS) tagging, which require a clear “subject-predicate-object”

(SPO) structure in a sentence. However, these methods do not work well for the

clinical stroke EHRs, in which most clinical terms are not arranged in a clear SPO

structure [144]. Therefore, we design a RET extraction algorithm using a schema-

constrained fuzzy matching method. The dependency schema includes twelve types

of RETs that define the semantic dependencies between seven entity types (see

Figure 4.3).

To implement the RET extraction algorithm based on the output sequence of

the CNER model (see Figure 4.2), we need to segment the sequence first. Using

the “Period” separator, the average length of the resultant sentence is 35 words

and 10 entities. This large number of entities in a sentence makes it difficult for

the application of the matching rule to accurately extract the RETs. Therefore,

we experiment with segmenting the sentences by the “comma” separator, which

reduces the segment length and entity counts to an average of 11 words and 3 entities,

respectively. More than 90% of the resultant segments have less than 5 entities, and

more than 50% of segments contain only 3 entities. Given that the associated entities
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in EHRs are often close to each other within one segment, avoiding the long-distance

dependency problem, applying the “comma” separator is appropriate for our RET

extraction algorithm.

Figure 4.4 shows the RET extraction algorithm in detail. The algorithm iteratively

loops through each entity in the segment and combines the current entity and the

rest into candidate RETs. The candidate RETs are evaluated against the constraints

outlined in the defined schema (as shown in Figure 4.3), where only those that meet

the criteria are retained, and those that do not are eliminated. The remaining RETs

are evaluated on an individual basis. If the entities are combined in a one-to-one

form, it is considered a valid RET. If the entities are in a one-to-many form, a

priority rule is applied to determine which RET is considered valid. In many-to-many

relationships, a distance rule is applied to ensure one-to-one relationships and avoid

cross-combinations. Any entities that have no relationship with other entities are

treated as unary “BIN-ISP” RETs by default.

4.2.3.2 Constructing Relational Entity Chains (RECs)

An NIHSS score is not only determined by the ISP-SPT triples showing the

inspected symptom, but also the ANT-ISP triples suggesting the location of the

symptom, and the SPT-DEG triples measuring the severity degree of the symptom.

Therefore, all RETs related to the same inspection item need to be connected into

relational entity chains (RECs) and be mapped to the corresponding NIHSS items

and values for automatic NIHSS scoring.

We first define the format of RECs as “POS-ANT-BIN & ISP-BIN & SPT-BIN

& CHG-DEG” to incorporate all the relevant entities. Matching rules are then

applied to generate RECs from RETs. Once a RET’s target entity matches another

RET’s source entity, these two RETs are connected. This matching and connection

operation is performed iteratively until all RETs in a sentence have been traversed
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Figure 4.4 : The algorithm for rational entity triples (RET) extraction.
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and formed a REC.

Figure 4.5 presents examples of RECs constructed from RETs and entities. In the

figure, we illustrate examples of three RECs, and each of them is constructed from a

different number of RETs and entities. The detailed construction process is shown

in Section 4.2.3.2. Initially, following the Algorithm 4.4 for RET extraction and

referencing the schema and priorities in Figure 4.3, entities are pairwise combined

into various types of RETs. Subsequently, these RETs are connected iteratively in

the REC format, forming valid RECs. With this approach, regardless of the entity

types and RETs extracted, we have a corresponding method to standardize them

into the canonical REC format. Therefore, its output can serve as the basis for

subsequent quantitative mapping.

4.2.3.3 Executing Entity-to-NIHSS Mapping

Figure 4.6 illustrates our proposed automated quantitative stroke severity assess-

ment pipeline, demonstrating the NIHSS scoring procedure using a raw EHR example

in Chinese accompanied with an English translation. Initially, the EHR is input into

our CNER model with pretrained embedding (refer to Section 4.2.2), to identify

specific entity types in the text. Following Algorithm 4.4, RETs are extracted (see

Section 4.2.3.1). Subsequently, RECs are constructed based on the extracted RETs,

as detailed in Section 4.2.3.2. The entity-to-NIHSS mapping (utilizing Algorithm 4.7)

is then executed, incorporating synonyms regulation and dictionary-based mapping

through four sub-modules (see Section 4.2.1.2). Finally, the scores for each NIHSS

item are aggregated to obtain the overall NIHSS score.

Based on the expert-constructed entity-to-NIHSS mapping dictionary in Sec-

tion 4.2.1.2, we take the valid RECs as input to map the extracted entities to the

corresponding NIHSS items and scores. The mapping dictionary has four modules,

including M core, M cat, M sup and M syn, providing specific values of key pa-
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BIN:
“无”
(has
no)

DEG:
"明显"
(signifi-
cant)

CHG:
"好转"

(improve-
ment)

SPT:
"弱"

(weak-
ness)

ISP:
"肌力"

(muscle
strength)

ANT:
"下肢"
(lower
limb)

POS:
“左”

 (left)

EHR: 左下肢肌力弱无明显好转。
Translation: The weakness of muscle strength in
the left lower limb has no significant improvement.
RETs: This REC consists of 6 RETs indicated by
the arrow from the source entity to the target entity.

BIN:
-

DEG:
"稍微"

(slightly)

CHG:
"改善"

(improved)

SPT:
"不清"

(slurred)

ISP:
"言语"

(speech)

ANT:
-

POS:
-

EHR: 言语不清稍有改善。
Translation: Slurred speech slightly improved.
RETs: This REC consists of 3 RETs indicated by
the arrow from the source entity to the target entity.

BIN:
-

DEG:
-

CHG:
-

SPT:
"凝视"
(gaze)

ISP:
-

ANT:
"眼球"
(eye)

POS:
"双侧"

(bilateral)

EHR: 患者双侧眼球凝视。
Translation: Patient's bilateral eye gaze.
RETs: This REC consists of 2 RETs indicated by
the arrow from the source entity to the target entity.

Figure 4.5 : Examples of RECs constructed from RETs and entities. We show three

REC examples in the figure, and each of them is constructed from a different number

of RETs and entities.
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      POS     ANT
ISP:

"发音"
(pronounce)

SPT:
"不利"

(unintelligible)

CHG:
"改善"

(improved)

DEG:
"明显"

(significantly)
    BIN

Raw    EHR: 患       者   发       音   不            利  较前 明            显   改         善。
Translation: Patient's  pronounce unintelligible  was  significantly    improved 
.

EHR

Entities: O     O     B-ISP I-ISP  B-SPT   I-SPT  O O  B-DEG  I-DEG  B-CHG I-CHGCNER

RETs: ISP-->SPT,   SPT-->CHG,   CHG-->DEGRETs

RECs

Dictionary
Mapping

Synonyms
regulation

Synonym module
M_syn

Core module
M_core

Supplementary module
M_sup

ISP:
"构音"

(speech)

SPT:
"不清"

(unclear)

CHG:
"好转"

(improved)

DEG:
"明显"

(significantly)
      POS     ANT     BIN

Categorical module
M_cat

NIHSS item:
10

Supplementary score s_sup:
s_sup = s_bin ✖ s_chg ✖ s_deg

= 1 ✖ (-1) ✖ 2 = -2

Core score s_core:
s_core = 2

NIHSS
score NIHSS score: s = s_core + s_sup = 2 - 2 = 0

Figure 4.6 : The procedure of our proposed automated NIHSS scoring pipeline. The

left side shows the steps from loading the EHR to capturing the NIHSS scoring result.

The right side shows the detailed processing stages including raw EHR tokenization,

entities extraction by CNER model with embedding, construction of RETs and RECs,

synonyms regulation, dictionary-based mapping, and the calculation of NIHSS score

as the final result.
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rameters for the calculation of NIHSS scores. Figure 4.7 illustrates this detailed

mapping process.

First, we conduct thesaurus-based entity resolution to regularize all entities in

each REC with their standard terms. A query scans through the entities in a REC

one by one, and once it finds a match with a term in the thesaurus M syn, the raw

entity will be replaced by the standard term in the M syn.

We then use the ISP-SPT triple in the REC as a key to query for the core score

s core if the BIN entity exists in the M core with value 1, and obtain s core r if

the BIN entity has value 0. Next, we query the BIN, CHG, and DEG entities in

the M sup, to obtain the score of BIN, CHG, and DEG. These three scores are

multiplied to generate the supplementary score. The core score and supplementary

score are added, multiplied by the POS weight, and mapped to the corresponding

NIHSS item by querying the POS, ANT, and ISP entities in M cat.

After completing the above process for each EHR, we take the maximum score

belonging to the same NIHSS item as the patient’s resultant NIHSS item score. The

addition of these item scores forms the total NIHSS score, indicating the quantified

measurement of stroke severity.

4.3 Experiment Settings and Results

To demonstrate the effectiveness of our CNER model with the pre-trained em-

bedding, in this section, we first conduct extensive experiments on a public dataset

CCKS2019 [47] and our annotated CSCR dataset to evaluate the performance of

the CNER models and embeddings. Five different random seeds are applied when

initiating the CNER models in the experiments. Then, to demonstrate the feasibility

of our proposed automatic quantitative stroke assessment approach, we evaluate the

performance of our proposed approach by comparing its NIHSS scoring results with
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Figure 4.7 : The Algorithm for Entity-to-NIHSS Mapping.
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the ground truth provided by specialists.

4.3.1 Datasets

CCKS2019. This is a dataset of “Named Entity Recognition for Chinese

Electronic Medical Records” [47], which was used in the CNER competition at

the CCKS conference in 2019 [26]. It contains 1,000 training EHRs and 379 test

EHRs and has six types of entities, i.e., disease and diagnose, imaging examination,

laboratory examination, operation, drug, and anatomy.

CSCR. The CSCR dataset (see Section 4.2.1) is curated by our research team.

It consists of 1,931 EHR records generated in the clinical process of stroke assessment

for two patient groups. We annotate seven types of entities for this data set. We

select 1,545 EHRs from one patient group as the training and validation sets, and

the rest 386 EHRs from the second patient group as the testing data set.The CSCR

dataset is more specific to stroke diseases than CCKS2019, and it annotates most

of the valuable entities that correspond to the NIHSS scoring system for stroke

assessment. Therefore, this dataset is capable of capturing evidence necessary for

the quantitative stroke severity assessment using the NIHSS system.

Table 4.3 shows the division of the two datasets in our experiments (see Sec-

tion 4.3.1 for more details), where the training and testing EHRs come from different

patient groups, with 1545 and 386 EHRs, respectively. During the training stage,

the training and validation set is split into 1200 and 345 as training and validation

sets. Detailed results are shown in Table 4.3.
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Table 4.3 : The division of two datasets in the experiments. The numbers refer to

the count of EHRs.

Dataset Training Validation Testing

CCKS2019 600 400 379

CSCR 1200 345 386

4.3.2 Evaluation Metrics

4.3.2.1 CNER Evaluation Metrics

To measure the performance of the CNER models, we adopt the strict evaluation

matrices used by the CCKS2019 competition [47], which include precision, recall and

F1-score.

We denote the extracted entity set as S and the gold entity set as G. A correct

prediction si ∈ S is equal to gj ∈ G, which means an exact match of the start

positions, end positions and categories between the two entity sets S and G. The

Precision (Ps), Recall (Rs) and F1-scores (F1s) are defined as:

Ps = |S ∩S G|/|S|, (4.1)

Rs = |S ∩S G|/|G|, (4.2)

F1s = 2PsRs/(Ps +Rs), (4.3)

where ∩S represents the strict intersection of the prediction set S and the gold set G.

4.3.2.2 Kappa Coefficient

Cohen’s Kappa coefficient [28] represents the inter-rater agreement between two

raters, each assigning items into multiple categories, calculated as:

K = (po − pe)/(1− pe), (4.4)
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where po represents the degree of agreement between the raters, which is obtained

by dividing the observed number of agreements by the total rated records, and pe

represents the probability of each rater randomly rating each category and can be

calculated by:

pe = 1/N2
∑

k

nk1nk2, (4.5)

where k is the number of categories, N is the number of rated records, and nki

denotes the times Rater i rated category k.

The Kappa score is a value ranging from −1 to 1. However, in actual applications,

they usually fall in the range of [0, 1]. A Kappa coefficient < 0.2 indicates very

weak agreement; 0.2 ∼ 0.4 indicates weak agreement; 0.4 ∼ 0.6 indicates moderate;

0.6 ∼ 0.8 indicates strong; and 0.8 ∼ 1.0 indicates perfect agreement [71].

4.3.2.3 Intraclass Correlation Coefficient (ICC)

The ICC [11] is one of the reliability coefficient indicators for evaluating the

consistency of intraclass measurement. It is equal to the individual’s variability

divided by the total variability:

ICC = σ2
α/(σ

2
α + σ2

ε), (4.6)

where σ2
α is the variance of αj, an unobserved random effect among values in group

j. The σ2
ε represents the variance of εij, which is an unobserved noise term in the

group j and i is the index of observation in the group.

The value of ICC ranges between 0 and 1. According to the guideline given by

Koo and Li [64], an ICC below 0.5 indicates poor consistency, an ICC between 0.5

and 0.75 indicates moderate consistency, an ICC between 0.75 and 0.90 indicates

good consistency, and an ICC above 0.9 represents excellent consistency.
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4.3.3 Evaluation of CNER with Pre-trained Embedding

We compare our pre-trained CliRoberta with four language models: word2vec [108],

BERT-base [32], Roberta-wwm [31] and MC-BERT [151] on processing CCKS2019

and CSCR datasets. We apply the widely-used evaluation metrics precision, recall

and F1 score to evaluate model performance (see Section 4.3.2.1).

Figure 4.8 : The performance of three CNER models with five different pre-trained

embeddings on the CSCR dataset (the top row) and the CCKS2019 dataset (the

bottom row).

Table 4.4 shows the detailed experimental results for CNER models with pre-

trained embeddings, on two different datasets, CCKS2019 and CSCR. Please refer to

Section 4.3.3 for more details on the evaluation and discussion of the results shown

in the table.

Figure 4.8 and Table 4.4 show that the four BERT-style embeddings significantly

outperform the traditional word2vec model for both CCKS2019 and CSCR datasets.
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Table 4.4 : The performance of the CNER models with pre-trained embeddings on

CCKS2019 and CSCR dataset, by F1 score.

Dataset Embeddings CNN-LSTM-CRF BiGRU-CRF BiLSTM-CRF

CCKS2019

Word2Vec 0.696± 0.008 0.720± 0.007 0.696± 0.008

BERT-base 0.804± 0.004 0.805± 0.007 0.804± 0.005

Roberta-wwm 0.802± 0.005 0.808± 0.003 0.804± 0.003

MC-BERT 0.807± 0.002 0.808± 0.005 0.806± 0.003

CliRoberta 0.805± 0.008 0.813± 0.005 0.814± 0.002

CSCR

Word2Vec 0.933± 0.002 0.942± 0.001 0.937± 0.003

BERT-base 0.970± 0.001 0.980± 0.001 0.978± 0.002

Roberta-wwm 0.974± 0.002 0.980± 0.001 0.979± 0.002

MC-BERT 0.970± 0.002 0.978± 0.002 0.974± 0.002

CliRoberta 0.980± 0.001 0.988± 0.001 0.988± 0.002

Thanks to continual training, MC-BERT and Cliroberta improve over BERT-base

and Roberta-wwm on CCKS2019 dataset, exhibiting higher F1 scores in CNER.

However, on CSCR dataset, MC-BERT shows slightly worse performance than

BERT-base, illustrating an uncertain and unsatisfying performance on our stroke

dataset as we stated in Section 4.2.2. This observation motivates us to train our own

Chinese clinical embedding through domain-adaptive pre-training to address the

limitations of existing works. Table 4.4 demonstrates that our CliRoberta outperforms

all pre-trained embeddings on the CCKS2019 and CSCR datasets, despite using

a significantly smaller volume of selectively collected clinical corpora than other

embeddings (see Table 4.2). To validate the significance of our domain-adaptive

pre-training, we adopt the widely used paired sample t− test [37] by comparing the
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performance of our CliRoberta with the results of other embeddings one by one, on

both CCKS2019 and CSCR datasets. The results are shown in Table 4.5, in which

all p values are less than 0.05, proving the significance and persistent improvement

of performance by our pre-trained CliRoberta.

From the results of the three widely-used CNER models on both the CCKS2019

and CSCR datasets in Figure 4.8, we can see that the performance of BiGRU-CRF

and BiLSTM-CRF is very close, both significantly better than that of CNN-LSTM-

CRF. This result is in line with the previous findings [58, 100, 152]. We consider

“CliRoberta-BiLSTM-CRF” as our baseline CNER model (see Figure 4.2) because

it has achieved the highest F1 scores of 0.817 and 0.991 in CCKS2019 and CSCR

datasets, respectively.

Moreover, all the compared models exhibit much higher CNER accuracy on

CSCR, since the CSCR dataset is specifically designed stroke-related EHRs and also

has a much higher level of annotation density.

Table 4.5 : The results of the statistical significance test of our pre-trained CliRoberta

with four existing pre-trained embeddings. The p value from paired sample t− test

are reported in the table.

Dataset

CliRoberta

vs

Word2Vec

CliRoberta

vs

BERT-base

CliRoberta

vs

Roberta-wwm

CliRoberta

vs

MC-BERT

CCKS2019 2.565E-14 2.213E-2 1.255E-2 3.083E-2

CSCR 1.227E-18 9.105E-10 1.282E-8 2.541E-11

Overall 1.033E-11 2.681E-06 1.732E-06 2.857E-07
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4.3.4 Results of Automated NIHSS Scoring

We conduct automated, end-to-end NIHSS scoring on 33 randomly selected

real-world stroke clinical EHRs and compare the results against two comparison

groups. The first comparison group is composed of three stroke specialists, all from

top tertiary hospitals with extensive clinical experience in stroke and a high level

of clinical competence. The second group is made up of three volunteers who have

received a brief NIHSS scoring training.

After the three stroke specialists independently perform NIHSS stroke severity

assessment on the 33 EHRs, we synthesize their scores based on the voting principle,

i.e., the “mode” value with the highest frequency of occurrence is taken as the ground

truth item score. The total NIHSS score is the sum of the scores of each NIHSS item.

In the case that the three specialists gave three different scores, thus there is no

“mode” value, a meeting is called to discuss and review to reach a consensus score.

4.3.4.1 Statistical Evaluation of NIHSS Scoring

Table 4.6 presents the descriptive statistics of the NIHSS scores given by the

specialist group, the volunteer group, and our automatic method. It also presents

the voted scores of the specialists, i.e., the ground truth. The scores given by the

three stroke specialists are relatively close, with a mean value and standard deviation

of around 5.500 and 6.300, respectively. The ground truth has a mean value of 5.424

and a standard deviation of 6.383. From the figure, we can also see that the volunteer

group gave lower scores for both mean and standard deviation. Among them, there

is a gap of 5 points between the maximum score of volunteer 1 and the ground truth.

All of these indicate that people with less experience are prone to missing points

in scoring and have difficulty in accurately assessing all NIHSS items. The results

produced by our automatic method has a mean score of 5.394, only 0.030 lower than

the ground truth, and a standard deviation of 6.123, only 0.260 less than the ground
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truth; therefore, the performance of our method is statistically close to that of the

ground truth, and much better than that of the volunteer group.

Table 4.6 : Descriptive statistics of NIHSS scoring results by assessors and the ground

truth generated by specialists.

Assessor
EHR

count
Mean Std. Dev Min Max

Specialist 1 33 5.455 6.099 0 25

Specialist 2 33 5.515 6.350 0 24

Specialist 3 33 5.485 6.491 0 24

Ground Truth 33 5.424 6.384 0 24

Volunteer 1 33 5.212 5.430 0 19

Volunteer 2 33 4.939 5.979 0 25

Volunteer 3 33 5.394 5.932 0 24

Our method 33 5.394 6.123 0 24

4.3.4.2 Evaluation with Kappa and ICC

We further adopt the widely used inter-rater Kappa coefficient [23,28] (see Sec-

tion 4.3.2.2) and the Intraclass Correlation Coefficient (ICC) [11] (see Section 4.3.2.3)

to assess the level of agreement and consistency of our proposed method with the

ground truth. The Kappa coefficient is computed individually between each asses-

sor’s result and the ground truth, while each ICC coefficient is calculated within the

specialist group, volunteer group, and the group comprising the ground truth with

the scoring result of our method, respectively.

As shown in Table 4.7, the Kappa coefficient of the NIHSS scores provided by
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the specialists all exceed 0.755 and the ICC coefficient of 0.983, demonstrating

perfect agreement and excellent consistency upon high confidence of over 0.600 and

0.910 confidence intervals (CI95%) for the lower and upper limits, respectively. The

p-values for all assessors are very low, indicating statistically significant for both

Kappa and ICC tests.

These findings suggest that specialists have reached a reliable ground truth.

Conversely, the volunteer group shows the lowest Kappa (0.552) and ICC (0.920)

with the lowest confidence intervals of 0.374 and 0.730, indicating instability and

inaccuracy in scoring by less experienced raters. Our automatic stroke severity

assessment method has obtained a Kappa coefficient of 0.823 and an ICC value of

0.986, perfectly agreeing with the ground truth.

Between patients with mild and severe stroke severity, the results shown in

Table 4.8 indicate that our model demonstrates good reliability in scoring both mild

and severe stroke patients, with ICC values of 0.923 and 0.783, respectively (see

Section 4.3.4.3). However, it is noteworthy that the ICC exhibits relatively lower

reliability in the severe stroke patients’ group, deviating by 0.217 points from the

ground truth. This discrepancy is consistent with the majority of errors witnessed

by our method. It arises from the compromised mental and physical states of

severe stroke patients, making it difficult to fully cooperate in completing all NIHSS

assessment items. The poorer quality in describing severe stroke patients’ conditions

in the EHRs contributes to our method’s inability to achieve the same level of

reliability observed in the mild stroke patient group.

Furthermore, completing the NIHSS stroke assessment requires experienced

specialists an average of 5 to 8 minutes, the volunteers 13 to 17 minutes, and the

automatic stroke assessment 0.1 minutes. Overall, the results suggest that our

method is a reliable and precise alternative to specialists for assessing stroke severity,
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Table 4.7 : Evaluation of NIHSS scoring results by Kappa and ICC metrics for

different assessors. The “Time” is the average time taken for scoring one EHR. The

“CI95% low/up” represent the lower and upper limit of the 95% confidence interval,

respectively.

Assessor
Time

(min)

Kappa ICC

Value p-value
CI95%

low

CI95%

up
Value p-value

CI95%

low

CI95%

up

Specialist 1 5 0.755 3.374E–33 0.600 0.910 0.983 6.647E–26 0.970 0.990

Specialist 2 8 0.823 1.003E–38 0.682 0.964 0.996 3.076E–36 0.990 1.000

Specialist 3 6 0.857 7.960E–40 0.729 0.985 0.999 1.228E–43 1.000 1.000

Volunteer 1 13 0.552 4.093E–30 0.487 0.830 0.920 3.126E–15 0.850 0.960

Volunteer 2 14 0.578 3.684E–21 0.404 0.752 0.953 7.546E–19 0.910 0.980

Volunteer 3 17 0.658 1.601E–22 0.374 0.730 0.970 4.270E–22 0.940 0.990

Our method 0.1 0.823 7.656E–38 0.686 0.959 0.986 2.525E–27 0.970 0.990

and it significantly enhances efficiency.

4.3.4.3 ICC for Mild and Severe Stroke Patients

Table 4.8 presents the ICC values and associated statistical measures for stroke

severity assessments conducted by our proposed method against the ground truth.

The assessments are categorized into two groups based on the severity of stroke,

distinguishing between mild (NIHSS score between 5 and 15) and severe cases (NIHSS

score larger than 15) [17].
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Table 4.8 : The variations in the ICC values between patients with mild and severe

stroke severity. The “CI95% low/up” represent the lower or upper limits of the 95%

confidence interval, respectively.

Assessor
Mild Stroke Severity Severe Stroke Severity

Value p-value
CI95%

low

CI95%

up
Value p-value

CI95%

low

CI95%

up

Our method 0.923 0.001 0.660 0.990 0.783 0.035 0.000 0.990

Notably, our method yielded an ICC of 0.923 for patients with mild stroke

severity, with a significant p-value of 0.001 and a 95% CI ranging from 0.660 to

0.990. For patients with severe stroke severity, our method produced an ICC of 0.783,

accompanied by a p-value of 0.035 and a 95% CI spanning from 0.000 to 0.990. The

results indicate that our model demonstrates good reliability in scoring both mild

and severe stroke patients, with ICC values of 0.923 and 0.783, respectively.

However, it is noteworthy that the ICC exhibits relatively lower reliability in

the severe stroke patients’ group, deviating by 0.217 points from the ground truth.

This discrepancy can be attributed to the challenging conditions faced by severe

stroke patients, as their compromised mental and physical states make it difficult to

fully cooperate in completing all NIHSS assessment items. The poorer quality in

describing severe stroke patients’ conditions in the EHRs contributes to our method’s

inability to achieve the same level of reliability observed in the mild stroke patient

group.



71

4.4 Discussion

4.4.1 Principal Findings

In this chapter, we have developed an automatic, quantitative stroke severity

assessment framework that has made the following contributions to clinical research

and practice:

(1) We constructed a Chinese CNER dataset named CSCR through semi-

automatic annotation and expert verification. To the best of our knowledge, this

is the first stroke-specific Chinese CNER dataset with densely annotated, semanti-

cally related entities, which reliable medical knowledge base can be used in further

downstream applications based on Chinese EHRs [100,135].

(2) We produced a discriminative Chinese clinical embedding named CliRoberta

that outperforms the existing general and medical Chinese embeddings [31, 32,151],

in Chinese EHR representation. This, once again, demonstrates that the domain-

adaptive pre-trained Chinese clinical embedding is promising in clinical applications

such as CNER, with fewer data volumes and superior performance.

(3) Guided and verified by stroke specialists, we defined the entity-to-NIHSS

mapping, which supports our algorithm to automatically extract entities and rela-

tionships, achieving automated NIHSS scoring. It also supports novice volunteers

without prior clinical knowledge to quickly learn and conduct the labor-intensive

and time-consuming manual stroke severity assessments.

(4) Finally, we developed an automated, end-to-end NIHSS scoring method based

on CNER results, whose effectiveness is proven by its high inter-rater reliability

and excellent intraclass consistency compared with the ground truth established

by the stroke specialists, both exceeding that of the novice assessors. Furthermore,

our method has significantly reduced assessing time from minutes to seconds, thus
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improving the efficiency of the assessment. The automated assessment of the NIHSS

score is particularly valuable for retrospective studies where information about the

NIHSS is missing but EHRs are accessible. In such cases, stroke-related neurological

deficits can be extracted and converted into the NIHSS score for analysis.

4.4.2 Advancements and Limitations

For the first time, we have designed a suite of AI-aided, knowledge-based NLP

models to automate the clinical stroke severity assessment from Chinese EHRs.

Different from previous works [54, 98, 141, 144], our approach extracts intensively

annotated, semantically related entities directly from diagnostic notes within Chinese

EHRs for automated, end-to-end NIHSS scoring. The ability to incorporate natural

language in notes into symptom assessment affords our algorithms higher levels

of interpretability, precision, and reliability compared with the previous studies.

Furthermore, the whole suite of the AI algorithms and methods designed in this

research can be easily replicated or referenced for automated clinical assessments, not

only for stroke assessment in particular, but also for clinical assessment in general.

It is designed to be applicable to other languages with minimal adjustments, such as

replacing the original text with the target language.

A limitation of this research is that the number of test cases is relatively small,

with only 33 EHRs. We cannot test the applicability of the created algorithms

without trialling to use them on real-world stroke assessment in a clinical setting.

4.5 Summary

In summary, this chapter designs, implements, and evaluates a suite of AI-based

models to automate the clinical assessment task using Chinese EHRs. We effectively

applied domain-specific transfer learning to improve the embedding at the pre-training

stage and applied deep learning techniques to produce a high-performing CNER
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model. Then, we designed a novel entity-to-NIHSS mapping for stroke severity

scoring following an end-to-end approach. This represents a novel approach toward

a more effective and automatic assessment of stroke severity in an objective way.

The reliability and consistency of our automatic stroke severity assessment method

have been demonstrated by its comparable performance with the ground truth, and

better performance than that of a volunteer group. Furthermore, our method has

significantly reduced assessment time from minutes to seconds, thus improving the

efficiency of stroke assessment.

At the same time, we also observed that despite the high accuracy of our method,

this framework requires close collaboration of multiple steps and the support of

expert knowledge for tasks such as dataset construction and dictionary creation.

With the current popularity of large language models (LLMs), their emergence has

shown promise in natural language understanding (NLU) and inference tasks, making

them suitable for automating the often labor-intensive, time-consuming, and tedious

analysis tasks in EHRs. To address this, we propose an LLM-based prompting

paradigm to achieve automated stroke assessment in a more comprehensive manner,

which is detailed in the following chapter.
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Chapter 5

Empowering LLMs for Automated Clinical

Assessment using EHRs

Despite the solid performance of our proposed framework in the previous chapter

that achieves accurate stroke assessment results based on CNER and pre-training,

there is still potential for further improvement in both the workload and automation

levels. Recently, LLMs have demonstrated significant proficiency in natural language

understanding (NLU) and processing, offering promise for automating the typically

labour-intensive and time-consuming analytical tasks with EHRs. Despite the ac-

tive application of LLMs in the healthcare setting, many of the foundation models

lack real-world healthcare relevance, applying LLMs to EHRs is still in its early

stage. To advance this field, we pioneer a generation-augmented prompting paradigm

“GAPrompt” to empower generic LLMs for automated clinical assessment, in particu-

lar, quantitative stroke severity assessment in this study, using data extracted from

EHRs.

The GAPrompt paradigm comprises five components: (i) selection of LLM driven

by prompt, (ii) construction of a knowledge base augmented by generation, (iii)

summary-based generation-augmented retrieval (SGAR); (iv) inferencing with a

hierarchical chain-of-thought (HCoT), and (v) ensembling of multiple model outputs.

GAPrompt addresses the limitations of generic LLMs in clinical applications in

a progressive manner. It efficiently evaluates the applicability of LLMs in specific

tasks through LLM selection prompting, enhances their understanding of task-

specific knowledge from the constructed knowledge base, improves the accuracy of
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knowledge and demonstration retrieval via SGAR, elevates LLM inference precision

through HCoT, enhances generation robustness, and reduces hallucinations of LLM

via ensembling. Experiment results demonstrate the capability of our method to

empower LLMs to automatically assess EHRs and generate quantitative clinical

assessment results.

Our study highlights the applicability of enhancing the capabilities of foundation

LLMs in medical domain-specific tasks, i.e., automated quantitative analysis of

EHRs, addressing the challenges of labor-intensive and often manually conducted

quantitative assessment of stroke in clinical practice and research. This approach

offers a practical and accessible GAPrompt paradigm for academic researchers and

industry practitioners seeking to leverage the power of LLMs in domain-specific

applications. Its utility extends beyond the medical domain, applicable to a wide

range of fields.

5.1 Background

Hospitals and medical practices around the world have increasingly adopted

electronic health record (EHR) systems, resulting in massive amounts of electronic

patient data in both structured (e.g., disease codes, medication codes) and unstruc-

tured (i.e., clinical narratives such as progress notes) formats. The advancements

in AI techniques, including machine learning, deep learning, and natural language

processing (NLP), have provided researchers with powerful techniques to automate

the methods and process of secondary data analysis to support clinical decisions and

research based on these massive amounts of EHR data [54,63,95,141]. Currently, the

EHR data analytic methods encounter several significant limitations. These include

the requirement for large volumes of labeled datasets for model training, the necessity

for entity (health terms) and relationship annotation, labor-intensive preprocessing

procedures, and inadequate quantitative assessment capabilities [63,98,141].
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The recent large language models (LLMs) hold remarkable capability in natural

language understanding (NLU) and natural language inference (NLI) [104, 105].

They can comprehend and answer questions directly for a given text, surpassing the

classical machine learning and deep learning methods, which require sentence-by-

sentence or word-by-word processing and annotation [18]. Therefore, these LLMs are

highly promising AI techniques for enhancing EHR analytic technologies to improve

the quality and productivity of healthcare services. However, it remains a challenge

to directly apply these LLMs in real-world domain-specific tasks [70,113], because

most generic LLMs are trained on general language data and lack domain-specific

knowledge [127], while the very few medical domain LLMs are proprietary and not

publicly available [65,117,118]. Also, there is little report about the application of

LLMs in quantitative clinical assessment tasks.

Previous studies have demonstrated that with appropriately designed prompting

strategies, generic LLMs can achieve comparable performance to domain-specific

LLMs without the time-consuming and costly training or fine-tuning of LLMs [36,

131, 143]. Therefore, we explored the feasibility of applying prompting techniques to

enable generic LLMs in completing our clinical assessment task of stroke severity.

However, our initial research has found that there are several main challenges

of applying generic LLMs directly in implementing automated stroke assessment.

These include the evaluation of the applicability of foundation LLMs, the lack of

stroke assessment knowledge, the limited context length in processing large EHRs,

the inaccuracy of reasoning quantitative assessment results with NIHSS, and the

inevitable hallucination during the generation. By leveraging the in-context learning

(ICL) ability of LLMs, in this paper, a series of prompting strategies, including

prompt-driven LLM selection, generation-augmented knowledge base construction,

generation-augmented retrieval (GAR), hierarchical chain-of-thought (HCoT), and

an ensembling mechanism, are developed to tackle these issues, empowering LLMs
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for automated quantitative clinical assessment from EHRs.

First, with the popularity of LLMs, a plethora of new models are continuously

emerging. However, their applicability and performance are not clear in quantita-

tive clinical assessment tasks. Thus, first and foremost, an effective and efficient

prompting-based LLM selection approach is needed. Next, to enhance the LLM’s

knowledge of stroke assessment, retrieval-augmented generation (RAG) [73] is a

suitable solution. This process first constructs an external knowledge base compro-

mising stroke assessment guidelines and demonstrations, using the well-established

National Institutes of Health Stroke Scale (NIHSS) [17] as the quantitative stroke as-

sessment standard, and generating demonstrations from expert-validated assessment

results on a labeled EHRs dataset CSCR [38].It also utilizes a generation-augmented

retrieval (GAR) [83] method to accurately extract the corresponding assessment

criteria and demonstrations to guide the generation [73], helping to improve the

LLM reasoning performance.Subsequently, an HCoT prompting strategy that in-

tegrates the document-level macro sequential chain [72] and sentence-level micro

chain-of-thought [134], is proven to be effective to overcome the challenges of LLM’s

limited context length in processing large EHRs, and improve the performance of

LLM’s inference. Using the popular Langchain library [72], large EHRs are split

into short sentences and sequentially processed by LLM inferencing. Meanwhile,

the CoT technique [134] is capable of significantly improving the performance of

LLM inference through logical solutions provided in the demonstrations. Finally, an

ensembling strategy [4] is applied to integrate multiple generation results to control

the impact of LLM’s hallucination in generation.

In this chapter, integrating the aforementioned promoting strategies, we develop

the overarching generation-augmented prompting paradigm named “GAPrompt”.

This paradigm effectively extends the capability of generic LLMs, thus substantially

empowering their proficiency in clinical domain-specific applications, i.e., achieving
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automated quantitative stroke severity assessment.

The remainder of this chapter is organized as follows: Section 5.2 details our

methods of the GAPrompt paradigm, including the prompt-driven LLM selection,

generation-augmented knowledge base construction, summary-based generation-

augmented retrieval, hierarchical chain-of-thought, and the ensembling approach.

The experiment design and results are presented in Sections 5.3 and 5.4, respectively,

followed by a discussion and conclusion in Section 5.5.

5.2 Method

We propose a novel prompting paradigm named GAPrompt that applies retrieval

augmented generation to enhance the capabilities of the generic LLMs within our

stroke assessment application. GAPrompt specifically addresses the limitations

of LLMs including their uncertain applicability, lack of stroke assessment knowl-

edge, limited context length, inaccuracy in quantitative reasoning, and the issue of

hallucination.

Our proposed GAPrompt paradigm comprises five process components: (i)

prompt-driven LLM selection (in green); (ii) generation-augmented knowledge and

demonstrations construction (in blue); (iii) summary-based generation-augmented

retrieval (SGAR) (in orange); (iv) hierarchical chain-of-thought (HCoT) (in pink);

and (v) ensembling of multiple generations (in purple), as shown in Figure 5.1.

5.2.1 Prompt-driven LLM Selection

To evaluate the applicability of candidate generic LLMs for our specific application

scenario, we first devise a prompt-driven LLM selection strategy (see Figure 5.1 in

green). In this strategy, we create six prompt templates to evaluate the capabilities of

candidate LLMs in the following six aspects: the foundational knowledge required for

stroke severity assessment (“Knowledge”), comprehension of stroke-related knowledge
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Figure 5.1 : The architecture of our proposed GAPrompt paradigm. Green color:

prompt-driven LLM selection; blue color: generation-augmented knowledge base

construction; orange color: summary-based generation-augmented retrieval (SGAR);

pink color: hierarchical chain-of-thought (HCoT); purple color: ensembling.

and memory capacity (“Understanding”), learning from the few-shot examples about

stroke (“Learning”), chain-of-thought (CoT) reasoning (“Reasoning”), ensuring

consistency in the generated outputs (“Consistency”), and controlling hallucinations

(“Anti-hallucination”). Figure 5.2 presents examples of the detailed format of each

prompt template.

The Knowledge prompt, “Tell me the definition of the National Institute of Health

Stroke Scale (NIHSS) and its scoring criteria”, requires a highly specialized response.

It assesses an LLM’s foundational knowledge in stroke assessment using NIHSS. In

the Understanding prompt, we first present a comprehensive definition of NIHSS

along with its scoring criteria, afterwards we pose a similar question to evaluate

the LLM’s comprehension within the given context. The Learning prompt presents

examples in a question-answer format and concludes with a similar question to check
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if the LLM can learn from these examples. In the Reasoning prompt, we provide

a logical reasoning demonstration in question-answer form, followed by a similar

question to assess the LLM’s capability to learn logical reasoning from examples.

The Consistency prompt repeats a question five times to examine the consistency

of the LLM’s responses. Finally, in the Hallucination prompt, we pose an initial

question and then ask an unrelated one (such as “The patient’s speech is unclear. So,

what is the patient’s muscle strength level on the left leg?”) to evaluate the LLM’s

ability to control hallucinations.

While the above evaluation prompts may not comprehensively assess an LLM’s

capabilities, they establish a systematic method to assess the performance of generic

LLMs in the specific context of stroke severity assessment, and identify the foundation

LLM that meets our task requirements. With this process, we have identified the

best-performing model LlaMa2-70b from all the models that we evaluated to execute

our quantitative stroke assessment tasks.

5.2.2 Generation-augmented Knowledge Base Construction

Two types of external knowledge are required for LLMs to effectively perform

the task of quantitative assessment of stroke severity using EHRs: task-specific

knowledge and demonstration of the task execution procedure. The former refers to

the measurable NIHSS assessment criteria, and the latter are the examples given to

the machine for task execution.

Task-specific Knowledge. In our evaluation of LLM performance during the

prompt-driven LLM selection process (Section 5.2.1), we have observed that, while

LLMs possess a fundamental understanding of stroke assessment, they struggle with

consistently identifying assessment items and assigning precise NIHSS scores in

reasoning [17]. Therefore, we integrate an explicit NIHSS assessment guideline∗

∗https://www.ninds.nih.gov/health-information/public-education/know-stroke/health-
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Knowledge
## Instruction: Tell me the definition of the
National Institutes of Health Stroke Scale (NIHSS)
and its assessment criteria.
## Input: None.

Comprehension

## Instruction: Tell me the definition of NIHSS and its
assessment criteria based on the given information.
## Input: {{assessment criteria}}

Learning

## Question: Which NIHSS component is for the
assessment of Dysarthria?
## Answer: The 10th component of NIHSS.
## Question: What does the 10th component of
NIHSS assess?

Reasoning

## Question: Muscle strength levels 1 to 5 score 4 to
0 in NIHSS, respectively. What does level 3 score?
## Answer: Let's think step by step. Level 3 is the
3rd level, thus it scores the third value in the range
of 4 to 0, which is 2.
## Question: what is the Level 1's score?

Consistency

## Question: NIHSS has 11 assessment
components. What is the 11th component?
## Question: What is the last component of NIHSS?

Anti-hallucination

## Question: Tom has unclear speech. What is his
limb muscle strength level?
## Answer: []

Figure 5.2 : The six prompt templates applied to select the optimal foundation LLM.

Six capabilities of LLMs, including Knowledge, Comprehension, Learning, Reasoning,

Consistency, and Anti-hallucination, are evaluated using these defined prompts.

as an external task-specific knowledge to support the foundation LLM to improve

performance in this task. The NIHSS assessment protocol comprises 11 components,

each with distinct assessment objectives and scoring criteria, and varying score ranges.

To facilitate this integration, we employ a commonly applied sentence-transformer

embedding, “all-mpnet-base-v2” [114], to first convert the assessment criteria of each

NIHSS item into fixed-size vectors, and then store these vectors in a database for

subsequent queries.

LLM-generated Demonstrations. Previous research works have featured the

significance of using demonstrations to improve the performance of LLMs in text

generation tasks [118, 134]. They have also explored the potential of substituting

manually composed examples with LLM-generated demonstrations. In accordance

with the findings that LLMs can automatically generate CoT examples and make

professionals/nih-stroke-scale
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corrections based on the given ground truth [91,143,158], we introduce the following

prompt template, as shown in Figure 5.3, for LLMs to generate demonstrations.

Prompt Template for LLMs to Generate Demonstrations
## Context:{{assessment criteria}}
## Instruction: Please follow the assessment criteria to assess the scores of
each NIHSS component from the following report.
{{report}}
Let's think step by step.
1. If the report is not in English, translate it to English first.
2. Determine which components of NIHSS are related to the report, and
assess the score.
3. Not mentioned components score 0.
4. Correct the answer according to the ground truth for each component:
{{ground truth}}

Figure 5.3 : The template used by LLMs to generate demonstrations.

5.2.3 Summary-based Generation-augmented Retrieval

Retrieval is a pivotal step in our prompting approach. Previous research has

shown that dynamic retrieval, which takes into account the content of each query

to accurately retrieve highly relevant demonstrations, significantly improves the

overall quality of CoT prompting [91, 158]. Furthermore, the GAR method [83] that

uses LLMs to augment the query content has proven effective in enhancing retrieval

accuracy. In light of these insights, we propose an innovative summary-based GAR

(SGAR) approach that employs LLM-generated summaries to improve retrieval

accuracy.

Unlike previous methods that focused solely on enhancing query generation,

our approach introduces the concurrent LLM-generated summarization of both the

input query and the external knowledge base. This dual summarization approach

enables the query to capture essential information at the sentence level, guided by the

external knowledge base. Meanwhile, it compresses the information at the document

or paragraph level in the knowledge base. This bidirectional compressing process
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improves accuracy of matching in retrieval (see Figure 5.1 in orange).

We first define the summarization criteria that focus on retrieving information

related to anatomy, inspection, and symptoms, to achieve our research objective of

stroke severity assessment based on patients’ EHR data (see Figure 5.4). We then

instruct the LLM to use these criteria to generate summaries of the raw text. For

knowledge records, we apply LLM-based summarization to each paragraph. However,

in the case of demonstrations, our focus is solely on summarizing the EHR contained

within the question portion, disregarding the answer section.

Prompt Template for LLM-augmented Summarization

## Instruction: Please summarize the given text to capture only keywords
related to the anatomy, inspection items, and symptoms. 
## Input: {{EHR or Knowledge or Demonstration}}

Figure 5.4 : The prompt template used for LLMs to generate summarization.

After the augmentation process, both the knowledge summary and demonstration

summary are embedded with sentence-transformers [114] and then saved as metadata

in the vector database corresponding to each record. During the retrieval process,

the algorithm searches and matches the summarized query vector with the metadata

of the knowledge and demonstrations. Upon a successful match, the raw knowledge

and demonstrations are returned, ensuring the preservation of information from the

knowledge base without loss.

5.2.4 Hierarchical Chain-of-Thought

To address the limitations of the foundational LLMs that we have encountered,

including limited context length and inference error, we introduce two techniques -

macro sequential chain and micro CoT, and encapsulate them in our method entitled

Hierarchical Chain-of-Thought (HCoT) (see Figure 5.1). The macro sequential chain
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breaks down the complex assessment of large EHRs into small, sequential steps,

thus helping LLMs to think logically and infer step by step. chain-of-thought has

been empirically validated as an effective method for prompting LLMs. It enables

systematic reasoning in alignment with the logic flow of the few-shot examples [134,

158].

5.2.4.1 Macro Sequential Chain

Leveraging the Langchain platform [72], we traverse each EHR data through five

sequential chains - splitting, translation, retrieval, micro CoT, and summarization

(see Figure 5.5). The output of one chain serves as the input for the next chain.

Distinct prompt templates are applied at different chains to achieve each one’s

intended purpose.

Input
EHRs Splitting

Knowledge
Demos
EHR

Generation-
augmented
Retrieval

Micro
CoTTranslation Summarization

Figure 5.5 : The macro sequential chain. The macro sequential chain includes five

steps: splitting, translation, retrieval, micro CoT, and ensembling .

The EHR dataset used in this study, i.e., the CSCR dataset, is provided by our

partner hospital in China, thus in Chinese language. First, the Translator translates

the EHR dataset into English. Then, the splitter splits the paragraphs in the EHR

dataset into short sentences.

Each short sentence is fed into the LLM-augmented Retriever to first summarize

the content (as described in Section 5.2.3). Then the compressed content is embedded

into vectors. The retriever also retrieves the relevant contextual knowledge and

demonstrations from the external knowledge base and stores them in vectors.

The short sentences, contextual knowledge and demonstrations stored in the
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vectors are content for prompt templates. The prompt templates are fed into the

next chain for Micro CoT learning.

To mitigate the impact of LLM uncertainty and hallucination, we implement an

ensembling technique that randomly sets the LLM temperature in accordance with

prior research [91]. For each input EHR data, we independently prompt the micro

CoT five times. The outputs from these promptings are then subject to a voting

process to produce the final output.

5.2.4.2 Micro Chain-of-Thought (CoT)

Micro CoT is the core step of our proposed GAPrompt prompting paradigm (see

Figure 5.1 in pink). Figure 5.6 provides a detailed illustration of the micro CoT

prompting template. Unlike the existing CoT methods [117,134] that use a fixed set

of examples for few-shot prompting, our sentence-level micro-CoT is underpinned

by an external knowledge base in addition to the demonstrations. We incorporate

the standard NIHSS assessment criteria into the prompt template as contextual

information for information retrieval, addressing inconsistencies caused by LLM’s

potential uncertainty and hallucination. Given the limited context length of the

foundation LLM, we employ a three-shot prompting approach, restricting the number

of demonstrations to three instances. Furthermore, our inference process aligns with

the hierarchical CoT logic. Therefore, Micro CoT is an important technique to

improve the performance of LLMs in analyzing the EHR dataset.

5.2.4.3 Summarization

A voting process selects the optimal score from three demonstrations , which are

produced by the Micro CoT reasoning method.

In summary, the GAPrompt machine learning framework starts with identifying

the language of the input EHR data. If the data is not in English, it is translated
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Micro Chain-of-Thought Template

## Context:{{assessment criteria}}
## Demo: {{Demostrations}}
## Input: {{report}}
## Instruction: Please follow the assessment criteria to assess the scores of
each NIHSS component from the given report.
Let's think step by step.
1. If the report is not in English, translate it to English first.
2. Determine which components of NIHSS are related to the report, and
assess the score.
3. Not mentioned components score 0.

Figure 5.6 : The macro sequential chain. It includes the steps of translation, splitting,

retrieval, micro CoT, and ensembling.

into English. Afterwards, the framework classifies the input EHR report according

to the relevant NIHSS components. The assignment of the NIHSS score for each

assessment item is then carried out.

5.3 Experiment Design

In this section, we first briefly introduce the experiment datasets. These include

the prompt-based Q&A templates for LLM selection, the generation-augmented

knowledge base for RAG, and the test dataset for stroke severity assessment. This is

followed by the metrics for the evaluation of output performance.

5.3.1 Datasets

5.3.1.1 Prompt Templates for LLM Selection

As detailed in Section 5.2.1, we have designed six task-specific prompt templates

to evaluate the capabilities of LLMs in our stroke assessment use case. Each prompt

template contains a specified query paired with a corresponding ground truth answer.

The candidate LLMs are individually loaded and presented with each prompt in

sequence. Their performance is assessed by comparing their outputs to the respective
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ground truth answers.

5.3.1.2 Generation-augmented Knowledge Base

We refer task-specific knowledge as the detailed definitions and scoring criteria

for each of the 11 NIHSS assessment components. A labelled dataset [38] is used to

generate task-specific knowledge and demonstrations for the subsequent summary-

based generation-augmented retrieval (SGAR), utilizing in-context learning (ICL)

capabilities of LLMs. The embeddings of each NIHSS assessment component and its

summary are stored in a vector database as metadata (see Figure 5.4).

The LLM-generated demonstrations utilize the original EHR data from the CSCR

datasets [38], which contains 1,931 EHRs. These EHRs are split into sentences,

each with expert-validated NIHSS scores. After removing duplicate sentences and

unrelated items, we are left with 3,314 sentence-level demonstrations. Table 5.1

shows the distribution of the augmented knowledge base for each NIHSS assessment

component.

5.3.1.3 Test Dataset for Stroke Severity Assessment

Our test dataset, sourced from our previous study [38], comprises ground-truth

stroke assessment scores for 33 patients. Each of these records is processed by the

Hierarchical Chain-of-thought (refer to 5.2.4). This starts with Macro Sequential

Chain. The resulting prompt templates are inputs of the Micro CoT for sentence-level

inferencing, which generates NIHSS assessment items and scores. Consequently, the

final test set includes both macro and micro-level ground truth.

Table 5.2 illustrates the distribution of the test dataset, at both micro and

macro-levels for all NIHSS components. The micro-level samples represent the results

of sentence-level inferencing generated by the micro CoT. These sentences are the

product of LLM-augmented Retrieving and LLM-chain for each of the 33 raw EHRs.
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Table 5.1 : The distribution of the generation-augmented knowledge base. Both the

task-specific knowledge and the LLM-generated Demonstrations are reported, along

with the count of samples related to each NIHSS component and their corresponding

percentages (%).

NIHSS

Component

Task-specific Knowledge LLM-generated Demonstrations

Count Percentage (%) Count Percentage (%)

1a 1 6.67 95 2.87

1b 1 6.67 238 7.18

1c 1 6.67 13 0.39

2 1 6.67 32 0.97

3 1 6.67 30 0.91

4 1 6.67 169 5.10

5a 1 6.67 428 12.91

5b 1 6.67 430 12.97

6a 1 6.67 361 10.89

6b 1 6.67 385 11.62

7 1 6.67 207 6.25

8 1 6.67 226 6.82

9 1 6.67 641 19.34

10 1 6.67 54 1.63

11 1 6.67 5 0.15

Total 15 1 3314 1
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Each sample contains an NIHSS assessment component and its score. The macro

EHR-level ground truth refers to the original assessment items and scores of the

given 33 EHRs. The micro sentence-level texts belonging to the same EHR are

summarized by the macro chain of HCoT.

Table 5.2 : The distribution of the quantitative assessment dataset. Both micro

and macro-level ground truth of each NIHSS component and their corresponding

percentage (%) are reported.

NIHSS

Component

Micro Level Macro Level

Count Percentage (%) Counts Percentage (%)

1a 35 11.47 30 12.82

1b 29 9.51 20 8.55

1c 3 0.98 3 1.28

2 7 2.30 7 2.99

3 1 0.33 1 0.43

4 31 10.16 25 10.68

5a 10 3.28 10 4.27

5b 29 9.51 27 11.54

6a 11 3.61 10 4.27

6b 28 9.18 27 11.54

7 47 15.41 24 10.26

8 41 13.44 23 9.83

9 24 7.87 19 8.12

10 8 2.62 7 2.99

11 1 0.33 1 0.43

Total 305 100 234 100
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5.3.2 Evaluation Metrics

Following prior research [62], we utilize the Exact Match (EM) score to assess

the performance of the LLM selection, and we evaluate the retrieval performance

using Top-k retrieval accuracy.

Exact Match (EM) is calculated as the proportion of the predicted answer texts

that are exactly identical to the ground-truth answer, after string normalization such

as article and punctuation removal.

Top-k Retrieval Accuracy is defined as the proportion of questions for which the

top-k retrieved records contain at least one correct answer. This metric sets up the

upper bound of how many relevant questions are extracted by the retriever.

When evaluating the accuracy of automatic quantitative stroke assessment, unlike

the patient-level evaluation in the previous chapter, in this chapter we adopt a

fine-grained evaluation method using NIHSS items as groups and segments as units.

We use the F1 score as our evaluation metric. The F1 score combines precision

(accuracy of positive predictions) and recall (ability to identify actual positive cases)

into a single value. It is calculated as the harmonic mean of precision and recall,

making it a robust metric for assessing model performance.

5.4 Results

5.4.1 LLM Selection

In Section 5.2.1, we have devised six prompting templates for selecting a candidate

pool of LLMs. Table 5.3 shows the results of LLM selection using the EM metric

(see Section 5.3.2).

From the table, we can see that LlaMa2-70B and Qwen-72B exhibit superior

overall abilities compared to their competitors. Notably, they demonstrate a strong

in-context learning (ICL) ability for learning knowledge from the external knowledge
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base and understanding the logic from the demonstrations. In contrast, the specifically

fine-tuned medical domain LLM HuatuoGPT2 does not perform well. This may be

attributed to the nature of our task, which goes beyond a simple medical Q&A task

but fully utilizes ICL and CoT to comprehend in-context knowledge and infer from

the retrieved knowledge and demonstrations. This test result motivates our selection

of the most powerful foundation LLMs, i.e., Llama2-70B, for our task.

Table 5.3 : The performance of candidate LLMs with six prompting templates, using

EM evaluation metrics.

LLMs
Know-

ledge

Under-

standing

Lear-

ning

Reas-

oning

Consis-

tency

Anti-

halluci-

nation

Over-

all

LlaMa2-

70B [124]

0.48 0.73 0.46 0.71 0.89 0.67 0.66

Qwen-

72B [9]

0.37 0.48 0.37 0.65 0.90 0.66 0.57

Falcon-

40B [57]

0.38 0.43 0.35 0.60 0.85 0.70 0.47

Huatuo2-

34B [130]

0.40 0.36 0.28 0.56 0.80 0.57 0.50

5.4.2 Generation-augmented Retrieval

Table 5.4 shows the results of our proposed SGAR method using top-k retrieval

accuracy on both task-specific knowledge and the demonstrations (see Section 5.3.2).



92

Table 5.4 : Top-k retrieval accuracy (%) on both task-specific knowledge and the

demonstrations.

Method
Knowledge Demonstrations

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

BM25 [20] 41.18 45.25 48.72 35.26 47.88 54.52

Vdb [62] 56.71 65.51 74.68 48.76 54.64 61.74

BM25-SGAR 70.81 78.39 83.91 81.46 87.64 86.12

Vdb-SGAR 79.64 85.44 85.84 89.84 93.81 95.51

The experimental results reveal that our retrieval method yields more accurate

retrieval outcomes, thereby enhancing subsequent HCoT and achieving more precise

inferencing results. Furthermore, it significantly reduces the context length required

by LLM. Following retrieval, the context now only includes a single or a few NIHSS

components that are most relevant to the query text. In comparison to loading the

entire NIHSS assessment guideline, our approach saves up to 90% context occupancy.

This efficiency and effectiveness highlight the strength of our retrieval method.

5.4.3 Results of Micro Chain-of-Thought Learning

Table 5.5 shows the performance (F1 score) of LLM inferencing with micro CoT.

All the models demonstrate excellent accuracy in the quantitative assessment of

sentence-level EHR texts. Four foundation LLMs are tested to conduct a quantitative

assessment of EHR sentences and generate the scores for each NIHSS component.

The results reported in the table are the ensemble results derived from aggregating

the results of five independent inferences. Among these LLMs, LlaMa-70B shows

the best performance, slightly surpassing that of Llama2-70B and largely superior

to the Falcon-40B and HuatuoGPT2-34B. The result is consistent with the LLM
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selection results presented in Section 5.4.1, reaffirming the effectiveness of our simple

but efficient prompt-driven LLM selection approach.

Table 5.5 : The micro CoT results (F1 score).

NIHSS

Component
LlaMa2-

70B [124]

Qwen-

72B [9]

Falcon-

40B [57]

HuatuoGPT2-

34B [130]

1a 95.65 94.63 84.62 88.16

1b 95.01 93.60 85.14 84.33

1c 97.56 98.34 85.66 85.00

2 95.42 94.49 81.22 80.88

3 97.25 95.57 83.34 80.43

4 94.80 94.18 79.25 80.61

5a 97.89 96.70 86.15 84.25

5b 96.84 94.44 77.12 81.54

6a 97.67 97.28 80.53 78.27

6b 95.83 94.71 77.84 77.52

7 90.25 86.56 70.53 72.28

8 88.66 86.24 70.11 74.63

9 95.35 93.84 78.62 82.22

10 98.44 97.67 84.51 82.79

11 99.06 98.90 85.12 83.93

overall 95.71 94.48 80.65 81.12

5.4.4 Macro Sequential Chain Results

In this section, we evaluate the performance of our macro sequential chain for

document-level LLM inferencing. Table 5.6 shows the performance of the macro
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sequential chain by four foundation LLMs. The sentence-level LLM inferencing

results that belong to the same EHR are comprehensively integrated by the macro

sequential chain. Macro results are consistent with the micro CoT results (see

Table 5.5), but a bit lower. This is because the cumulative effect of micro-level errors

reduces the accuracy of macro results.

Table 5.6 : The result of the macro sequential chain.

NIHSS

Component
Llama2-70b Qwen-72B Falcon-40B HuatuoGPT2-

34B

1a 75.15 70.44 43.12 45.28

1b 60.61 54.36 42.56 38.55

1c 43.55 87.88 40.44 41.23

2 57.04 90.71 47.20 52.65

3 61.88 98.46 51.33 51.44

4 63.84 82.44 52.05 54.64

5a 80.79 89.22 58.60 64.22

5b 89.68 91.02 57.97 71.24

6a 81.80 85.07 50.23 65.72

6b 83.62 83.24 51.54 61.84

7 87.31 85.72 61.35 60.88

8 52.04 63.30 30.51 49.63

9 48.80 56.57 45.54 48.75

10 93.10 94.43 67.88 72.51

11 89.42 96.88 46.40 50.35

overall 85.42 81.98 49.78 55.26
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5.4.5 Ablation Studies on the Effectiveness of GAPrompt Components

Figure 5.7 presents the results of an ablation study on the effectiveness of

GAPrompt components, based on the overall F1 score of the quantitative assessment

using Qwen-72B on the test dataset.

Figure 5.7 : The ablation study on the effectiveness of GAPrompt components.

Our proposed GAPrompt pipeline consists of the generation-augmented knowledge

base construction (represented as ”Knowledge” in Figure 5.7), the GAR method to

retrieve the knowledge and the demonstrations, the HCoT strategy that integrates

micro CoT with macro sequential chain, and the ensembling strategy to integrate

the inference results from five generations. From the table, we can find how much

each component of GAPrompt contributes to the overall results.

The green bar shows the inferencing performance of the foundation LLM, with

a moderate F1 score of 56.84%. It is not surprising since the inferencing largely
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relies on the basic knowledge of the foundation LLM, which is not fully accurate as

described in Section 5.2.1.

The blue bar refers to the performance improvement (+7.10% F1 score) when

importing the task-specific knowledge during the LLM inferencing. Two factors lead

to this enhancement, the first is the knowledge, i.e., the detailed NIHSS assessment

criteria in this study, defines and limits the assessment components of NIHSS.

The second is it provides detailed scoring criteria which helps the LLM to better

understand the given EHR and conduct NIHSS scoring.

The orange bar indicates the improvement (+3.85% F1 score) when employing

our proposed GAR method based on the LLM-generated summary index. This

improvement is compared with the performance using the full-text-based retrieval

method. Compared with the existing RAG methods [111], our summary-based

retrieval indicates higher retrieval accuracy on both knowledge and demonstration

retrieval. This is because the LLM-generated summary extracts the most valuable

information and excludes noisy information.

The most significant improvement of our GAPrompt falls on the HCoT strategy

(+14.81% F1 score, in pink). It indicates that our designed promptings on both

the macro sequential chain and the micro CoT contribute the most to empowering

the foundation LLM in completing our task. This finding is consistent with the

previous works, i.e., CoT [134] and AutoCoT [158], demonstrating that the few-shot

step-by-step demonstrations are the most important factor in improving the LLM

inference performance. The excellent performance of our method also validates

the effectiveness of our HCoT prompting strategy compared to existing reasoning

prompting methods [111].

At last, we apply ensembling to further improve the final performance (+2.82%

F1 score, in purple) of our proposed GAPrompt paradigm, minimizing the influence
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of randomness and hallucination of LLM generation.

Compared with the existing research that only uses RAG to control the halluci-

nation [73,111], our method applies an ensembling strategy on top of the RAG-based

LLM inferencing, providing multiple options and more comprehensive evaluation to

better control LLM’S hallucinations.

We set up five different temperatures for the foundation LLM generation, and

conduct five independent LLM inferences on each EHR sentence. Finally, the results

of the five independent LLM inferences are integrated producing the final inference

result with the ensembling mechanism.

5.5 Summary

In conclusion, our study underscores the transformative potential of leveraging

foundation LLMs for automating the intricate analysis of EHRs in the medical

domain. Focused on stroke as a use case, our prompting paradigm, incorporating

LlaMa2-70B and innovative methods including retrieval-augmented generation and

hierarchical chain-of-thought, demonstrates the capacity to automatically assess and

quantify EHRs.

This approach not only overcomes the challenges of labor-intensive and manually

conducted quantitative assessments but also extends its applicability beyond the

medical domain. The adaptability of our method positions it as a valuable tool for

diverse fields, offering insights and solutions for data-driven analysis in both research

and industry applications.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, towards developing advanced AI-based techniques to automate the

clinical assessment task using Chinese EHRs, we have developed progressive steps

with a range of sophisticated AI-driven approaches to realize this objective.

In Chapter 3, we have constructed a stroke disease-specific ontology “StrokePEO”,

which is the first ontology that is specifically constructed for the physical examination

of stroke. We introduced multiple NLP techniques and deep learning methods to

extract the terms and relationships from real clinical EHRs, effectively and efficiently

boosting the ontology construction process. With the verification of stroke specialists,

our approach and the resulting StrokePEO demonstrate huge potential in supporting

the further development of diverse clinical research and practice.

On the basis of this, in Chapter 4, we developed automatic stroke assessment

algorithms based on Chinese clinical named entity recognition and domain-adaptive

pre-training. Grounded on the US National Institutes of Health Stroke Scale (NIHSS)

and clinical practice, we defined an ontology-aided dictionary with seven types of

semantically related entities that are combined to describe stroke symptoms. We

constructed a labeled dataset “Chinese Stroke Clinical Records” (CSCR) from EHRs

of the partner hospital with this dictionary, semi-automatic annotation, NLP tech-

niques and specialist validation. We pre-trained a Chinese clinical word embedding,

“CliRoberta”, through adaptively transferring the BERT-based embedding, “Roberta-

wwm”, to the clinical domain using the open-source Chinese EHRs and the EHRs of



99

our partner hospital, which achieves higher representation accuracy than the existing

embeddings. Combining the CSCR and CliRoberta, we created a high-performing

Chinese clinical named entity recognition (CNER) model based on BiLSTM-CRF

deep neural networks. We defined and implemented an entity-to-NIHSS mapping

dictionary and used it in incremental development to automatically generate the

stroke assessment score for a patient. With high inter-rater agreement (0.823) and

excellent intraclass consistency (0.986) with the ground truth and reduction of pro-

cessing time to a few seconds, our algorithms demonstrate the value of automatic

disease assessment using free-text EHRs.

With the rapid development and outstanding performance of LLMs over the

past year, leveraging LLMs to achieve automated stroke assessment based on EHRs

showcases a more comprehensive, robust, and general approach compared to previous

methods. However, the scarcity of publicly available medical LLMs and the complexity

of domain-specific fine-tuning pose challenges. Therefore, designing appropriate

prompting strategies to enhance the capabilities of foundation LLMs emerges as

a promising solution. In Chapter 5, we propose a novel generation-augmented

prompting paradigm called GAPrompt for the automated analysis of EHRs using

foundation LLMs. By leveraging the few-shot in-context learning (ICL) abilities of

LLMs, our proposed GAPrompt paradigm enhances the power of foundation LLM

through a series of prompting strategies, including prompt-driven LLM selection,

generation-augmented knowledge base construction, summary-based generation-

augmented retrieval, hierarchical chain-of-thought, and ensembling, overcoming

the limitations of foundation LLM in analyzing domain-specific EHR text. Our

method has demonstrated the capability to automatically assess EHRs and generate

quantitative assessment results based on the retrieved assessment criteria and few-shot

demonstrations.

All three works completed during my PhD have addressed various challenges in
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automating stroke assessment from different perspectives and using various methods,

providing advanced AI-based solutions. These works evolve from the NLP and

machine learning-based semi-automated ontology construction, to deep learning and

pre-trained embeddings-based CNER, from the dictionary-based NIHSS mapping, to

leveraging LLM’s powerful understanding and reasoning capabilities to achieve more

intelligent and comprehensive automated quantitative clinical assessment. These

works also represent the development trajectory of advanced AI technologies in

clinical research and application, providing significant practical and reference value

for both clinical research and practice.

6.2 Future Work

The application of intelligent AI technologies, especially large-scale models, to

assist clinical practice is becoming increasingly prominent as a research focus. Our

research in this thesis serves as a typical case study, demonstrating the immense

potential of LLMs in real-world clinical applications. As a pioneering work in this

field, there are still opportunities and challenges for further research.

One future research direction is to extend our proposed methods to multiple

levels of clinical practical applications, i.e., automatic stroke severity assessment with

various scales and automatic assessments of other diseases. Besides the NIHSS scale,

there are other assessment scales that are commonly used by clinicians to assess

stroke-induced impairments, e.g., Glasgow Coma Scale (GCS), modified Rankin Scale

(mRS), Barthel Index (BI) and quality of life (QOL), etc. [48, 88, 103]. Our methods

can be modified and fine-tuned to allow automatic assessment using the other scales

to obtain more specific quantitative assessment results in a more broad area.

Furthermore, building upon the foundation of this study, exploring further medical

applications and research avenues is essential. For example, utilizing LLMs for

automatic EHR recording and summarization, converting unstructured EHR data
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into structured formats, conducting medicine effectiveness analysis, and developing

drug and treatment recommendation systems, etc,.

In conclusion, applying advanced AI technologies to address real-world challenges

and promote the practical application of intelligent technologies for the benefit of

society is a research focus worth persistently commitment and lifelong dedication.
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