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ABSTRACT
The presence of airborne allergenic pollen causes a variety of immune
reactions and respiratory diseases, threatening human life in severe cases.
Climate change is exacerbating the allergenic pollen-induced health risks
and adding a significant economic burden to societies. Despite the
pressing threats, vital health-related information is not available to the
public to date, and the reshaping of future geographic allergenic pollen
patterns remains unknown. To help establish a critical allergenic pollen
forecasting capacity, a systematic review was conducted and three
promising future directions were identified: (1) resolving heterogeneous
urban plant species distribution and phenology using fine-resolution
satellite constellations; (2) acquiring ancillary information about allergenic
pollen and patient symptoms from emerging geospatial big data, such as
social media; (3) deciphering the coupled effect of climate change and
urbanization on future geographic patterns and phenology of allergenic
species. On this basis, we recommend an optimized workflow that
combines real-time pollen monitoring networks with high-resolution
vegetation information and weather forecast systems, comprehensively
considering the production and diffusion process of pollen to establish
advanced prediction models. By focusing on critical knowledge gaps, this
review provides much needed insight to propel the allergenic pollen
forecasting research and eventually benefit the management of urban
public health.
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1. Background

Sexually reproducing plants, especially those that rely on wind-pollination, release substantial amounts
of pollen into the air during their reproductive season. Certain pollen grains contain allergenic sub-
stances that can trigger hypersensitivity reactions in human bodies, often termed as pollen allergy,
which are associated with two typical symptoms: allergic rhinitis and allergic asthma (Erbas et al.
2012). In certain severe cases, such as when triggering asthma, pollen allergies can be life-threatening.

Seasonal allergies and asthma impose significant health burdens, with an estimated 10%–30% of
the global population afflicted by allergic rhinitis (or hay fever) and 300 million people worldwide
affected by asthma (Pawankar et al. 2011). Pollen allergy has become increasingly prevalent globally,
with Austria, the United States, and Italy reporting incidence rates of 16.4%, 14.5%, and 15.1% of
their total populations. In China, pollen allergy is a significant factor in approximately 30% of aller-
gic rhinitis patients, affecting tens of millions. Prevalence of this allergy is showing an upward trend
and billions of dollars are spent annually on the treatment of pollen allergy in many countries
(Bicakci et al. 2017; Rodinkova et al. 2018).

Urban green spaces play an important role in urban residents’ well-being and offer valuable eco-
logical services, such as mitigating air pollution, sequestering carbon and regulating temperature
(Reyes-Riveros et al. 2021; Sodoudi et al. 2018). However, the inappropriate selection of plant
species for planting can produce large amounts of allergenic pollen, posing a considerable threat
to human health (Cariñanos and Casares-Porcel 2011; Werchan et al. 2017). Moreover, with
rapid urbanization and global warming, factors such as rising temperatures, hard surfaces and
air pollution have accelerated the spread of pollen with enhanced allergenicity (Carlsten and
Rider 2017; D’Amato et al. 2016; Ziska et al. 2011).

Given the above, accurate prediction of airborne allergenic pollen concentration is urgently
needed to alert the relevant population to take necessary precautions, hence reducing the incidence
of hay fever and alleviate the burden on public medical resources. Fortunately, countries with high
allergy prevalence and committed public health efforts, such as Australia, United States, United
Kingdom and Germany, were among the first to establish real-world pollen forecasting systems,
contributing to improved allergy and public health management. For example, the GermanMeteor-
ological Office (Deutscher Wetterdienst – DWD) provides daily pollen forecasts, including grass,
tree and weed pollen; Japan and Australia mainly provide pollen forecasts for urban areas; The
Met Office’s comprehensive pollen forecast system provides pollen concentrations for various
regions in the UK for the next five days; Spain, the United States, China and other countries also
have their own pollen forecast services and can distinguish different allergenic pollen categories.
While a single country is universally recognized as the best, these examples illustrate global
efforts to improve the accuracy of pollen forecasting systems, with ongoing progress being made
to benefit individuals with respiratory conditions.

Nonetheless, a timely review of the progress related to airborne allergenic pollen concentration
forecasting is still lacking, preventing us from identifying key knowledge gaps and prioritizing future
research directions that can lead to improved forecasting results. As such, here we performed a com-
prehensive review to summarize the recent advances in forecasting airborne allergic pollen concen-
tration (Figure 1). The hope is to shed light on the importance of advancing pollen prediction
capabilities, which can significantly contribute to public health and enhance our ability to mitigate
the impact of pollen allergies on society, eventually leading to sustainable urban green space planning.

2. What data can be utilized for predicting pollen concentration?

Pollen concentration forecasting commonly relies on several essential datasets, including aerobiol-
ogy data (pollen concentration and classification), meteorological data (air temperature, precipi-
tation and wind speed), vegetation distribution and phenology data (flowering date), as well as
emerging geospatial big data.
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2.1. Aerobiology data

Aerobiological data collected either manually or by automatic monitors encompass the records of
biological aerosols present in the atmosphere, such as pollen, spores, bacteria and viruses (Fennelly
et al. 2017; Núñez et al. 2016). These records hold important information about the airborne dis-
tribution and temporal variation of biological particles and are thus critical to the development and
validation of pollen concentration forecasting models (García-Mozo et al. 2014).

Numerous regions and countries have established pollen monitoring networks, such as
European Pollen Monitoring Program, National Allergy Bureau in the USA and Australian
Pollen Allergen Partnership (AusPollen) (Beggs et al. 2018; Buters et al. 2018). Despite the growing
emphasis, current pollen networks remain limited to a few major cities, leading to a serious lack of
sufficient geographic coverage and spatial continuity (Oteros et al. 2019). To partially relieve this
issue, attempts have been made to interpolate pollen data in unmonitored areas using Kriging or
Convolutional Neural Networks (CNNs) techniques (Lops et al. 2020; Navares and Luis Aznarte
2019). These methods help bridge data gaps, although their accuracy is still highly dependent on
the density of the available sampling points and the topographic heterogeneity.

2.2. Biometeorological data

Meteorological conditions play a critical role in modulating the timing of pollen production and
release, as well as the direction and speed of dispersal in the air. Numerous studies have demon-
strated a strong correlation between meteorological conditions and airborne pollen concentrations
(Dorota 2013; Oduber et al. 2019). Factors such as temperature, dew point, wind speed, wind direc-
tion, humidity, and precipitation have been shown to exhibit both short-term and long-term effects

Figure 1. Conceptual diagram of the major factors related to pollen concentration forecasting.
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on the seasonal patterns of airborne pollen, making them valuable predictors for explaining the spa-
tio-temporal pollen dynamics (Cristofori et al. 2020; Howard and Levetin 2014).

While previous studies have mostly relied on direct correlations to develop prediction models,
the intricate nature of the pollen release process and plants’ sensitivity to multiple meteorological
factors have highlighted the need for a more sophisticated and systematic approach. As such, Bio-
meteorological Indices (BI) that incorporate various meteorological parameters have been proposed
to better predict pollen outbreak dates (Navares and Luis Aznarte 2017). Examples of BI include
heat indices (e.g. annual average temperature and accumulated temperature) and moisture indices
(e.g. annual precipitation, precipitation variation coefficient, etc.). A study showed that a multiple
regression model using BI as input tended to outperform a model using solely meteorological vari-
ables in predicting the release of pollen from olive trees (Oteros et al. 2013). By considering multiple
meteorological variables and biometeorological indices, researchers were able to improve the accu-
racy of pollen concentration predictions and gain a deeper understanding of the complex inter-
actions between meteorological conditions and pollen release (Rojo et al. 2021).

2.3. Vegetation distribution and phenology data

Plant flowering phenology is generally divided into early flowering, peak flowering, and late flower-
ing stages, with different species having distinct flowering phenology. Therefore, it is crucial to
understand the spatial distribution of urban plant species and their phenologies (seasonal growth
and development changes) to improve the spatiotemporal representativeness of pollen concen-
tration forecasting (Devadas et al. 2018; Yang, Zhu, and Zhao 2022). Traditional ground-based
phenology monitoring is limited in space and is labour-intensive. In contrast, satellite remote sen-
sing can effectively provide high-resolution and large-scale synchronous observations, facilitating
the study of the spatiotemporal distribution of plant species and phenology across the hetero-
geneous urban landscape (Devadas et al. 2018; Li et al. 2017; Li et al. 2019; Li et al. 2022).

In addition to spaceborne sensors, tower-mounted high-resolution timelapse digital cameras
(also known as PhenoCams) can acquire very detailed plant growth and phenology information
(Brown et al. 2016; Cui et al. 2019; Klosterman et al. 2014; Richardson et al. 2018). These cameras
are installed close to the Earth surface, enabling them to provide high-frequency imagery and
remain relatively unaffected by clouds and aerosols (Tran et al. 2022; Zhang et al. 2018).
PhenoCams capture plant growth and continuously record key phenological events, including
leaf unfolding, flower blooming, and fruit ripening, thereby revealing plants’ responses to seasonal
and inter-annual environmental changes (Liu 2021) (Figure 2). Furthermore, by utilizing advanced
imaging sensors, PhenoCams offer a remarkable opportunity for analyzing spatial heterogeneity,
producing digital images of land cover scenes with sufficient temporal and spatial details (Baumann
et al. 2017; Ma et al. 2022). Therefore, in highly heterogeneous urban spaces, PhenoCams serve as
an innovative and valuable tool for investigating phenological disparities among various plant
species, which are associated with different pollen types, and further revealing the spatial
distribution of potential pollen sources in the urban landscape (Zhang et al. 2018).

2.4. Geospatial big data

Geospatial big data encompasses two main categories based on the types of sensors used and the
objects recorded: big Earth observation data and big human behavior data (Pei et al. 2020). Here
‘big’ highlights the large volume compared to traditional statistical or survey data, and ‘geospatial’
means that all data are geospatially registered with accurate geographic coordinates and time/date
information. This characteristic makes them ready for further integrated analysis with other geos-
patial data in a GIS system (Chen et al. 2016; Yang et al. 2017). In this section, we focus solely on the
latter. Human behavior data are records of various human activities, such as movement patterns,
social interactions, and consumption behaviors, primarily obtained through smart devices, social
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media platforms, and navigation systems. The applications of human behavior data are wide-ran-
ging, ranging from disease epidemiology research, health services, environmental exposure assess-
ment, and studies on human mental health (Gruebner et al. 2017; Pei et al. 2020; Wang et al. 2022).

In recent years, search engines like Google, Bing, and Baidu, as well as social media platforms
such as Twitter, Facebook, Instagram, and Weibo, have become significant sources of public medi-
cal information (Andreu-Perez et al. 2015; Jing et al. 2023). In the context of pollen allergies, studies
have found that a considerable number of affected individuals turn to the Internet to search for
symptoms and medical advice (Bousquet et al. 2019; Straumann et al. 2010). As traditional pollen
monitoring stations are limited to certain locations within specific cities (Huete et al. 2019), scien-
tists are exploring the potential of supplementing pollen data for regions without in situ pollen
monitoring by using Google Trends or the Baidu Index, which are services that can analyze the
popularity of top search queries (Andreu-Perez et al. 2015; Hall et al. 2020; Navares and Luis
Aznarte 2019).

Geospatial big data, such as those from Google Trends, offer valuable insights into the dynamics
of the pollen season of targeted areas, aiding in pollen concentration forecasting and supporting
public health initiatives related to pollen allergies (Bastl et al. 2014; Karatzas et al. 2014). Studies
have found a positive association between the frequency of Google searches for terms like ‘hay
fever’, ‘allergies’, and ‘runny nose’ and local pollen concentrations. However, different countries
have different understandings and search methods for allergy terms, which may have an impact
on the statistical results (Bousquet et al. 2017; Kang et al. 2015) (Figure 3). Therefore, when incor-
porating geospatial big data, such as Google Trends, to assist in predicting pollen concentrations, it
is critical to take factors like geographical location, cultural diversity, and the seasonal character-
istics of pollen into consideration (Bousquet et al. 2019; Kaidashev et al. 2019).

Despite the promising potential of utilizing new geospatial big data for pollen concentration
forecasting, there are important cautions associated with these data sources. Firstly, obtaining
the precise geolocation of allergic individuals is often challenging due to technical constraints
and privacy considerations (Leyens et al. 2017). Secondly, internet and social media usage may
not be evenly distributed among countries, regions, and age groups, leading to potential biases

Figure 2. Multi-scale remote sensing monitoring of plant species distribution and phenology. A(upper left): Near-surface, UAV,
and satellite-based remote sensing, source: Katal et al. (2022); B(lower left): EVI (Enhanced Vegetation Index, a remote sensing
measure of vegetation greenness) time series depicting vegetation growth and phenology, source: Li et al. (2019); C(right): inte-
grated use of a pollen trap, PhenoCam, meteorological station, and satellite to achieve multi-scale and multi-metrics monitoring
of grass pollen dynamics in southeast Australia; source: Liu (2021).
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in incidence reports. Lastly, the choice of keywords used to identify relevant social media feeds and
searches can significantly impact the accuracy of data analysis (Gesualdo et al. 2015). Given these
limitations, further research is necessary to fully explore the potential of geospatial big data in fore-
casting airborne pollen concentrations while explicitly considering the aforementioned constraints
(Table 1).

3. What models can we use to predict pollen concentration?

3.1. Empirical models

Empirical models correlate pollen concentration with one or more independent variables (e.g.
meteorological and phenological factors). These models identify the predictors that have a signifi-
cant impact on pollen concentration and use established correlations to make predictions. Com-
monly employed methods for constructing empirical models encompass general statistical

Figure 3. Correlation between Google Trends (GT) outcomes for Allergic Rhinitis (AR) and real-world epidemiological data
(r = 0.928, P < 0.001). Source: Kang et al. (2015).

Table 1. Summary of data sources used in forecasting pollen concentrations and their limitations.

Data Usage Limitations References

Aerobiological data Calibration and validation of
pollen forecasting models

Long-range transmission events, where
the collected pollen data are not
representative of the actual
concentration at the site;

Scheifinger et al.
(2013), Oteros et al.
(2019)

Biometeorological
data

Model input data; investigate
relationship between climate
change and pollen season

the same meteorological factor has
different effects on the spread of pollen
release;

Tseng et al. (2018),
Bogawski, Grewling,
and Jackowiak (2019)

Phenology index Flowering-related phenological
information as model input

Highly accurate weather information is
difficult to obtain; especially in
heterogenous urban heat/light
environment.

Huete et al. (2019), Li
et al. (2019)

Geospatial big data Supplement pollen count data;
Provide direct human physical
and mental reactions to pollen
allergy.

Correlated with the frequency of Internet
use and search terms; There is no
uniform data clearance and
standardization protocols;

Kaidashev et al. (2019),
Hall et al. (2020)
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Table 2. Summary of empirical pollen forecasting models, their applicability and limitations. Explanations of the abbreviations are provided below the table.

Methods Input Output Applicability Limitations References

General
statistical
analysis

Calendar model Past pollen concentrations;
Past phenology
observations

Trend and duration of
future pollen season

Routine seasonal forecasting Over-reliance on authentic pollen
records;

Not sensitive to climate change

Jae-Won et al. (2012),
Calderón-Ezquerro et al.
(2016)

Regression
analysis; GAM

Past pollen concentrations;
Past phenology
observations;

Meteorological parameters

Shape and duration of
future pollen season

Seasonal forecasting when there is
strong interannual
meteorological variability

Multiple regression relationship is
complex

Novara et al. (2016),
Charalampopoulos et al.
(2018)

Time- series
analysis

ARMA (S/ARIMA)
STL

Past pollen concentrations;
Seasonal characteristics

Future airborne
concentrations of
pollen

Pollen forecasting for specific
studies where the timescale is
important

Pollen concentration is a non-
stationary sequence

García-Mozo et al. (2014),
Scheifinger et al. (2013)

Machine
Learning

ANN; RF; SVM; Past pollen concentration;
Past phenology
observations;

Meteorological parameters
and thresholds

Complex modeling among factors
associated with pollen
concentration

A large amount of sample data is
required; feature selection has a
great impact on the model

Zewdie et al. (2019a), Huete
et al. (2019)

Stochastic
approach

HMM Past pollen concentration;
Vegetation phenology;
Meteorological
parameters;

Future SPIn Seasonal forecasting when pollen
concentrations are influenced by
stochastic variations

Current state relies only on the
previous; Interruption of the cycle
is not considered;

Tseng et al. (2020)

Abbreviations: GAM (Generalized Additive Model), ARMA (Autoregressive Moving Average), ARIMA (Autoregressive Integrated Moving Average), SARIMA (seasonal Autoregressive Integrated Moving
Average), STL (Seasonal-Trend decomposition using LOESS), ANN (Artificial Neural Network), RF (Random Forest), SVM (Support Vector Machine), HMM (Hidden Markov Model), SPIn (Seasonal
Pollen Index).
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analysis, time series analysis, machine learning, and stochastic approaches (Astray et al. 2016;
Bonini et al. 2015; Suanno et al. 2021). Table 2 summarizes the various empirical models. The
basic concept and latest progress related to each model type is discussed in the following section.

3.1.1. General statistical analysis
The Calendar model identifies the potential timing of pollen outbreaks in a given year by analyzing
pollen season characteristics and aerobiological data. It typically presents the concentration and
duration of various airborne allergenic pollens through visual graphics (e.g. Figure 4). The pollen
calendar holds clinical utility in managing allergies by allowing patients to adjust their travel plans
and aiding hospitals to proactively allocate medical resources. However, the limitation of the calen-
dar model is that it primarily relies on historical observations of pollen concentration and does not
fully account for the potential impacts of year-to-year climate variability, land use changes, and
other factors that can affect the pollen season. To address this limitation and accommodate changes
in flowering time caused by climate change, the pollen calendar requires regular evaluation and
updates.

The standard calendar model is typically based on historical records to estimate pollen levels for
a specific area. This approach involves averaging or taking the median of past pollen concentrations
for the same dates in previous years (Šikoparija et al. 2018). While this approach smooths out short-
term seasonal variations in pollen concentration, it conceals daily fluctuations in pollen concen-
tration, limiting its usefulness for allergy sufferers to manage their symptoms effectively.

Recently, improved calendar models have been developed to employ pre-processed signals
obtained through moving averages or moving medians. By utilizing sliding window smoothing
techniques, the improved calendar model predicts the pollen concentration for a specific day by
averaging or taking the median of the pollen concentrations from surrounding days (Martínez-Bra-
cero et al. 2015; Picornell et al. 2019; Shin et al. 2020). Moving averages can attenuate the impact of
large fluctuations in pollen concentration and hence have the potential to capture the daily

Figure 4. Pollen calendar for Seoul, South Korea. Source: Kim, Han, and Oh (2021).
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variations in pollen concentration more accurately than traditional models, providing better flexi-
bility to allergy sufferers or hospitals.

A regression analysis establishes the relationship between past pollen concentrations and one or
more meteorological factors and predicts future pollen concentrations based on meteorological
forecast. Several methods are commonly used in regression analysis, such as stepwise or backward
elimination in multiple regression, which systematically eliminates less influential factors from the
model and retains the most significant ones (Murray and Galán 2016; Myszkowska and Majewska
2014). Logistic regression is another valuable technique that assesses the impact of each feature on
pollen concentrations, offering strong interpretability and straightforward calculations (Katz and
Batterman 2019; Myszkowska and Majewska 2014). Partial least squares regression proves ben-
eficial for limited pollen concentration data and multicollinearity among predictive variables, par-
ticularly in small sample sizes (Bogawski, Grewling, and Jackowiak 2019; Oteros et al. 2014).
Furthermore, generalized linear models, an extension of the regression family, provide a conceptual
modeling framework that allows for the incorporation of nonlinear functions of explanatory vari-
ables (Devadas et al. 2018; Ravindra et al. 2019).

3.1.2. Time-series analysis
The Auto-Regressive Moving Average model is a technique utilized by aerobiologists to identify
patterns in time series data and predict the future behavior of the dependent variable, such as pollen
concentration (Sánchez et al. 2007). The widely used ARMA method, known as Box–Jenkins,
accounts for long-term trends, seasonality, uncertainty, and random disturbances in time series
data. The underlying principle involves treating the pollen concentration time series as a random
process and employing a mathematical model to describe or simulate it. Once the model is deter-
mined, past or present pollen concentration time series can be leveraged to predict future pollen
concentrations (RodrÍguez-Rajo et al. 2006; Sánchez et al. 2007).

In comparison to general statistical models, the ARMA model can provide more accurate pre-
dictions by considering nonlinear temporal changes in pollen concentrations and incorporating
time-varying information (García-Mozo et al. 2014). However, the ARMA model assumes that
the time series of independent variables remains stationary and that the structure or development
pattern of the time series remains constant over time, both in the past and future. As a result, it is
recommended to continually recalibrate the original fitted model with new observations should the
model be applied for future use cases.

Seasonal-Trend decomposition by Loess (STL) is a method for decomposing a time series into
three components: trend, seasonality, and remainder (residuals). Specifically, STL effectively
extracts seasonal and trend features from the original pollen concentration time series data (Rojo
et al. 2017). The technique boasts several advantages, including its simplicity and computational
efficiency, robustness in yielding reliable results, and the flexibility to handle varying seasonal com-
ponents. While widely used in the natural sciences, STL has recently gained popularity in aerobio-
logical research (Aguilera et al. 2015; García-Mozo 2017; García-Mozo et al. 2014). STL methods
offer distinct advantages when it comes to detecting and understanding long-term trends in pollen
seasons. However, it assumes that the trend is linear, which may ignore the impact of nonlinear
factors (e.g. urbanization and population increase) on the trend decomposition (Lara et al. 2019).

3.1.3. Machine learning
Artificial Neural Network (ANN) is a powerful tool capable of learning and capturing nonlinear
relationships from complex, noisy, and incomplete data. By iteratively processing input variables,
such as weather and environmental factors, along with output data on pollen concentrations,
ANN significantly enhances the predictability of the trained network (Astray et al. 2016; Zewdie
et al. 2019b). Additionally, ANN can be integrated with the fuzzy rule-based systems to form a
neuro-fuzzy model, which exhibits higher prediction accuracy, particularly when the pollen con-
centration exceeds 50 grains/m3 (Sánchez et al. 2007). In addition, the Multilayer Perceptron
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(MLP) stands out as an advanced approach for forecasting pollen concentration. When there is a
long sequence of pollen concentration dataset and the data variability is small, the prediction results
of the MLP model tend to be more accurate (Csépe et al. 2020).

Other machine learning methods, such as random forest and support vector machines, have also
been applied in forecasting pollen concentrations (Bogawski, Grewling, and Jackowiak 2019;
Navares and Luis Aznarte 2017; Nowosad et al. 2018; Zewdie et al. 2019a; Zewdie et al. 2019b).
Although machine learning performs better at predicting multivariate and nonlinear data, model
performance depends heavily on the quality of the training data. Overfitting occurs when training
becomes more rigorous and this issue is often addressed through cross-validation (Am Seo et al.
2020). In addition, there is a need to develop models that take into account long-term vegetation
changes and regional and annual variations in pollen production (Daood, Ribeiro, and Bush
2016). Therefore, different machine learning methods should be compared to identify the best-per-
forming model for specific uses.

3.1.4. Stochastic methods
The Hidden Markov Model (HMM) offers a valuable approach for unraveling the intricacies of
plant flowering. A Markov process, also known as a Markov chain, is a probabilistic model that
describes a sequence of events. In this model, the likelihood of transitioning from one state to
another relies solely on the current state. In the context of plant flowering, these states could rep-
resent various growth stages or the essential environmental conditions required for flowering.

By employing HMM to model flowering dates, we can predict the probabilities of transitioning
between different flowering states. HMM incorporates observable variables (e.g. flowering stages)
and hidden variables (e.g. environmental factors influencing flowering). By incorporating relevant
environmental factors such as temperature, humidity, soil moisture, and day length within the
HMM, a more comprehensive model for predicting the flowering date outcome can be established.
For example, Tseng et al. (2020) applied stochastic models to pollen forecasting using 22 years of
data from Hokkaido, Japan. The proposed model achieved accuracies of 83.3% in the training
period and 75.0% in the validation period. The model was specified by a transition matrix where
the observed sequence was linked to the meteorological conditions of the previous summer, gov-
erned by an implicit state with an emission distribution (Tseng et al. 2020).

The primary advantage of using an HMM is to predict how likely it is for a plant to move from
one flowering stage to another. For instance, given certain conditions, how likely is it for a plant in
the ‘budding’ state to move to the ‘early flowering’ state? However, HMM is based on the Markov
assumption, which implies that the next state is only dependent on the previous state and indepen-
dent of earlier or future states. In pollen concentration prediction, however, future pollen concen-
tration levels may be influenced by multiple past states, not just the immediate previous state.
Additionally, challenges arise from the two-year periodic interruption of the Markov property
(Tseng et al. 2018).

3.2. Process models

Process models for forecasting airborne pollen concentration can be broadly categorized into
Phenology Model (PHM) and Dispersion Model (DPM). These models rely on plausible biological
and physical mechanisms to understand the relationship between airborne pollen concentration
and biotic and abiotic factors. Table 3 summarizes the various process models, which will be
reviewed in more detail in the following section.

3.2.1. Phenology model
The Phenology Model (PHM) is based on the assumption that the pollen season aligns with the
flowering period and is used to predict the onset, peak, and end of the pollen season (Linkosalo
et al. 2010; Scheifinger et al. 2013). The fundamental factors controlling the seasonal development
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Table 3. Summary of the major features of the process-based pollen prediction models.

Types Methods Assumption Applicability Limitation References

Phenology
Model
(PHM)

Forcing and
chilling
temperature

Sequential, Parallel,
Alternating,
Deepening Rest

Pollen season start is defined by a
combination of chilling and forcing units;

Prediction of flowering
season characteristics;

More targeted pollen
forecasts

Long-distance transport of
pollen introduces errors;
Complexity of Biological
Responses

Rodríguez-Rajo et al. (2009),
Scheifinger et al. (2013),
Linkosalo et al. (2010),
Picornell et al. (2019)Photoperiod and

water
availability

– Photoperiod defines the start date of
temperature accumulation; Flowering
season is determined by the weather.

Generalised
phenological
model

Unified model Plant responses to combinations of
environmental factors can be simulated by
models

Numerical model Statistic Pollen dispersion is modelled from the
relation between pollen concentrations
and meteorology

More useful as a sub-
model of a complex
model

High-resolution simulations
can be computationally
intensive

Helbig et al. (2004),
Scheifinger et al. (2013)

Dispersion
Model
(DPM)

Mechanistic
model

Eulerian (COSMO-ART;
KAMM/DRAIS/
MADEsoot; SILAM
Eulerian)

Analysis method: Pollen is modeled as a
continuum and its future concentration at
a point in a fixed grid is calculated based
on the advection diffusion equation

Assessment of pollen
dispersion

Inaccurate representation of
turbulence dispersion in
complex terrain

Schueler & Schlünzen,
(2006), Sofiev et al. (2015)

Lagrangian (CALMET/
CALPU; SILAM
SMOP-2D)

Simulation method: pollen diffusion by
simulating the trajectory of a single
particle

Handle the intricacies of
complex terrains and
atmospheric conditions

Difficulty in simplifying
biological information, and
high computational costs

Hidalgo et al. (2002). Sofiev
et al. (2013, 2006), Müller-
Germann et al. (2017)
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of plants encompass chilling temperature, forced temperature, photoperiod, and water availability
(Migliavacca et al. 2012; Siniscalco et al. 2015). In temperate trees, low temperature (breaking bud
dormancy) and forced temperature (stimulating bud development) are believed to drive flowering,
while the pollen seasons of herbaceous taxa and tropical and Mediterranean trees are often associ-
ated with precipitation and photoperiod.

Andersen (1991) was among the pioneers who applied PHM to aerobiological studies, using
‘cooling units’ and ‘hours of growth length’ to predict the onset of pollen seasons for Danish
alder, elm, and birch. Siniscalco et al. (2015) evaluated the performance of several temperature-
based phenology models in predicting the pollen season onset in a densely populated urban area
(Turin, Italy) using airborne pollen records collected between 1983 and 2009. However, uncontrol-
lable and quantifiable uncertainties associated with phenology models arise frommodel drivers, pri-
marily caused by unpredictable changes in future climate (Suanno et al. 2021). In addition, PHM
lacks consideration of long-distance pollen transport, which may lead to time discrepancies
between phenological events in source areas and pollen outbreaks in sink areas (Scheifinger et al.
2013).

Numerical models employs regression equations to simulate pollen dispersal by establishing
correlations between weather conditions and the amount of pollen released into the atmosphere.
These models provide future predictions of airborne pollen concentration for specific locations
(Helbig et al. 2004; Scheifinger et al. 2013). The approach was initially introduced by Kawashima
and Takahashi (1999), who calculated potential pollen release based on correlations with hourly
air temperature, wind speed, and estimated male flower counts derived from summer temperature
changes (Kawashima and Takahashi 1999). Subsequently, the model was enhanced by incorporat-
ing the biological characteristics of pollen-producing plants.

3.2.2. Dispersion models
Pollen dispersal is facilitated by air mass motion and turbulence, hindered by gravity (dry depo-
sition) and precipitation (wet deposition), and influenced by the chemo-physical changes that
occur in the pollen during its journey. Although about 90% of wind-borne pollen grains fall within
a relatively short distance range of 100 to 2700 m from their source, the remaining 10%may become
entrained into the atmospheric turbulence layer, spreading hundreds to thousands of kilometres
(Green et al. 2018; Sofiev et al. 2006).

Dispersion models employ mathematical formulations of atmospheric transport and dispersion
to calculate concentrations at various distances from known sources (Cai et al. 2019; Skjøth et al.
2009). By considering environmental factors and pollen characteristics such as shape, density,
and size, dispersion models describe the dynamics of atmospheric pollen distribution and can effec-
tively map distant pollen sources (Sofiev et al. 2006; Zink et al. 2012).

A mechanistic model requires very comprehensive inputs, including source plant distribution
maps, pollen emission sub-models, past pollen season characteristics, detailed topographic infor-
mation, and weather forecasts (Sofiev and Bergmann 2012). These models are derived from the
principles of atmospheric physics that describe the motion of particles in the air, and they consider
factors such as gravity, wind speed, and turbulence to simulate pollen dynamics based on concur-
rent environmental conditions. Mechanistic models are based on the advection–diffusion equation,
which can accurately describe the non-inertial motion of pollen (Sofiev et al. 2006).

There are two main approaches used in mechanistic models: the Eulerian method and the
Lagrangian method. In the Eulerian method, particles in the air are considered as a continuum
and modeled as a concentration field on a fixed grid in space and time (Jia et al. 2021; Nguyen
et al. 1997). In contrast, the Lagrangian method treats particles in the air as discrete phases and
models their independent paths in continuous space by deforming the grid coordinates.

The Eulerian model, often adapted from existing mesoscale models of air pollution dispersion
and combined with meteorological models, forecasts pollen concentrations in specific regions
(Sofiev et al. 2015). The Lagrangian Stochastic (LS) turbulence model, such as the SMOP-2D
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model, simulates the paths of individual pollen grains from release to deposition. The LS model is
particularly useful for long-distance pollen dispersion and can provide more accurate estimates of
observed pollen concentrations compared to some classical Eulerian models (Müller-Germann
et al. 2017)(Müller-Germann et al. 2017). However, terrain complexity in the study area can
pose challenges for modeling particle trajectories (Sofiev et al. 2015; Sofiev and Bergmann 2012).

4. What are the existing challenges and future perspectives?

Over the years, the forecast of urban allergenic pollen has seen significant progress in monitoring
methods, data sources, and model complexities. However, several prominent challenges still persist.

First, the availability of pollen monitoring stations remains critically insufficient, and the data
from different stations often lack standardization in terms of data structure and recorded infor-
mation. As a result, researchers and users often face the burdensome task of data pre-processing
and clearance.

Second, obtaining high-precision plant species distribution and phenological period infor-
mation is challenging due to the limited spatio-temporal resolution of satellite remote sensing
data and a lack of georeferenced plant distribution information. In many cases, researchers resort
to using coarse land cover or vegetation-type maps, which may lead to artificial boundaries among
vegetation classes and unrealistic homogeneity within classes.

Third, the development and calibration of pollen forecast models are often localized, making it
difficult to apply them to different geographical locations. There is a significant lack of critical
knowledge about which types of models are most suitable for specific landscapes, population den-
sity, climate backgrounds, and biological sources of pollen grains.

Last but not least, a disconnect between scientific research and practical application hinders the
timely and accurate dissemination of forecast information on allergenic pollen concentration to the
public. Given the considerable financial burden associated with treating pollen allergies, it is sur-
prising to observe a relatively limited amount of Research & Development investment into the
building of a reliable allergenic pollen forecasting capability.

In light of the challenges listed above, here we suggest several key perspectives that future studies
should focus on.

(1) Designing consistent pollen data sampling and processing protocols. It is essential to ensure
that data from different locations and times can be utilized in a consistent manner for model
calibration and validation. This becomes particularly crucial in rapid urbanizing areas where in
situ data from surrounding cities or suburbs may need to be incorporated to achieve reliable
forecasting. The lack of comparability in pollen concentration results obtained from different
locations can impede large-scale pollen transport modelling research. By implementing stan-
dardized approaches for pollen data sampling and processing, the availability of data from
existing pollen monitoring stations can be improved (Bastl et al. 2023). In addition, providing
accurate and detailed metadata on site characteristics, data continuity, collection procedures,
and counting processes is crucial to enable the use of pollen records in concentration predic-
tion studies (Buters et al. 2018). Learning from the ongoing development of regional pollen
monitoring networks, such as the AusPollen network, can establish good practices that
could be adopted by other regions (Davies et al. 2022).

(2) Accurate urban spatial species distribution information. High-resolution species classifi-
cation plays a vital role in predicting potential pollen allergens and planning healthy urban
environments. Cities are known for their high plant species richness compared to rural
areas (Knapp et al. 2008), making it essential to have precise distribution patterns of species
within urban spaces. This information can be gathered through field surveys or high-resolution
airborne or satellite remote sensing imagery (Bohovic, Dobrovolny, and Klein 2016; Davies
et al. 2022). Utilizing remote sensing data such as from the PlanetScope constellation
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(∼3 m) and GF-1/6 (<10 m) can provide daily and seamless multi-spectral observations with
high spatial resolution. When combined with field surveys and machine learning algorithms,
these satellite data offer an excellent opportunity to generate and update species distribution
maps within urban areas and the suburbs.

(3) Timely plant phenology information. Having timely and accurate plant phenology infor-
mation is highly valuable for predicting the onset of flowering seasons, especially considering
the altering flowering patterns of various plant species in temperate regions under climate
change (García-Mozo 2017; Hájková et al. 2023). It is now possible to integrate satellite remote
sensing and in situ PhenoCams to resolve highly heterogeneous urban phenology. Advances in
satellite remote sensing, such as the use of micro-nano-satellites constellations allow for
improved spatial coverage and temporal–spatial resolution through multi-satellite coordinated
observation. A recent study by Miura et al. (2023) demonstrated the effectiveness of utilizing
PlanetScope satellites to obtain high temporal and spatial precision data (daily at ∼3 m) in a
dipterocarp rainforest in Malaysia (Miura et al. 2023). The researchers focused on selected
tree species, analyzing their flowering phenology and comparing the results with in situ Phe-
noCam observations. The multitemporal PlanetScope images captured the transition of tree
species’ flowering crowns into white or orange, enabling the identification of flowering
peaks and species differences. The study found a moderate to very strong correlation (0.52–
0.85) between the multitemporal image signatures and in situ phenology observations. By
leveraging these emerging new data sources, we can enhance our pollen concentration predic-
tion accuracy and deepen our understanding of pollen sources and dynamics in urban
environments.

(4) Availability of early warning information for allergy sufferers and medical institutions. In
recent years, some countries have established networks catering to individuals with pollen
allergies. These networks are dedicated to providing daily pollen counts and forecasts with
varying temporal and spatial resolutions (Geller-Bernstein and Portnoy 2019; Jones et al.
2021; Kmenta et al. 2016). For example, in the USA, ‘The Weather Channel’ offers forecasts
of pollen concentrations and respiratory comfort in specific cities up to 7 days in advance.
In Australia, the AusPollen project aims to provide accurate, relevant, and localized infor-
mation on airborne pollen concentration levels to allergy and asthma patients. Similarly, in
China, the Beijing Meteorological Bureau and Beijing Tongren Hospital have collaborated to
release daily pollen concentration data for allergenic pollens in Beijing since 2010, providing
forecasts for the upcoming 7 days. These initiatives are invaluable in equipping individuals
with pollen allergies to proactively manage their condition and make informed decisions
based on real-time and predictive pollen concentration information. As such, expanding the
present forecast services to a broader geographic area would not only reduce economic costs
but also truly benefit the public (Medek et al. 2019).

5. Conclusion

Allergenic pollen poses a serious threat to human health and well-being. To enhance the accuracy of
airborne allergenic pollen concentration prediction, it is urgent to take comprehensive and immedi-
ate actions. This entails integrating diverse remote sensing satellite data, acquiring precise veg-
etation dynamic parameters, and obtaining accurate species spatial distribution. In addition,
advancements in Internet technology and geospatial big data can further complement pollen con-
centration and human behaviors data. Finally, emerging technologies such as machine learning and
artificial intelligence can be used to integrate the complex processes of pollen production and dis-
semination, effectively improving the accuracy of pollen concentration and seasonal predictions.
However, especially in densely populated urban areas, factors such as high spatial heterogeneity,
heat island effects, land use, and human activities have a significant impact on pollen release and
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dispersion. The discontinuity of monitoring sites further limits the accuracy of prediction models,
warranting increased future R&D investment. Our review highlights the importance of the commit-
ment to transforming scientific research findings into practical applications to ensure that science
and technology effectively contribute to the improvement of human well-being. Accurate predic-
tions of pollen concentrations not only enable allergic individuals to increase prevention awareness
and manage their symptoms but also help local governments in better allocating medical resources
and conducting public health management. Finally, this provides decision-making support for sus-
tainable urban planning and development, improving the quality of life of urban residents.
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