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Automation has emerged as a transformative force in modern society, revolutionizing in-

dustries by enhancing efficiency, reducing labour costs, and increasing production output.

In agriculture, automation has been particularly impactful, with examples such as preci-

sion farming and automated harvesting systems significantly improving crop production

and management. Despite these advancements, the wool industry has remained largely

untouched by automation. Automation in contaminant detection on fleece can severely

improve wool production and reduce on-farm costs, by reducing the reliance on manual

labour and enhancing the consistency of the product. To address this automation prob-

lem, the thesis introduces an approach to contaminant detection on fleece that centres on

the development of an image registration technique. This technique compares images of

wool before and after the skirting process, facilitating the detection of the skirting line by

identifying the contaminated areas that had been removed in the after-skirt image.

To align the after-skirt image with the before skirt image, it is essential to employ an image

registration method capable of accommodating the transformations that happen during

the skirting process. These transformations are detected with the use of feature matching

algorithms and subsequently filtered to remove all outliers. Thus, a novel filtering process

is utilised, which accounts for the deformations that happen to the wool during handling.

With the use of these correspondences, image alignment is then achieved through the
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implementation of a non-rigid deformation method. The experiments demonstrate a lower

error when aligning the wool images compared to rigid methods.

Feature matching algorithms fail to find correspondences on areas with extreme deforma-

tion located near to the skirting area. Thus, a method that integrates dense correspon-

dences from damaged areas to the previously established correspondences is devised using

a learning-based filtering method. By analysing the continuity in deformation, it becomes

feasible to identify dense correspondences in the more affected areas found along the edges

of the fleece.

Finally, a physics-based simulation is employed to find correspondences at the edge of the

fleece which undergoes significant stretching. Given the distinctive material properties

of wool, feature matching algorithms proved inadequate in identifying correspondences on

areas with significant stretching along the skirting line location. This simulation method is

capable of replicating the elasticity observed at the fleece’s edge during the skirting process.

As a result, it becomes possible to identify correspondences at the fleece’s edge, thereby

increasing the accuracy of skirting line location and enabling accurate image registration

for elastoplastic objects that have undergone extreme deformations.
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Chapter 1

Introduction

1.1 Wool in the Australian Market

Wool production and exportation remain integral to the Australian market, with wool

exports generating around $2.7 billion in 2021-2022, positioning Australia as the leading

exporter and producer of wool globally [1]. However, the sector has faced challenges in

recent years, including a significant reduction in wool production and exports over the

last five years. As indicated by Figure 1.1, the number of sheep shorn in Australia has

consistently declined over the past three decades, with a notable drop in the last four years,

exacerbated by the COVID-19 pandemic. This decline can partly be attributed to major

clothing companies shifting toward natural fibres like cotton, favoured for their easier

transportation and production capabilities. Cotton production has witnessed significant

automation advancements since the early 20th century, notably with the gin machine

capable of processing 230,000 kilograms of cotton per day Cotton Australia [2].

In contrast, wool production has seen minimal advancements in automation. Shearing ef-

ficiency remains closely tied to manual skills, despite the introduction of motorized equip-

ment. The skirting process, involving the removal of contaminants, is also predominantly

a manual task, in contrast with the more automated processes in cotton production.

Despite these challenges, the Australian wool market is trying to adapt to the current

needs and demands. The Australian Wool Production Forecasting Committee (AWPFC)

1
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Figure 1.1: Number of fleeces shorn in Australia since 1991
(Australian Wool Innovation [3])

anticipates wool production volumes to continue increasing in 2023 for the third consec-

utive year, estimating production for the 2022/23 sale season at 340 million kg, a 4.9%

increase from the previous year [4]. However, increased stock numbers and wet weather

will continue to challenge shearing operations, which are already strained by a labour

supply shortage.

Technological innovations in wool processing are creating new opportunities to meet cur-

rent demands. Innovations in wool processing technologies have led to more efficient and

environmentally friendly processes in yarn development, knit and weave manufacture, and

dyeing and finishing. This progress opens up new market opportunities for wool as an

eco-friendly and performance fibre. Notable recent advancements include:

• Smart Shearing Handpiece: Developed to improve the efficiency and ergonomics
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of wool shearing, this innovation promises to enhance shearer comfort and reduce

physical strain, potentially addressing labour shortages in shearing operations [3].

• Automated Wool Classing Systems: Utilising advanced imaging and analysis

technologies, these systems aim to automate the wool classing process, enhancing

the accuracy and efficiency of wool sorting and grading [3].

• Biological Wool Harvesting: Advances in biological wool processing methods

eliminating the shearing pieces increasing wool quality [3].

Despite the promising advancements in technology, the wool industry continues to confront

significant workforce challenges. The physical and skill-intensive nature of wool shearing

makes it a demanding profession. Shearing requires the person to be in good physical

condition as they manoeuvre heavy animals and maintain precision in wool removal. This

physically demanding task, coupled with the need for specialized skills, contributes to the

current shortage of shearers.

The industry faces a substantial decrease in wool shearers, with around 2,000 active shear-

ers today, a sharp decline from 30 years ago. This shortage has led to considerable delays

in shearing operations, some extending up to eight weeks, particularly exacerbated by the

COVID-19 pandemic. The pandemic, along with other factors like travel restrictions and a

lack of confidence in interstate movement, has further strained the availability of shearers,

traditionally supplemented by workers from New Zealand [5].

These delays pose significant risks to sheep welfare, including the danger of fly strike and

illness due to long wool, especially during Australia’s wet summers. Extended wool can

also impact the sheep’s breeding schedule and lamb production. Furthermore, the delayed

shearing schedules lead to stock losses and increased costs for farmers, with shearing wages

rising significantly [5].

Additionally, the ongoing labour shortages threaten the overall sustainability of the in-

dustry. The risk of losing a substantial portion of this $3 billion-plus industry could have

far-reaching implications, affecting both downstream and upstream jobs.
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Figure 1.2: The Skirting Process involves placing freshly shorn fleece on a skirting table,
where wool handlers manually remove contaminated sections, typically found around the

fleece edges [6].

1.2 Automation in contaminant detection

Wool production stands to gain significantly from the automation of its processes, partic-

ularly in the area of skirting. Skirting is a critical stage where contaminants are removed

from freshly shorn fleece, as depicted in Figure 1.2.

To automate this process, a high degree of confidence is required when detecting and

removing the contaminants since the presence of contaminants after the skirting process

has a severe effect on the whole wool pipeline. Not removing all contaminants can affect

the quality of products such as cloth/fabric from the manufacturer. On the other hand,

excessive skirting or over-skirting leads to significant financial losses in the wool industry.

Research into the feasibility of detecting contaminants on wool fleece using vision sensors

dates back several decades [7]. Early efforts utilised Near-Infrared cameras to observe

the wool, applying PCA and soft independent modelling of class analogies to differentiate

between polymeric materials and uncontaminated wool. A more recent advancement by

Zhang et al. [8] involved a system using RGB cameras. This system identifies polypropy-

lene contaminants through adaptive thresholding in RGB and HSV colour spaces and is
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complemented by a mechanical system for real-time removal and sorting of these contami-

nants. However, these methods primarily target foreign contaminants such as plastics and

packaging materials, leaving natural contaminants like blood, dirt, and urine, which are

equally important in the skirting process, undetected.

Subsequent research has shifted towards automatically detecting the skirting line around

the fleece edges [9]. This process involves using manual annotations by wool handlers,

who mark the anticipated skirting line on RGB images. However, significant variability

in annotations between different handlers has been noted, likely due to the subjective

nature of human judgment in this process. This variability underscores the challenges in

automating the skirting process and highlights the need for more objective, automated

methods that can consistently identify the location of contaminants near the edge of the

fleece.

For this reason, this thesis investigates the automation of the skirting process by focusing

on the delineation of the skirting line. To overcome the biases inherent in human anno-

tation, this work employs image registration techniques to align images of contaminated

and clean wool.

Although the primary focus of this thesis is the detection of the skirting line in wool pro-

cessing, the methodologies introduced in the following chapters can be applied to analyse

the deformation between two images across various fields. These applications include med-

ical imaging, such as tracking organ or skin deformation; geology, for monitoring glacier

movement; and manufacturing, for assessing fabric deformation.

1.3 Contributions

This research aims to automate part of the pipeline during wool production. This is

achieved by automatically delineating the skirting line around the edges of the fleece. The

skirting line is the separation between clean and contaminated wool, indicating the parts

of the fleece that should be removed during this process. In order to achieve this, this

thesis makes the following contributions:
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• Non-Rigid Filter for Image Registration: Non-rigid registration technique that

incorporates a filtering process for feature correspondences to align the before and

after skirt images of wool

• Learning-Based Filtering for denser Feature Matching: Learning-based fil-

tering method that utilises the geometric information from less affected areas to find

correspondences in the severely deformed areas in wool images

• Material Properties Identification via Fracture Simulation for Skirting

Replication: Optimisation-based simulation that accurately replicates the stretch-

ing of the fibres along the fractured area in wool.

By integrating the methodologies presented in each chapter, this thesis introduces a uni-

fied approach that automatically detects the components of the fleece that were removed

during the skirting process. This method leverages the contributions of non-rigid image

registration, learning-based filtering, and material properties identification to detect the

locations of contaminants and handle the significant deformation present in wool images.

1.4 Research Outputs

Academic papers published during the completion of this thesis are listed below.

D. Banuelos, R. Falque, T. Patten, and A. Alempijevic. Skirting line estimation using

sparse to dense deformation. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2023

D. Banuelos, R. Falque, T. Patten, and A. Alempijevic. Skirting line annotation via

deformation modelling. In Australasian Conference on Robotics and Automation,

2021

1.5 Structure of the Thesis

Following the introduction covering the wool market in Australia and its automation prob-

lem, the thesis is organised into several key chapters, each dedicated to a different approach
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to automatically detecting the skirting line in wool fleece based on the data and severity

of the deformation.

Chapter 2 is split into two major parts, each of which gives a review of the literature

related to non-rigid deformation. The first section details non-rigid deformation fields

that are used to deform an image during image registration. In addition, it overviews

some of the most popular feature-matching registration methods that are used as handles

for the deformation fields. The second section provides an overview of physics-based non-

rigid deformation, focusing on fracture simulation; covering the most common practice to

simulate fracture in anisotropic materials.

Chapter 3 focuses on the development of an image registration technique to align images

of fleece before and after the skirting process. This registration technique is developed

using the non-rigid deformation fields outlined in the previous chapter to address the

complexities in handling non-rigid deformations in fleece. It also highlights some of the

difficulties of testing the algorithm’s performance on field data, leading to a new control

dataset being acquired.

Chapter 4 builds upon the methodology proposed in Chapter 3 and introduces a learning-

based image registration algorithm. This learning-based methodology is employed to en-

hance the accuracy of the skirting line estimation by incorporating sparse to dense feature

correspondence. The algorithm’s performance is then tested on newly acquired data that

allows for a denser evaluation of the non-rigid registration methods.

Chapter 5 incorporates a physics-based simulation into the methodology proposed in Chap-

ter 4, to detect the deformation of the fibres that have been significantly stretched. By

simulating the stretching of the fibre, the chapter aims to find more correspondences in

areas where feature-matching algorithms failed in previous chapters. This final chapter

incorporates the methodologies proposed in the previous chapters to develop an approach

capable of handling significant deformation in wool images.

The thesis concludes with a summary of the findings and contributions, followed by a

discussion of potential avenues for future research on how all the methodologies can be

further applied.



Chapter 2

Related Work

Prior to introducing how the thesis aims to automate the detection of the skirting line,

this chapter provides background information on various non-rigid deformation methods

found in current literature. These methods alongside feature-matching algorithms, are

commonly used for the alignment of two or more images. For this reason, the chapter

further provides a review of some of the most popular and recognised feature-matching

algorithms. Additionally, the background chapter provides some insight into some of the

cost functions used for rigid deformation, these functions provide an alignment quality

and decide the final location of the control points obtained from the feature matching

algorithms.

Furthermore, the review of related work will extend into the realm of physics-based ap-

proaches to non-rigid deformation. These approaches can model the material behaviour

of fleece more realistically, considering factors such as elasticity and fracture dynamics

during the skirting process. Giving a better representation of the deformation of each of

the components during the skirting process.

2.1 Non-Rigid Registration

Image registration plays a crucial role in effectively automating the skirting line detection.

This field allows the user to align two or more images of the same scene taken at different

8
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times, from different viewpoints, and/or by different sensors. Within this domain, non-

rigid registration is a critical sub-module, particularly when adjustments in the volume

and shape of a solid or figure in these images are necessary. Non-rigid registration allows

for local changes in wool shape without resorting to global deformations, making it ideal

for aligning the after-skirt image with the before-skirt image.

To achieve the local changes in shape, non-rigid registration implements non-rigid defor-

mation methods and feature-matching algorithms. The non-rigid deformation algorithms

work by deforming the figure using the feature correspondences as the control points to

determine how much the figure has to be deformed. Multiple non-rigid deformation meth-

ods have been proposed over the years trying to increment the accuracy and degrees of

freedom for the user to align two objects or images.

For this reason, the related work commences by analysing the evolution of non-rigid de-

formation models and how they progressed over time. Further, it will look at different

representations of the deformation fields and how they deform a solid or figure. Different

deformation fields usually trade between accuracy, amount of detailing, and computational

costs. Higher degrees of freedom increase the number of variables, reducing the computa-

tional efficiency. However, models with higher degrees of freedom can offer more precise

alignment between source and target images, which is critical in detecting the skirting line

in fleece accurately.

Furthermore, this section provides some insight into some cost functions used to determine

the alignment quality for the deformation process. Within each different deformation field,

multiple different cost functions have been proposed, these functions are used to provide

an alignment quality and decide the final location of the control points obtained from the

feature correspondences. These functions ensure that the resulting deformation maintains

a reasonable rotation or translation, contributing to a realistic appearance of the deformed

image.
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(a) Original Lattice (b) Deformed Lattice

Figure 2.1: Lattice structure used for early non-rigid deformation. The control nodes
are coloured in white, with red bars indicating the neighbouring nodes [12].

2.1.1 Non-Rigid Deformation Field

Before reviewing the different non-rigid deformation methods, it is important to provide

some background into how the deformation fields are defined and their different compo-

nents. Early works in non-rigid deformation use lattice structures to deform a solid. This

lattice structure is portrayed as a polyhedron surrounding the object, with multiple control

points or nodes and bars indicating the neighbour control nodes. When a control point

is moved, the portion of the object in its vicinity is correspondingly deformed. Figure 2.1

shows an example of a lattice structure.

Recent advancements have seen a shift towards employing polymeshes for non-rigid defor-

mation, diverging from the traditional lattice. In these approaches, the shape is deformed

by directly modifying its faces. Each face in a polymesh is a flat surface, typically a

polygon, that forms part of the object’s surface. These faces are defined by their vertices,

which are the corner points where the edges of a face meet. By altering the positions of

these vertices, the shape and orientation of the faces change, leading to the deformation

of the shape.

2.1.2 Early Non-Rigid Deformation Methods

Shape manipulation has been demonstrated to be an easy and intuitive way for the users

to deform a Three-Dimensional (3D) object, making it an indispensable tool for object

deformation. This section delves into the historical development of deformation fields over
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(a) S figure from two lattices (b) S shape deformed into a ball

Figure 2.2: Extended Free-Form Deformation by Coquillart [13]

recent decades, offering insights into the evolution of non-rigid deformation techniques. By

tracing the evolution from initial approaches to non-rigid deformation to contemporary

methods, this section seeks to enhance the understanding of how modern deformation

methods work.

A seminal work in non-rigid deformation by Sederberg and Parry [12] introduced a Free

Form Deformation (FFD) that allowed objects to be deformed by warping the global space

of the object. FFD operates through the utilisation of control points arranged in a lattice

structure. Sederberg and Parry [12] proposed method also allowed for control over the

volumetric change of the object. However, this method only allowed for global deforma-

tions, making it too limited for local single-component deformations. These deformations

rarely resemble to the original object when applied to any complex solid.

Coquillart [13] further improved the work on FFD by presenting an Extended Free-Form

Deformation (EFFD). Coquillart [13] method introduced the use of non-parallelepipedal

lattices. This allowed the user to define a circular figure on the solid with the use of

a cylindrical lattice. Further improvements include the use of multiple two-dimensional

lattices to allow for multiple curves in the deformation. An example of this can be seen

in Figure 2.2 where an ’S’ shape is formed into a spherical object with the use of two

two-dimensional lattices welded together and extruded to form a three-dimensional lattice.

Although EFFD allowed for more complex lattices, merging two or more lattices presented

some continuity problems. However, EFFD did not allow for lattice augmentation for non-

prismatic volumes due to continuity problems, making it less stable and slower than FFD.
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Chang and A. [14] introduced a new approach to the deformation of objects by using a

single Bezier [15] curve. Chang and A. [14] method eliminated the multiple control points

along a specific curve and used a single Bezier curve that was deformed by repeatedly

applying affine transformations in the space. This approach helps to generalise the defor-

mation and reduce the amount of control points required, thus significantly decreasing the

computing time required to deform a solid. The approach still lacked the capabilities of

deforming a complex object without applying a global deformation.

MacCracken and K. [16] further improves on the previous methods by defining the de-

formable space through a volume analogy of subdivision surfaces. This subdivision method-

ology is an extension of Catmull and Clark [17]. In Catmull and Clark [17] method, the lat-

tice is repeatedly refined, generating a sequence of lattices that create a three-dimensional

space. This is achieved by subdividing each polygon in the lattice into smaller polygons

resulting in a smoother more detailed three-dimensional lattice. This refinement procedure

allows for the parameterization of an embedded point. As the user deforms the points on

the lattice, a new deformation is created, and the embedded points are relocated in the

new deformed space. To further understand this method, there are four steps that this

approach follows when deforming an object:

• Construction of the lattice: The user must select the type of lattices that will be

used (cylindrical, hexagonal, ...) and merge them. The user also has the possibility

to individually create cells and attach them face-by-face to create a lattice.

• Placement of the lattice: After creating the lattice, the user must place it around

the solid they want to deform. This lattice can also be placed around a specific solid

part without deforming the rest of the components.

• Refinement of the lattice: Once the lattices have been placed, each embedded

point inside the lattice is assigned with a pointer to its respective cell and position.

• Deformation of the lattice: The lattices are then deformed by moving its vertices.

This deformed lattice is refined n times, and each vertex is extracted. The vertices

on the new deformed figure are used to calculate the position of the points embedded

in each respective cell.
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This proposed method is a significant improvement compared to previous works due to

increased control over the lattice shape and location, allowing for more complex deforma-

tions. The approach still has the discontinuity problem during mapping, creating problems

at extraordinary vertices such as irregular connectivity after the refinement process. This

inconsistency can result in visual artifacts such as bump, pinches or uneven curvatures.

Furthermore, manual lattice construction can be quite laborious and tedious for complex

deformations.

Moccozet and Thalmann [18] approach aimed to overcome the geometric limitations of

the FFD previously shown by using an approximation method. They proposed a method

called Dirichlet Free-Form Deformation (DFFD) based on Delaunay and Dirichlet dia-

grams. Their work takes any set of points specified by the user and computes the neigh-

bours based on Delaunay triangulations. These points are then used as Bezier control

points to manipulate the connectivity line between one another. The other neighbour

displacement can be interpolated using Delaunay neighbour displacement. Although Moc-

cozet and Thalmann [18] approach was initially designed for hand simulations, its ability

to remove previous constraints on the location of control points allowed for more realistic

deformations when used with other solid objects. The major shortcoming of this approach

was the singularities in these interpolating functions, creating undesirable deformations.

A different approach to overcome geometric limitations of FFD was presented by Singh and

Eugene [19]. This approach was more surface-oriented, allowing for realistic deformations.

The method used parametric curves called ’wires’ to deform any surface of the object. This

algorithm proved to be simple and efficient by having only two stages in the deformation

process. The first one is bounding the object to a set of wires, and the second stage

manipulates the object by alteration of the wire’s length or radius.

Singh and Kokkevis [20] further improved the method by addressing the continuity problem

and affine deformations present in Singh and Eugene [19]. Singh and Kokkevis [20] method

deforms an object by controlling a polymesh. By creating a surface-oriented FFD, their

approach enables the representation and manipulation of any underlying object using a

singular control polymesh as seen on Figure 2.3. This process is divided into three different

steps:



Chapter 2. Related Work 14

Figure 2.3: Surface-oriented FFD overlaid on a complex mesh [20]

• Bind Face: During the initial phase, the user specifies the face that will be deformed.

This face becomes the ’driver’ face, and an identical copy of it becomes the reference

surface.

• Registration phase: The registration phase computes how much each surrounding

face will be affected by the driver face. This influence weight is calculated based on

the distance from the driver’s face.

• Deformation Phase: The deformation phase happens once the user manipulates

the driver face. This procedure maps each point on each of the phases undergoing

manipulation. Each point in the deformed phase is then changed in position and

orientation based on the weight of their relative face.

This approach exhibits a greater similarity to contemporary non-deformation methodolo-

gies, where a new polymesh is constructed to accurately replicate the original object’s

shape. However, with the widespread use of highly detailed meshes, Singh and Kokkevis

[20] approach is no longer well suited due to the high amount of computation needed to

achieve a fine detailed transformation of all the elements.
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2.1.3 Current Non-Rigid Deformation Methods

While the previously outlined approaches are capable of non-rigid deformation on solids

or figures, they fall short to current state of the art approaches it comes to amount of

deformation the can compute or processing speed. These earlier methods are unsuitable

for calculating the skirting line due to limitations such as lack of multiple degrees of freedom

for single fibre movement and the presence of visual artifacts like uneven curvatures or

bumps. For this reason, different methods have been proposed over the last two decades to

improve and overcome this challenges presented in non-rigid deformation methods. One of

the main focuses is how the deformation field is represented. The following subsections look

at the most significant papers of each of the methods. This section aims to provide a clear

understanding of the most widely used deformation fields and their respective strengths,

assisting in the selection of a suitable non-rigid deformation method for aligning the before

and after skirt images.

2.1.3.1 Pointwise Location Field

A common practice is to deform a deformation field by directly using the position of the

target point and computing the deformation via optimisation. This results in a regulariza-

tion of the variables through shape preservation (Liao et al. [21]) or local similarity. [21]

used this approach to reconstruct a complete 3D model obtained over time with a depth

camera. His approach assumes that the deformation is continuous during a short period of

time. More approaches have been put forward trying to improve the shortcomings of this

deformation field ( [22]; [23]), however, as a result of the deformation’s physical character-

istics, a node is unable to move autonomously. For this reason, pointwise location methods

can result in unnecessary degrees of freedom, causing undesired large local deformations.

2.1.3.2 Pointwise Affine Transformation

Rather than using the location of the points as variables, other deformation fields interpret

them as affine transformations. Allen et al. [24] method employs displaced subdivision

surfaces which uses locally different affine transformations. Compared to the previous
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methods discussed ([23], [22] and [21]) this model can deal with more complex deformations

that include local rotations. This approach determines the affine transformation for each

node using Equation (2.1).

ˆ̂G = '8G8 + C8 (2.1)

Where the target location is denoted as Ĝ, while the current location of the node is rep-

resented by G. The affine transformation responsible for rotation is expressed as ', where

'8 ∈ R3G3. The translation component is represented as C, with C8 residing in a three-

dimensional space, denoted as R3. This framework allows us to precisely describe and

manipulate spatial transformations within three-dimensional contexts.

Li et al. [25] improves upon previously proposed methods ([26]) by using a non-rigid

registration model with constraints on the location and transformations. While the model

exhibits the capacity to generate more intricate deformations, particularly through local

rotations, it faces a challenge in terms of computational efficiency. Storing the deformation

field within each of the source points normally leads to a high amount of computational

memory consumption caused by the high amount of variables.

2.1.3.3 Graph Oriented Techniques

Sumner et al. [27] introduced a method that utilises an ’embedded deformation’ graph.

The graph maps the internal structure or topology of an object while strategically reducing

the degrees of freedom, increasing the performance of the method. The graph is built by

connecting multiple nodes through edges, which signify the proximity and relationships

among these points. These nodes serve as control points for the deformation process, and

their final positions are determined through the application of affine transformations. This

affine transformation for node 9 is represented in Equation (2.2).

Ĝ =

<∑
9=1

F 9 (G8) [' 9 (G − 6 9) + 6 9 + C 9] (2.2)
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Figure 2.4: Deformation of nodes in embedded deformation [27]

Where the node positions are given by 6 9 ∈ R3, 9 ∈ 1..<. The weight F 9 is dependant of

each node’s position, thus, Sumner et al. [27] precomputes it by limiting the influence of

each node to the : nearest neighbours. As demonstrated in Equation (2.3):

F 9 (G8) = (1 − ||G8 − 6 9 | |/3<0G), (2.3)

Where 3<0G represents the distance to the : +1 nearest node. An optimisation is then ap-

plied to the deformation graph, shown in Equation (2.4), to prevent unnatural behaviours

in the deformation.

argmin
'1,C1,...,'a ,Ca

F2>=�2>= + FA>C�A>C + FA46�A46 (2.4)

Where �2>= represents the location of the node moved by the user. �A46 is the regular-

ization term that ensures consistency in the deformation caused by adjacent nodes. �A>C

is the sum of the rotation errors of all the transformations in the graph. An example of

this can be seen in Figure 2.4. Each optimisation term will be described in more detail in

Section 2.1.4.

This method can also be used to match incomplete or noisy scans from 3D data as seen

on Li et al. [28] and Li et al. [29]. Bonarrigo et al. [30] uses a very similar method but

improves upon it by reducing the number of degrees of freedom each node has. Each node
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Figure 2.5: Deformation graph of dinosaur with pose changes [27]

on the embedded graph has 6 degrees of freedom compared to 12 from Li et al. [29] work,

increasing its performance while maintaining a high accuracy.

Using fewer nodes for deformation in embedded graphs significantly reduces the number

of variables present in pointwise transformations. This approach is notably user-friendly,

resembling the ’wires’ concept introduced by Singh and Eugene [19]. It allows users to

intuitively define deformations by manually dragging control nodes within the graph.

2.1.3.4 Reproducing Kernel Hilbert Space (RKHS) Based Methods

Myronenko et al. [31] and Myronenko and Song [32] introduced Coherent point drift

(CPD). This probabilistic method considers the alignment of two points with one set

of points represented as a mixture model with Gaussian centroids initialized from the

second model. The displacement field is regularly created with the Reproducing Ker-

nel Hilbert Space (RKHS) to prevent an infinite amount of solutions. Myronenko et al.

[31] and Myronenko and Song [32] model the deformation using a displacement field ’35 ’

represented as Equation (2.5):

Ĝ8 = G8 + 35 (G8) (2.5)

While recent studies, such as those by Ma et al. [33] and Ma et al. [34], have focused

on reducing the complexity of RKHS based methods, these approaches inherently face

higher computational demands due to the sophisticated mathematical framework of Hilbert
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Figure 2.6: Patches on Armadillo Cagniart et al. [36]

spaces. Additionally, the implementation of RKHS based methods tends to be more intri-

cate compared to graph-based methods. Graph-based methods offer a more straightfor-

ward and user-friendly approach, whereas RKHS based methods require a deeper under-

standing of complex mathematical concepts for effective implementation.

2.1.3.5 Patch Based Methods

Another approach to surface deformation is by combining sets of points or meshes into a

single cluster to undergo a rigid transformation (Huang et al. [35] and Cagniart et al. [36]

and Slavcheva et al. [37]). An example of these sets of points or meshes called patches by

Cagniart et al. [36] can be seen in Figure 2.6. These algorithms work by first segmenting

the surface into a set of patches or clusters, these clusters can be partially overlapping or

non-connecting. The patches aim to follow the intrinsic structure of the deforming object.

In order to create the patches, a random point is selected, working as the initial centroid

for the first patch. From here, the subsequent patches are formed from the vertices that lie

in the most patch boundaries. These patches are generated from their midpoint until they

reach a threshold radius. This process will continue until the entire figure is covered with

these patches. The deformation of each patch is computed by combining the Gaussian

weights calculated from the Euclidean distance between the point and the patch.
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This method operates on the assumption of local rigid deformation within each patch, an

assumption that may not be true for some objects. Additionally, enhancing the method’s

flexibility by increasing the degrees of freedom requires reducing the size of each patch.

However, this adjustment increases the computational costs of the method.

2.1.3.6 Grid Based Methods

Fujiwara et al. [38] introduced an innovative approach to achieve locally rigid and globally

non-rigid registration by employing a derived FFD. During their approach, a secondary

grid is superimposed over the primary grid, which contains all the FFD control points.

This secondary grid is further segmented into smaller sampling regions, each encompassing

a control point from the primary grid. The deformation is executed by translating these

control points. This translation is guided by a rigid transformation aimed at minimising

the differences between the Sign Distance Field (SDF) of the source and target objects.

The SDF can be written at a point in G ∈ R3 as Equation (2.6):

(�� (G) = (G − G∗) · =∗ (2.6)

Where = is the normals of the surface at G∗. Further approaches achieve local rigidity or

higher efficiency by using a coarser grid ([39], [37]), however, grid based methods become

computationally expensive if a high-resolution grid is required.

2.1.3.7 Spline Function Based

Spline function-based methods use a deformation field that is defined by a spline function

to deform the object. These approaches are based on the thin-plate spline function by

Bookstein [40]. Chui and Rangarajan [41] developed a robust point matching that uses

affine mappings to deform 2D images. Rather than applying rigid deformations to each

cell, such as grid-based methods, spline methods use non-rigid point matching to bend

cells on a grid map to align with the target’s deformation.
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The non-rigid points can be controlled by the user within a single grid with one-to-one

correspondences ([42], [43]). These methods, similarly to the graph-based methods, have

proven to be particularly effective due to their user-friendly capabilities and the realistic

deformations they can generate.

2.1.4 Alignment Quality

When performing non-rigid deformation, finding the optimal solution within a deformation

field for effectively aligning two surfaces is crucial. This process requires the implemen-

tation of specific criteria to evaluate alignment quality. A common strategy employed in

many methods is the assessment of alignment errors, which is based on the measurement

of distances between the two surfaces in the space. This section explains some of the

optimisation methods used in different deformation fields to find an optimal alignment.

One of the most common approaches to determine the optimal deformation is by focusing

on minimising a specific target function. This target function is typically expressed as

Equation (2.7). Where �0;86= assesses the degree of alignment error between the deformed

source point and the target point. �A46, on the other hand, is a term that imposes certain

constraints on the deformation, such as smoothness. The parameter U serves as a balancing

weight between the alignment error and the regularization term.

�- = �0;86= + U�A46 (2.7)

2.1.4.1 Alignment

A commonly used and straightforward alignment term is derived from calculating the

distance between each of the surface points and its respective point on the target surface

(Equation (2.8)). Commonly used in Pointwise Fields, this point alignment term is used

among multiple approaches ([44], [45], [46], [47] and [48].

�?? =

<∑
8

F8 | |G8 − Ĝ8 | |2 (2.8)
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Where the weight (F8) is used to determine the importance of the points using the quality of

the correspondence. Although this error implementation is straightforward, it is sensitive

to outliers and noise. For this reason, some other methods measure the alignment using a

point-to-plane distance ([29], [49]). Normally formulated as Equation (2.9):

�??; =
∑
8

F8 (=8 · (G8 − Ĝ8))2 (2.9)

Where =8 is the surface normal of the target at Ĝ8. Function (G8 − Ĝ8)2 refers to the

point-to-plane distance also known as ICP. By incorporating information about surface

orientation, Point to plane error (Equation (2.9)) has proven to be more robust, providing

better alignments ([50]).

Similar to the function referenced in Equation (2.8), embedded graphs focus on optimising

the location of control points. These positional constraints are applied to user-specified

points to ensure alignment with required positions. Sumner et al. [27] defines their posi-

tional constraint as shown in Equation (2.10):

�2>= =

<∑
G=1

| |Ĝ8 − G8 | |22 (2.10)

2.1.4.2 Regularization

Regularization terms are crucial in achieving adequate rotations, ensuring smoothness,

or maintaining rigidity during the deformation processes. These constraints, often repre-

sented as a weighted sum, can either focus on multiple aspects or concentrate on a singular

aspect, optimising for a more realistic and natural deformation.

To prevent unrealistic distortion, some deformation fields implement a smoothness term

that enforces a more natural transition across the points or nodes. Point-wise fields achieve

this by penalising the affine transformations on neighbouring points. Allen et al. [24], Pauly

et al. [45] and Amberg et al. [47] use a smooth regularization defined in Equation (2.11),
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where the affine transformations are presented as ' and | |� used to quantify the difference

between rotation matrices.

�B<>>Cℎ =
∑
8

∑
9∈N(8)

| |'8 − ' 9 | |�2 (2.11)

Similarly to previous smoothness equations (Equation (2.11)), deformation graphs impose

smoothness on the deformation by applying a regularization term Equation (2.12) on neigh-

bouring nodes. However, instead of comparing the transformations directly, deformation

graphs focus on comparing the positions of the transformed nodes.

�A46 =
∑
8

∑
:∈N8

| |' 9 (68 − 6 9) + 6 9 + C 9 − (68 + C8) | |22 (2.12)

Furthermore, embedded deformation graphs implement a second regularization term. This

term controls the amount of rotation applied to the nodes to prevent unrealistic or phys-

ically impossible shapes. This local rigidity regularization term is described as Equa-

tion (2.13). Where '8 denotes the affine transformation matrix for each node.

�A8683 =
∑
8

'>C ('8) (2.13)

'>C ('8) = (A1 · A2)2 + (A1 · A3)2 + (A2 · A3)2+

(A1 · A1 − 1)2 + (A2 · A2 − 1)2 + (A3 · A3 − 1)2
(2.14)

Equation (2.13) evaluates the rotation matrix used for each node. By analysing the

columns on the rotation matrix (A1, A2, A3) for each of the nodes, ED can quantify the

deviation from the ideal rotation.

Sorkine and Alexa [51] introduced a different local rigidity equation, allowing for distances

between the points to be maintained during the deformation. They define this local rigidity

as Equation (2.15).
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��'�% =

<∑
8=1

F8

∑
9∈N

F8 9 | | (Ĝ8 − Ĝ 9) − '8 (G8 − G 9) | |2 (2.15)

Where F8 individually weighs vertices according to their respective areas, and F8 9 takes

into account the geometric structure of the mesh or surface, resulting in deformations that

better adhere to the underlying physical properties.

2.1.5 Control Points or Nodes

Features are commonly used to align two or more images. These features work as the

’control points’ or ’nodes’ used by previously mentioned non-rigid deformation methods,

to manipulate the original image and transform it to meet a specific output. In images,

features detect the relevant parts of the image by performing corner detection, binary

patterns, and oriented gradients, among others, and represent this data in compact feature

vectors for easier readability. Each method utilises a different approach to extract the

maximum number of features in each image. The greater the number of features, the

better the alignment between the skirted and non skirted images of the fleece.

This section will examine numerous traditional and machine learning feature detection

algorithms, additionally, it will give an overview of different optical flow methods. Optical

flow algorithms allow the user to track the motion of objects or features across consecutive

frames of a video or between different perspectives in images.

2.1.5.1 SIFT

SIFT is one of the most widely used feature detection methods for pattern recognition.

Lowe [52] method works by transforming the image into a set of local feature vectors.

Each vector is invariant to translation, rotation, scaling and in most cases illumination

variations.

The SIFT algorithm is mainly divided into four different parts.
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(a) Scaled spaced images (left) are pro-
duced by repeatedly convolving the origi-
nal image. Difference of Gaussian (right) is
then obtained by subtracting adjoined im-

ages
(b) Local extrema obtained from pixel

comparison to closest neighbours

Figure 2.7: Detection of Scale-space extrema in SIFT (Lowe [52])

1. Detection of Scale-space extrema: Firstly, the image is subdivided into different

scales, where each of the octaves or scales contains different representations of the

image with increasing blur. Once the images are blurred, each one is compared to

the images immediately preceding and following it within its scale. This process,

known as the ’Difference of Gaussian’, is employed to identify potential keypoints as

shown in Figure 2.7a. Subsequently, each pixel in the images obtained is compared to

the eight surrounding neighbours and the nine pixels in the previous and next scale

(Figure 2.7b). If the pixel is determined as a local extrema, meaning the brightest

or darkest compared to its neighbours, the algorithm considers it a keypoint.

2. Keypoint localization After obtaining the keypoints from the previous step, [52]

removes all the keypoints located along the edge.

3. Orientation assignment A specific neighbour is assigned to each of the keypoints

to measure intensity changes around the keypoint. An orientation histogram is then

created to cover all possible angles. From this histogram, the highest peak indicates

the orientation of each of the keypoints.

4. Keypoint descriptor Around each of the keypoints, the algorithm creates a 16x16

window and divides them into 4x4 descriptors as shown in Figure 2.8. The algorithm

then obtains the dimensional vector inside each 4x4 descriptor (each 4x4 descriptor
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Figure 2.8: A 16x16 array created around each of the keypoints. This 16x16 array
is further divided into a 4x4 descriptor with each descriptor having an 8-dimensional

vector.(Lowe [52])

has 8 different vectors) to obtain the final descriptor. These 128 values (4x4 window

x8 vectors) represent the descriptors for each keypoint.

2.1.5.2 SURF

Bay et al. [53] introduced a faster approach using similar principles to Lowe [52] method.

Unlike the more computationally intensive techniques used in SIFT, SURF employs a

method that quickly identifies points of interest in an image.

Similarly to SIFT, SURF detects potential keypoints by analysing changes in image in-

tensity across various scales. However, instead of the iterative blurring and downsampling

the image, SURF uses integral images for efficient keypoint identification. This allows

SURF to utilize box filters of any size on the original image at constant computational

cost, enhancing processing speed. Unlike SIFT’s image pyramid, SURF does not reduce

image size but scales up the filter size (9×9 to 15×15 to 21×21), allowing for the extrac-

tion of features at different scales without loss of speed. For orientation determination,

SURF does not create a fixed 16x16 window around the keypoint but instead analyses

the neighborhood within a dynamically scaled circular region using Haar-wavelets. These

wavelets are effective in capturing abrupt intensity changes, facilitating the detection of

edges or texture variations across the scale space.

The dominant orientation of the wavelet is estimated by calculating the sum of the wavelet

responses. This approach ensures that the orientation assigned to each keypoint is the most



Chapter 2. Related Work 27

Figure 2.9: Haar-wavelet responses plotted around the specific keypoint in a circular
neighbourhood with a radius of 6s, with s the scale at which the keypoint was detected

when up-scaling or downs-scaling the filter size (Bay et al. [53])

significant one in its local context. An example of this orientation assignment can be seen

in Figure 2.9.

2.1.5.3 FAST

Rosten and Drummond [54] continued to build on the processing speed of previous al-

gorithms by introducing Features from accelerated segment test (FAST). Rosten and

Drummond [54] method identifies possible corners in the image by considering a circle

of sixteen pixels around each point or a Bresenham circle with a radius of 3. To select

whether a point is a corner or not, the algorithm analyses if there is a set of continuous

pixels around the point that are brighter than the selected pixel plus a threshold or if they

are all darker.

To further speed up the algorithm, Rosten and Drummond [54] introduced another re-

quirement to the neighbours of the pixel. If three of the four closest pixel neighbours

(above, below, left, right) are not above or below a threshold then the interest points are

not considered a corner. Otherwise, the point is considered a possible corner and all the

16 neighbours are analysed.

2.1.5.4 KAZE

Alcantarilla et al. [55] uses a similar approach to SIFT, by discretizing the scale space in a

series of octaves. In contrast to SIFT, KAZE does not downsample or progressively blur

each of the octaves. Potential keypoints are determined by points that are local maxima
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or minima (brightest or darkest) in both spatial and scale dimensions. For each keypoint,

KAZE calculates the gradient of each vector orientation with the use of a point vector

space instead of a histogram as used in SIFT. The vector with the highest value located

on the dominant orientation is selected as the orientation of that specific keypoint as seen

in Figure 2.9, similarly to Bay et al. [53] method.

2.1.5.5 ORB

Rublee et al. [56] uses Rosten and Drummond [54] approach of extracting interest points

with the use of a Bresenham circle. However, it addresses the problem of not being scale

invariant. To solve this, Oriented FAST and Rotated BRIEF (ORB) build a multiscale

pyramid image. This pyramid image is the representation of the same image at different

scales or resolutions. ORB then becomes partially scale invariant by extracting FAST

keypoints at each of the different scales of the image.

2.1.5.6 BRISK

Leutenegger et al. [57] method also utilises the FAST algorithm with the multiscale pyra-

mid proposed by Rublee et al. [56]. In Leutenegger et al. [57] method, FAST is firstly

utilised to detect potential points of interest. Then, the points selected are subjected to

a non-maxima suppression in scale-space. To compute the receptive descriptors for each

of the keypoints, BRISK performs a brightness comparison test with its neighbours. This

approach is used to allow for rotation and scale invariance.

2.1.5.7 FREAK

In contrast to ORB, fast retina keypoint (FREAK) utilises a sampling pattern inspired

by the human retina, employing a set of equally spaced circular grids with expanding

area. This design ensures that the sampling circles are denser near the centre of the grid

and become sparser as the radius increases, mimicking the distribution of photoreceptors

in the human eye. To obtain the FREAK description, the pixels within this pattern are

compared. For each pair, the algorithm checks whether the intensity of one pixel is greater
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Figure 2.10: Sampling patter for FREAK descriptors. The grid is created from concen-
tric circular grids with expanding areas, simulating the human retina.

than the other. These comparisons are binary, leading to a result that is either 0 or 1,

depending on which pixel is more intense. The final FREAK descriptor is this binary

string, with each bit representing the outcome of a pixel intensity comparison.

2.1.5.8 Learning Based Methods

In recent years, machine learning has significantly advanced feature detection in computer

vision, surpassing traditional methods. These advanced algorithms focus on distinct steps

in the processing chain: detecting features, determining their orientation, and extracting

robust representations for cross-image matching. A key example is the Learned Invari-

ant Feature Transform (LIFT) [58], which employs a three-part structure: a Detector,

an Orientation Estimator, and a Descriptor. Each component is built on CNN, drawing

inspiration from contemporary models. This approach marks a shift from conventional

handcrafted features to data-driven, learned features, offering greater adaptability and

robustness in various imaging conditions. Further learning-based methods will be ex-

plained in the following sections. These methods have gained the most popularity due to

their superior performance compared to traditional feature-matching algorithms. When

trained on appropriate data, learning-based methods have the potential to handle greater
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deformation, leading to better alignment of the before and after-skirt images, allowing for

identification of the contaminated parts of the fleece.

Superpoint

Superpoint [59] addresses the image matching challenge by capitalizing on inherent regu-

larities in the physical world. It recognises that the 3D world exhibits smoothness and pla-

narity, and all correspondences for a static scene stem from a singular epipolar transform.

Additionally, it considers the likelihood of certain poses and the projection of salient 3D

points, such as corners or blobs, onto 2D keypoints. DeTone et al. [59] model is designed to

identify all correspondences between reprojections of the same 3D points while also detect-

ing keypoints that remain unmatched due to occlusion or detector failure. This approach

demonstrates a better understanding of the physical constraints in feature matching, en-

suring the identification of single correspondences per keypoint and the acknowledgement

of inherent unmatched keypoints.

SuperGlue

SuperGlue [60], a recent innovation in local feature matching, stops the use of traditional

nearest neighbour search methods used in previously mentioned methods and introduces

a learning-based approach that employs a GNN for local feature matching. This method

takes two sets of interest points with their descriptors and utilises a data-driven approach

to learn their matches. However, it relies on the repeatability of detected interest points,

which can be a limitation in non-distinctive regions, highlighting its dependency on the

efficacy of the detector used.

LoFTR

Building upon the advancements made by Sarlin et al. [60], Local Optical TRansformer

(LoFTR) introduces a Transformer-based method aimed at producing dense matches in

low-texture areas, where traditional feature detectors often falter. This approach has been

demonstrated to outperform state-of-the-art learning-based methods on both indoor and

outdoor datasets.
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2.1.5.9 Optical Flow

Another approach to feature detection is the use of optical flow methods, which provide

insights into scene dynamics and structure. By utilising a sequence of images, optical

flow is capable of determining the spatial movements within the image. These methods

are highly efficient when applied to multiple consecutive frames. However, due to the

positioning of the shearer’s hands on top of the fleece during skirting, it is not possible to

capture multiple frames during the skirting process. Nevertheless, optical flow methods

are still capable of determining the deformation of multiple features given only two images,

allowing for the alignment of the before and after-skirt image.

One of the foundational methods in optical flow is the Lucas and Kanade [61] algorithm.

This algorithm assumes that the flow is constant in a local neighbourhood of the pixel under

consideration and solves the optical flow equations for all pixels in that neighbourhood,

by the least squares criterion.

Teed and Deng [62] proposed one of the most recent advancements in optical flow estima-

tion using deep learning. Teed and Deng [62] method uses a recurrent neural network to

refine the flow estimation iteratively. This method aggregates and updates a 2D correlation

volume for all pairs of pixels between two images, leading to state-of-the-art performance

on optical flow benchmarks. Teed and Deng [62] method is capable of handling large

displacements and is adaptable to a wide range of datasets and environments.

Jiang et al. [63] improved Teed and Deng [62] work by addressing one of its major limi-

tations: the need for a dense correlation volume to ascertain pixel displacement between

images. While this dense correlation is valuable for precise estimation, its significant

computational load and memory requirements pose challenges for efficient model training

and deployment. Jiang et al. [63] method introduces the use of sparse correlations or

matches, effectively reducing the computational demands of the RAFT algorithm with-

out compromising accuracy. Their approach, names Sparse Correlation Volume (SCV),

has demonstrated comparable results to RAFT without the need for a dense correlation,

effectively reducing the computational demand.
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2.2 Physics Based Deformation

Unlike traditional methods that rely on control points or 3D meshes for the deformation,

physics-based methods offer a more dynamic and versatile approach. These techniques,

predominantly used in computer graphics, enable a more realistic representation of the

transformations that materials or fluids undergo. By using the material properties, these

methods are capable of simulating how the object would behave and deform based on a

specific force rather than using control points. One key transformation that benefits from

this approach is the process of fracture. Fracture is distinguished by the splitting of a solid

substance into several pieces. This occurrence is not only common, but also significant

in understanding the structural integrity and durability of materials under stress. Since

Terzopoulos and Fleischer [64] work on fracture and viscoelasticity, multiple methods have

been developed for the animation of objects and fluids.

In the context of wool fleece skirting, physically-based methods are particularly relevant.

These models are advantageous because they allow for the deformation or fracture of ma-

terial realistically, without the need for an explicit definition of the object’s characteristics

or manual control over fracture propagation. This aspect is crucial in our research, where

understanding the deformation behaviour of wool fleece can significantly enhance the ac-

curacy of skirting line detection. The core techniques used in physics-based simulation for

material deformation are explained in the following subsections. Each of these approaches

offers unique insights into how to propagate fractures in an object or material.

2.2.1 Mass-Spring Models

One of the earliest approaches to deformation animation was Norton et al. [65] method.

Norton et al. [65] model and Hirota et al. [66] propose a physical model framework that

starts by dividing the original object into a set of nodes. Every node possesses its individual

mass and position, and they are interconnected in pairs by springs, each characterized by

its own rigidity, damping coefficient, and equilibrium distance.
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Despite their innovative approach, these models faced substantial limitations. The sud-

den elimination of springs could result in conspicuous visual discrepancies; issues such as

shearing and bending were not directly addressed by the spring systems. Furthermore,

the exact surfaces of fractures were not explicitly known but were approximated based on

the mass-spring system’s configuration. This meant that the depiction of cracks was not

only limited by the system’s configuration and resolution but also often required the use

of resource-intensive algorithms.

2.2.2 Finite Element Methods

The Finite Element Methods (FEM) breaks down the solid into discrete elements that are

interconnected at specific points known as nodes. FEM then uses this finite collection of

nodes to formulate the problem, resulting in a set of algebraic equations that are addressed

through numerical techniques.

In the work from Terzopoulos and Fleischer [64], the authors model fracture behaviours

using continuous formulations. They propose both Finite Element Methods (FEM) and

finite differences for discretization, allowing for a broad spectrum of deformable properties,

ranging from highly flexible to almost inelastic. This approach effectively demonstrates

fracture on torn paper and cloth sheets.

Molino et al. [67] developed a virtual node algorithm that utilises a grid to introduce

additional geometry, which helps avoid creating poorly conditioned elements. However,

this method adds hidden nodes, potentially impacting performance.

Despite these advances in remeshing and cutting, XFEM poses additional complexities,

such as floating point arithmetic in degenerate configurations and self-collision on their

embedded meshes. Multiple other approaches trying to simulate fracture using FEM have

shown to be among the most successful for different types of materials (Bao et al. [68];

Müller and Gross [69]; Busaryev et al. [70]; Agarwal et al. [71]; Koschier et al. [72],).

However, they still present challenges such as boundary continuity, remeshing near cracks,

and computational efficiency.
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2.2.3 Meshless Methods

Meshless methods have emerged as a promising solution to augment FEM. In these meth-

ods, an object is discretized into a collection of points or particles with no explicit con-

nectivity. The properties of the object are localized at these nodes, bypassing the need for

remeshing and mitigating the complexities associated with cutting procedures inherent in

FEM.

Lucy [73] and Gingold and Monaghan [74] pioneered one of the first meshless methods

aimed at addressing astrophysical simulations, known as Smooth Particle Hydrodynamics

SPH. This approach, however, wasn’t widely adopted due to its instabilities and inconsis-

tencies in resolving many problems.

Pauly et al. [75] builds upon previous methods by creating a model that could simulate

cracks in both brittle and ductile materials. This innovative approach dynamically adapts

the shape functions surrounding the cracks, while continuously adding surface samples

during crack propagation, leading to more accurate and realistic simulations.

However, for solid mechanics, Sulsky et al. [76] approach has gained the most popularity

when computing fracture in material due to its efficiency at computing realistic defor-

mation of objects. Sulsky et al. [76] approach, called Material Point Method (MPM), is

renowned for its capability of handling large deformations and discontinuities, making it

a powerful tool for simulating complex physical phenomena in fracture simulations.

2.2.3.1 Material Point Method

The Material Point Method is one of the most current developments in Particle In Cell

(PIC) methods. PIC, first introduced by Harlow and Welch [77], uses a large number of

particles moved in an Eulerian grid to simulate the dynamics of a fluid. This Eulerian

grid is a fixed, structured grid that covers the entire simulation. In contrast to Lagrangian

methods, the material’s physical properties are stored at the grid nodes rather than at

each particle.



Chapter 2. Related Work 35

Although Harlow and Welch [77] method was very effective, it suffered from excessive dis-

sipation. Brackbill et al. [78] addresses the excessive dissipation by introducing the Fluid

Implicit Particle (FLIP) method. Brackbill et al. [78] method calculates the change of

velocity in the grid and adds them to the change in particles instead of completely updat-

ing the velocities of the particles based on the grid, reducing the amount of information

transferred every time.

Sulsky et al. [76] method extends the capabilities of FLIP, particularly for use in solid

mechanics by introducing a Lagrangian-Eulerian method. In Sulsky et al. [76] method,

the body or fluid is discretized into a set of material points, each of which carries properties

such as mass, velocity and stress. The properties of each point are then transferred to a

background grid, where the momentum equation is solved. This solution for the grid is

used to update the material points’ location and properties. Unlike FLIP, Sulsky et al.

[76] method allows the full stress tensor to be carried by the material points, instead of

being stored at the centre of each cell. This method is referred to as the MPM and has

become one of the most utilised models for material deformations. The proposed method

by Sulsky et al. [76] is comprised of the following steps:

Initialization phase

During the initialization phase, the object is transformed into material points with pre-

defined properties. The primary function of the initialisation phase is to transfer the

information from the material points to the nodes of an Eulerian grid. This process is

accomplished using interpolation functions, which determine how the properties of the

material points are spread out onto the grid nodes. This approach eliminates the need

for direct particle-to-particle interactions, with particles interacting through the Eulerian

grid. More recent methods utilise a Total Lagrangian MPM, proposed by de Vaucorbeil

et al. [79], which incorporates a background grid that covers only the space occupied by

the object.

Lagrangian phase

In the Lagrangian phase, the equations of motion are solved on the grid in an updated
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Lagrangian frame. The updated Lagrangian frame means that the reference configura-

tion for calculations evolves with the material, thus accounting for any deformation or

movement that has occurred. This phase primarily uses the information provided by the

initialization phase to solve the equations of motion at each grid node, producing updated

values for velocity and other relevant physical properties.

Connective phase

Finally, in the convective phase, the particles or material points are updated using the

newly computed properties from the grid nodes. This is again achieved through the use

of interpolation or shape functions. Following the update of the material points, the grid

is reset or redefined in preparation for the next time step. The updating of the material

points involves the advancement of their positions based on the updated velocity and

potentially other state variables depending on the specifics of the problem.

This iterative process continues for a pre-specified number of time steps or until a certain

criterion is met, enabling the simulation of complex behaviours of various materials under

different conditions.

While the original MPM by Sulsky et al. [76] only tracks the mass and volume of each

particle, newer models track the shape of each sub-region and associate the position,

Mass (<?>B), Density (d?>B), Velocity (E?>B), Deformation gradient (�?>B), Cauchy stress

tensor (f?>B), Temperature ()?>B), to each of the material points.

2.2.4 Fracture Propagation

Even though the material point method demonstrates remarkable accuracy in deform-

ing materials using its Lagrangian-Eulerian model, the complexities of fracture propaga-

tion require the incorporation of specialized approaches to achieve accurate predictions

of material failure. Fracture propagation modelling encompasses two main approaches:

discontinuous and continuous.

Given that discontinuous approaches are predominantly tailored towards the simulation

of brittle materials, such as ceramics and glass, this literature review will specifically
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Figure 2.11: Material Point Method. The object is transformed into material points.
Each of the points is transferred to an Eulerian Grid and the material point information
is transferred to the nodes. Afterwards, the motion equations are solved for the nodes in
the graph and the graph is updated. The updated nodes are then mapped back to the
particles to update the position and velocity. Finally, the grid is reset and the iterative
process is repeated until the object has undergone the desired deformation Kumar et al.

[80]

concentrate on the research related to continuous approaches. This focus aligns with

the relevance of these methods in accurately representing the deformation and fracture

behaviours wool undergoes during skirting.

2.2.4.1 Continuous Approach

These models frequently employ a strain-based failure criterion to resolve issues related to

perforation. This methodology asserts that a particle is deemed ”failed” when it fulfils a

specific strain-based fracture condition. Moreover, adopting a strain-based failure criterion

in continuous models offers the benefit of computational simplicity. Rather than tracing

and defining the crack path, the fractures naturally progresses in line with the material’s

local mechanical response. This allows for the simulation of intricate, realistic fracture

patterns without the need of detailed inputs that discontinuous models often require.
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Kakouris and Triantafyllou [81] made the first move towards integrating Phase Field Frac-

ture (PFF) into MPM, showcasing the potential of pairing both methods to simulate

brittle fracture. In PFF, fractures and cracks are not treated as sharp boundaries but are

instead represented by a continuous field. This phase field evolves over time to capture the

extent and behaviour of cracks within the material. Their method, however, was limited

to problems involving minor deformations without contact.

Wolper et al. [82] advanced the field by introducing a synergistic methodology, known as

Continuum Damage Material Point Methods (CD-MPM), which amalgamates the princi-

ples of PFF and the MPM for the simulation of elastoplastic fractures. This innovative

technique has demonstrated substantial proficiency in navigating sophisticated crack pat-

terns, delivering superior visual accuracy when applied to elastic materials.

2.2.4.2 Anisotropic Fracture

While the majority of the previously discussed methodologies have centred on isotropic

materials, there is an important subfield of study dedicated to the computational modelling

of fracture in anisotropic materials. These materials distinguish themselves by showing

unique properties that change based on the direction of observation. The defining charac-

teristic of isotropic materials is the uniformity of their physical and mechanical properties

in all directions. As a result, phenomena like crack propagation exhibit similar behaviour

irrespective of the direction.

In contrast, anisotropic materials deviate from this uniform behaviour. They show signif-

icant variability in their properties depending on the direction due to differences in their

structural composition, alignment, or orientation at micro or macroscopic scales. In the

case of wool fracture, the direction of the fibres can greatly influence the path, speed, and

pattern of crack growth and advancement.

For instance, Hakim and Karma [83] modelled anisotropy in fracture energy by adapting

the phase-field approach to penalize different fracture interfaces in varying directions.

Calvo et al. [84] put forward a three-dimensional finite-strain damage model for fibrous

soft tissue.
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In the context of MPM, anisotropic damage has proven to be effective in modelling brittle

fractures as depicted in [85] and [86].

Jiang et al. [87] employs an innovative approach to simulating elastoplasticity with failure,

drawing upon advanced techniques developed in the field of hair simulation. Their model

is anchored by an affine Lagrangian framework, which is adeptly adapted to address the

complexities of fibre fracture. Central to this approach is the introduction of a three-

dimensional matrix, meticulously designed to penalize alterations in fibre length, shearing

along fibres, and, crucially, frictional contact between fibres. As a result, Jiang et al. [87]

method demonstrates remarkable proficiency in depicting the fracture of fibrous materials

such as yarn balls breaking apart.

The approach introduced by Wolper et al. [88] is inspired by the methodology of Jiang

et al. [87], particularly in its use of a similar matrix for fibre simulation. However, it

diverges from [87] model by incorporating two additional terms specifically designed to

penalize stretching in the fibre directions. This innovation is key to simulating fracture in

orthotropic materials (fibres in three different directions, i.e., wood), thereby extending the

applicability of their model to a broader spectrum of shapes and materials. Furthermore,

the model by Wolper et al. [88] enhances the definition of the stress differential compared

to previous methods, resulting in a model that is not only more stable but also less

computationally demanding. Significantly, this approach has established itself as one of

the foremost methods for simulating fracture in fibrous objects and various other materials.

It has demonstrated exceptional capability in realistically portraying their behaviour under

diverse conditions.

2.3 Discussion

Throughout the years, the field has seen the development of various sophisticated method-

ologies for the alignment of figures, solids, or images, each designed to tackle the unique

challenges posed by non-rigid registration. The literature review illuminates that a preva-

lent strategy in image alignment, particularly for non-rigid objects, involves a combined

application of non-rigid deformation and feature extraction techniques. This approach has
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consistently demonstrated its efficacy, especially in scenarios requiring the precise align-

ment of images before and after significant transformations, such as those seen in the

skirting of wool images.

Non-rigid deformation techniques allow for the flexible adjustment of images to accommo-

date a wide range of deformations, thereby ensuring a high degree of alignment accuracy.

When coupled with feature extraction, which identifies and leverages key points or pat-

terns within the images for alignment, the result is a robust method capable of handling

the complexities inherent in before and after image comparisons.

Although physics-based deformation methods offer a theoretically more precise replication

of complex deformations by closely mimicking the physical properties of the objects be-

ing aligned, they come with a significant computational cost. This complexity not only

demands substantial processing power but also increases the time required for analysis,

making these methods less feasible for applications where traditional methods offer great

results.

Given these considerations, automatic detection of the skirting line could be achieved by

implementing a non-physics-based approach that combines a deformation field with feature

extraction algorithms. This approach would improve upon previous proposed methods by

eliminating the human error present in manually annotated wool images and relying on

feature extraction algorithms.



Chapter 3

Skirting Line estimation using

Image Registration

3.1 Introduction

Automating the skirting line detection has the potential to reduce on-farm costs and

improve product quality. A key difficulty in this process is the high degree of accuracy

needed for skirting line detection. The presence of contaminants on wool after skirting

affects the entire wool pipeline, impacting the textile manufacturing process complexity

and eventual range of fabric that can be produced by the manufacturers. Conversely,

over-skirting the fleece reduces the volume of product and can reduce the salable yield

of the wool. Attempts have been made to automate the skirting line detection in wool

[8, 9], however, they require large amounts of manually annotated data which is not only

logistically challenging and time-consuming but also suffers from reliability issues.

In response to these challenges, this chapter looks at automating the detection of the

skirting line through image registration between the before and after skirt images of a

fleece. By doing so, we can identify the contaminants removed in the before skirt image,

thereby eliminating the need for manual annotation, which is prone to human error.

A significant challenge when applying image registration with wool images is the sub-

stantial deformation that occurs along the skirting line during handling. The handler’s

41
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technique of holding down the fleece while pulling away the section of the fleece containing

contaminants results in a complex pattern of stretching and compacting fibres along the

skirting line. To tackle this issue, we developed a method that includes a filtering process

for feature correspondences, specifically designed to handle non-rigid deformations. This

is followed by a deformation process aimed at aligning the images to extract the skirting

line.

3.2 Methodology Overview

An overview of the proposed methodology can be seen in Figure 3.1, where the main

contribution of this chapter is the filtering method for removing outliers present in the

initial correspondences that inform the complete image deformation.

Figure 3.1: Methodology of proposed approach to perform non-rigid registration be-
tween the before and after skirt image. A set of feature correspondences are extracted
from both images and filtered through the proposed non rigid filtering method. The fil-
tered correspondences are then used to deform the after skirt image to extract the areas

that were removed from the before skirt image.

The methodology of this chapter is organised as follows: Section 3.3 starts by detailing

the feature correspondences that form control points for aligning the before and after skirt

image. Section 3.4 outlines the proposed filtering method for removing outliers present

in the initial correspondences. The filtered correspondences are then used in Section 3.5

as the control points to deform the after skirt image. Section 3.6 expands upon each of

the subsections of the proposed methodology and evaluates which method outlined in the

literature review is better suited for aligning the before and after skirt image.
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3.3 Feature Extraction

As stated on the literature review, non-rigid registration is required to align two images

that undergo local deformations. In order to find the correct alignment between the

before and after skirt image, feature extraction methods are required. The feature corre-

spondences between images work as the ’control nodes’ for non-rigid deformation methods.

The key requirement for selecting a feature descriptor is that it can be used to determine

the quality of a potential match. The remaining parts of the proposed approach are inde-

pendent of the chosen feature descriptor used for aligning the deformed image with original

image.

Features are stored as two sets �1 and �2 where �8 =
{
5 81, . . . , 5

8
=

}
with 5 8

9
∈ R2. �1

corresponds to the features from the before skirt image and �2 corresponds to the features

from the after skirt image.

Figure 3.2: Example of putative matches between before and after skirt image. While
most matches are correct, some of the matches are outliers and need to be removed.

3.4 Non-Rigid Outliers Rejection

The presence of outliers is a common problem when performing feature matching, as

illustrated in Figure 3.2. Typically, this is solved using RANSAC [89] to obtain a subset

of feature matches that provide a consensus with respect to a rigid transformation. While

RANSAC can be reformulated for non-rigid cases [90], it embeds the computation of the

non-rigid transformation in an iterative process, which is computationally ineffective.



Chapter 3. Skirting Line estimation using Image Registration 44

For this reason, we propose a filter that prunes the feature matching iteratively with a

small computational footprint. This filter is initiated by building graphs on the feature sets

and performs the pruning based on the local rigidity difference between the two graphs.

The filter is initialised by building a graph that connects the feature points from �1 to

its : neighbours. These connections between neighbours are then concatenated into an

edge set �1 and the first graph is then defined as
{
�1, �1}. The graph on the second set

of features �2 is generated by copying the edges or connection between neighbours �1,

generating the graph
{
�2, �1}.

For each feature node present in the graph, the local rigidity changes are computed based

on the formulation of the rigidity as defined in Equation (2.15). Given two nodes, 5 1
8

and

5 2
9
, which correspond to two SIFT matches, we can redefine Equation (2.15) to:

rig(8) =
<∑
8=1

F8

∑
9∈N

F8 9 | | ( 5 1
8 − 5 1

9) − '8 ( 5 2
8 − 5 2

9) | |2 (3.1)

As demonstrated by [51] we can set F8 = 1 so that each element on the mesh is equally

resistant to deformation regardless of the area. Additionally, we can establish F8 9 =

1, effectively treating all edges in the graph with equal significance during the filtering

process. Considering these simplifications, the local rigidity for the 8th node is defined as:

rig(8) =
∑

9∈# (8)

| | ( 5 1
8 − 5 1

9) − '8 ( 5 2
8 − 5 2

9) | |2
1

| | 5 1
8
− 5 1

9
| |2

(3.2)

Where the left-hand part of the equation is the simplified formula which quantifies the

deformation operated on the edge from ( 5 1
8
− 5 1

9
) to ( 5 2

8
− 5 2

9
) while accounting for a

rigid rotation '̂8 (computed using SVD similarly to Sorkine and Alexa [51]). The added

right-hand part of the equation ensures the rigidity term is scale invariant.

To remove the outliers in the feature matching, the feature node with the maximum ARAP

residual is pruned from the graph. The graph and the rigidity terms are then updated and

the pruning process is repeated iteratively until the ARAP residual falls below a defined
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threshold. An example of the result after feature matching pruning is shown in Figure 3.3

and the pseudo-code is given in Algorithm 1.

Algorithm 1 Prune feature matches until local rigidity falls under threshold g.
Input: �1, �2, g
Output: �̂1, �̂2

function ARAP filter
build graph

{
�1, �1}

copy edges on
{
�2, �1}

compute rigidity terms rig(8) with (3.2)
while max(rig) < g do

prune nodes 5 arg max(rig) in �1 and �2

update graph
{
�1, �1}

copy edges on
{
�2, �1}

compute rigidity terms rig(8) with (3.2)

end
end

3.5 Non-Rigid Deformation

Given the filtered correspondences, the proposed approach deforms the after skirt image

to find the location of the skirting line. This is achieved by utilising the correspondences

as the ’control handles’ for any non-rigid deformation approach. For alignment of the two

images, the user can use any non-rigid deformation method. However, for the alignment

of wool images an ablation study is conducted in Section 3.6.3.

The deformed after skirt image is then superimposed on the before image. The location

of the skirting line is obtained by extracting the boundary of the superimposed image on

the before skirt image.

3.6 Ablation Study: Feature Matching Algorithms and Non-

Rigid Deformation Methods

In the following section, we conduct a comparative analysis of feature matching algorithms

and non-rigid deformation methods outlined in the Chapter 2. This analysis aims to
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(a) Putative matches

(b) Filtered matches

Figure 3.3: Filtered matches are shown in Figure 3.3b after implementation of proposed
filtering method on the initial putative matches shown in Figure 3.3a

determine the most suitable feature matching algorithm in current literature and non-

rigid deformation method for aligning the wool images with the proposed methodology.

3.6.1 Traditional Feature Matching Algorithms

Feature correspondences work as the control handles or nodes used for non-rigid deforma-

tion algorithms to alter the shape of the after-skirt wool to match the before-skirt wool.

Thus, not having enough correspondences or incorrect ones will create undesired deforma-

tion in the final output resulting in wrong results. A comparative evaluation is performed

to analyse each descriptors performance with wool images collected from a shearing shed.

Each of the descriptors are filtered with the proposed filtering method to evaluate their

performance on non-rigid data.
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The data used to test the algorithms has been skirted by professional wool handlers. This

allows for a better evaluation of how each algorithm performs when the wool undergoes

significantly higher deformation.

Figure 3.4: Number of correspondences per method across 20 different images

The data presented in Figure 3.4 demonstrates that the algorithms with the least effective

performance are those lacking scalability and rotational invariance. Adversely, SIFT and

KAZE stand out for their significantly higher number of correspondences relative to other

methods. However, as highlighted in Figure 3.5g, both algorithms struggle to identify

correspondences near the fleece’s edge. Further comparison between these two methods

was performed, where a different fleece is selected and only the deformed edge of the fleece

can be seen. As observed in Figure 3.6, SIFT outperforms KAZE when higher amounts

of deformation are present on the fleece.

3.6.2 Learning Based Feature Matching Algorithms

Building upon traditional feature-matching algorithms, learning-based algorithms pursue

more sophisticated approaches which can result in a more accurate skirting line detection.

One of the state-of-the-art methods in this domain is the Local Optical TRansformer
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(a) FAST Correspondences (b) ORB Correspondences

(c) BRISK Correspondences (d) MSER Correspondences

(e) SURF Correspondences (f) KAZE Correspondences

(g) SIFT Correspondences

Figure 3.5: Location of matched features for each algorithm using data obtained from
field testing. Blue markers represent the location of the correspondences in the after skirt

image.

(LoFTR), which utilises a transformer architecture to find feature correspondences between

two images.

An evaluation of these features can be seen in Figure 3.7, where the filtered correspon-

dences between two sets of wool images are highlighted in blue. Similarly to traditional

feature extraction methods, LoFTR struggles to identify correspondences near the edge

where most of the deformation is present. Although LoFTR is capable of finding more cor-

respondences in the non-deformed area, it exhibits similar performance to SIFT in terms

of the number of correspondences near the edges, as illustrated in Figure 3.7a compared
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(a) KAZE Correspondences (b) SIFT Correspondences

Figure 3.6: Comparison between feature correspondences obtained using SIFT and
KAZE. The location of the correspondences is highlighted in blue. SIFT outperforms
KAZE when extracting correspondences on very damaged areas near the edge of the

fleece.

to Figure 3.7c, and in Figure 3.7b compared to Figure 3.7d. For this reason, SIFT is

chosen as the preferred method for feature correspondence due to its scale and rotation

invariance, in contrast to learning-based methods, which may be less reliable.

(a) LoFTR correspondences (b) LoFTR correspondences

(c) SIFT correspondences (d) SIFT correspondences

Figure 3.7: Location of correspondences after non-rigid filtering using transformer-based
network compared to SIFT. Correspondences are coloured in blue
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Learning-based feature correspondences require annotated data. This is not only time-

consuming but also introduces potential errors, as exemplified by the issues highlighted in

the training data used in [9] (Section 3.7.2). Furthermore, it is important to note that the

performance of the learning-based correspondence model is directly tied to the quality of

the correspondences used in its training (i.e., training a method using the obtained SIFT

correspondences would limit its performance to that of the SIFT method).

3.6.3 Non-Rigid Deformation Methods

Following the comparison between feature extraction algorithms, we perform a compara-

tive analysis of the non-rigid deformation fields reviewed in Chapter 2 (Section 2.1.3.3).

Two of the most popular deformation fields used in current approaches are ED, with one

of the most notable implementations by [27] and spline fields discussed in Section 2.1.3.7.

Both of these methods have shown their capability to handle large deformations while

remaining user-friendly.

The initial approach evaluated is deformation graphs, more specifically ED by [27]. This

is done by transforming the input of the non-rigid deformation as a set of scattered points

with coordinates defined in three dimensions (the third dimension is stacked with a row of

zeros). ED performs the non-rigid optimisation by solving the deformation on a graph. The

control points or nodes of the graph, � = {61, . . . , 6a}, are obtained by heavily downsam-

pling the transformed feature correspondences and the edges are generated by connecting

each node with its closest neighbour.

Once the deformation graph is created, we optimise the local rotations '8 ∈ R3×3 and

local translations C8 ∈ R3 for each node in the deformation graph �. This optimisation

is performed by minimising the energy function Equation (2.4) previously shown in Sec-

tion 2.1.3.3. By replacing 5 1 and 5 2 into Equation (2.10) we account for the pairwise

distance between feature nodes:

�2>= =

<∑
;=1

�1
; − �2

;

2
2 . (3.3)
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The regularisation term �A46 remains constant as per Equation (2.12):

�A46 =

a∑
8

∑̀
9=1

| |' 9 (68 − 6 9) + 6 9 + C 9 − (68 + C8) | |22 (3.4)

Similarly to Jiawen et al. [91], we define the errors in rotation �A>C as Equation (3.5). This

approach reduces stretching by favoring solutions that promote isometric properties.

�A>C =

a∑
9=1

| |' 9
)' 9 − � | |�2. (3.5)

The energy function described in Equation (2.4) is then minimised. Once the new position

of the deformation graph nodes are known, the points of P1 are updated using:

?∗8 =
∑̀
9=1

F 9 (?8) [' 9 (?8 − 6 9) + 6 9 + C 9], (3.6)

with the neighbour’s nodes 6 9 from P8 found using a search with a KD-tree. The weight

for each vertex is defined as

F 9 (?8) = (1 − ||?8 − 6 9 | |/3<0G), (3.7)

where 3<0G is the maximum distance of the vertex to the ` + 1 nearest node from �.

The second evaluated deformation field is spline deformation, which has gained prominence

as one of the most favoured approaches for non-rigid deformations in medical images. The

approach used for evaluation is derived from [92], including the smoothness penalty as

specified in [92]. Additionally, it utilises the Jacobian diffeomorphic function as a further

regularization term for smoothness in the deformation.

To quantitatively evaluate these deformation fields, annotated data was collected where

markers were placed on the wool. By using markers as ground truth, we can assess the

location of the specific area after deformation has been applied to the fleece. The data

utilised for testing is illustrated in Figure 3.8.
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(a) (b) (c) (d)

Figure 3.8: Data used for testing of algorithms. Blue markers are used as ground truth
to analyse the deformation. The sample includes a) Source Image, b) Source Image with

markers attached, c)Target image and d) Target image with markers attached

As demonstrated by Figure 3.9, the error difference between Embedded Deformation and

spline deformation is significant. Spline fields are not able to replicate the intricate defor-

mations that occur during skirting with single fibers being independently stretched.

Further experiments were also conducted to test for computational efficiency of each of

the methods. As demonstrated in Table 3.1, spline deformation proved to be the most

efficient compared to Embedded Deformation however the error in deformation does not

make it a viable deformation for use in the proposed pipeline.

Figure 3.9: Marker and Boundary error for each of the non-rigid deformation methods

3.7 Results

The proposed pipeline with the use of SIFT and ED is tested in two different scenarios. As

demonstrated in the ablation study, these two methods outperform other methods when
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Sample
Number ED Spline

Sample 1 67.55 s 0.81 s
Sample 2 4.54 s 0.86 s
Sample 3 45.89 s 0.80 s
Sample 4 47.12 s 0.88 s
Sample 5 56.61 s 0.81 s

Table 3.1: Processing speed of each of the methods (seconds). Experiments were con-
ducted on an 11th Gen Intel Core i7-1185G78 with 16GB RAM

used in wool images. The initial experiment is performed in a controlled environment,

designed to quantitatively measure the performance of each approach by utilising ground

truth data. The second experiment is performed with data collected from the field and

compared to annotations done by experts.

3.7.1 Controlled Experiment

Obtaining ground truth data for analysing deformation on wool during the skirting process

poses a significant challenge due to the repetitive nature of the wool’s pattern, making it

difficult to accurately determine the boundary between clean and contaminated parts of

the fleece from images alone. To address these challenges, markers are attached to the

wool deformation process. These markers work as annotations to know with certainty

where the parts of the wool move during deformation. Differently from the data obtained

for evaluation of the deformation fields, the wool is placed on top of a blue background to

accurately determine the boundary of the fleece.

The data collected for the controlled experiment is presented in Figure 3.10. This dataset

comprises of two initial images before deformation: one with annotations Figure 3.10b

and another without the annotations Figure 3.10a. The annotated image is subsequently

subjected to stretching and compression, resulting in the acquisition of two new images:

one with annotations Figure 3.10c and another with annotations removed Figure 3.10d.

The annotations have been removed to prevent any corruption of SIFT during the feature

extraction. These annotations, along with the wool’s boundary, are utilised to quantify

the outcome of the non-rigid deformation
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(a) (b) (c) (d)

Figure 3.10: Data used for the controlled experiment. The sample (a) is annotated (b),
stretched and compressed (c), and the annotations are then removed to enable evaluating

SIFT feature correspondence (d).

The SIFT features matches are shown in Figure 3.11a. As shown, many outliers are

present in the feature matching and need to be removed. The correspondences are then

filtered using the proposed filtering method described in Section 3.4, the results can be

seen in Figure 3.11b. The manual annotations from Figure 3.10b and Figure 3.10c are

then matched as shown in Figure 3.11c for reference.

(a) Original SIFT matches. (b) Filtered SIFT matches.

(c) Manual annotations.

Figure 3.11: SIFT features matching before (a) and after (b) the filtering process
described in Section 3.4. In (c), we show the correspondences from the annotations.

Given the filtered feature matching, we then perform the non-rigid deformation using ED

as discussed in Section 3.5. The updated contours of the deformed image are displayed

in Figure 3.12 in green alongside the original contour (in red) and the targeted image (in
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Figure 3.12: Contours using rigid and non-rigid deformation used for evaluation. The
rigid deformation resulting from SIFT+RANSAC filter is shown in blue and the non-rigid
deformation produced using SIFT+ARAP filter is shown in green. The original contour

(red) and the target (black) are shown for reference.

black). We compare this approach to a standard method that includes SIFT matching,

RANSAC filtering and rigid deformation. The contour of this deformation is displayed in

blue in Figure 3.12.

A quantitative evaluation is further performed by analysing the distance between the

deformed contours and the deformed manual annotations. The annotations (which are

extracted manually using tags on the wool) provide information regarding the accuracy of

the deformation across the whole surface. It provides us with an accurate quantification

of the deformation error. The mean error and standard deviation of these annotations are

reported in Table 3.2.

As a complementary quantitative evaluation, we measure the distance between the bound-

aries of the deformation, which closely relates to detecting the skirting line. The distribu-

tion of the distance between the boundaries is defined by finding the nearest point of the

targeted boundary, in Euclidean space, for each point of the deformed boundary. These

distributions are displayed in the violin plots of Figure 3.13 and the mean and standard

deviation are given in Table 3.2.

The ablation study in Table 3.2, which considers rigid / non-rigid filtering and rigid /

non-rigid deformation, shows that the problem needs to be tackled non-rigidly for both

the features matching filtering and the deformation.
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Figure 3.13: Distribution of the distance between the contours (shown in Figure 3.12).
Our proposed method generates contours that are significantly closer to the target.

Boundary Annotations
Filtering
Method

Deforma-
tion

Mean Std Mean Std

none none 21.83 20.18 40.17 18.22
rigid∗ rigid 21.16 17.98 36.63 19.39
rigid∗ non-rigid 18.86 16.57 34.29 17.85
non-rigid rigid 19.57 19.73 23.90 18.88
non-rigid non-rigid 5.75 7.44 14.04 6.66

Table 3.2: Quantitative evaluation and ablation study: starting from the SIFT features
matching, the outliers are filtered using RANSAC (rigid) or the proposed ARAP filter
(non-rigid). The image is then deformed rigidly or non-rigidly. The measurement without
deformation is provided for reference. Distances are in pixels. ∗ these experiments were

run 50 times given the non deterministic property of RANSAC.

3.7.2 Field Experiment

Data collected from the field experiment are shown in Figures 3.14a and 3.14b. With

the use of this data we are able to further evaluate the proposed approach against rigid

methods and annotations done by expert wool handlers ([9]), as per Figure 3.14.

The deformation of the wool after skirting has been manually assessed as shown in Fig-

ure 3.15, demonstrating convincing results regarding the quality of the deformation (spe-

cific patterns in the wool are visible in the same location for both the before and after

skirt images).
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However, as shown in Figure 3.14, there is a significant difference between the manual

annotation (which corresponds to a regular trimming of a few centimetres) and the actual

skirting by the wool handler. The discrepancy further accentuates the difficulty for a

human to assess the quality of the wool in an image without manipulating it or having a

close inspection.

(a) Before Skirting. (b) After Skirting.

(c) Contour comparison be-
tween methods.

Figure 3.14: In (c) we demonstrate the accuracy of each method with the use of contours:
Wool handlers annotation (blue), proposed method (red) and rigid deformation (cyan).

While the results indicate superior performance compared to other proposed methods,

there is still a minor issue near the edge in Figure 3.14, where the boundary extends

beyond the edge of the before skirt wool. These minor errors can have a significant impact

on the automation of the skirting line, potentially leading to financial losses for wool

producers. As a result, further ablation studies have been conducted to gain a better

understanding of the approach’s limitations.
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Figure 3.15: Qualitative evaluation of the morphing on data from the field. The de-
formed skirted image (green border) is superposed to the original wool image. In blue,
we show the wool image prior to skirting and in red the sample after skirting. The areas

selected are strictly superposed.

3.8 Conclusion

In this chapter, we introduced a method for automatically detecting the skirting line in

freshly shorn fleece through the use of image registration. The method incorporates a

filtering strategy for feature correspondences, designed to take into account the non-rigid

deformations that happen to the fleece during the skirting process. It then proceeds to

align the before and after skirt image using the filtered features and embedded deformation

to extract the skirting line.

We tested this approach on both the controlled experiments and practical applications.

These tests prove the efficiency of the method in estimating the deformations that happen

to the wool during the skirting process while highlighting some shortcomings of feature-

matching algorithms when high amounts of deformation are present in the data.
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While the controlled experiments demonstrate that the proposed pipeline is capable of

handling the deformation in the fleece when repositioned, it fails to properly align the

edges when the fleece has been skirted.

This is further highlighted during the ablation study of feature matching algorithms. The

results indicate that the major limitation in the proposed approach is present when ex-

tracting feature correspondences. While SIFT and pretrained methods are capable of

identifying correspondences in non-damaged areas, they fell short in identifying corre-

spondences near the edge of the fleece. This phenomenon can be attributed to the high

presence of outliers in that region. When an inlier correspondence is surrounded by out-

liers, it can be mistakenly categorized as an outlier itself. Therefore, it becomes necessary

to adopt a different strategy to include these previously identified outliers into the set of

inlier correspondences.

In the next chapter, we address this feature correspondence problem by integrating a

learning-based methodology. This approach focuses on identifying deformations in less-

affected areas and subsequently extends these deformations to the fleece edges by integrat-

ing dense correspondences based on their spatial consistency to the inlier set.



Chapter 4

Skirting Line estimation using

Sparse to Dense approach

4.1 Introduction

The work presented in the previous chapter demonstrates the feasibility of automating the

skirting line detection by using image registration between two RGB images. By aligning

the before and after skirt images, it is possible to identify the parts that were removed

along the edge of the fleece, resulting in the detection of the skirting line.

However, traditional feature matching algorithms such SIFT, SURF and KAZE are not

capable of finding correspondences near the edge of the fleece when the deformation is

severe, leading to inaccuracies when detecting the skirting line. Furthermore, state-of-the-

art learning-based feature matching methods (LoFTR) also suffer from these limitations.

The unique characteristics of wool, including its tendency to stretch and tear during the

skirting process, require a more sophisticated approach to detect deformations occurring

near the edge.

Most existing approaches allow for non-rigid registration between images, though they fail

in areas with repeated features. As a consequence, existing methods only perform well

when wool is gently handled in lab settings, but are unsatisfactory when using field data.

60
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Figure 4.1: Flowchart of the proposed method. A sparse set of inlier correspondence
is first obtained using the approach mentioned in Chapter 3. Then, a sparse-to-dense
approach integrates dense feature correspondences along the edge of the wool. This is
achieved by incorporating a dense set of correspondences into an initial sparse set of

inliers by using a learning-based classifier

For this reason, this chapter presents an approach for non-rigid alignment of wool fleece,

centred around a feature descriptor that can account for local pose changes with respect to

its neighbours. Utilising this spatial data along with a learning-based filtering technique,

the approach aims to expand the correspondences from low-deformation regions to severely

affected areas, normally around the wool’s edge.

4.1.1 Methodology Overview

An overview of the proposed approach can be seen in Figure 4.1, where we extract both

a sparse and dense set of correspondences to perform image registration. This chapter

incorporates an MLP to filter the dense correspondences based on the sparse set spatial

information. With this approach, we aim to address the limitations of feature detection

algorithms, enhancing the sparse set of correspondences and expanding them to the edge

of the fleece while enforcing continuation in deformation of the wool.
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4.2 Sparse Feature Correspondences

4.2.1 Feature Extraction

Similarly to the approach in the previous chapter, the proposed method uses SIFT de-

scriptors Lowe [93] to extract the features from the two input images. As highlighted

in Section 3.6, SIFT descriptors have been shown to outperform other non-learning based

feature extracting methods by finding more correspondences around the severely deformed

areas in the fleece, typically located around the edges. Additionally, due to the absence of

training data or the potential for human error in annotated data Patten et al. [9], SIFT

has demonstrated performance comparable to learning-based methods such as LoFTR

around the edges of the fleece. For these reasons, SIFT descriptors are the selected for

the proposed methodology over other traditional or learning based features. The robust-

ness of SIFT to rotations, translations, and changes of viewpoint that can occur during

deformation renders it highly suitable for the proposed approach. Furthermore, to ensure

continuity between the sparse and dense sets, the descriptor information will subsequently

serve as a crucial input for the filtering method, facilitating the removal of outliers in the

dense set.

The extracted feature descriptors of the before and after skirt images are then matched

using the Lowe’s ratio criterion [93] resulting in a set of unfiltered correspondence
{
�1, �2},

where �1 and �2 correspond to the features of the before skirt image and after skirt image

respectively.

4.2.2 Non-rigid Filtering

Outlier rejection is handled by using previously proposed method in Section 3.4. As

previously demonstrated, this method is capable of accurately filtering the correspondences

for non-rigid deformations without being computationally expensive. Once all the outliers

are pruned, a set of sparse feature correspondences is obtained. This is referred to as

( =
{
B1, B2} and is used to initialise the inlier set of correspondences.
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4.3 Dense Feature Correspondences

Denser features are extracted using dense SIFT Bosch et al. [94]. This variant of the pop-

ular algorithm SIFT operates on a dense grid of points throughout the image rather than

on a sparse set of keypoints. To improve computational efficiency, our method extracts

potential matches for each of the descriptors located outside the boundary of the sparse

data. This is achieved by applying the Sobel algorithm Sobel et al. [95], which enables the

construction of a mask defined by the boundary of the sparse correspondences. Features

located within the mask boundary are then deleted, consequently significantly reducing

the number of feature matches to be computed.

All the putative matches obtained from the dense descriptors are stored in two different sets

� =
{
�1, �2}, containing the dense SIFT features for the source and target images. The

8Cℎ dense feature correspondence stores both the information of the feature coordinates,

referred to as 3
1 |2
8

, and the SIFT feature descriptor, referred to as 5
1 |2
8

.

4.4 Dense Inlier/Outlier Classification

Once all the correspondences are obtained {(, �}, an MLP is used to classify the dense

correspondences into inliers and outliers. MLP are predominantly used to learn complex

patterns and relationships in data. Our approach learns the geometric consistency from

the inliers and filters the dense correspondences using this geometric consistency.

Given the 8Cℎ correspondence {31
8
, 32

8
} such that 3

1,2
8

∈ �1,2, the MLP takes as input the

concatenated information of the feature descriptors difference and the geometric consis-

tency between 31
8

and 32
8
.

The feature descriptor difference consists of the !2-norm between the SIFT feature de-

scriptors of the before and after skirt image. More formally, the SIFT difference is defined

as:

4(��) = | | 5 1
8 − 5 2

8 | |2. (4.1)
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The geometric consistency information is obtained by analysing the consistency of the

dense feature neighbours within the inlier set (. Similarly to the sparse feature filtering,

a graph is built by connecting 31
8

to its : neighbours in �1. In contrast to the sparse

filtering, neighbours are only selected from the inlier set, making them more reliable.

The graph is then copied onto the target dense correspondence 32
8
, by using the previously

calculated correspondences from the sparse set (1,2. A sample of such a graph is illustrated

in Figure 4.6. The optimal rotation that would align 32
8
’s neighbours to 31

8
’s neighbours is

then obtained using SVD and applied to align the neighbours of the source and the target.

Finally, the geometric difference between each neighbour is computed as

egeometric = {464><4CA82

1 , . . . , 4
64><4CA82

:
}, (4.2)

4
64><4CA82

9
= | | (N (31

8 ) 9 − 31
8 ) − (N (32

8 ) 9 − 32
8 ) | |2 (4.3)

where N(31 |2
8

) 9 represents the coordinates of the 9 Cℎ neighbour of 3
1 |2
8

. In other words,

Equation (4.3) consists of the residual of the distance between the source and target graph’s

neighbours while accounting for translation and rotation. The geometric information is

ordered from closest to furthest with respect to the source dense feature 31
8
.

The feature information 4(��) and the geometric information egeometric are then concate-

nated into a single vector and used as inputs for the MLP. These inputs are summarised

in Figure 4.2.

4.5 Iterative Update of the Sparse Feature Correspondences

The sparse set of feature correspondences between the before and after skirt images is

updated using an iterative process that adds correspondences from the dense set. To keep

the geometric information described in Equation (4.3) meaningful (i.e., allowing global

non-rigid deformation while minimising local deformation), the order in which the dense

correspondences are processed is obtained by iteratively finding the closest correspondence

from the inlier set and growing towards areas with higher deformation. After computing



Chapter 4. Skirting Line estimation using Sparse to Dense approach 65

Figure 4.2: Inputs to the MLP classifier. The MLP takes as input the difference between
the feature correspondences. These feature correspondences are composed of the Scaled
Invariant Feature Transform (SIFT) descriptor vector and the location of the : closest

neighbours in both the source and target image.

the MLP prediction for the closest dense descriptor to the sparse set, the descriptor is

added to the sparse set if the Multi-layer Perceptron (MLP) classifies it as an inlier. The

descriptor is then removed from the dense set. The process is repeated iteratively until all

dense correspondences have been classified. This iterative process starts from the areas

less affected by the deformation and gradually adds more features in the areas with more

deformation.

4.6 Non-rigid Deformation

In this chapter, we propose using As Rigid As Possible (ARAP) as an alternative to

Embedded Deformation (ED) to enhance computational efficiency in computing non-rigid

deformations. In contrast to the approach presented by Sumner et al. [27], Sorkine and

Alexa [51] optimises for rigidity and rotation using Equation (2.15), with the primary

objective of preserving local rigidity, encouraging small parts of the figure to change as

rigidly as possible, thereby improving computational efficiency in the process.

Table 4.1 highlights the improvement of processing speed upon ED while having similar

error as demonstrated in Figure 4.3. These experimenters we performed using the data

collected for the ablation study in Figure 3.8, Section 3.6.3.
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Sample
Number ED ARAP

Sample 1 67.55 s 16.4 s
Sample 2 4.54 s 1.35 s
Sample 3 45.89 s 13.58 s
Sample 4 47.12 s 15.03 s
Sample 5 56.61 s 13 s

Table 4.1: Processing speed comparison between ARAP and ED in seconds

Figure 4.3: Error in deformation between ARAP and ED using features obtained from
approach in Chapter 3 and data collected in Figure 3.8

Given that ARAP requires a mesh as input for the deformation, a mesh is generated from

the image by storing this image as a set of points, which are then transformed into a mesh

structure through Poisson surface reconstruction as proposed by Kazhdan et al. [96]. The

requirement for this mesh arises from the connectivity between nodes required from ARAP

deformation.

This method constructs the mesh by formulating it as a Poisson equation, which balances

the smoothness of the surface and the conformity to the input points. The result is a

surface mesh that accurately captures the geometric features of the original object.

The sparse correspondences obtained from the MLP, output as ((1 and (2), are then

used as the control points for ARAP to deform the image. ARAP deforms the image by

minimising the energy function in Equation (2.15) shown in Section 2.1.4. The energy

function can be rewritten for the sparse correspondences as:
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��'�% =

#∑
8=1

∑
9∈# 8

F8 9 | | ((1
9 − (2

8 ) − '8 ((̂
1
9 − (̂

2
8 ) | |2 (4.4)

where # 8 is the set of indices of neighbouring vertices of vertex 8, (1
8

and (2
9

are the

given set of deformed vertex positions, (1
8

and (2
9

are the positions of the control points

corresponding to vertices 8 and 9 , and '8 is a rotation matrix that minimises the difference

between the positions of neighbouring vertices in the deformed mesh and the positions of

the corresponding control points. The term ((1
9
− (2

8
) represents the relative displacement

between vertices 8 and 9 in the deformed mesh. Similarly to Section 3.4, F8 is set to 1 to

prevent any bias regarding the area of the surfaces in the mesh.

Figure 4.4: Wool contaminant detection rig. RGB camera on the top rail observe the
wool fleece that is thrown on the actuated rollers by a handler. This rig is used to collect

the dataset presented in this work.

4.7 Experiments

Markers are placed on the wool during the controlled experiment to precisely analyse the

location of specific parts after the deformation process, similar to the data collection in

previous chapter. However, in contrast to previous experiments, the wool is skirted rather

than just repositioned or stretched, providing a closer resemblance to field conditions.
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Figure 4.5: Sample from the dataset showing from left to right: source image, source
image with markers, target image with markers and target image.

Additionally, a denser number of markers are attached to the wool to trace most moving

sections of the fleece.

The data capture process is explained as follows, with an image captured after each step:

• fleece is placed under camera

• markers are placed on fleece

• fleece is skirted with the markers on

• markers are removed

The first and last images form the input pairs for the evaluation as they contain no markers.

The second and third images are used as ground truth, containing the markers ti be used

as reference points for the evaluation of the algorithm performance. The procedure is

illustrated in Figure 4.5.

The ”ground truth” correspondences between the markers in each pair of images is deter-

mined using the unique marker colour. A colour filter, median clustering enables point

wise nearest neighbour correspondence to match all markers individually. This dataset

consists of 24 pairs of images (one before and one after a sample of wool is skirted). The

data is captured with the contaminant detection rig shown in Figure 4.4, where wool is

placed on the roller table and observed by an overhead camera (Balluff BVS0037 RGB

camera with a resolution of 2464 × 1026 pixels).
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Figure 4.6: Features created extracting a SIFT feature and its closest : neighbours.
The green descriptor represents an inlier on the before-skirt image, which shows the
graph toward the closest markers. The blue descriptor is the matching feature of the
SIFT descriptor in the after-skirt image, connected to the same colour markers as the

feature in the before-skirt image.

4.7.1 MLP Training

4.7.1.1 Inlier Generation

Similarly to the construction of the dense features, the inlier generation constructs two

different graphs for the sparse descriptors in the before skirt image (�B) and the after

skirt image (�C). A new descriptor is created for each sparse descriptor in both graphs by

extracting the : closest colour markers in the before skirt image and their locations in the

after skirt image. An example of this descriptor can be seen in Figure 4.6. SVD is used

to deform the descriptor in the source image, which is composed of the sparse descriptor

and its neighbours, to match the sparse descriptor in the target image and its respective

neighbours.

4.7.1.2 Outlier Generation

For each sparse descriptor, we displace the location of the source point ((1
=) to a new

arbitrary location. We extract the : closest colour markers from the original source point

and assign them to the new source point. This results in a descriptor with different

lengths to the closest markers and a different distribution of marker locations. We then

apply the same deformation process used for the inlier data, deforming the descriptor and

its neighbours to match the target descriptor. In this case, the target descriptor remains
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unchanged, with the same : closest neighbours being the markers extracted for the original

source point.

4.7.1.3 Noisy Inlier Generation

To increase the robustness of the MLP, we introduce noise to the inlier data by randomly

modifying point location of some of the source points. Specifically, we randomly select a

subset of the inlier points and change one of their neighbour markers in the source image to

a different arbitrary marker. We then compute the optimal rotation between the modified

source descriptor and the original target descriptor using SVD. Despite the added noise,

the resulting deformed descriptor still has : − 1 neighbours with a small norm distance,

while one has a significantly larger distance. This suggests that the point remains an inlier

since the majority of its neighbours are correctly assigned.

4.7.1.4 Implementation Details

The MLP is implemented in PyTorch. It is trained with the cross-entropy loss function

and a learning rate of 0.0001. The training data consists of 302, 400 features and the

testing data consists of 137, 500 features. These features are equally distributed between

inliers and outliers, with a randomised number of noisy inliers interspersed among the

inlier data. The MLP is trained for 200 epochs with a batch size of 250.

4.7.2 Baseline Methods

For comparison, we assess our approach against optical flow methods rather than feature

matching algorithms. This choice is informed by the findings presented in the previous

chapter, which demonstrated that feature matching methods struggle to accurately deter-

mine changes wherever their is severe stretching of the fleece.

The first approach we evaluate against is Lucas-Kanade optical flow Lucas and Kanade [61].

Additionally, the approach is compared against Jiang et al. [63] approach (SCV) due to

its efficiency in estimating the optical flow field with a limited number of correspondences.
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This property is relevant to our problem, as we can only obtain correspondences in areas

with low deformation. To apply SCV, the data from a large number of images of fleece

collected at a wool shed are used. This data comprises a diverse collection of 42 wool

fleeces, each of which contains around 20 image pairs. For each of the image pairs, sparse

descriptors are extracted and dense correspondences for all pixels between the image pairs

are computed from the output of ED following the previous chapter approach. The weights

are initialised from a model trained on the Sintel dataset Butler et al. [97], then trained

for a further 50000 iterations with a learning rate of 0.00025 and batch size of 2. All other

parameters are the same parameters as in Jiang et al. [63]. Finally, the method is also

compared to previous skirting line estimation methods proposed in Chapter 3.

4.8 Results

The first section showcasing the results of the training of the MLP. Thereafter, the

efficiency of the approach is tested in two different scenarios. The first one is a controlled

experiment where newly collected data is utilised to test the algorithm’s performance. The

second scenario is on the data collected from the field, to evaluate the performance of the

algorithms in real world scenarios.

4.8.1 MLP

The result of the proposed method demonstrates that the MLP effectively distinguishes be-

tween an inlier or outlier feature based on the new features constructed. The performance

of the MLP is evaluated using an AUC-ROC curve, which plots the true positive rate

against the false positive rate at various threshold values. From the curve in Figure 4.7, it

is observed that the MLP is capable of correctly identifying true positives at a threshold of

0.5. However, in the subsequent experiments, a higher threshold of 0.75 is used to extract

only the features with the highest probabilities of being an inlier. This is done to ensure

that there is a continuous deformation on the fleece, as these features reflect the highest

probability of continuous propagation on the deformation from the sparse data.
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Figure 4.7: AUC-ROC curve for MLP classification performance. The curve demon-
strates the model’s ability to distinguish between true inliers and outliers based on the
probability of each class. At a probability threshold of 0.5, the MLP is capable of correctly

identifying the distribution between inliers and outliers.

4.8.2 Controlled Experiment

For the controlled experiment, a quantitative evaluation on the marker dataset is per-

formed by deforming �B to match �C based on the correspondences obtained from each of

the methods. The pixel location of each of the markers is extracted and matched to the

image without the markers. After deforming �B, the translation is computed and the error

between the pixel location and markers on �C is extracted. To ensure a fair evaluation

of the algorithm’s performance and avoid bias towards fleeces with low deformation, the

error is only computed for the markers that have been displaced beyond a certain thresh-

old. This ensures that the translation error is only calculated using the areas with large

deformation.

As seen in Figure 4.8, our approach yields an improvement on learning-based optic flow

methods such as Jiang et al. [63] for calculating deformation on fleece.

To further evaluate the location of the markers error, a qualitative comparison between

the methods is carried out to show the areas where each method fails. This comparison
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Figure 4.8: Quantitative evaluation of proposed method: Comparison between Lucas
and Kanade [61], Jiang et al. [63], Banuelos et al. [11] and the proposed method to
calculate the deformation error in the fleece. Using the colour markers as ground truth we
calculate the distance between the location after deformation and the expected location.

in Figure 4.9, shows the location of the deformed and target markers. The observed error

locations indicate that the other methods exhibit higher error rates, especially near the

edge due to the incapability of extracting correspondences in areas with large deformation.

This evaluation demonstrates that an optic flow learning-based approach might not be

suitable for calculating the deformation in fleece when only two images are available. Optic

flow often requires several successive images to accurately calculate the deformation that

occurs along the scenes. Additionally, the presence of previously unseen fleece coming from

underneath during the skirting process severely affects the calculated flow fields, resulting

in an inaccurate representation of the deformation.
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(A) LK Optical Flow

(B) SCV

(C) SIFT + ED

(D) Proposed Method

Figure 4.9: Location error comparison between the deformed markers and target mark-
ers. The target markers are denoted with a coloured circle, while the location of each of
the deformed markers is indicated with an ‘x‘. The colour of each of the circles represents

the pixel error between the deformed and target marker, indicated by the colour bar.
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This is supported by Figure 4.10, which shows the correspondences obtained using the

previous chapter approach in green and the added correspondences by our approach in

blue. It is clear that there is a noticeable increase in the number of correspondences near

the edge of the fleece.

Figure 4.10: Added correspondences using the proposed method. Initial correspon-
dences (green) were obtained using the previous chapter’s approach and added correspon-

dences (blue) after the new proposed filtering method.

4.8.3 Field Data

Further qualitative evaluation was performed on the data obtained from the field. As seen

on Figure 4.11, a greater number of correspondences are observed closer to the edges of the

fleece, in contrast to the approach proposed in Chapter 3. Furthermore, when compared to

learning-based correspondences identified in LoFTR (Chapter 3, Figure 3.7), the proposed

approach yields a higher concentration of correspondences near the fleece edges.

However, there are notable shortcomings when applying this approach to field data. The

qualitative analysis highlights instances where correspondences are significantly sparse or

completely absent. This issue is particularly evident in Figure 4.11b, which shows areas

very close to the edge remaining without any correspondences. This lack of correspon-

dences is attributed to substantial fibre stretching during the skirting process, which results

in white fibres lacking recognisable patterns for feature correspondences.

4.9 Conclusion

In this chapter, we presented a novel image registration method to find the skirting line

in two images of fleece. This method utilises a descriptor that incorporates the location
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(a) (b)

Figure 4.11: Added correspondences in field data using proposed method. Initial cor-
respondences (green) were obtained using the previous chapter’s approach and added

correspondences (blue) after the new proposed method.

of the nearest neighbours, to ensure there is a continuous deformation during the filtering

process. By utilising a learning-based filtering approach, we are able to gradually integrate

dense descriptors into the inlier set, allowing us to start from the sparse correspondences

extracted from the areas with low deformation and propagate to the edges where most

of the deformation occurs during the skirting process. As demonstrated in controlled

experiments, the proposed method outperforms the previously proposed approach and

optical flow methods in areas with high amounts of deformation.

However, as noted on the results from the field data, this method fails to find correspon-

dences at the very edge of the fleece that has been heavily stretched. The fibrous nature of

wool can lead to transformations around the edge into an indistinct appearance in certain

areas. This characteristic poses a challenge for feature extraction algorithms, making them

incapable of finding feature correspondences in such regions. Furthermore, while quan-

titative results indicate an improvement over previous methods, the errors could result

in either overskirting or underskirting, which may negatively impact the final product’s

value.

These shortcomings highlight the need for an approach capable of identifying how the fibres

were stretched, decreasing the error around the edges when performing image registration.

This could be achieved incorporating a physics based approach capable of replicating the

fibre stretching phenomena.



Chapter 5

Skirting Line estimation using

physics-based deformation

5.1 Introduction

The previous chapter introduced a learning-based non-rigid image registration method

for aligning two RGB images of fleece. The method extended correspondences from less

affected areas to the fleece’s edges, which typically exhibit the most distortion. This was

done by introducing a learning-based filtering method that incorporates a set of dense

correspondences to the initial sparse correspondences and ensuring the continuity in de-

formation.

However, due to the unique characteristics of wool, this method fails to find correspon-

dences at the very edge of the fleece where the fibre has been stretched. The stretching

of the fibres alters the visual appearance of wool fibres located around the edges, such

that no correspondences can be detected. Feature matching algorithms are incapable of

matching features in these areas, leading to inaccuracies on the skirting line.

To address these challenges, this chapter introduces a physics-based simulation, designed

to replicate the complex dynamics occurring at the wool’s edge during the skirting process.

As highlighted in Chapter 2, physics-based deformation methods have proven capable of

77
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accurately replicating the deformation or tearing of complex objects. Implementation of

these approaches could improve the registration in areas where feature matching algorithms

tend to fail due to the severe stretching of fibres.

Physics-based and non physics-based deformation methods have been combined to find

denser correspondences in deformable objects ([98], [99], [100]). However, the simulation

must be tailored to handle the deformation of fibrous materials such as those in Sec-

tion 2.2.4.2 to accurately emulate the stretching of fibers and enable the identification of

correspondences on heavily deformed areas.

5.1.1 Methodology Overview

A pipeline of the proposed approach can be seen in Figure 5.1, where a 3D mesh model of

the before skirt wool is used in combination with a physics-based fracture simulation to

extract correspondences on areas where the fleece undergoes significant stretching. These

newly obtained correspondences at the very edge are then added to the previous set of cor-

respondences obtained in Chapter 4. This allows for a denser tracking of the deformations

occurring all over the fleece.

To accurately depict how the fleece deforms in real life, the physics-based simulation uses a

learning-based process to replicate how the fracture propagates during the skirting process.

This is done by optimising the materials physical attributes using the approach depicted

in Figure 5.2. This optimisation initiates by preprocessing the mesh fleece to extract the

different fibres in the fleece as outlined in Section 5.2. The fleece is then deformed using

an initial set of material properties. Subsequently, the material properties are optimised

through a learning-based approach, to accurately emulate the transformations that occur

during the skirting process with the use of the simulation and correspondences.
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Figure 5.1: Pipeline of proposed methodology. A 3D mesh of the before skirt wool
is obtained. This mesh is then deformed using a material fracture simulation with pre-
trained parameters obtained using Figure 5.2. From the simulation, correspondences
where the wool has been stretched are obtained. The after skirt image is then deformed
using a combination of these newly obtained correspondences, previous correspondences
from Chapter 4 (Sparse to dense) and initial correspondences from Chapter 3 (Sparse

Matches) to deform the after skirt image to obtain the skirting line.

5.2 Mesh Preprocessing

5.2.1 Fibre Clusters

The initial stage of the pipeline focuses on the extraction of multiple fibre clusters found

within the fleece in the before skirt image. The approach utilises superpixel segmentation

[101] to extract the different fibre clusters present in the before skirt image. Superpixel

segmentation groups pixels based on shared attributes such as colour similarity and spatial

proximity. The proposed method employs Achanta et al. [102] approach, which adopts a

k-means clustering approach to find the boundaries of each superpixel. This adaptation
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Figure 5.2: Pipeline of the proposed approach to learn material’s parameters. An image
of the before skirt wool is segmented into different superpixels. The fibre direction within
each superpixel is then calculated using the gradients inside each superpixel. The mesh
is then segmented into multiple sections obtained from the superpixels, each with their
respective fibre direction. The material properties are then refined until the deformation

in the simulation matches the after skirt image.

enables the efficient generation of superpixels, facilitating the accurate identification of the

distinct fibre clusters in the before skirt image.

Each superpixel is stored as (% where (%8 =
{
?81, . . . , ?

8
<

}
with ?8 ∈ R2. The term ?81..<

corresponds to the pixels locations within (%8 boundary.

5.2.2 Fibre Direction

Once the superpixels are defined, the Sobel operator [95] is employed to compute the image

gradient within each superpixel area. The Sobel operator functions by detecting changes

in intensity across a specific pixel array, generating a gradient vector. This method is

particularly effective when applied to the grayscale image of the before skirt fleece, as it

accentuates the distinction between the fibres and the background. This can be seen in

Figure 5.3, where the fibres appear significantly darker.
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Figure 5.3: Grey scale image of fleece. Image highlights the location of the different
fibres around the fleece

To obtain the direction of the fibre, the gradient vectors inside each superpixel are added to-

gether. During the summation process, opposing gradients or sides of the fibres effectively

cancel out, leaving a resultant vector that represents the direction of the fibre orientation

within the superpixel. These fibre directions are then stored as shown in Equation (5.1).

®�8 =

<∑
9=1

®� 9 ∈ (%8 (5.1)

where ®� represents the resultant direction vector of the fibres of the 8th superpixel, denoted

as (%8. The summation is taken over the gradient vectors ®� computed within a 3x3 area

around each pixel. This cumulative gradient represents the predominant fibre direction

within each superpixel.

5.2.3 Mesh Refinement

Once all the superpixels are obtained, the before skirt mesh " is then spatially transformed

to match the scale and coordinates of the before skirt image. The transformed mesh is

segmented into multiple meshes by cutting it along the superpixel boundaries.
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To prevent discontinuities in vertices during the segmentation process, the initial mesh

is transformed into a tetrahedral mesh using Delaunay tetrahedralization [103]. This

Delaunay triangulation transforms the hollow mesh into a filled interconnected structure by

using an algorithm that subdivides the mesh into tetrahedra. Subsequently, each segment

is assigned its respective directional vector ®�, representing the fibre orientation within

that mesh segment. The location of each of the vertices in the transformed and segmented

mesh is then stored as �1.

5.3 Parameters Optimisation

5.3.1 Fracture Animation

We propose the use of AnisoMPM [88] for the simulation. As stated in Chapter 2, this

simulation is capable of simulating fracture in fibrous anisotropic materials similar to

wool during the skirting process. This capability stems from its utilisation of a three-

dimensional matrix, which penalizes alterations in fibre length, shearing along fibres, and,

frictional contact between fibres. Furthermore, its implementation is straightforward and

demonstrates resilience under conditions of extreme deformation which is typical of wool.

The previously segmented meshes with their respective fibre direction are then integrated

into AnisoMPM. This integration ensures that the simulated fractures do not propagate

in the direction of the fibre orientations within each segmented area, allowing for a more

accurate and real-world behaviour of wool during the skirting process. The locations of

the deformed vertices from the simulation are then stored as �2.

5.4 Blackbox Optimisation

AnisoMPM can simulate accurate fractures in various materials by fine-tuning differ-

ent parameters associated with the MPM properties. The parameters that need to be

fine-tuned for the simulation are Youngs Modulus (E), Fibre Scale (W), Viscosity ([),
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Inextensibilty (d) and Cauchy stress tensor (f?>B). To tailor these parameters to ac-

curately depict the fracture propagation in fleece, we employ a black box optimisation

approach using CMA-ES [104].

Optimisation involving multiple parameters often poses significant challenges for conven-

tional learning algorithms like gradient descent. These challenges arise from the non-

smooth nature of the problem space and the excessive computational resources needed to

calculate gradients. To effectively address these issues, CMA-ES is selected for its pro-

ficiency in navigating non-convex problem spaces, as encountered in behaviours such as

stretching and fracturing under a range of forces.

Although CMA-ES is employed for this methodology due to its ease of application and

popularity, other derivative-free algorithms, such as xNES (Exponential Natural Evolu-

tion Strategies) [105], MADS (Mesh Adaptive Direct Search) [106] and MCS (Multilevel

Coordinate Search)[107], are also suitable for the proposed methodology.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) works by employing an evo-

lutionary strategy to optimise complex, non-linear, and multi-dimensional problems. This

method systematically enhances a set of candidate solutions through an iterative process,

favouring the propagation of lower error solutions for future generations. The method

adapts by adjusting the covariance matrix of the distribution, effectively learning the

shape of the problem space and guiding the search process towards the optimal solution.

5.5 Experiments

5.5.1 Data Collection

The dataset used to analyse the algorithm’s performance consists of 6 different pieces of

fleece. Each of them contains their respective 3D mesh and the before and after skirt

image. The data was captured using the skirting rig shown in Figure 5.4, where the fleece

is placed on the top of the table and the camera is placed underneath.
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Figure 5.4: RIG used for data collection. The RIG consists of two linear actuators
with an attachment used to simulate the hands of the wool handlers during the skirting

process.

Eliminating outside variables when collecting the data represented a significant challenge.

The non-linearity of the pulling during the skirting process increases the amount of er-

rors for the simulation. Furthermore, the inability to capture the areas near the edge

of the fleece during the skirting process due to obstruction from the hands also presents

a challenge if wanting to obtain more information on how the fibres are stretched and

compressed around this location.

To address these challenges, a new rig is built for the data collection of this experiment.

In this rig, the fleece is placed above a perspex sheet and recorded from below. This setup

eliminated occlusions and enabled full recording of the fleece during skirting. Variability

in the pulling path and force was reduced using two linear actuators for pulling the fleece

from each side. These linear actuators allow for a constant speed and pulling direction

when skirting the fleece. Additionally, an attachment is placed at the end of each linear

actuator to emulate the fingers from the wool handlers.

5.5.2 Mesh Processing

For the simulation, a total of 800 superpixels are generated to segment the image into dis-

tinct fiber clusters. The tetrahedralization process utilises a minimum allowable dihedral
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angle of 10 and a maximum allowable radius-edge ratio of 2.5. Furthermore, the number

of final vertices employed for training in the simulation and experiments is set at 50,000.

Additionally, the training for the blackbox optimisation utilises a subset of 9 different

parameters for each of the iterations.

5.5.3 CMA-ES Training

The optimisation process involves minimising the error function shown in Equation (5.2),

to ensure continuity between the deformations in the simulation and the images captured.

�B8< = �correspondence + �pixel similarity (5.2)

Where �2>AA4B?>=34=24 represents the Euclidean error between a set of correspondences

and �pixel similarity is the pixel similarity between the simulation and the images. Both

errors have been normalised to prevent any bias towards one error.

5.5.3.1 Correspondences Error

The training begins by extracting the correspondences between the before skirt and after

skirt images denoted as �C and �B respectively. The correspondences are extracted using

the previous approach in Chapter 4. These correspondences are then stored as two sets

�1 and �2 where �8 =
{
5 81, . . . , 5

8
<

}
. With �1 and �2 corresponding to the features before

and after skirt image respectively.

Additionally, to prevent any bias to the areas with low deformation, the features furthest

from the fractured area are discarded. An example of the correspondences used can be

seen in Figure 5.5.

The closest vertices from the segmented mesh �1 to the features in �1 are extracted and

tracked over the simulation until they reach the same frame as the after skirt image.
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Figure 5.5: Tracked Points during skirting process. The blue lines represent the corre-
spondences that are tracked during the skirting process for optimisation of the physics-
based approach. These points move from the cyan circles to the green cross. They are

located near the skirting location to track the stretching of the fibres.

The error is calculated by extracting the Euclidean distance between the after skirt features

�2 and the corresponding vertex in the deformed mesh (�2). This error is obtained as

shown in Equation (5.3):

�correspondence =
1
<

<∑
8=1

| |�2
8 − �2

8 | |2 (5.3)

Where, �2
8

represents the location of the 8Cℎ correspondence in the after skirt image, �2
8

denotes the corresponding vertex in the simulation at the same timestep, and < represents

the total number of correspondences.

5.5.3.2 Pixel Similarity Error

The pixel ratio similarity between the after-skirt image and the deformed mesh is compared

to ensure continuity in the deformation between both methods. To prevent any error

from boundary discontinuities between the after skirt image and mesh, only the pixels

in the middle section of the fleece are compared where the fibre stretching occurs. The

similarity is computed by aligning the mesh after skirt simulation and the after skirt
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image and transforming them to a binary representation. The binary images represent the

difference between the fleece and the background. The pixel similarity is then extracted

as Equation (5.4)

�pixel similarity = 1 −
∑<

8=1 |P1
8
− P2

8
|

<
(5.4)

Where P1
8

represent the pixels of the in the after skirt image and P2
8

represent pixels of

the transformed mesh " ′. With 8 representing the different pixels in both images.

5.6 Results

5.6.1 Parameters Optimisation

The outcomes from the proposed methodology indicate that the optimisation effectively

adjusts the material parameters to more accurately mimic real-life phenomena. As ev-

idenced in Figure 5.6, there is a notable reduction in the mean squared error (MSE)

between the correspondences and the simulation. Additionally, there is an enhancement

in the pixel similarity ratio between the image and the mesh. This suggests that the fibres

stretched in the middle section increasingly resemble their real counterparts in Figure 5.5

as the training advances.

While the optimisation method’s training demonstrates continuous error reduction, it fails

to plateau due to the high computational demands of certain iterations and the limited

time of the research. This computational cost for the iterations can be seen in Table 5.1.

Due to the Lagrangian-Eulerian properties inherent in MPM, a sparser mesh cannot be

utilised for optimising the simulation’s parameters. This limitation arises from the opti-

misation method, which adjusts material properties based on particle density within each

grid cell. For this reason, a sufficiently dense particle configuration is necessary for ef-

fective learning of the material’s parameter, for accurate replicability on other pieces of

fleece.
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Figure 5.6: Variations in error across eight iterations of CMA-ES are presented, with
the Mean Squared Error (MSE) depicted in blue and the pixel ratio in orange. To enhance
readability, the Pixel Similarity Ratio has been adjusted to represent the Difference ratio

between the mesh and the image.

Computational Cost Under 1hr 1-3 hrs 3-8 hrs Over 8 hrs
Candidates 19 17 23 13

Table 5.1: Computing time for each of the candidates in all the iterations. A total
number of 8 iterations with a population size of 9 candidate solutions for each iteration

was evaluated.

To further support the results of the optimisation, a qualitative evaluation of the proposed

method is performed as seen in Figure 5.7, highlighting the mesh’s development throughout

the training phase in comparison to Figure 5.5. Figure 5.7a demonstrates the initial

behaviour of the simulation during the first iteration, where the fleece exhibits a liquid-

like consistency due to its material properties. Figure 5.7b demonstrates an improvement

upon previous alterations, however, the fractured area is significantly larger than the one

observed in Figure 5.5. Conversely, Figure 5.7c displays an outcome closer to the desired

results, with the fracture concentrated in the central section of the fleece and surrounding

segments undergoing stretching. This outcome more accurately reflects how the fleece

behaves in Figure 5.5.



Chapter 5. Skirting Line estimation using physics-based deformation 89

(a) (b) (c)

Figure 5.7: Change in fracture across training of parameters. The fracture propagation
starts with a cut that extends through the entire fleece and gradually transitions to smaller
areas where the fibres are more stretched as the simulation parameters are optimised. This

progression closely mirrors what is observed in real-life videos.

5.6.2 Controlled Experiment

For the controlled experiment, a qualitative evaluation is performed using a different fleece

obtained during the data collection outlined in 5.5.1 and a RGB video of the skirting

process rather than just the before and after skirt image. This video allows for tracking

of specific interest points across the entire deformation process. Utilising Doersch et al.

[108] TAPIR implementation, we can accurately track any point in the video to serve as

ground truth. For our specific application, we focus on tracking the points nearest to the

fracture locations in the fleece, as these points undergo significant stretching and are the

main focus of the approach. The tracked points can be seen in Figure 5.8.

Figure 5.8: Points tracked during the skirting process. Points are extracted using
TAPIR [108] and a video of the skirting process.
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Test 1 Test 2 Test 3

Method Pixel
Error

Metric
Error

Pixel
Error

Metric
Error

Pixel
Error

Metric
Error

SIFT + ED 205.91 111.30 150.08 81.12 210.2 113.61
Sparse to Dense 108.48 58.63 96.07 51.92 162.27 88.25

Proposed Method 92.23 49.85 86.57 47.79 144.97 80.03

Table 5.2: Qualitative analysis of error. The pixel distance is obtained between the
points obtained from TAPIR and the output of each of the previous approaches. Metric

error is in mm.

The quantitative evaluation is performed by deforming �B to match �C based on the corre-

spondences obtained from each of the methods. After deforming �B, the error between the

pixel location of the deformed �B and ground truth correspondences on �C is extracted.

The correspondences used for the proposed approach are obtained from the combination

between Chapter 4 and the deformed mesh as previously stated on Section 5.1.1. Further-

more, to provide a comprehensive evaluation, a comparative analysis is conducted between

our proposed approach and other registration methods, as detailed in Table 5.2. The reg-

istration methods selected for comparison are drawn from previous chapters, as described

in Chapter 3 (SIFT + ED) and the approach presented in Chapter 4 (Sparse to Dense).

As seen on Table 3.2, there is a decrease in the amount of error compared to previous

approaches. The robustness of the proposed approach is further evaluated by comparing

two subsequent fleece samples against methodologies proposed in previous chapters. This

is further supported by the qualitative analysis of the results shown in Figure 5.9, where a

visual comparative analysis is demonstrated between the output of the simulation and the

skirted fleece at the same time step. As observed in the results, both the fleece and the sim-

ulation exhibit comparable material behaviours, where the fleece being pulled experiences

breakage primarily in the middle portion while the sides remain interconnected.

To further support the increment in correspondences, Figure 5.10 illustrates the additional

correspondences introduced through the new approach. As indicated in the image, a denser

distribution of correspondences is observed across the fleece, enhancing the accuracy of

skirting line delineation following image registration.
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(a) Initial Fleece (b) Partially deformed (c) Deformed Fleece

(d) Initial Mesh (e) Partially deformed (f) Deformed Mesh

Figure 5.9: Qualitative evaluation of the simulated vs real life deformed piece of fleece.
A new piece of fleece, unseen during the optimisation process, was employed with the
obtained parameters to assess the optimisation performance. As depicted in the image
pairs, the simulated fleece maintains connectivity on the sides while exhibiting separation

in the middle section during skirting, mirroring observations from the real-life video.

5.7 Conclusion

In this chapter, we introduced a simulation method capable of replicating the stretching

behaviour of fibres at the edge of the fleece. This approach involved a fracture simulation

that relies on accurate material properties to faithfully replicate the phenomena that occur

during skirting. These material properties were acquired using a learning-based approach

along with the method presented in Chapter 4. The material optimisation method’s results

were tested on controlled data acquired obtained where the user knows the locations of

where forces were applied for the simulation
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Figure 5.10: Correspondences from physics-based deformation. Newly obtained corre-
spondences from the proposed approach are depicted in cyan. The green correspondences
were obtained using the initial approach, as detailed in Chapter 3. The blue correspon-
dences represent those identified by the learning-based method introduced in the previous

chapter (see Chapter 4).

These material properties were subsequently applied to a different piece of fleece for vali-

dation of the parameters. The results demonstrate a reduction in error when compared to

previously proposed methods. When tested against ground truth correspondences, the new

methodology achieved a lower error in the location of the final correspondences. Despite

the optimisation errors not reaching a stable state due to time constraints during training,

qualitative results indicated an increase in similarity as training progressed, particularly

in how fractures extended in the fleece compared to real-life skirting. This suggests that

further improvements in skirting line detection can be achieved as the optimisation errors

converge to a steady state during the training process. To reduce the computational time

required to achieve this steady state, the employment of distributed computing techniques

could be implemented in the proposed methodology.

Moreover, the quantitative results highlighted the methodology’s ability to identify stretched
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fibres, enabling correspondence detection in areas where feature-matching algorithms fal-

ter. This error reduction leads to a more accurate skirting line, ultimately minimising

waste and cost values in farm production applications.



Chapter 6

Conclusions and Future Work

In this thesis, we presented a method to automatically detect the location of the skirting

line by aligning two images. The primary objective of this work is to address the existing

limitations within the wool industry. By automating the detection process, this thesis

aims to mitigate the industry’s challenges related to the high demand for its products and

the shortage of wool handlers.

One of the major challenges when performing image registration between wool images is

the extreme non-rigid deformation the wool undergoes. To address this challenge, the

thesis introduced multiple non-rigid deformation methods that overcome this issue.

6.1 Summary of Contributions

By aligning the before skirt and after skirt images, we presented a methodology capable

of finding the location of the skirting line by extracting the areas that had been removed

from the after skirt image. This model utilised a combination of feature matching and non-

rigid deformation algorithms to perform non-rigid registration between both images. The

outlier features are then removed using a filtering method based on optimisation formulas

for non-rigid deformation (ARAP). While this method proved to be more effective than

rigid registration methods, it encountered challenges in handling repeated patterns within

94
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the wool, leading to the removal of certain correspondences in highly deformed areas due

to the presence of outliers.

For this reason, the initial methodology was further developed by introducing a learning-

based filtering method that incorporates dense correspondences into the initial set. This

approach overcame the limitations of the previous filtering method, by creating a feature

descriptor that carried spatial information based on the nearest neighbours. With the use

of this descriptor, the initial correspondences obtained were expanded to areas closer to

the edge to obtain a better alignment between the two images.

Further correspondences in areas with low texture were then incorporated into the corre-

spondences obtained in the previous approach. This was done by implementing a physics-

based deformation approach capable of replicating fracture propagation in anisotropic

materials. By optimising the material parameters that serve as input for the deformation,

the simulation was capable of replicating what happens to the wool during the skirting

process. Using this simulation, we successfully extracted correspondences in the stretched

fibres, which are low-texture areas and have undergone extensive deformation, making

them unrecognisable.

The combination of all these approaches resulted in a denser amount of correspondences

between the skirted and unskirted images of the fleece. This leads to improved alignment

between the images, reducing waste and minimising errors in the skirting line, which can

lead to significant financial losses

6.2 Future Work

Although the proposed methodology enables us to find correspondences throughout the

fleece, there are still some challenges that require attention.

For simulating the material fracture, the user must input the location where forces were

applied to deform the object. While this information was readily available during con-

trolled experiments, additional methods are required to extract it from field data. This

can be achieved by utilising the correspondences obtained in Chapter 4. By identifying
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areas where the fleece moves in the opposite direction to the stretched fibres, the user can

pinpoint the locations where the force was applied.

Further complications arise due to the variability inherent in the datasets used to train

the proposed model. Although the method shows promising results in translating the

trained model to unseen fleeces, the physical properties of the wool may vary depending

on the type and the elapsed time since shearing. Delays in processing can lead to increased

stiffness in the wool, thus altering its material characteristics.

The computational complexity of this approach also poses significant challenges, particu-

larly for on-farm applications. The need for multiple components to detect deformation

between the before and after skirt images makes it unsuitable for real-time use. Therefore,

an alternative approach is to implement an end-to-end learning method, that could lever-

age the current methods capability in determining dense correspondence. Using multiple

images acquired from the proposed methodology as training data to teach the system to

automatically identify the skirting line’s location, thus eliminating human errors in wool

image annotation.
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