
Dynamically-feasible real-time

local planning for fast outdoor

robots

by Nguyen Thanh Trung Le

Thesis submitted in fulfilment of the requirements for

the degree of

Master of Research

under the supervision of Dr. Graeme Best

University of Technology, Sydney

Faculty of Engineering and Information Technology

July 2024

Author@domain.com
http://www.uts.edu.au
http://www.eng.uts.edu.au

Certificate of Original Authorship

I, Nguyen Thanh Trung Le declare that this thesis, is submitted in fulfilment of the

requirements for the award of Master of Research in Computer Science, in the School of

Mechanical and Mechatronic Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addi-

tion, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Date:

iii

17/07/2024

Production Note:

Signature removed prior to publication.

Dynamically-feasible real-time local planning for fast

outdoor robots

by

Nguyen Thanh Trung Le

A thesis submitted in fulfilment of the requirements for the

degree of Master of Research

Abstract

In recent years, applications from autonomous navigation of ground mobile robots have

been pivotal in exploring the advantages of deploying autonomous robots optimised for

outdoor navigation. This approach holds potential across various industries, with a key

strength in their ability to navigate efficiently through unstructured terrains. For robots

operating in outdoor environments, autonomous navigation plays a major role in defining

the effectiveness of an operation. The objective is to enable the platform to autonomously

and securely navigate towards the desired destination safely and efficiently. However, this

feature comes with challenges and limitations for operators. Factors including obstacle

avoidance, the efficiency and reliability of the path planning solution, and the consider-

ation of the platform’s dynamics are the major problems. This thesis introduces a novel

local path-planning technique for high-speed off-road robotic vehicles called Adaptive Tra-

jectory Library (ATL). The method integrates a dynamic trajectory library, filtered from

the platform’s physical characteristics to match with operation-specified waypoints. The

planner ensures the dynamic feasibility of the target platform by implementing pre-defined

velocity configurations extracted from the robot’s performance data. ATL can effectively

search for feasible trajectories to adapt to the robot’s current state, enhancing its motion’s

smoothness. Experimental results demonstrate the controller’s response and effectiveness

in maintaining dynamic feasibility at speeds up to 5m/s, showcasing its potential for im-

proving the performance of fast off-road robotic vehicles in practical environments.

Author@domain.com

Acknowledgements

I extend my appreciation to the entire academic community at the University of Technology

Sydney (UTS) for providing a conducive learning environment. I would like to thank my

supervisor, Dr Graeme Best and co-supervisor, Prof. Robert Fitch, whose unwavering

support has been instrumental in the completion of this thesis. My sincere thanks go to

my colleagues and fellow researchers, Dr. Edward Bray and Dr. Ki Myung Brian Lee,

who have shared their insights and experiences throughout this academic journey. The

collaborative spirit within the research community has greatly enriched my understanding

and has been a source of inspiration.

I am grateful to my friends and family for their unwavering support and understanding

during the challenging phases of this thesis. Their encouragement and belief in my abilities

have been a driving force, and I am truly fortunate to have such a strong support system.

Special thanks to the staff at the Mechanical Mechatronic and Robotic (MMR) depart-

ment, whose guidance and resources have been pivotal to my academic growth and research

endeavors.

Nguyen Thanh Trung Le Sydney, Australia, 2024.

vii

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

Contents ix

1 Introduction 1

1.1 Challenges of Path Planning for Off-road Robotic Platform 1

1.2 Path Planning for Mobile Robots . 3

1.3 Research Objectives . 5

1.4 Principal Contributions . 6

1.5 Thesis Outline . 9

2 Related Work 11

2.1 Traditional Path Planning . 11

2.1.1 Artificial Potential Field . 11

2.1.2 Pure Pursuit . 13

2.1.3 Conclusion . 14

2.2 Graph Seach . 14

2.2.1 Dijkstra’s Algorithm . 15

2.2.2 A* . 15

2.2.3 Conclusion . 17

2.3 Sampling-Based Algorithms . 17

2.3.1 Probabilistic Roadmap . 18

2.3.2 Rapidly Exploring Random Trees . 19

2.3.3 Conclusion . 20

2.4 Kinodynamic Planning . 20

2.4.1 Optimisation Method . 20

2.4.2 Dynamic Window Approach . 22

2.4.3 Offline Trajectory Library . 23

2.4.4 Conclusion . 25

2.5 Conclusion . 25

ix

x Contents

3 Problem Formulation 29

3.1 Efficient Path Planning . 29

3.2 Problem Formulation . 30

4 Adaptive Trajectory Planner 33

4.1 Overview . 33

4.2 Offline Library Construction . 34

4.3 Online Trajectory Selection . 35

4.3.1 Online Trajectories Filtering . 35

4.3.2 Online Trajectory Matching . 37

4.4 Considerations for Implementation . 40

4.4.1 ROS Integration . 40

4.4.2 Reference Frame . 41

4.4.3 Obstacle Detection and Avoidance 41

4.4.4 Parameters Setup . 42

4.5 Conclusion . 43

5 Experiments 45

5.1 Overview . 45

5.2 Experiment Platform . 46

5.2.1 FORV1 . 46

5.2.2 FORV2 . 46

5.2.3 Broader Software System . 47

5.3 ATL Trajectory Library . 49

5.3.1 FORV1 . 49

5.3.2 FORV2 . 51

5.4 Simulation Setup . 52

5.4.1 Scenario . 52

5.4.2 Comparision Methods . 53

5.4.3 Implementation Details . 54

5.5 Simulation Results . 55

5.5.1 FORV1 . 55

5.5.2 FORV2 . 59

5.6 Field Experiments . 60

5.6.1 Experiments Setup . 61

5.6.2 Result . 61

5.7 Conclusion . 62

6 Conclusion 63

6.1 Summary of Contribution . 63

6.2 Future Work . 64

Contents xi

Bibliography 67

Chapter 1

Introduction

Deploying autonomous robots optimised for outdoor navigation presents tremendous po-

tential across various industries. Their advantage lies in their capacity to travel through

complex terrain areas efficiently. Yet, while the prospects are promising, integrating these

high-speed robots brings unique challenges that set them apart from conventional indoor,

low-speed systems. The transition to outdoor operation necessitates a thorough reassess-

ment of navigation approaches, obstacle detection, avoidance methods, and the overall

robustness of the system. This chapter motivates the need for a path-planning solution

for autonomous robots operating at high speed, under the conditions of unstructured out-

door environments. This chapter also includes and presents the research objectives and

principal contribution.

1.1 Challenges of Path Planning for Off-road Robotic Plat-

form

Designing and planning for a fast off-road robotic platform introduces challenges that

require careful consideration and innovative solutions. Considering an operation that

requires a path planning solution for an off-road robotic platform, we identify three main

challenges: unstructured outdoor environments, efficiency in computational usages, and

kinodynamic planning.

1

2 Chapter 1. Introduction

Figure 1.1: Outdoor Robotic Platform designed for operation in challenging outdoor
environments. The FORV (Fast Off-road Vehicle) developed at UTS, is the experimental

platform used in this work.

Deploying an autonomous platform in unstructured outdoor environments presents

challenges and complexities. The nature of outdoor terrains introduces different unex-

pected scenarios, ranging from collisions with unidentified obstacles to the acquisition of

noisy data, which can directly impact the overall quality of autonomous navigation. The

presence of unknown obstacles (Melchior and Simmons, 2007), remains a constant chal-

lenge for mobile robots. A robot may encounter obstacles not included in its initial path

planning in environments. These could be moving objects, temporary obstructions, or

obstacles obscured by other environmental factors. On the other hand, high-speed moving

objects (Frazzoli et al., 2001) generate a unique set of challenges for mobile robots. The un-

predictable nature of these dynamic obstacles necessitates instantaneous decision-making

on the platform, ensuring the safety of both the robot and the surrounding environment.

Efficiency in computational usage and real-time performance directly contribute

to the quality of an autonomous navigation application with the outdoor ground robots,

especially those who are capable of travelling at high speed. Outdoor robots, by design,

cover vast outdoor areas and provide the platform with the capability to travel at high

speeds. While this is advantageous regarding efficiency, it simultaneously challenges the

autonomous navigation system. This challenge revolves around the system’s ability to

Chapter 1. Introduction 3

rapidly and reliably control the platform’s movements, ensuring it navigates smoothly

while avoiding static and dynamic obstacles. The crux of the matter lies in the demand for

a computational and efficient solution that can operate in real-time, effectively interpreting

and responding to the conditions of the surrounding environment.

Nevertheless, the field of path planning for mobile robots includes kinodynamic plan-

ning, a subfield of motion planning in robotics that specifically deals with the planning

of robot motions while considering both the kinematic and dynamic constraints of the

system. Motion planning involves determining a feasible path for a robot to reach its goal

while avoiding environmental obstacles. Kinodynamic planning goes beyond kinematic

planning by considering the robot’s dynamics, including acceleration, velocity, and forces

during real-time operation (Donald et al., 1993).

Furthermore, extreme climatic conditions (Chen et al., 2012) can significantly impact a

mobile robot’s performance. Extreme weather conditions can lead to mechanical stress,

sensor malfunctions, or temporary immobilisation. Additionally, complex terrains (Singh

et al., 2018) present another notable problem.

In conclusion, the design and planning of fast off-road robotic platforms demand a compre-

hensive approach to overcoming the challenges of unstructured outdoor terrain, efficiency

in computational usage and kinodynamic planning. As technology evolves, integrating

advanced sensors, adaptive mobility systems, and real-time decision-making capabilities

are crucial in enhancing the resilience and effectiveness of fast off-road robotic platforms

in dynamic and unpredictable environments.

1.2 Path Planning for Mobile Robots

Robots operating autonomously in real-world environments, both indoors and outdoors,

must be able to navigate their environment safely. Robot path planning is a critical aspect

of robotics that involves determining the optimal route for a robot to navigate from its

current position to a specified destination while avoiding obstacles.

4 Chapter 1. Introduction

Figure 1.2: The Fast Off-Road Vehicle (FORV) developed at UTS in (a) simulation and
(b) hardware, used in simulation and hardware experiments.

Path planning algorithms aim to address the challenges generated by unstructured envi-

ronments, platform dynamics and the need to optimise parameters such as time, computa-

tional efficiency, or safety. These algorithms can be categorised into various types, includ-

ing grid-based methods, probabilistic roadmaps, potential fields, and machine learning-

based approaches. The ultimate goal is to equip robots with the ability to autonomously

and adaptively navigate through complex and unpredictable surroundings, enabling them

to perform tasks efficiently and securely in real-world scenarios.

Modern robotic systems generally employ a decision-making hierarchy in response to these

challenges. This hierarchical approach comprises four distinct phases, outlined as follows:

• High-Level Decision Making: The highest level of the hierarchy, this phase de-

fines the tasks for the platform, outlining the overall objective to be achieved.

• Global Planner: This phase generates waypoints to guide the platform, aligning

with the specified tasks and objectives produced during high-level decision-making.

• Local Planner: Tasked with processing waypoints received from the global planner,

the local planner computes the necessary velocities for the robot. It ensures collision-

free navigation and considers the dynamic characteristics of the platform to calculate

movement toward the commanded destinations.

• Controller: Operating at the lowest level, this phase manages the platform’s move-

ment based on the velocities commanded by the local planner.

Chapter 1. Introduction 5

This thesis focuses on developing a Local Planner solution for outdoor ground robots.

Local path planning is crucial for mobile robotics as it enables real-time adaptability to

the environments, allowing robots to navigate around obstacles and unforeseen challenges.

Without effective local path planning, robots may struggle to avoid collisions and efficiently

reach their destinations, limiting their overall autonomy and operational effectiveness.

Local path planning for a high-speed outdoor robotic vehicle such as the one in Figure 1.2

operating in an unstructured outdoor environment is more challenging than traditional

indoor robots (Likhachev and Ferguson, 2009), as outdoor operation presents difficulties

not experienced in structured indoor arenas, such as unpredictable terrain and changes to

the environment during operation (Chu et al., 2012; Goswami, 2017).

Gathering real-time information from the platform’s sensors, local planning techniques

adjust the movements to navigate the target platform through dynamic obstacles and

ensure the platform’s performance among many challenges of a path planning operation.

This plays a crucial component of autonomous navigation, where a robot must decide

how to reach a given goal location while adapting certain constraints, such as avoiding

obstacles or choosing a short route (Karur et al., 2021). The local path planner chooses

which trajectory the robot should follow at any instant (Coulter, 1992b; Fox et al., 1997;

Rösmann et al., 2012).

As robotics advances, the ongoing improvement of path planning strategies will play a

major role in unlocking the full potential of autonomous robots in diverse and challenging

real-world scenarios. The pursuit of faster, more responsive, and adaptable path-planning

algorithms remains integral to the evolution of robotics and its applications in outdoor

environments.

1.3 Research Objectives

This thesis is aimed to provide answers to following questions:

How can we design an efficient algorithm to enable a fast mobile robot to nav-

igate autonomously?

6 Chapter 1. Introduction

Designing a path-planning solution for a complex environment such as unstructured out-

door terrain demands a trade-off compared to a general path-planning solution for indoor

robots. Given the terrain’s conditions, robots can travel longer distances and faster than

other types of operation. Hence, the three crucial factors, outdoor unstructured terrain

conditions, the platform’s dynamic, and the efficiency in using computational resources,

present the major challenging issues for local outdoor robot planning. By prioritising

these aspects during the development of the new technique, the new planner can efficiently

navigate the robotic platform through obstacles while ensuring the platform’s dynamics

characteristics.

What strategies can be employed to ensure the dynamic constraints of the

platform are satisfied during the operating stage?

Satisfying the dynamic constraints of the robot has always been a problem for traditional

path planning, where most techniques focus on identifying the shortest and obstacle-free

route. Traditional algorithms (DWA (Christian Connette, 2023a), TEB (Rösmann, 2023))

can generate the needed control commands for the target platform to follow certain paths,

yet, these values can’t effectively handle the physical constraint of the platform during its

movements across the environment. A library that can store a list of feasible velocities

and accelerations of the platform and turn them into offline trajectories that match the

demanded path can significantly increase the robot’s performance.

1.4 Principal Contributions

This thesis makes a significant contribution by introducing an innovative approach to

local planning for mobile robots, offering a comprehensive and efficient solution for path

planning. This thesis proposes a new local planner for a fast outdoor robotic vehicle, called

Adaptive Trajectory Library ATL, as shown in Figure 1.3. The ATL is demonstrated as

the robot navigates towards the commanded red-circled waypoint. Lidar detects obstacles,

generating a 2D costmap (depicted in black). Within this map, a library of dynamically

feasible trajectories is analysed, discarding trajectories leading to collisions (depicted in

red). Evaluating a cost function for collision-free trajectories (depicted in green), the robot

follows the trajectory with the lowest cost (highlighted in thick green).

Chapter 1. Introduction 7

Figure 1.3: Adaptive Trajectory Library (ATL) in action as the robot moves to the red
circled waypoint. Obstacles are detected by a lidar and represented on a 2D costmap
(black). A dynamically feasible subset of the library is considered, and trajectories that
result in collision are discarded (red). A cost function is evaluated for the collision-free
trajectories (green), and the robot moves along the one with the lowest cost (thick green).

A library of feasible trajectories is first precomputed, containing combinations of linear

and angular velocities that the robot can achieve. At each planning instant, a subset of the

library is considered which is adapted to contain only those trajectories that are feasible

to achieve given the current state of the robot. A trajectory is selected from this subset

that is the most suitable at this time, considering the goal location and obstacle avoidance.

This approach manages computational resources more efficiently than calculating possible

trajectories online while ensuring that selected actions are feasible. Therefore, the robot’s

responsiveness is increased compared to other methods, even when travelling at high speed.

Implementing an offline trajectories library for path planning enhances the performance

of a robotic platform. This approach ensures improved efficiency by pre-computing and

8 Chapter 1. Introduction

storing feasible velocities and accelerations, enabling access and execution of trajecto-

ries during real-time navigation. The platform gains enhanced responsiveness to dynamic

environmental changes and unforeseen obstacles, adapting promptly without extensive

recalculations. The library’s consideration of physical constraints minimises unfeasible

commands, promoting smoother movements and transitions. Additionally, resource con-

servation is realised as precomputed trajectories reduce the need for continuous online

path planning computations, which is particularly advantageous for platforms with lim-

ited processing capabilities. Implementing an offline trajectories library comprehensively

elevates the platform’s efficiency, adaptability, safety, and resource utilisation.

The assessment of ATL’s ability to navigate a platform with robustness involves a series

of deployments on two mobile platforms. Through these deployments, we execute com-

prehensive experiments and trials to analyse how ATL performs under the condition of

an outdoor unstructured terrain. These investigations are crucial for understanding the

adaptability and efficacy of ATL in challenging environments.

Furthermore, we implement comparative analyses with other navigation techniques, specif-

ically TEB (Time Elastic Band)(Rösmann et al., 2012), DWA (Dynamic Window Ap-

proach) (Fox et al., 1997) and the A* graph search method. This comparative assessment

provides a balanced evaluation, allowing us to measure ATL’s performance against previ-

ous methods.

By conducting side-by-side comparisons, we can conclude ATL’s advantages in addressing

a platform’s physical limitations by implementing an offline trajectories library. Addition-

ally, ATL demonstrated efficiency in managing the computational resources, leading to the

reduction of execution planning time and enhanced performance on unstructured outdoor

terrain for the target platform. We then demonstrate the effectiveness of ATL in real-

world operation through experiments with a full-scale robot in an outdoor environment

with uneven terrain containing several obstacles.

This thesis extends our work published as a conference paper at ACRA 2023, titled “Adap-

tive Trajectory Library Planner for Fast Outdoor Robot” (Nguyen et al., 2023). Nguyen

Thanh Trung Le was the lead author of this publication.

Chapter 1. Introduction 9

1.5 Thesis Outline

This thesis is organised as follows:

Chapter 2 describes related work and focuses on exploring different types of previous

and current path-planning techniques.

Chapter 3 focuses on the problem formulation and formally defines the problem addressed

in the thesis.

Chapter 4 presents the Adaptive Trajectory Library (ATL) with details about our main

contribution, a local planner for fast outdoor ground robot.

Chapter 5 analyses experiments, and discusses experiments for both simulation and

hardware deployment.

Chapter 6 concludes and summarises the thesis and explores the improvements and future

work.

Chapter 2

Related Work

In this chapter, we present a review of the literature related to autonomous path planning,

aiming to provide a comprehensive understanding of the current state of this dynamic

and rapidly evolving field. By examining and synthesising the relevant works, we seek to

elucidate the landscape that defines our research focus in autonomous local path planning.

2.1 Traditional Path Planning

Traditional path planning methods have long been foundational in robotics, aiming to

navigate robots from a start to a goal while avoiding obstacles. Among these methods, the

Artificial Potential Field (APF) and Pure Pursuit approaches stand out for its simplicity

and effectiveness. These traditional techniques continue to be relevant and are often

integrated with modern algorithms to enhance path planning efficiency and adaptability

in various robotic applications.

2.1.1 Artificial Potential Field

One of the earliest methods proposed was Artificial Potential Fields (Khatib, 1986), in

which obstacles are modeled as repulsive fields and goal locations as attractive fields. APFs

have long been fundamental in robotics and autonomous navigation. These fields are based

11

12 Chapter 2. Related Work

on the concept of potential energy, with the robot moving along paths of least potential.

The attractive potential, generated by the target, pulls the robot toward its goal, while the

repulsive potential, created by obstacles, pushes the robot away from collisions. Robots

follow descending gradients in the resultant of these fields to reach the goal. The approach

can practically be implemented for both global and local path planning.

APFs have been used for a variety of applications, including multiple types of robots,

ranging from mobile robots (Melchiorre et al., 2023) (Park et al., 2001), Unmanned Aerial

Vehicles (Khuswendi et al., 2011) (Cetin et al., 2009) (Shin and Kim, 2021), robot arm

(Yuan et al., 2021), and multiple robots operation including the contribution of multiple

types of robots (Warren, 1990) (Zhang et al., 2010).

This approach provides good obstacle avoidance (Park et al., 2001), but robots can get

stuck in local minima, where they are caught up in a suboptimal configuration, unable

to reach the global goal. A local minima represents a region where the robot is closely

located to the obstacle or the obstacle position is in the middle of the goal and the robot,

resulting in the gradient going to zero. This issue is particularly problematic in complex

environments with narrow passages and multiple obstacles.

To resolve this problem, Koren and Borenstein (Koren and Borenstein, 1991) proposed one

of the first solutions by using the Vector Field Histogram (VFH) method, which addressed

local minima problems and improved obstacle avoidance. Additionally, the approach to

combining APFs with other solutions to construct hybrid methods can highly improve the

performance of APFs (Yuan et al., 2021) (Shin and Kim, 2021).

Overall, APF were one of the first solutions for a traditional path-planning problem,

providing a comprehensive approach to utilising repulsive forces to find a considerable

solution for a robot platform to reach its destinations. Yet, the algorithm can be easily

affected and hardly overcome the local minima trap that results in a non-optimal outcome.

Even though many approaches can largely improve the algorithms, various scenarios can

produce different outcomes due to the algorithm’s challenging real-world implementation.

Chapter 2. Related Work 13

2.1.2 Pure Pursuit

Another traditional path planning method is Pure Pursuit (Coulter, 1992b). The Pure

Pursuit algorithm is also a foundational approach in robotic autonomous navigation. It

maintains a consistent forward velocity for the robot, and its algorithm calculates the

necessary angular velocities during the operating time, then guides the robot toward a

specific point positioned at a predetermined distance in front of it. Pursuing a predefined

point simplifies the control task, as the robot essentially follows a geometric path defined

by the chosen point, helping to reduce the computational complexity associated with path

planning.

Pure Pursuit’s simplicity and ease of implementation make it an attractive choice for

many robotic applications. From self-driving cars in urban environments (Peng et al.,

2020) (Wang et al., 2017), compact racing cars (Sukhil and Behl, 2021) (Becker et al.,

2023), skid-steered robot (Joglekar et al., 2022) and even an autonomous driverless electric

crawler (Wu et al., 2023).

However, as technology advances and the complexity of robotic tasks increases, it becomes

clear that Pure Pursuit has limitations, particularly in dynamic and cluttered environ-

ments. It primarily focuses on geometric considerations and does not account for the

robot’s dynamics or the presence of obstacles. This makes it less suitable for scenarios

where the robot must navigate challenging terrain, avoid dynamic obstacles, or adhere to

specific motion constraints.

Researchers have recognised these limitations and developed several extensions and vari-

ations of the Pure Pursuit algorithm. These modifications aim to enhance performance

in real-world scenarios. For instance, Adaptive Pure Pursuit (Campbell, 2007) and Regu-

lated Pure Pursuit (Macenski et al., 2023) introduce features that allow robots to adjust

their linear velocity, reduce adjustments in direction, and respond more effectively to un-

expected obstacles in their path. These enhancements make Pure Pursuit-based methods

more versatile and adaptable, but they still remain constrained by the fundamental as-

sumption that the robot’s motion can be abstracted to a simple point-to-point pursuit

without considering more dynamics of the platform.

14 Chapter 2. Related Work

In summary, Pure Pursuit is a valuable path-planning method for situations where geo-

metric path following is sufficient and computational resources are limited. However, in

scenarios where dynamic feasibility constraints, complex environments, or obstacle avoid-

ance are primary concerns, alternative path planning techniques that consider the full

dynamics and complexities of the robot’s movement may be more appropriate for ensur-

ing safety and successful navigation.

2.1.3 Conclusion

In conclusion, traditional path planning methods such as Artificial Potential Fields and

Pure Pursuit offer effective approaches for navigating robots and autonomous systems.

APF provides a straightforward yet powerful method by simulating forces that guide robots

toward goals while avoiding obstacles. On the other hand, Pure Pursuit enables agile

navigation by calculating steering commands based on a target point ahead of the robot,

optimising trajectory tracking in dynamic environments. However, APF can sometimes

struggle with local minima or getting stuck in complex obstacle configurations. Similarly,

Pure Pursuit’s reliance on a predefined path may lead to challenges in environments with

unpredictable obstacles or dynamic changes.

2.2 Graph Seach

Graph search algorithms are fundamental tools in solving path planning problems across

various domains, including robotics, computer science, and operations research. The algo-

rithms, such as Dijkstra’s (Dijkstra, 1959), A*(Hart et al., 1968), and D*(Stentz, 1994),

are frequently utilised to determine feasible and efficient paths for robots to navigate. The

following sections provide a detailed explanation of these graph search methods and their

applications in robotic motion planning.

Chapter 2. Related Work 15

2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a fundamental technique for finding the shortest path between

nodes in a graph, often representing real-world networks like road systems. E.W. Dijkstra

introduced this algorithm to the community in 1959, as documented in (Dijkstra, 1959).

Dijkstra is widely used in many applications, especially for vehicle path planning (Zhu

and Sun, 2021) (sang Liu et al., 2021) (Sun et al., 2021), stereo vision for road detection

(Zhang et al., 2018) and many game applications (Bardi and López, 2015) (Huang and

Yi, 2021). In the standard implementation of Dijkstra’s algorithm, the approach seeks to

determine the shortest possible path within a graph without explicit consideration of the

practicality or feasibility of the solution.

Dijkstra’s method is highly effective in solving problems related to identifying the shortest

path from a source node to other nodes in a network. It achieves this by considering the

associated cost to each node of the network to determine the path that minimises the

overall distance or weight between the source node and every other node in the graph.

This ensures that it can reliably identify a single shortest path from a source node to

other nodes in the network.

However, in certain scenarios where the associated costs of nodes are prohibitively high

or negative, the traditional Dijkstra algorithm may not be the most efficient choice (Sun

et al., 2021) (Zhu and Sun, 2021). Therefore, many modified versions of Dijkstra have

been introduced to resolve the problem, including the Improved Dijkstra’s Shortest Path

Algorithm (Shu-Xi, 2012) or the approach of improving data structure and restricted

search area of the traditional Dijkstra (Fan and Shi, 2010).

2.2.2 A*

The A* Search method is known as one of the most efficient and widely adopted techniques

for path-finding and graph traversals.

16 Chapter 2. Related Work

A* stands out as an informed search algorithm, categorised as a best-first search, uniquely

tailored for weighted graphs. Starting from a chosen node, the task of A* is to seek the

optimal path to move from the designated node to a specified goal node while limiting

the overall cost of travel. These costs can be the travel distance, time expended, or other

relevant criteria depending on the operation’s objectives. A* maintains a queue of nodes

to explore, prioritising nodes with the lowest cost. This allows A* to explore paths that

are likely to be shorter, reducing the search space and improving efficiency compared to

uninformed search algorithms.

A* shares similarities with Dijkstra’s algorithm but introduces an additional element by

integrating a cost-to-goal heuristic estimate into its cost function. This heuristic enhances

the efficiency of the search process, typically resulting in faster exploration and pathfinding

when compared to Dijkstra’s algorithm.

While A* is a highly effective and widely used path-finding algorithm, it does have certain

limitations in computational time and memory usage. It is not always the best technique

for dynamic environments. When considering the application of A* to navigate through

large graphs or grids, it’s important to recognise that this approach may cause significant

memory demands on the system. This problem occurs due to the necessity to maintain

a record of explored nodes, potentially resulting in elevated memory usage and longer

execution times to complete the search task. Furthermore, the performance of A* can

be impacted by dynamic obstacles, as these elements can alter the cost values associated

with nodes. Consequently, what might have initially been the shortest path may become a

collision one due to these dynamic changes, resulting in the replanning of a new collision-

free route.

To overcome some of the original algorithm’s limitations, numerous enhancements and

modifications have been proposed, as evidenced by research such as (Warren, 1993), (Am-

mar et al., 2016), Adaptive A* (Sun et al., 2008), Dynamic A* (Likhachev et al., 2005)

(Souissi et al., 2013) and Incremental A* (Koenig and Likhachev, 2001). An interesting

work by Ferguson (Ferguson and Stentz, 2007) introduces Field D*, an interpolation-based

planning and replanning technique that helps ease the problems of the traditional version.

Field D* is based on the concept of field planning. This technique is an extension of D*

Chapter 2. Related Work 17

and D* Lite, and it uses linear interpolation to construct low-cost pathways that minimise

redundant turning effectively. The trajectories are optimal if one considers that linear

interpolation is being used, and they are also quite effective in practical use. These im-

provements have led to more robust and versatile solutions, making A* a path planning

and optimisation cornerstone.

2.2.3 Conclusion

The methods explored above can find the shortest distance to a goal location on a graph

representation of the environment. However, constructing a graph is computationally ex-

pensive, thus reducing its suitability for robots operating at high speeds where decisions

must be made quickly. Two-dimensional graphs are commonly used, but capturing con-

straints such as ensuring dynamic feasibility requires constructing the graph in higher

state spaces. The search problem quickly becomes intractable as the A* can expand with

a larger spatial scale or additional constraints.

The high computational cost of graph search methods can be reduced by minimising

the graph size. This can be done by modelling the environment as a multi-resolution

lattice state space, so the search can be performed at different scales to increase effi-

ciency (Likhachev and Ferguson, 2009). However, this approach relies on heuristics, which

can be hard to tune, and remains computationally expensive for the graphs necessary to

operate in very large areas or with several dynamic feasibility constraints. Thus, graph and

tree search-based methods can effectively benefit global path planning for Field Robotic

operations. Another common approach is to use a separate global planner to find a path

through a low-density graph, and assign the low-level navigation to a suitable local path

planning algorithm such as those mentioned previously (Best et al., 2023).

2.3 Sampling-Based Algorithms

Sampling-based algorithms are a class of motion planning methods that address the com-

plexities of high-dimensional spaces. These algorithms generate feasible paths by randomly

sampling the configuration space and connecting these samples to form a roadmap or tree

18 Chapter 2. Related Work

structure. Popular approaches within this class include Probabilistic Roadmaps (PRM)

and Rapidly-exploring Random Trees (RRT), which have been widely adopted due to their

efficiency and ability to handle complex environments. This section explores the princi-

ples, implementation, and applications of sampling-based algorithms in robotic motion

planning.

2.3.1 Probabilistic Roadmap

Probabilistic Roadmaps (PRM) have become a foundation technique in the field of robot

motion planning, following their introduction by Kavraki et al (Kavraki et al., 1996) in

the mid-1990s. This method has achieved significant recognition due to its effectiveness

in navigating high-dimensional configuration spaces, a common challenge in robotics.

Firstly, the algorithm constructs a roadmap by randomly sampling points within the con-

figuration space, representing feasible robot configurations. Collision-checking algorithms

are used to checked and connect these nodes with edges, forming a graph that approxi-

mates the free space’s connectivity. The pre-constructed roadmap is then used to find a

path from a given start configuration to a goal configuration. This is done by connecting

the start and goal positions to the nearest nodes in the roadmap and then performing a

graph search, typically using algorithms like Dijkstra’s or A*, to identify the shortest or

most feasible path.

Over the years, PRM is widely used in a variety of applications, especially for robot

arm manipulators (Hsu et al., 2005) (Jaillet and Simeon, 2004) and mobile robots (Le

and Plaku, 2014) (Kumar and Chakravorty, 2012). Results from the experiments have

demonstrated the robustness and effectiveness of PRMs in path planning tasks for high-

dimensional robots.

Despite many advantages, PRM also have several disadvantages. One significant downside

is their reliance on random sampling, which can lead to incomplete coverage of the con-

figuration space, especially in highly constrained environments. Additionally, the quality

Chapter 2. Related Work 19

of the generated roadmap is heavily dependent on the number and distribution of sam-

pled points, and achieving a dense and well-connected roadmap can be computationally

expensive.

2.3.2 Rapidly Exploring Random Trees

Rapidly Exploring Random Trees (RRT) is widely regarded as one of the most influential

robotics and motion planning algorithms. This algorithm, originally presented by Steven

M. Lavalle (LaValle, 1998) (LaValle and Kuffner Jr, 2001), has improved how robots

and autonomous systems navigate their environments. RRT ultilises an incremental sam-

pling strategy in solving complex path-planning problems. The core idea behind RRT

is to quickly explore the space of possible configurations by randomly sampling points

and progressively expanding branches from the current configuration to create a tree-like

structure. This tree, known as the RRT, aims to cover the feasible configurations within

the environment efficiently. By tracing the branch with the closest node to the goal, RRT

then constructs a path from the branch nodes to form a solution to reach the destination.

Additionally, RRT can be very efficient whether the configurations are in 2D or 3D con-

figuration spaces (Kuffner and LaValle, 2000). Similar to other graph search techniques,

RRT is practically deployed in many operations, including mobile robotic vehicle (Kuffner

and LaValle, 2000) (Palmieri et al., 2016), Ackerman steering type (Peng et al., 2021),

robotic arms (Grothe et al., 2022) to autonomous urban driving (Kuwata et al., 2009).

While RRTs have many advantages, they also have certain limitations, which include the

algorithm’s reliance on random sampling. RRTs are inherently probabilistic and can pro-

duce different results for the same problem in multiple runs. While the random approach

can avoid local minima, one disadvantage is this randomness can make them less pre-

dictable and sometimes challenging to analyse. Moreover, RRTs tend to explore areas of

the configuration space where the tree has not expanded much, which can result in bi-

ased sampling towards unexplored regions. This bias can lead to suboptimal or inefficient

paths, especially in situations where there are narrow passages or tight constraints. RRT*,

first introduced by Karaman (Karaman and Frazzoli, 2010) (Karaman and Frazzoli, 2011),

20 Chapter 2. Related Work

has significantly improved the traditional method to resolve these limitations. The algo-

rithm tracks the distance traveled by each node relative to its parent using a cost function.

When it identifies the nearest node within the graph, it examines nearby nodes within a

set radius. If a node with a lower cost is found, it replaces the previous one.

2.3.3 Conclusion

In conclusion, both Rapidly-exploring Random Trees and Probabilistic Roadmaps repre-

sent significant advancements in sampling-based algorithms for robotic motion planning.

RRT performs well in rapid exploration of configuration spaces, making them suitable

for dynamic environments and real-time applications. PRM, on the other hand, provide

a structured approach to path planning with probabilistic completeness, offering robust

solutions in complex scenarios. However, graph search methods can involve extensive

computational processing, leading to higher latency and potentially reduced responsive-

ness compared to other approaches like the Dynamic Window Approach or Time Elastic

Band.

2.4 Kinodynamic Planning

To achieve effective motion planning, it’s crucial to align with the physical dynamics of

the platform. This section explains how kinodynamic planning methods address dynamic

challenges by ensuring that the planned trajectories satisfy the target platform’s velocity,

acceleration, and torque constraints. Additionally, this section details optimisation-based

methods and trajectory libraries, which are frequently deployed to navigate these dynamic

considerations effectively in path planning.

2.4.1 Optimisation Method

Recent advancements in local path planning with optimisation-based techniques have be-

come prominent. This section details the Elastic Band (EB) and its time-dependent vari-

ant, the Time Elastic Band (TEB), have proven effective in dynamically adjusting paths

Chapter 2. Related Work 21

to navigate complex environments precisely and efficientl

The Elastic Band, introduced in (Quinlan and Khatib, 1993), has provided an innovative

approach to address the complexities of local path planning. This method leverages the

power of least-squares optimisation to effectively deform a predefined commanded path

to avoid environmental obstacles while addressing the robot’s dynamic constraints. By

employing optimisation, the Elastic Band optimises the path, modifying it in real-time to

navigate around potential collisions and obstacles, ensuring the robot can operate safely

and efficiently.

The Time Elastic Band, an evolution of the Elastic Band paradigm, incorporates the

temporal dimension into the path planning process (Rösmann et al., 2012; Rösmann

et al., 2017). This extension enables the method to account for time-varying obstacles and

evolving dynamic constraints, providing more versatile and adaptable local path planning.

The Time Elastic Band relies on optimisation techniques to handle the path’s deformation

while considering both spatial and temporal aspects of the navigation problem. This added

temporal awareness is particularly useful in scenarios where obstacles or robot dynamics

change over time.

These optimisation-based methods adapt and optimise paths in real-time, while incorpo-

rating dynamic feasibility and obstacle avoidance. This has made them valuable tools

for autonomous systems, catering to a wide range of robotic platforms and applications.

Whether it be indoor navigation (Wu et al., 2021) (Smith et al., 2020), multi-robot nav-

igation (Chung et al., 2022), robot arm (Magyar et al., 2019), or complex dynamic en-

vironments, optimisation-based approaches continue to push the boundaries of what is

achievable in the realm of autonomous navigation, ensuring safe and efficient robot move-

ment in various challenging scenarios.

Optimisation kinodynamic planning solutions effectively address the challenges of adapt-

ing planners to a target platform’s physical capabilities and design. These approaches

present a range of robust and efficient techniques designed to enhance the planner’s abil-

ity to navigate complex environments while considering the dynamic constraints of the

platform. This includes optimisation approaches like Trajectory Optimisation (Schulman

22 Chapter 2. Related Work

et al., 2013), Stochastic trajectory optimisation for motion planning (STOMP) (Kalakr-

ishnan et al., 2011), Guaranteed Sequential Trajectory Optimisation (GUSTO) (Bonalli

et al., 2019), Covariant Hamiltonian optimisation for motion planning (CHOMP) (Zucker

et al., 2013), to state lattice-based search (Pivtoraiko and Kelly, 2005) and Discontinuity-

Bounded Search (Hönig et al., 2022). Each method helps the planner adapt to the target

platform’s physical capabilities and design, effectively solving the core challenge of kino-

dynamic planning.

However, the optimisation solution quality is subject to trade-off against computation time

and, thus, is unsuitable for high-speed operations. In such dynamic environments, longer

computational processing times can potentially lead to unforeseen collisions or accidents

as the robot navigates at high speeds.

2.4.2 Dynamic Window Approach

The Dynamic Window Approach (DWA) is a versatile method in the field of mobile

robotics, designed to optimise path planning and collision avoidance for autonomous

agents. Introduced by Fox et al (Fox et al., 1997), the DWA algorithm has proven to

be a powerful tool for enhancing the agility and safety of mobile robots in dynamic and

cluttered environments. Here, the potential paths resulting from a range of linear and

angular velocities are simulated over a short time period using the differentially steered

drive kinematic equation (Lucas, 2001). A suitable instantaneous trajectory is chosen by

assigning a cost to each that trades off between the distance to obstacles and how closely

the given path is followed.

From indoor robots (Choi et al., 2012) (Patel et al., 2021) (Yasuda et al., 2023), UAVs

(Qin et al., 2023) (Wang et al., 2023b) (Wang et al., 2023a), ship planning (Lu et al.,

2022) to underwater vehicles (Li and Zhang, 2023) (Jian et al., 2020), DWA is popularly

used in the field of autonomous navigation, widely implemented as a local path planning

for platforms that operate within different environments.

DWA has been found to perform well at calculating dynamically feasible motion plans

relatively quickly (Yuan et al., 2022) (Cybulski et al., 2019), but the online computation

Chapter 2. Related Work 23

of the paths takes time and can lead to poor or unpredictable path selections when run at

high frequencies required for high-speed robots. Moreover, in areas with dense obstacles,

DWA tends to fail or to favor going around the outside of the obstacle region, resulting in

an increased total traversal distance (Qin et al., 2023). Furthermore, DWA faces challenges

when navigating around C-shaped obstacles, often leading to failures in the objective cost

function and, consequently, an inability to compute a valid path (Yan et al., 2022).

In conclusion, DWA introduces one of the most popular techniques in addressing a path-

planning problem, showcasing how a simple yet elegant concept can lead to an effective

solution. However, since the online computation of DWA takes time and can result in poor

or unpredictable selections for high-speed robots, there are limitations to consider using

DWA. Thus, it is necessary to develop more robust and efficient techniques to produce

better performance.

2.4.3 Offline Trajectory Library

To increase the responsiveness of motion planners, researchers have recently explored using

a library of dynamically feasible trajectories generated offline. Such libraries of collision-

free, dynamically feasible trajectories have been used to efficiently calculate paths for

robotic manipulators to achieve repetitive tasks, such as removing weeds from fields (Lee

et al., 2014), Pruning Trees (You et al., 2020), Advanced Mobility Quadrupedal Robots

(Bjelonic et al., 2022) and UAVs (Viswanathan et al., 2020).

An offline trajectory library provides a valuable solution to address one of the most signif-

icant challenges associated with online velocity sampling methods such as DWA or TEB.

These online methods involve repeatedly generating and evaluating trajectories during

each iteration of planning and control, which can introduce a substantial delay during

runtime. This delay, if not managed effectively, can potentially have a negative impact on

the overall performance of the robotic platform. On the other hand, the offline trajectory

library offers a precomputed set of trajectories that are strategically generated and stored

before runtime. These trajectories are typically designed to cover various scenarios and

environmental conditions the robot may encounter during its mission. When the robot is

24 Chapter 2. Related Work

in operation, it can select and execute trajectories from this library in real-time based on

its current state and the surrounding environment.

A similar approach has also been applied to quadrotor aerial robots (Best et al., 2023). In

this context, the goal is to navigate quadrotor drones in complex environments efficiently.

When these drones must follow a specified path generated by an upstream planner, a path-

planning algorithm is crucial in ensuring their safe and optimal operation. The process

begins with the global planner providing the desired path for the quadrotor. This path is

a series of waypoints that define the desired trajectory the drone should follow. However,

simply instructing the drone to follow these waypoints in a straight line may not be feasible,

as it could lead to collisions or require maneuvers that the drone is physically incapable

of performing.

To address these challenges, a path-planning algorithm is employed. This algorithm’s

primary task is to select the closest collision-free trajectory from a precomputed library.

This library contains a variety of trajectories, each tailored to specific scenarios and en-

vironmental conditions. The trajectory choice is made based on several factors, including

the current state of the drone and the characteristics of the environment it is navigating

through. One key aspect of this approach is the consideration of dynamic feasibility. The

selected trajectory must be collision-free and compatible with the drone’s current state,

including its position, velocity, and orientation.

In summary, the approach applied to quadrotor aerial robots involves a combination of

path planning and trajectory selection. It enables drones to follow a desired path while

considering environmental constraints and the drone’s current state, ultimately ensuring

safe and efficient navigation in complex and dynamic surroundings. This thesis explores

how this principle could be generalised to a ground robot moving at high speeds by demon-

strating its performance against other solutions throughout practical simulation and hard-

ware experiments. By showcasing the outcomes of these trials, we underscore the need for

implementing ATL in outdoor robots navigating through unstructured terrain.

Chapter 2. Related Work 25

Planner Type Limitation

Pure Pursuit Controller Does not consider the platform’s dynamics
Artificial Potential Fields Controller Gets stuck in local minima
A*, D* and Dijkstra Graph Search Requires expensive computational resources
RRT Tree-based Requires expensive computational resources
DWA Predictive Tends to oscillate near obstacles
EB and TEB Optimisation Not suitable for fast planning
Offline Trajectory Library Trajectory Library Only used in UAVs and Robot Arms
Adaptive Trajectory Library Trajectory Library Requires high-quality obstacle map

Table 2.1: Limitations of path planners

2.4.4 Conclusion

In conclusion, kinodynamic planning represents a critical advancement in robotic motion

planning by integrating both kinematics and dynamics considerations. This approach

enables robots to navigate through complex environments while considering to both mo-

tion constraints and dynamic feasibility. By simulating and optimising trajectories that

account for both robot dynamics and environmental constraints, kinodynamic planners

enhance path efficiency and safety in diverse applications, from industrial automation

to autonomous vehicles. Continued research and development in kinodynamic planning

promises further advancements in robot autonomy and performance across various real-

world scenarios.

2.5 Conclusion

Many techniques and solutions have emerged as technology advances to address diverse

path-planning challenges across various conditions and constraints. From approaches

APFs, to graph and tree search algorithms such as A*, D*, and RRT, as well as pre-

dictive strategies like the DWA and optimisation-based methods like EB and TEB, the

field of autonomous navigation for robots has experienced rapid and expansive growth.

Nevertheless, each method operates within its own set of limitations, as shown in Table

2.1

26 Chapter 2. Related Work

The table has outlined the limit of the performance of preceding planners. However, given

that implementing the Offline Trajectory Library has been exclusive to UAVs and Robot

Arm planning, we are excited to explore and analyse the potentially profound impact this

method could display in outdoor ground robots.

In conclusion, traditional methods (Pure Pursuit and Artificial Potential Field) are un-

suitable for modern path-planning problems. Modern problems are more challenging in

different aspects, from the structure of the operating terrain to the variations of observa-

tion sensors and the information they can provide, which makes these traditional methods

unable to the more complex scenarios considered by contemporary researchers.

On the other hand, graph search and tree search methods (RRT, PRM, and A*, D*)

are more suitable to be considered as global path planning for an operation. Even though

they can provide an effective and robust path-planning solution, these methods rely on the

computing system’s performance, as their crux algorithm demands lots of computational

time to identify the shorted route to the destination.

Nevertheless, although DWA and TEB are famous for local path planning, these techniques

have their own weakness. For DWA, the solution can be very efficient and predictive within

a limited obstacle environment, however, DWA frequently exaggerates turning command

while maintaining a low linear velocity when the target platform is close or located near

a dense obstacle area. As we observed this behaviour from experiments, DWA tends

to do this to navigate the robot by turning away from the obstacle, but, depending on

the dynamics of the platform, this control action might not be feasible, resulting in the

platform’s immobilisation near the obstacle.

TEB is an optimisation-based method that can quickly adapt to the conditions of the

surrounding environments. TEB is highly effective and widely used for applications where

the operating area contains multiple obstacles, even the dynamic type. However, TEB

includes a set of customised parameters that define the planner’s behaviour. These pa-

rameters demand a significant tuning time with efforts to increase the performance of

TEB, otherwise, the performance can be very poor.

Chapter 2. Related Work 27

Finally, offline trajectory library methods have recently been implemented as solvers for

path planning. The method has proved to significantly improve the performance of the

target’s platform, where the robot can execute a robust and effective movement to reach

certain destinations while ensuring its dynamic capabilities. Offline library methods, how-

ever, have not been utilised for mobile robotic platforms to investigate their compatibility

and effectiveness. Thus, in this thesis, we propose an approach that combines an offline

trajectory library for field robotic path planning called the Adaptive Trajectory Library

to identify and analyse the performance of this method on the target platform.

Chapter 3

Problem Formulation

The fundamental challenge of our analysis revolves around efficiently guiding a platform

through a specified trajectory. This trajectory, encapsulated as a series of poses from a

distinct orientation and destination, is presented to the planner for processing. This task

divides our focus into two critical aspects of the planning problems.

3.1 Efficient Path Planning

Our main goal is to identify the platform’s most efficient and effective path. The planner is

tasked with delivering a trajectory-compliant solution and optimising the path to minimise

the temporal and resource footprint. By selecting the one that attains the destination in

the shortest possible time with the least resource consumption, the planner fulfils its role

in contributing to an operation that is not just trajectory-compliant but also resource-

optimised.

Nevertheless, incorporating kinodynamic planning enhances this approach by considering

both the kinematics and dynamics of the platform. This involves accounting for the plat-

form’s velocity, acceleration, and forces acting on it, ensuring the path is feasible regarding

spatial constraints and adapts to its physical limitations. By integrating kinodynamic con-

straints, the planner can provide a more robust and realistic solution, ensuring the chosen

29

30 Chapter 3. Problem Formulation

path is executable given the platform’s dynamic capabilities, ultimately achieving optimal

performance in both time and resource efficiency.

3.2 Problem Formulation

The problem considered in this thesis is formally defined as follows

Considering a robot described by an N -dimensional state xt (e.g., position and orientation)

and an M -dimensional control action ut (e.g., translational and rotational velocity com-

mand) at each time t. Feasible states and control actions are limited to subsets X ⊂ RN

and U ⊂ RM respectively. The state xt and the control actions ut are governed by a

dynamic model f :

ẋt = f(xt,ut). (3.1)

Importantly, in addition to the limitations modelled by feasible state- and control-spaces

X and U, the robot is subject to a dynamic feasibility constraint:

ut ∈ D(xt, ẋt). (3.2)

This can model a variety of constraints ranging from simple ones such as turning radius

and acceleration limits in a bicycle model, to complex ones such as slip prevention for off-

road operation. In addition to dynamic constraints, the robot operates in an environment

with obstacles to avoid, denoted by O ⊂ X.

We are given a desired path Xd = xd
t . . .x

d
t+T from a higher-level planner that may not

be collision-free due to factors such as a slow update rate. The primary objective of this

paper is to develop a strategy for planning a minimum-time path, denoted as X, which

closely aligns to a predefined desired path Xd.

The output trajectory must also visit all points in the desired trajectory in the specified

order, as indicated by the constraint in (3.3) (line 3). Each point in Xd is considered

visited if there exists at least one point in X where the Euclidean distance to the point

Chapter 3. Problem Formulation 31

is less than a given threshold. This verification ensures that the output trajectory X

adequately covers all points in the desired trajectory Xd.

In addition to this proximity requirement, the planned path must satisfy several criti-

cal constraints. Firstly, the path must avoid any potential collisions with environmental

obstacles. Secondly, the path must consider the dynamic feasibility constraints, which

involve ensuring that the motion along the path is within the capabilities of the vehicle or

system in question, considering factors such as maximum velocity, acceleration, and other

dynamic limits.

min
X

travel time

s.t. dynamics (3.1),

dynamic feasibility (3.2),

X ∩ O = ∅

X visits Xd

(3.3)

The main challenge in solving (3.3) is the dynamic feasibility constraint (3.2). The set of

available control actions depends on the state, which introduces significant complications

because states are also dependent on control actions. Despite such co-dependence, the

planner must be robust against inaccuracies or even a lack of a model of the dynamic

feasibility constraint (3.2), as may be the case for practical robots.

Chapter 4

Adaptive Trajectory Planner

This chapter introduces the Adaptive Trajectory Planner (ATL) as an approximate solver

for Equation (3.3). ATL addresses three key challenges: kinodynamic planning, optimal

utilisation of computational resources, and strategic planning for ground robots operat-

ing in unstructured outdoor environments. ATL implements an offline library that stores

offline trajectories, each comprising a dynamically feasible pair of linear and angular veloc-

ities with a simulated trajectory generated from the pair of velocities. Each trajectory is

associated with a simulated trajectory generated using a forward kinetic algorithm based

on the corresponding velocity tuple. Through a comparative analysis of these offline tra-

jectories, ATL identifies the optimal one and extracts the velocity pair to guide the robot’s

controller along the commanded path. The following sections dig into the specifics of each

stage in the ATL process.

4.1 Overview

ATL stands as an innovative and sophisticated local planner solution for outdoor ground

mobile robots. The methodological foundation of this approach is explained in Section 4.2,

where an offline library is generated, consisting of a diverse range of offline trajectories.

33

34 Chapter 4. Adaptive Trajectory Planner

These offline trajectories are generated given a forward kinematic equation for ground mo-

bile robots, which is explained in the same section. This offline library serves as the back-

bone for the planner’s operation, enabling the identification of the optimal collision-free

path, as explained in Section 4.3.2. The uniqueness of ATL lies in its dynamic trajectory

filtering mechanism, detailed in Section 4.3.1, ensuring real-time dynamic feasibility by

aligning with the robot’s current state. Section 4.4 further delves into specific consid-

erations essential for implementing the planner on a robotic platform. From addressing

hardware constraints to optimising computational efficiency, these considerations provide

informative insights for new operators aiming to deploy ATL in real-world scenarios.

By integrating an offline trajectory library into a local path planning solution for outdoor

terrain operations, ATL appears not only as a theoretical framework but as a practical

and adaptive solution capable of navigating the complexities inherent in the mobility of

ground robots.

4.2 Offline Library Construction

This marks the initial phase of ATL, serving as an offline step, in which it won’t be

reinitialised for the online planning phase during the operation.

The initial step involves capturing a set of velocities, a combination of both linear and

angular velocities. This range spans from the minimum to maximum values for angular

velocities, aligning with the physical capabilities of the target platform. To obtain accu-

rate and practical data, these selective values are recorded through real-time experiments

involving the physical robot. During these experiments, operators document the actual

velocities executed by the platform, ensuring that the recorded values authentically repre-

sent the platform’s dynamic performance. This approach effectively addresses the dynamic

constraints inherent to the platform, recognising that physical limitations can influence

the actual performance of the robot. All of the recorded velocities are stored in a control

action set called UC .

To ensure the dynamic feasibility of the platform, we first construct a container that holds

a set of trajectories, which get called at the first stage of the planner. We define the

Chapter 4. Adaptive Trajectory Planner 35

offline library L as a set of tuple T , where each T = (X,U) comprising a trajectory X,

and a pair of linear and angular velocities U in the UC . X is a trajectory that consist of

poses denoted as xi. These poses are generated through Algorithm (1) with the associated

control action U, where each control action is a combination of feasible linear velocity vx

and feasible angular velocity ωz. xi is a combination of position in (x, y) axes and the

heading orientation θ, with i indicate the index of the pose within the trajectory X. The

trajectories are in the egocentric frame of the robot so that they are independent of its

pose.

The merit of ATL is that such a model does not need to be explicitly constructed. Rather,

control actions may be tested at different states in simulations and hardware trials with

diverse configurations and environmental conditions. Similarly, a first-principles model

may be adjusted through experimentation.

The dynamic models used to construct the offline library in Algorithm 1 can be changed

to match the specific dynamics of various target robotic devices, such as quadcopters or

Ackermann steering cars. This flexibility allows users to create an adaptable library cus-

tomised to their specific robots’ unique characteristics and performance requirements. By

adjusting the models to reflect the real-world dynamics of different robotic platforms, users

can achieve more accurate estimation for the offline trajectories to optimise performance.

This adaptability is crucial for developing robust robotic systems that handle various tasks

and environments. For instance, Section 5.3 presents examples of the offline library for

two different steering capabilities of the two mobile robots.

To determine this set of state trajectories, a standard dynamic algorithm can be used to

construct the offline library L:

4.3 Online Trajectory Selection

4.3.1 Online Trajectories Filtering

Before advancing to the final matching phase, a critical preparatory step involves the

filtering of offline trajectories. This process serves to eliminate infeasible paths that are

36 Chapter 4. Adaptive Trajectory Planner

Algorithm 1 Offline Library Construction

Inputs: Control Action Set UC

Parameters: Simulation Time t, Time Step dt

Outputs: Offline Library L

▷ The first pose of the trajectory is the origin of the platform
1: x0 = (0, 0, 0)

▷ Generate an estimated trajectory for each control action in the set
2: for each control action U ∈ UC do

▷ Estimate the next potential pose of the offline trajectory
3: for i = 1, 2, ..., t/dt do
4: xi(x)← xi−1(x) + (U(vx) · cos(θ)−U(ωz · sin(θ)) · dt

5: xi(y)← xi−1(y) + (U(vx) · sin(θ) +U(ωz · cos(θ)) · dt

6: xi(θ)← xi−1(θ) +U(ωz) · dt

▷ Add this tuple to the library
7: L← L ∪ {[(x0,x1, ...xt/dt),U]}
8: return L

not suited to the present state of the system, ensuring the requirement of (3.2), where the

platform is limited by the dynamic feasibility constraint in control action at certain states.

Considering a scenario where a platform is in motion with a linear velocity of vx meters

per second and an angular velocity of ωz radians per second. To accomplish this, Dynamic

thresholds are employed, setting the limits at kx meter per second for linear velocity and kw

radians per second for angular velocity. This approach allows the planner to systematically

go through many potential paths and skip those whose profiles fall outside the prescribed

boundaries.

We establish dynamic thresholds, denoted as kx and kw. Each threshold is employed

independently to define upper and lower bounds for velocities. These bounds are calculated

by adding and subtracting the dynamic thresholds from the current linear and angular

velocities, resulting in four distinct values, denoted as uv, lv, uw, and lw. Subsequently, we

assess whether the current control action [v,w] with linear velocity v and angular velocity

w, associated with the corresponding X, falls within these bounds. This evaluation allows

us to determine the feasibility of the offline trajectory concerning the robot’s current state.

By integrating this trajectory filtration process, the planner ensures that only the viable

options are considered for the subsequent planning stages, optimising the overall efficacy

Chapter 4. Adaptive Trajectory Planner 37

Algorithm 2 Online Trajectories Filtering

Inputs: Current Library L, Current Linear Velocity vx, Current Angular Velocity ωz

Parameters: Dynamic thresholds kx,kw

Outputs: Filtered Library LD

▷ Find Upper and Lower Boundaries for Linear and Angular Velocites
1: uv ← vx + kx

2: lv ← vx − kx

3: uw ← ωz + kw

4: lw ← ωz − kw

▷ Filter feasible tuple from the offline library
5: for each [v,w] ∈ L do

▷ Checking Linear Velocity
6: if v ≤ uv & v ≥ lv then

▷ Checking Angular Velocity
7: if w ≤ uw & w ≥ lw then

▷ If feasible, add this tuple to the collection
8: LD ← LD ∪ {[v,w]}
9: return LD

of the system’s navigation strategy, making the planner adapt to the requirement of a

kinodynamic method, where physical characteristics of the platform are required to be

accounted.

4.3.2 Online Trajectory Matching

The online planning phase of ATL starts with the online filtering process as mentioned

in the previous Section 4.3.1. Using the Dynamic Offline Library LD constructed from

the filtering phase, the online planning stage identifies the best collision-free trajectory

X = x1 . . .xT over a short time horizon T that is both dynamically feasible and the

closest to the next goal xd ∈ Xd. Formally, the planning algorithm solves the following

problem at each time t as mentioned previously in Equation 3.3

The process for solving Equation 3.3 using the library T is outlined in Algorithm 3, and

illustrated in Figure 1.3. The online planning algorithm takes as input the current state

xt, the desired path Xd, and any obstacles O, and outputs the best control action u⋆
t for

the current time.

38 Chapter 4. Adaptive Trajectory Planner

Algorithm 3 ATL Planner at time t

Inputs: Current state xt, desired path Xd, obstacles O
Outputs: Best control action U⋆

t .

▷ Filter out infeasible trajectories
1: LD = OnlineTrajectoriesFiltering(xt(vx),xt(ωz))

▷ Initialise estimated best cost and control action
2: J⋆, U⋆

t ←∞,NULL

▷ Iterate over collections
3: for each tuple T = (X,U) in Filtered Library LD do

▷ Check if trajectory is in collision
4: if Ti(X) ∩ O = NULL then

▷ Compute cost J of trajectory. If better, save.
5: if J(Ti(X),xd) ≤ J⋆ then
6: J⋆, U⋆

t ← J(Ti(X),xd), Ti(U)

7: return U⋆
t

The algorithm maintains an estimate of the current best cost J⋆ and current best control

action u⋆
t , which are initialised as ∞ and a null action respectively (line 2). We then loop

over all trajectories in the Filtered Library (line 3) while skipping collision trajectories

(line 4).

The cost function J in Algorithm 3 is determined by calculating the Euclidean distance

between the next pose of the desired trajectory with the end pose of a trajectory within

the Filtered Library LD. The algorithm iterates over every end pose in LD to compute

each J , aiming to identify the trajectory that has the minimum J value, denoted as J⋆.

Throughout this process, only one pose from the desired trajectory is considered in each

calculation, progressing until the target platform reaches this specific pose.

Computation time is reduced owing to such skipping because the cost function is only

evaluated for dynamically feasible and collision-free trajectories, and collision-checking is

only performed if dynamically feasible. During collision checking of a single trajectory,

points along it are sampled in turn from that which is closest to the robot. As soon

as a point that coincides with an obstacle is found, the trajectory is discarded without

evaluating any additional points, further reducing computation time. The estimate of

best cost and control action is updated if the current cost J(Ti(X),xd) is lower than the

Chapter 4. Adaptive Trajectory Planner 39

estimate J⋆ (Alg. 3, line 5). After exhausting the trajectories in all collections, the best

control action u⋆
t is returned.

If all trajectories fail collision checking, the algorithm may return a NULL control action.

This implies that all dynamically feasible trajectories, given the current state can lead

to a collision. In this case, a safety behaviour must be triggered. For ground robots, for

example, we found stopping at the current position with zero velocity to be a suitable safety

behaviour: this is not only because it is safe to do so, but also because the dynamically

feasible trajectories when the robot has zero velocity are shorter in length than when

moving at speed, and hence more amenable to escaping the obstacles. Meanwhile, the

dynamic feasibility check in Algorithm 3, line 1 does not cause a NULL return as long as

the feasible sets span the entire state space (i.e.
⋃

C FC = X).

When the matching process is executed, there are certainly be some discontinuities since

the robot’s current state and the library’s state won’t match exactly. These problems can

be managed under certain assumptions:

• Continuous Control Inputs: Assume that the control inputs associated with the

chosen trajectories in the library are sent continuously during the operation. This

continuity helps smoothly transition between different trajectories without unex-

pected changes in control.

• Feedback Control: Assume the feedback control mechanism can adjust the robot’s

motion based on real-time sensor data. This allows the robot to correct deviations

from the planned trajectory and maintain smooth, continuous motion.

• Consistency in Robot Dynamics: Assume that the robot’s dynamics (including

mass, inertia, wheel properties, etc.) are consistent across all trajectories in the

library. This consistency ensures that the control inputs computed from the library

trajectories are applicable and effective for the robot’s physical characteristics.

40 Chapter 4. Adaptive Trajectory Planner

4.4 Considerations for Implementation

This section explains how ATL can be integrated into a robotic platform. Each subsection

presents different aspects of ATL, from the integration to ROS (Robotic Operating System)

in Section 4.4.1, the offline trajectories reference frame in Section 4.4.2, obstacle detection

in Section 4.4.3 to the configuration parameters that generate the trajectories in Section

4.4.4. This explanation covers diverse operational contexts, providing informative details

to implement ATL into an operation or experiment.

4.4.1 ROS Integration

To evaluate the implementation of ATL for a standard path planning problem, we have

chosen the approach of integrating ATL as a plugin within the ROS (Robot Operating

System) base local planner package. ROS is an open-source framework designed to fa-

cilitate software development for robots. ROS is not a traditional operating system but

rather a collection of tools and libraries, aimed at simplifying the complexity of robot

software development. Integrating ATL as a plugin within the original package benefits

the compatibility with the ROS navigation stack. This expanded connectivity enables the

planner to access the full advantages of ROS, which links a diverse set of packages to

contribute to a comprehensive path-planning pipeline. With ATL as a plugin, the planner

becomes part of the ROS system. ROS provides a standardised and modular framework

for robotics, offering access to various packages and libraries. This integration allows the

planner to leverage the extensive capabilities of ROS while focusing on path-planning en-

hancements. The ROS navigation stack comprises multiple packages designed to address

different aspects of navigation, including obstacle detection and avoidance, localisation,

and mapping. ATL can directly interface with these packages to enhance the entire path-

planning pipeline by becoming part of this ecosystem.

The modularity and standardised interfaces of ROS simplify the process of incorporating

ATL into various robotic applications. It allows for the efficient exchange of different

path-planning plugins and the extension of functionality with minimal integration effort.

Chapter 4. Adaptive Trajectory Planner 41

4.4.2 Reference Frame

The trajectories in the offline library L are stored in the egocentric frame of the robot to

obviate the need for simulating control actions at runtime. As the global static frame is

typically specify the desired path xd from the higher-level planner, thus, if each trajectory

in the offline library were stored in the global static frame, converting them individually

for each cost function evaluation at runtime would incur a significant computational cost.

4.4.3 Obstacle Detection and Avoidance

One of the notable features of the ROS navigation stack is the Costmap2D (Marder-

Eppstein et al., 2023), a package designed for obstacle detection and avoidance. ATL, now

integrated into this ecosystem, can easily interact with Costmap2D, using its real-time

information on obstacle positions and safety parameters to adapt and optimize trajectory

planning dynamically. For practical implementation, we recommend maintaining an inde-

pendent obstacle representation from that of the higher-level planners. ATL plans over a

smaller spatial scale and at a much greater frequency than typical high-level planners. Two

criteria are important for selecting a suitable obstacle representation, which is updated

time and availability of egocentric operation. In other words, it should be possible to up-

date the obstacle representation quickly, and the obstacle representation should naturally

support the egocentric frame as its reference.

We found that 2D occupancy grid (Thrun, 2003) implemented in costmap 2d (Marder-

Eppstein et al., 2023) fits these two criteria well. It provides an intuitive and robust

approach to obstacle detection by employing a 2D occupancy grid, effectively representing

the robot’s surroundings based on data gathered from its sensory observations. Each cell

within this grid assigns a value reflecting the cost associated with navigating through that

region. Closeness to an obstacle results in higher cost values, indicating potential risks to

the platform. By leveraging these grid values within the cost function of ATL, trajectories

with higher costs are systematically avoided, helping to reduce the computational duration

in determining the most optimal path for the robot.

42 Chapter 4. Adaptive Trajectory Planner

4.4.4 Parameters Setup

The package comes with two distinct configuration files, which directly affect the perfor-

mance of ATL during its operational phase. These two play major roles in constructing the

customised estimated trajectories for the target platform, ensuring that these trajectories

align with the dynamic capabilities of the robot. The two files are:

• Trajectory Config: This configuration file serves to specify pairs of both linear

and angular velocities, extracted from recorded data obtained from the platform.

The recorded velocities are used to estimate the process of offline trajectories.

• Library Config: This configuration file focuss on the characteristics of the offline

trajectories. There are five parameters and they are listed below:

– sim time: define how long in seconds should ATL estimate the offline trajec-

tories

– sim granularity: define the step size in meters for each estimation poses of a

single offline trajectory

– max step: define the limit for the number of poses in each offline trajectory

– robot frame: define the egocentric frame of the robot, the offline trajectories

are constructed and stored within this reference frame

– is holonomic: define whether the target platform is a holonomic robot or not.

The holonomic robot has additional horizontal movement estimation for the

offline trajectories.

Additionally, ATL is equipped with the Dynamic Reconfigure features. Dynamic Recon-

figure, a ROS package (Carroll, 2023), enables users to adjust parameter values during

the operational phase dynamically. Dynamic Reconfigure allows users to modify ATL’s

parameters that influence the tolerances towards the goal or the dynamic threshold for the

filtering phase. Notably, parameters impacting the characteristics of offline trajectories, as

mentioned earlier, remain unchanged. This feature provides operators with the flexibility

to actively fine-tune ATL’s performance based on the conditions of the scenario.

Chapter 4. Adaptive Trajectory Planner 43

4.5 Conclusion

Overall, this section has explained in detail all phases of the Adaptive Trajectory Plan-

ner (ATL). Addressing the complexities of kinodynamic planning, efficient utilisation of

computational resources, and the intricacies of autonomous navigation in unstructured

outdoor environments, each phase of ATL has been developed to meet and overcome these

challenges. By introducing an offline library storing feasible trajectories, integrated with

a comparison process to determine optimal trajectories, the ATL approach appears as a

robust and adaptive solution for local planning.

Chapter 5

Experiments

In this chapter, we showcase the practical aspects of our methodology. This validation

serves to underscore the robustness and applicability of our approach in diverse settings,

proving its effectiveness beyond theoretical constructs. We experimentally demonstrate our

approach in both simulation and field trials. The experiment section serves as a critical

component in understanding and evaluating the practical implications of the proposed

methodology.

5.1 Overview

This section presents an overview of the experimental setup, detailing the key variables

and methodologies employed. Our objective is to provide transparency into the testing

environment and procedures, enabling readers to assess the validity and reliability of the

obtained results.

Commencing with Section 5.2, we explore the physical dimensions characterising the two

distinct generations of FORV. Section 5.2.3 delves into the internal system architecture of

our platforms, the Fast Off-Road Vehicles (FORV). Within this section, we offer compre-

hensive insights into the primary components that construct the FORV. The subsequent

Section 5.3 describes the construction of offline trajectories utilising the ATL algorithm

(1). A special focus is placed on the diverse trajectory libraries tailored for each drive

45

46 Chapter 5. Experiments

mechanism integrated into the platform. Following this, Section 5.4 briefly details the

simulation testing procedures, the chosen terrain and comparison methodologies employed

in the experiments. An explanation of how we set up ATL for the platform during the

experimental runs is also presented. Section 5.5 demonstrates the performance of each

of the comparison methods, where we showcase the difference between each planner and

their effectiveness throughout the experiments. Lastly, Section 5.6 presents the deploy-

ment of ATL into the physical FORV1 platform for field experiments. These real-world

trials show the capability of ATL in autonomous navigation, highlighting its contribution

to an off-road platform.

5.2 Experiment Platform

5.2.1 FORV1

The first generation of Fast Off-Road Vehicle (FORV), developed at the University of

Technology Sydney (Figure 1.2), was the initial target platform for our simulation. FORV1

measures 2.4m × 2m × 2m with a maximum design weight of 400 kg, and drives in

a skid-steer configuration where each pair of wheels on each side are given the same

command velocity. The design enables high-speed traversal of challenging off-road terrains,

while containing desktop-level computing hardware to allow complex control and planning

algorithms to run at high frequencies. The software is built using ROS Noetic to create a

modular architecture that can be extended for different applications.

5.2.2 FORV2

As we approach the deployment phase of FORV2, our second-generation Fast Off-road

Robotic Vehicle as shown in Figure 5.1, we look forward to conducting a performance

analysis of ATL. The configuration of FORV2 introduces an advanced four-wheel steering

configuration, enabling the robot to traverse in any direction. This significant enhancement

over the first version, limited by a constrained turning radius at low speeds, opens up new

possibilities for versatile and agile robotic operations.

Chapter 5. Experiments 47

Figure 5.1: The FORV 2 developed at UTS in (a) simulation and (b) hardware.

5.2.3 Broader Software System

To test the contributions of this thesis in hardware, many other components were developed

to enhance the FORVs platform. Both of the platforms share the same system design,

illustrated in Figure 5.2, which shows the architecture.

At the top of the system is the global planner, a crucial element responsible for determining

the operation’s objectives and waypoints, considering the area’s overall map. Occupying

the role within the local planner is ATL, tasked with executing real-time behaviors to

guide the platform across the area autonomously while prioritising safety and collision

avoidance. Lastly, ATL’s commands are transmitted to the platform’s controller, where

they are translated into movements for the robot. The structure of the controller can

be divided into three main components: the Joystick Controller, the PLC and the Motor

Controllers.

• Joystick Controller: The communication setup of FORV involves the communica-

tion line from a joystick controller. Two integral components, the controller and the

receiver, establish communication through radio signals. Additionally, the controller

and receiver interface with the main system through a CAN connection. This con-

figuration facilitates reliable communication between the joystick controller and the

receiving unit, ensuring effective integration with the broader system via the CAN

connection.

48 Chapter 5. Experiments

Figure 5.2: FORV’s system architecture

• PLC: The Programmable Logic Controller (PLC) serves as the central hub of the

FORV system, managing the electrical processes and regulating signal distribution

to each component. Operating at various stages, such as startup, operation, and idle

states, the PLC contributes to the FORV’s robustness, efficiency, and safety during

movements. Functioning as the “heart” of the system, the PLC plays a pivotal role

in powering the FORV.

Attached to the PLC is a Human Machine Interface (HMI) device that provides

operators with an intuitive display to monitor the status of FORV components.

This interface offers real-time visualisation of crucial information, including battery

levels, current status, and motor controller information. Operators can conveniently

Chapter 5. Experiments 49

observe and configure individual components directly through the display, enhancing

control and ensuring efficient operation of the FORV system.

• Motor Controllers: FORV is equipped with four brushless DC motors, each un-

der the control of a corresponding Roboteq controller. These controllers establish

communication with a Neusys POC system, an industrial-grade mini-PC specifically

employed to manage these motor controllers. Utilising the CAN protocol, the motor

controllers interface with the main system, ensuring the robust and reliable exchange

of signals and information. This standard communication protocol enhances the de-

pendability of the overall system, allowing for efficient coordination and control of

the FORV’s motorised components.

FORV is equipped with the most advanced components, ensuring every operation’s reli-

ability and quality for this fast off-road ground robot. To fully unlock the potential of

this platform in autonomous navigation, a robust and effective local planner is essential.

This planner must be suitable and highly efficient, leveraging the cutting-edge features

of FORV to ensure precision and reliability in every operation. Thus, we investigate the

impact of ATL on the performance of FORV for autonomous navigation tasks.

5.3 ATL Trajectory Library

As mentioned in Chapter 4, ATL is designed to integrate a dedicated dynamically feasible

trajectories library for a target platform. Given the distinct driving configurations of the

two FORV versions—differential drive and four-wheel steering drive—ATL is assigned the

responsibility of generating a trajectories library that aligns with the unique dynamics

requirements of each platform.

5.3.1 FORV1

Following the characteristics of FORV1, the drive mechanism performs movements based

on two separately driven wheels placed on either side of the robot body. This design

allows the robot to alter its direction by adjusting the relative rotation speed of its wheels,

50 Chapter 5. Experiments

Figure 5.3: FORV1 Offline Trajectories Library

eliminating the need for an extra steering mechanism. ATL implements a differential drive

kinematic equation to generate offline trajectories as mentioned in Section 4.2. The library

consists of collections with forward velocity v ∈ {1, 1.5, 2, 3, 4} m/s and angular velocity

ω °/s, where:

ω ∈



[−10, 10] step 2, v = 1

[−12, 12] step 3, v = 1.5

[−20, 20] step 4, v = 2

[−28, 28] step 4, v = 3

[−36, 36] step 9, v = 4

[−50, 50] step 10, v = 5

The trajectories library of FORV1 can be visualised via the following Figure 5.3.

The steps associated with the angular velocities denote the spacing or increment between

Chapter 5. Experiments 51

consecutive values within each specified range. For example, [-10, 10] step 2 represents a

range from -10 to 10, where each step between consecutive values is 2 units [-10, -8, -6, -4,

-2, 0, 2, 4, 6, 8, 10].

These trajectories highlight the capability of generating precise estimation trajectories for

ATL’s platform. This library is utilised for both simulation experiments and hardware

experiments.

5.3.2 FORV2

The drive mechanism of FORV2 employs a four-wheel steering system, providing advan-

tages such as a short turning radius and preventing wheel slippage during rotation. Conse-

quently, it becomes crucial to develop a dedicated library capable of adapting to the specific

capabilities of FORV2, thereby exploiting the full potential of the platform’s design. By

adding information for horizontal movements, ATL enhances the library’s performance

with the benefit of diagonal trajectories. These trajectories are specifically designed to

accommodate the capabilities of FORV2, allowing the platform to execute them effort-

lessly. To exploit the ability of the four-wheel steering configuration from FORV2, we

implemented a set of horizontal linear velocities to enable the platform with the ability to

execute “crabbing” motion, where the robot can travel horizontally. Similar to the FORV1

set-up, the configuration file of FORV2 can be listed as:

ω ∈



[−10, 10] step 2, vx = 1, vy = [−1, 1] step 0.5

[−12, 12] step 3, vx = 1.5, vy = [−2, 2] step 0.2

[−20, 20] step 4, vx = 2, vy = 0

[−28, 28] step 4, vx = 3, vy = 0

[−36, 36] step 9, vx = 4, vy = 0

[−50, 50] step 10, vx = 5, vy = 0

The trajectories library of FORV2 can be visualised via the following Figure 5.4.

52 Chapter 5. Experiments

Figure 5.4: FORV2 Offline Trajectories Library

This demonstrates ATL’s versatility as a solution compatible with diverse drive mecha-

nisms. By customised ATL parameters, operators can easily incorporate feasible trajecto-

ries tailored to the platform’s capabilities.

5.4 Simulation Setup

5.4.1 Scenario

The ATL planner was first evaluated in simulation to determine its suitability for high

speed operation in outdoor environments. Simulations were run in Gazebo, a popular

simulation package in the robotics community that enables accurate modelling of complex

real-world scenarios. The simulated FORV was loaded into a terrain based off that pro-

vided in the NEGS-UGV Dataset (Sánchez et al., 2022). The environment measures 100 m

× 50 m, and consists of a flat surface with obstacles such as trees, benches, and street

lamps distributed throughout (Figure 5.5). The spacing between obstacles was chosen to

provide both open spaces and areas where the robot would be required to negotiate tight

Chapter 5. Experiments 53

Figure 5.5: FORV within the NEGS-UGV park terrain used in Gazebo simulations.

gaps. In order to examine the performance of the planners independent of other factors,

the robot obtains its location directly from Gazebo instead of relying on internal odom-

etry, and a static costmap was generated from the terrain offline using the costmap 2d

package (Marder-Eppstein et al., 2023).

FORV was initialised near the top right corner of the simulated environment, and provided

with several ordered waypoints to visit; waypoints were marked as visited when the robot

reached a location within 3 m of them. The simulation setup for FORV2 and ATL mirrors

the experimental conditions employed in the first generation. We used the identical simu-

lation terrain featured in the NEGS-UGV Dataset, along with the consistent deployment

of the same waypoints.

5.4.2 Comparision Methods

Our comparison methods are:

• ATL Planner: ATL was implemented with two sets of dynamic thresholds as men-

tioned in Section 4.3.1 at kx = 3 m/s and kw = 2 rad/s and kx = 2 m/s and kw =

54 Chapter 5. Experiments

1 rad/s for linear and angular velocities. The ATL planner is designed to determine

the optimal control action from the provided dynamically feasible trajectories based

on these dynamic thresholds.

• DWA Planner: Dynamic Window Approach (DWA) planner was implemented us-

ing the dwa local planner package from ROS (Christian Connette, 2023a). DWA is

known for its capability to generate feasible trajectories using a dynamically feasible

window to produce velocity commands to send to the platform.

• TEB Planner: Timed Elastic Band (TEB) planner was implemented using the

teb local planner package from ROS (Rösmann, 2023). TEB planner is suitable

for systems with non-holonomic constraints and takes into account the robot’s kine-

matics and dynamic constraints while planning trajectories.

• A* Planner: A* algorithm is implemented via the global planner package (Chris-

tian Connette, 2023b). The planner utilises the A* algorithm for global path plan-

ning, and it was complemented by a Pure Pursuit (Coulter, 1992a) controller. The

Pure Pursuit controller adjusts the robot’s velocity based on the waypoints generated

by the A* planner.

Fifty simulations were performed for each planner, and the paths followed by FORV were

recorded for later analysis.

5.4.3 Implementation Details

The ATL planner is implemented with the trajectory library config in a YAML file loaded

at runtime, as mentioned in Section 4.4. These values were chosen through empirical

observations of FORV driving around a testing environment. The allowable ω is increased

at greater v as we have observed that the skid steer dynamics of FORV allow it to perform

tighter turns when travelling at higher speeds. Each trajectory is simulated for 5 s with

points sampled at intervals of 0.2 s along it to determine whether it results in a collision

and to evaluate the cost function.

The DWA Planner parameters are configured with the following values:

Chapter 5. Experiments 55

Parameter Values Units

Holonomic Robot False -

Sim Time 10.0 s

Sim Granularity 0.2 s

Angular Sim Granularity 0.1 rad

Vx Samples 20 -

Vtheta Samples 30 -

Controller Frequency 10.0 Hz

Meter Scoring True -

Occdist Scale 0.5 -

Pdist Scale 2 -

Gdist Scale 5 -

Heading Lookahead 2.0 m

Heading Scoring True -

Heading Scoring Timestep 1.0 s

DWA True -

Table 5.1: DWA Planner Parameters

The TEB Planner parameters are configured with the following values:

The A* parameters are configured with the following values:

For A* Planner, the attached Pure Pursuit controller has the same limitation values for

acceleration and velocities.

5.5 Simulation Results

5.5.1 FORV1

The paths followed by FORV in each trial are plotted in Figure 5.6, and summarised in

Table 5.4. It can be seen that our ATL planner, at two different dynamic threshold sets

(3 & 2 and 2 & 1 for linear and angular velocities), performs favourably compared to the

DWA, TEB and A* planners. In summary, among the considered techniques, DWA is the

least efficient for the given operation, showcasing the longest duration, travel distance, and

average planning time per iteration. Notably, paths generated by the alternative methods

are considerably shorter than those of DWA, with comparable lengths. These paths can

be travelled faster than those the DWA planner produces. Graph search technique A*

56 Chapter 5. Experiments

Parameter Values Units

No Inner Iterations 5 -

No Outer Iterations 4 -

Optimization Activate True -

Optimization Verbose False -

Penalty Epsilon 3.0 -

Weight Max Vel X 1 -

Weight Max Vel Theta 1 -

Weight Acc Lim X 0.1 -

Weight Acc Lim Theta 0.1 -

Weight Kinematics NH 1000 -

Weight Kinematics Forward Drive 1000 -

Weight Kinematics Turning Radius 1 -

Weight Optimal Time 1.0 -

Weight Obstacle 50 -

Weight Viapoint 0.4 -

Weight Inflation 1.0 -

Weight Dynamic Obstacle 10 -

Selection Alternative Time Cost False -

Table 5.2: TEB Planner Parameters

Parameter Values Units

Allow Unknown True -

Default Tolerance 0.0 -

Visualize Potential True -

Use Dijkstra False -

Use Quadratic True -

Use Grid Path False -

Old Navfn Behavior False -

Lethal Cost 253 -

Neutral Cost 0 -

Cost Factor 3 -

Publish Potential True -

Orientation Mode 0 -

Orientation Window Size 1 -

Outline Map True -

Table 5.3: A* Parameters

Chapter 5. Experiments 57

Figure 5.6: Simulation results for the ATL, DWA, TEB and A* planners. In each trial,
the robot starts on the top right and moves through the waypoints in red, where the circle
indicates the acceptance radius. Trajectories followed by FORV under each planner are
shown in blue, orange, and green with different trials indicated by different saturations.

Planner
Travel
time (s)

Path
length (m)

Planning
time (ms)

ATL(2, 1) 97 228 21
ATL(3, 2) 90 205 26
DWA 569 339 198
TEB 170 223 19
A* 188 183 30

Table 5.4: Simulation results for the ATL, DWA, TEB and A* planners. Values given
are the mean values across multiple trials.

produces paths with the shortest travel distance and time. However, their average compu-

tational time remains higher than TEB and ATL, as the characteristics of these methods

demand a certain amount of time to determine the optimal solution.

ATL and TEB demonstrate their effectiveness by generating smooth paths featuring wide

corners, facilitating high-speed traversal. In contrast, DWA frequently opts for tight or on-

the-spot turns, reducing the linear speed achievable by the robot. It is worth mentioning

that the real FORV has limitations in executing such tight cornering turning, thereby

restricting the practicality of DWA on our selected platform.

58 Chapter 5. Experiments

The success rate achieved by each planner is another important consideration. Trials can

fail when the planner is unable to generate control commands, the robot collides with an

obstacle, or the robot becomes immobilised due to its footprint overlapping with an ob-

stacle zone within the costmap. All trials of the ATL, DWA and A* planners succeeded,

but approximately half of the TEB planners failed. In proximity to densely populated

obstacle areas, TEB generated inefficient commands, often outputting large angular veloc-

ities. This tendency caused the robot to oscillate around obstacles in an attempt to find

a viable path through the area, eventually driving it into occupied regions of the costmap

from which it could not recover.

On the other hand, by adjusting the dynamic threshold, we can see a slight improvement

in the performance of the ATL, highlighting the need for the filtering process mentioned

in Section 4.3.1. A small dynamic threshold can reduce the computational cost for the

system, yet this affects the performance of ATL for the task. As we can see the travel time

and path length have increased as the small threshold filter more infeasible trajectories,

making the size of the dynamic library smaller. Consequently, this limits the options

available during the matching phase, making it more challenging to identify the optimal

solution.

The planners perform relatively consistently during successful trials, moving through sim-

ilar trajectories. Occasionally, obstacles would be passed on the opposite side to what was

usually selected by that planner, but the paths would soon converge again. This can lead

to a ripple effect, where passing one obstacle on a different side results in a longer path

overall as further obstacles must be avoided while obeying dynamic feasibility constraints

before returning to the usual path.

In addition to the metrics relating to the paths produced, the computational cost of

each planner was also compared. We measured the time taken to calculate the velocity

commands at each planning instant, and found the average planning time of our ATL

planner was significantly lower than DWA but slightly higher than TEB. This shows the

low computational cost of our method in producing successful paths, which lends itself to

the fast planning required for robots travelling at high speeds.

Chapter 5. Experiments 59

Figure 5.7: Simulation results for the ATL, TEB and A* planners. In each trial, the
robot starts on the top right and moves through the waypoints in red, where the circle
indicates the acceptance radius. Trajectories followed by FORV2 under each planner are
shown in blue, orange, and green with different trials indicated by different saturations.

5.5.2 FORV2

For the FORV2 Simulation, we selected four planners: ATL, TEB and A* to conduct the

comparison experiment. Similar to the first experiment, the paths followed by FORV 2 in

each trial are plotted in Figure 5.7, and summarised in Table 5.5

The four-wheel steering configuration of FORV2 presents a distinct advantage, allowing

the platform to achieve a higher turning radius and improve its maneuverability easily.

Recorded data from Table 5.5 has shown the improved performance of the ATL planner

when subjected to dynamic threshold sets (2 & 1 for linear and angular velocities).

FORV2, being controlled by ATL, travelled a shorter distance compared to FORV1, achiev-

ing an approximate 10% reduction in both travel distance and time. An increment in

planning time can be seen as the result of the additional horizontal crabbing trajectories,

which the platform’s configuration can execute. The ATL planner showcases the ability

to adapt to changing conditions, resulting in more efficient navigation.

60 Chapter 5. Experiments

Planner
Travel
time (s)

Path
length (m)

Planning
time (ms)

ATL(2, 1) 88 206 24
TEB 168 211 18
A* 186 188 31

Table 5.5: Simulation results for the ATL, A*, and TEB planners. Values given are the
mean values across multiple trials.

On the other hand, the TEB planner presented a step down in performance compared to its

earlier result. The challenges are evident as FORV2 struggled to align to the commanded

path, often looping around positions close to environmental obstacles. This disadvantage

underscores the planner’s limitations in dynamically adapting to the platform’s configu-

ration, raising questions regarding its suitability for certain scenarios.

Meanwhile, the A* method produces consistent results compared to their performance

with the previous FORV1 experiments. Although the observed increment in the travelled

path is trivial, it is considerable that the planner maintains a level of reliability.

In conclusion, this comparison reveals the strengths and weaknesses of each planner in

the compatibility with FORV2’s capabilities. The ATL planner stands as a standout per-

former, balancing between computational time usage and travelled distance/time, lever-

aging the advantages of four-wheel steering to achieve better performance. In contrast to

ATL, the TEB planner struggles to maintain robust performance, highlighting the impor-

tance of selecting planners based on specific operational requirements. The performance

observed in the A* method confirms their reliability, bringing attention to their adaptabil-

ity across multiple simulation scenarios.

5.6 Field Experiments

Our ATL planner was also tested on the physical FORV1 platform to evaluate its real-

world performance. Broadly the same software was run on the real robot as in simulation,

however it was not possible to isolate the performance of the planner from the localisa-

tion and costmap generation. In real-world experiments, the robot calculates its posi-

tion by fusing data from motor encoders, an inertial measurement unit, and GPS using

Chapter 5. Experiments 61

the robot localization package for ROS (Moore and Stouch, 2014). Similarly a static

costmap cannot be used, and instead a live costmap is generated from lidar data.

5.6.1 Experiments Setup

We conducted a field trial at Sydney Science Park during which two experiments were

performed. In each experiment, FORV1 began near a selection of obstacles including

trees and a dummy human. FORV1 was instructed to move through two waypoints with

a tolerance of 3 m then stop. Two experiments were performed, varying the starting

position and orientation of FORV1 with respect to the obstacles as well as the position of

the waypoints to determine the performance of the planner in different scenarios. We set

the same dynamic threshold kx = 3m/s and kw = 115 degrees for the filtering process as

the simulation experiments.

5.6.2 Result

Results from the field trial are shown in Figure 5.8. In the first experiment (Figure 5.8a),

FORV1 was positioned a short distance from a tree and oriented directly towards it. A

waypoint was placed directly behind this tree, such that FORV1 would have to avoid

an obstacle immediately. Another waypoint was placed a short distance away to direct

FORV1 to turn and avoid two further obstacles. The ATL planner performed well in this

scenario, avoiding all obstacles and moving through a smooth path without sharp turns

that would reduce its linear velocity. The robot travelled 96 m in 33 s, achieving an average

linear speed of 2.9 m/s.

The second experiment considered a more challenging scenario (Figure 5.8b). FORV1 was

initially aligned pointing directly down a row of obstacles, and waypoints were selected

to direct the robot to slalom between them. This was achieved without any collisions,

demonstrating the impressive obstacle avoidance capabilities of the planner even when

operating at relatively high speeds. In this trial, the robot travelled 136 m in 28 s, so

moved with a higher average linear speed than the previous trial of 4.9 m/s.

62 Chapter 5. Experiments

(a)

(b)

Figure 5.8: Real-world experimental results. Waypoints are shown in red, where the
circle indicates the acceptance radius. The trajectories followed by FORV are plotted in
blue. FORV is shown at several points equally spaced in time (5.5 s in (a) and 6.6 s in
(b)). At each of these points, the current feasible trajectories (orange) and the selected

path (thick orange) are also visualised.

5.7 Conclusion

In conclusion, this section has highlighted ATL’s performance through its results in both

simulation and hardware experiments, offering valuable insights into its capabilities under

diverse conditions of the experiment scenario. The adaptability and effectiveness of ATL

in the environment set up with two different platforms have showcased its potential as a

robust and versatile solution for addressing complex scenarios.

Chapter 6

Conclusion

This thesis has presented ATL, a novel local path planning algorithm suitable for robots

travelling at high speeds. The approach reduces online computation by using a precom-

puted trajectory library, an adaptive subset of which is sampled to reflect trajectories that

are dynamically feasible given the current state of the robot.

6.1 Summary of Contribution

To sum up, addressing the complexities of autonomous navigation for a high-speed off-road

mobile robot requires innovative solutions to overcome the challenges. Traditional navi-

gation methods often face limitations in handling the rapid and unpredictable changes of

the platform’s movement, underscoring the need for advanced methodologies. This thesis

presents the Adaptive Trajectory Library (ATL) as a local planning solution, addressing

the three key major points highlighted in the introduction: performance in unstructured

environments, efficiency in computational usage, and kinodynamic planning capabilities.

Chapter 4 of this thesis describes ATL’s core algorithm and operational sequence, pre-

senting how it effectively addresses the complexities associated with high-speed off-road

navigation. ATL represents a shift in autonomous navigation strategies by integrating a

trajectories library from a set of feasible velocities gathered from a target platform. This

results in providing the planner with the ability to control the robot with dynamically

63

64 Chapter 6. Conclusion

feasible velocities, enhancing the performance of navigating dynamic terrains at elevated

speeds. Furthermore, ATL’s core is designed to adapt to real-time platform feedback, al-

lowing it to control the platform dynamically. By doing so, ATL can make instantaneous

decisions, choosing an efficient and feasible path to follow the commanded path throughout

the landscape.

In conclusion, introducing the ATL in this thesis marks a significant step forward in ad-

dressing the intricate challenges of autonomous navigation in high-speed off-road scenarios.

ATL represents a novel approach that holds promise for enhancing the capabilities of exist-

ing robots and influencing the design and development of future generations of autonomous

mobile platforms. As the field continues to evolve, the insights and methodologies pre-

sented in this thesis contribute valuable knowledge to the broader discourse on advancing

autonomous robotics.

6.2 Future Work

Our future research will focus on investigating the improvements and expansion of the

trajectory library to accommodate wider fields of real-world constraints. Recognising

that the robot’s dynamics are linked to the terrain characteristics it traverses, we aim

to enhance the trajectory library to enable dynamic variations in trajectories based on

the diverse surfaces encountered. This adaptation will allow the robot to navigate with

greater adaptability, optimising its movements according to the specific challenges posed

by different terrains.

Furthermore, an aspect of our future investigations involves the integration of ATL with

a global planner. This strategy aims to harness the strengths of both systems, creating a

comprehensive approach to autonomous navigation. The global planner will be designed

to generate waypoints strategically, providing a road map for the robot to travel to larger

areas autonomously.

By exploring these features, we aspire to push the boundaries of ATL and autonomous

robotics, creating a planner that adapts to the dynamic nature of its surroundings and

possesses the intelligence to navigate across extensive terrains. This research contributes

Chapter 6. Conclusion 65

to the advancement of autonomous mobile robots and opens up new possibilities for ap-

plications in fields ranging from environmental monitoring to infrastructure inspection.

Bibliography

Ammar, A., Bennaceur, H., Châari, I., Koubâa, A., and Alajlan, M. (2016). Relaxed

dijkstra and a* with linear complexity for robot path planning problems in large-

scale grid environments. Soft Comput., 20(10):4149–4171.

Bardi, M. and López, J. P. M. (2015). A dijkstra-type algorithm for dynamic games.

Dynamic Games and Applications, 6:263 – 276.

Becker, J., Imholz, N., Schwarzenbach, L., Ghignone, E., Baumann, N., and Magno, M.

(2023). Model- and acceleration-based pursuit controller for high-performance au-

tonomous racing. In 2023 IEEE International Conference on Robotics and Automa-

tion (ICRA). IEEE.

Best, G., Garg, R., Keller, J., Hollinger, G. A., and Scherer, S. (2023). Multi-robot, multi-

sensor exploration of multifarious environments with full mission aerial autonomy.

International Journal of Robotics Research.

Bjelonic, M., Grandia, R., Geilinger, M., Harley, O., Medeiros, V. S., Pajovic, V., Jelavic,

E., Coros, S., and Hutter, M. (2022). Offline motion libraries and online mpc for ad-

vanced mobility skills. The International Journal of Robotics Research, 41(9-10):903–

924.

Bonalli, R., Cauligi, A., Bylard, A., and Pavone, M. (2019). Gusto: Guaranteed sequential

trajectory optimization via sequential convex programming.

Campbell, S. F. (2007). Steering control of an autonomous ground vehicle with application

to the DARPA urban challenge. PhD thesis, Massachusetts Institute of Technology.

Carroll, M. (2023). dynamic reconfigure. https://wiki.ros.org/dynamic_reconfigure.

67

https://wiki.ros.org/dynamic_reconfigure

68 Bibliography

Cetin, O., Ozmen, B., Kurnaz, S., and Temeltas, H. (2009). Potential field based navigation

task for autonomous flight control of unmanned aerial vehicles. volume 5.

Chen, J.-T., Yousefi, A., Krishna, S., Sliney, B., and Smith, P. (2012). Weather avoidance

optimal routing for extended terminal airspace in support of dynamic airspace con-

figuration. In 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC),

pages 3A1–1–3A1–16.

Choi, B., Kim, B., Kim, E., and Yang, K. W. (2012). A modified dynamic window

approach in crowded indoor environment for intelligent transport robot. In 2012 12th

International Conference on Control, Automation and Systems, pages 1007–1009.

Christian Connette, Bhaskara Marthi, P. K. (2023a). dwa local planner. http://wiki.

ros.org/dwa_local_planner.

Christian Connette, Bhaskara Marthi, P. K. (2023b). global planner. http://wiki.ros.

org/global_planner.

Chu, K., Lee, M., and Sunwoo, M. (2012). Local path planning for off-road autonomous

driving with avoidance of static obstacles. IEEE Transactions on Intelligent Trans-

portation Systems, 13(4):1599–1616.

Chung, Y. M., Youssef, H., and Roidl, M. (2022). Distributed timed elastic band (dteb)

planner: Trajectory sharing and collision prediction for multi-robot systems. In 2022

International Conference on Robotics and Automation (ICRA), pages 10702–10708.

Coulter, C. (1992a). Implementation of the pure pursuit path tracking algorithm.

Coulter, R. C. (1992b). Implementation of the pure pursuit path tracking algorithm.

Carnegie Mellon University, The Robotics Institute.

Cybulski, B., Wegierska, A., and Granosik, G. (2019). Accuracy comparison of navigation

local planners on ros-based mobile robot. In 2019 12th International Workshop on

Robot Motion and Control (RoMoCo), pages 104–111.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271.

http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/global_planner
http://wiki.ros.org/global_planner

Bibliography 69

Donald, B., Xavier, P., Canny, J., and Reif, J. (1993). Kinodynamic motion planning. J.

ACM, 40(5):1048–1066.

Fan, D. and Shi, P. (2010). Improvement of dijkstra’s algorithm and its application in route

planning. In 2010 Seventh International Conference on Fuzzy Systems and Knowledge

Discovery, volume 4, pages 1901–1904.

Ferguson, D. and Stentz, A. (2007). Field d*: An interpolation-based path planner and

replanner.

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window approach to collision

avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33.

Frazzoli, E., Dahleh, M., and Feron, E. (2001). Real-time motion planning for agile

autonomous vehicles. In Proceedings of the 2001 American Control Conference. (Cat.

No.01CH37148), volume 1, pages 43–49 vol.1.

Goswami, A. (2017). Hierarchical Off-Road Path Planning and Its Validation Using a

Scaled Autonomous Car. PhD thesis, Clemson University.

Grothe, F., Hartmann, V. N., Orthey, A., and Toussaint, M. (2022). St-rrt*:

Asymptotically-optimal bidirectional motion planning through space-time. In 2022

International Conference on Robotics and Automation (ICRA), pages 3314–3320.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107.

Hsu, D., Sanchez-Ante, G., and Sun, Z. (2005). Hybrid prm sampling with a cost-sensitive

adaptive strategy. In Proceedings of the 2005 IEEE International Conference on

Robotics and Automation, pages 3874–3880.

Huang, L. and Yi, H. (2021). Research on the optimal strategy of ”crossing the desert”

game based on dijkstra algorithm. Academic Journal of Computing & Information

Science.

70 Bibliography

Hönig, W., Ortiz-Haro, J., and Toussaint, M. (2022). db-a*: Discontinuity-bounded search

for kinodynamic mobile robot motion planning. In 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 13540–13547.

Jaillet, L. and Simeon, T. (2004). A prm-based motion planner for dynamically changing

environments. In 2004 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (IEEE Cat. No.04CH37566), volume 2, pages 1606–1611 vol.2.

Jian, X., Zou, T., Vardy, A., and Bose, N. (2020). A hybrid path planning strategy

of autonomous underwater vehicles. In 2020 IEEE/OES Autonomous Underwater

Vehicles Symposium (AUV), pages 1–6.

Joglekar, A., Sathe, S., Misurati, N., Srinivasan, S., Schmid, M. J., and Krovi, V. (2022).

Deep reinforcement learning based adaptation of pure-pursuit path-tracking control

for skid-steered vehicles. IFAC-PapersOnLine, 55(37):400–407. 2nd Modeling, Esti-

mation and Control Conference MECC 2022.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). Stomp:

Stochastic trajectory optimization for motion planning. In 2011 IEEE International

Conference on Robotics and Automation, pages 4569–4574.

Karaman, S. and Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal

motion planning.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion

planning. The International Journal of Robotics Research, 30(7):846–894.

Karur, K., Sharma, N., Dharmatti, C., and Siegel, J. E. (2021). A survey of path planning

algorithms for mobile robots. Vehicles, 3(3):448–468.

Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M. (1996). Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Transactions on

Robotics and Automation, 12(4):566–580.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, 5(1):90–98.

Bibliography 71

Khuswendi, T., Hindersah, H., and Adiprawita, W. (2011). Uav path planning using

potential field and modified receding horizon a* 3d algorithm. In Proceedings of the

2011 International Conference on Electrical Engineering and Informatics, pages 1–6.

Koenig, S. and Likhachev, M. (2001). Incremental a*. In Dietterich, T., Becker, S.,

and Ghahramani, Z., editors, Advances in Neural Information Processing Systems,

volume 14. MIT Press.

Koren, Y. and Borenstein, J. (1991). Potential field methods and their inherent limitations

for mobile robot navigation. 2:1398–1404.

Kuffner, J. and LaValle, S. (2000). Rrt-connect: An efficient approach to single-

query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings (Cat.

No.00CH37065), volume 2, pages 995–1001 vol.2.

Kumar, S. and Chakravorty, S. (2012). Multi-agent generalized probabilistic roadmaps:

Magprm. In 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 3747–3753.

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., and How, J. P. (2009). Real-time

motion planning with applications to autonomous urban driving. IEEE Transactions

on Control Systems Technology, 17(5):1105–1118.

LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. Re-

search Report 9811.

LaValle, S. M. and Kuffner Jr, J. J. (2001). Randomized kinodynamic planning. Interna-

tional Journal of Robotics Research, 20(5):378–400.

Le, D. and Plaku, E. (2014). Guiding sampling-based tree search for motion planning with

dynamics via probabilistic roadmap abstractions. In 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 212–217.

Lee, J. J. H., Frey, K., Fitch, R., and Sukkarieh, S. (2014). Fast path planning for precision

weeding. In Proc. of Australasian Conference on Robotics and Automation (ACRA).

72 Bibliography

Li, J. and Zhang, Z. (2023). Auv local path planning based on fusion of improved dwa

and rrt algorithms. In 2023 IEEE International Conference on Mechatronics and

Automation (ICMA), pages 935–941.

Likhachev, M. and Ferguson, D. (2009). Planning long dynamically feasible maneuvers for

autonomous vehicles. International Journal of Robotics Research, 28(8):933–945.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005). Anytime

dynamic a*: An anytime, replanning algorithm. In Proceedings of the Fifteenth

International Conference on International Conference on Automated Planning and

Scheduling, ICAPS’05, page 262–271. AAAI Press.

Lu, N., Deng, Q., Zhang, J., and Wang, X. (2022). Ship real-time route planning based

on field theory and dynamic window approach. In 2022 5th International Conference

on Intelligent Autonomous Systems (ICoIAS), pages 109–113.

Lucas, G. (2001). A tutorial and elementary trajectory model for the differential steer-

ing system of robot wheel actuators. https://rossum.sourceforge.net/papers/

DiffSteer/.

Macenski, S., Singh, S., Mart́ın, F., and Ginés, J. (2023). Regulated pure pursuit for robot

path tracking. Autonomous Robots, pages 685–694.

Magyar, B., Tsiogkas, N., Deray, J., Pfeiffer, S., and Lane, D. (2019). Timed-elastic bands

for manipulation motion planning. IEEE Robotics and Automation Letters, PP:1–1.

Marder-Eppstein, E., Lu, D. V., and Hershberger, D. (2023). costmap 2d. http://wiki.

ros.org/costmap_2d.

Melchior, N. A. and Simmons, R. (2007). Particle rrt for path planning with uncertainty. In

Proceedings 2007 IEEE International Conference on Robotics and Automation, pages

1617–1624.

Melchiorre, M., Salamina, L., Scimmi, L. S., Mauro, S., and Pastorelli, S. (2023). Experi-

ments on the artificial potential field with local attractors for mobile robot navigation.

Robotics, 12.

https://rossum.sourceforge.net/papers/DiffSteer/
https://rossum.sourceforge.net/papers/DiffSteer/
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/costmap_2d

Bibliography 73

Moore, T. and Stouch, D. (2014). A generalized extended Kalman filter implementation

for the robot operating system. In Proc. of International Conference on Intelligent

Autonomous Systems (IAS). Springer.

Nguyen, T. T. L., Edward, B., Ki Myung Brian, L., and Graeme, B. (2023). Adaptive

trajectory library planner for fast outdoor robots. In Proc. of Australian Conference

on Robotics and Automation (ACRA).

Palmieri, L., Koenig, S., and Arras, K. O. (2016). Rrt-based nonholonomic motion plan-

ning using any-angle path biasing. In 2016 IEEE International Conference on Robotics

and Automation (ICRA), pages 2775–2781.

Park, M. G., Jeon, J. H., and Lee, M. C. (2001). Obstacle avoidance for mobile robots using

artificial potential field approach with simulated annealing. In ISIE 2001. 2001 IEEE

International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570),

volume 3, pages 1530–1535 vol.3.

Patel, U., Kumar, N. K. S., Sathyamoorthy, A. J., and Manocha, D. (2021). Dwa-rl:

Dynamically feasible deep reinforcement learning policy for robot navigation among

mobile obstacles. In 2021 IEEE International Conference on Robotics and Automation

(ICRA), pages 6057–6063.

Peng, J., Chen, Y., Duan, Y., Zhang, Y., Ji, J., and Zhang, Y. (2021). Towards an online

rrt-based path planning algorithm for ackermann-steering vehicles. In 2021 IEEE

International Conference on Robotics and Automation (ICRA), page 7407–7413. IEEE

Press.

Peng, M., Gong, Z., Sun, C., Chen, L., and Cao, D. (2020). Imitative reinforcement

learning fusing vision and pure pursuit for self-driving. In 2020 IEEE International

Conference on Robotics and Automation (ICRA), pages 3298–3304.

Pivtoraiko, M. and Kelly, A. (2005). Efficient constrained path planning via search in state

lattices. In Proceedings of 8th International Symposium on Artificial Intelligence,

Robotics and Automation in Space (iSAIRAS ’05).

Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., and Cao, Z. (2023). Review of autonomous

path planning algorithms for mobile robots. Drones, 7(3).

74 Bibliography

Quinlan, S. and Khatib, O. (1993). Elastic bands: connecting path planning and control.

In [1993] Proceedings IEEE International Conference on Robotics and Automation,

pages 802–807 vol.2.

Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., and Bertram, T. (2012). Trajec-

tory modification considering dynamic constraints of autonomous robots. In Proc. of

German Conference on Robotics.

Rösmann, C., Hoffmann, F., and Bertram, T. (2017). Integrated online trajectory planning

and optimization in distinctive topologies. Robotics and Autonomous Systems, 88:142–

153.

Rösmann, C. (2023). teb local planner. https://wiki.ros.org/teb_local_planner.

Sánchez, M., Morales, J., Mart́ınez, J. L., Fernández-Lozano, J., and Garćıa-Cerezo, A.

(2022). Automatically annotated dataset of a ground mobile robot in natural envi-

ronments via gazebo simulations. Sensors, 22(15):5599.

sang Liu, L., feng Lin, J., Yao, J., He, D., Zheng, J., Huang, J., and Shi, P. (2021). Path

planning for smart car based on dijkstra algorithm and dynamic window approach.

Wirel. Commun. Mob. Comput., 2021:8881684:1–8881684:12.

Schulman, J., Ho, J., Lee, A. X., Awwal, I., Bradlow, H., and Abbeel, P. (2013). Find-

ing locally optimal, collision-free trajectories with sequential convex optimization.

Robotics: Science and Systems IX.

Shin, Y. and Kim, E. (2021). Hybrid path planning using positioning risk and artificial

potential fields. Aerospace Science and Technology, 112:106640.

Shu-Xi, W. (2012). The improved dijkstra’s shortest path algorithm and its application.

Procedia Engineering, 29:1186–1190. 2012 International Workshop on Information

and Electronics Engineering.

Singh, Y., Sharma, S., Sutton, R., Hatton, D., and Khan, A. (2018). A constrained a* ap-

proach towards optimal path planning for an unmanned surface vehicle in a maritime

environment containing dynamic obstacles and ocean currents. Ocean Engineering,

169:187–201.

https://wiki.ros.org/teb_local_planner

Bibliography 75

Smith, J. S., Xu, R., and Vela, P. (2020). egoteb: Egocentric, perception space navigation

using timed-elastic-bands. In 2020 IEEE International Conference on Robotics and

Automation (ICRA), pages 2703–2709.

Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N., and Feyzeau, P.

(2013). Path planning: A 2013 survey. In Proceedings of 2013 International Confer-

ence on Industrial Engineering and Systems Management (IESM), pages 1–8.

Stentz, A. (1994). Optimal and efficient path planning for partially-known environments.

In Proc. of IEEE International Conference on Robotics and Automation (ICRA),

pages 3310–3317.

Sukhil, V. and Behl, M. (2021). Adaptive lookahead pure-pursuit for autonomous racing.

Sun, X., Koenig, S., and Yeoh, W. (2008). Generalized adaptive a*. In Proceedings of the

7th International Joint Conference on Autonomous Agents and Multiagent Systems

- Volume 1, AAMAS ’08, page 469–476, Richland, SC. International Foundation for

Autonomous Agents and Multiagent Systems.

Sun, Y., Fang, M., and Su, Y. (2021). Agv path planning based on improved dijkstra

algorithm. Journal of Physics: Conference Series, 1746.

Thrun, S. (2003). Learning occupancy grid maps with forward sensor models. Autonomous

Robots, 15:111–127.

Viswanathan, V. K., Dexheimer, E., Li, G., Loianno, G., Kaess, M., and Scherer, S. (2020).

Efficient trajectory library filtering for quadrotor flight in unknown environments. In

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 2510–2517.

Wang, W., Ru, L., Lu, B., and Hu, S. (2023a). Path planning of uav crossing dense

obstacle area based on improved dynamic window approach. In 2023 5th International

Conference on Electronic Engineering and Informatics (EEI), pages 468–473.

Wang, W.-J., Hsu, T.-M., and Wu, T.-S. (2017). The improved pure pursuit algorithm for

autonomous driving advanced system. In 2017 IEEE 10th International Workshop on

Computational Intelligence and Applications (IWCIA), pages 33–38.

76 Bibliography

Wang, X., Cheng, M., Zhang, S., and Gong, H. (2023b). Multi-uav cooperative obstacle

avoidance of 3d vector field histogram plus and dynamic window approach. Drones,

7(8).

Warren, C. (1990). Multiple robot path coordination using artificial potential fields. In

Proceedings., IEEE International Conference on Robotics and Automation, pages 500–

505 vol.1.

Warren, C. (1993). Fast path planning using modified a* method. In [1993] Proceedings

IEEE International Conference on Robotics and Automation, pages 662–667 vol.2.

Wu, J., Ma, X., Peng, T., and Wang, H. (2021). An improved timed elastic band (teb)

algorithm of autonomous ground vehicle (agv) in complex environment. Sensors,

21(24).

Wu, J., Ren, H., Lin, T., Yao, Y., Fang, Z., and Liu, C. (2023). A pure electric driver-

less crawler construction machinery walking method based on the fusion slam and

improved pure pursuit algorithms. Sensors, 23(18).

Yan, X., Ding, R., Luo, Q., Ju, C., and Wu, D. (2022). A dynamic path planning algorithm

based on the improved dwa algorithm. In 2022 Global Reliability and Prognostics and

Health Management (PHM-Yantai), pages 1–7.

Yasuda, S., Kumagai, T., and Yoshida, H. (2023). Safe and efficient dynamic window

approach for differential mobile robots with stochastic dynamics using deterministic

sampling. IEEE Robotics and Automation Letters, 8(5):2614–2621.

You, A., Sukkar, F., Fitch, R., Karkee, M., and Davidson, J. R. (2020). An efficient

planning and control framework for pruning fruit trees. In Proc. of IEEE International

Conference on Robotics and Automation (ICRA), pages 3930–3936.

Yuan, H., Li, H., Zhang, Y., Du, S., Yu, L., and Wang, X. (2022). Comparison and

improvement of local planners on ros for narrow passages. In 2022 International

Conference on High Performance Big Data and Intelligent Systems (HDIS), pages

125–130.

Bibliography 77

Yuan, Q., Yi, J., Sun, R., and Bai, H. (2021). Path planning of a mechanical arm based

on an improved artificial potential field and a rapid expansion random tree hybrid

algorithm. Algorithms, 14(11).

Zhang, M., Shen, Y., Wang, Q., and Wang, Y. (2010). Dynamic artificial potential field

based multi-robot formation control. In 2010 IEEE Instrumentation Measurement

Technology Conference Proceedings, pages 1530–1534.

Zhang, Y., Yang, J., Ponce, J., and Kong, H. (2018). Dijkstra model for stereo-vision based

road detection: A non-parametric method. In 2018 IEEE International Conference

on Robotics and Automation (ICRA), pages 5986–5993.

Zhu, D.-D. and Sun, J.-Q. (2021). A new algorithm based on dijkstra for vehicle path

planning considering intersection attribute. IEEE Access, 9:19761–19775.

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M.,

Bagnell, J. A., and Srinivasa, S. S. (2013). Chomp: Covariant hamiltonian opti-

mization for motion planning. The International Journal of Robotics Research, 32(9-

10):1164–1193.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Challenges of Path Planning for Off-road Robotic Platform
	1.2 Path Planning for Mobile Robots
	1.3 Research Objectives
	1.4 Principal Contributions
	1.5 Thesis Outline

	2 Related Work
	2.1 Traditional Path Planning
	2.1.1 Artificial Potential Field
	2.1.2 Pure Pursuit
	2.1.3 Conclusion

	2.2 Graph Seach
	2.2.1 Dijkstra’s Algorithm
	2.2.2 A*
	2.2.3 Conclusion

	2.3 Sampling-Based Algorithms
	2.3.1 Probabilistic Roadmap
	2.3.2 Rapidly Exploring Random Trees
	2.3.3 Conclusion

	2.4 Kinodynamic Planning
	2.4.1 Optimisation Method
	2.4.2 Dynamic Window Approach
	2.4.3 Offline Trajectory Library
	2.4.4 Conclusion

	2.5 Conclusion

	3 Problem Formulation
	3.1 Efficient Path Planning
	3.2 Problem Formulation

	4 Adaptive Trajectory Planner
	4.1 Overview
	4.2 Offline Library Construction
	4.3 Online Trajectory Selection
	4.3.1 Online Trajectories Filtering
	4.3.2 Online Trajectory Matching

	4.4 Considerations for Implementation
	4.4.1 ROS Integration
	4.4.2 Reference Frame
	4.4.3 Obstacle Detection and Avoidance
	4.4.4 Parameters Setup

	4.5 Conclusion

	5 Experiments
	5.1 Overview
	5.2 Experiment Platform
	5.2.1 FORV1
	5.2.2 FORV2
	5.2.3 Broader Software System

	5.3 ATL Trajectory Library
	5.3.1 FORV1
	5.3.2 FORV2

	5.4 Simulation Setup
	5.4.1 Scenario
	5.4.2 Comparision Methods
	5.4.3 Implementation Details

	5.5 Simulation Results
	5.5.1 FORV1
	5.5.2 FORV2

	5.6 Field Experiments
	5.6.1 Experiments Setup
	5.6.2 Result

	5.7 Conclusion

	6 Conclusion
	6.1 Summary of Contribution
	6.2 Future Work

	Bibliography

