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The metabolic clock of ketamine 
abuse in rats by a machine learning 
model
Tao Wang 1,2,3,5, Qian Zheng 1,2,3,5, Qian Yang 1,2,3, Fang Guo 1,2,3, Haiyan Cui 1,2,3, Meng Hu 1,2,3, 
Chao Zhang 1,2,3, Zhe Chen 1,2,3, Shanlin Fu 1,4, Zhongyuan Guo 1,2,3*, Zhiwen Wei 1,2,3* & 
Keming Yun 1,2,3*

Ketamine has recently become an anesthetic drug used in human and veterinary clinical medicine 
for illicit abuse worldwide, but the detection of illicit abuse and inference of time intervals following 
ketamine abuse are challenging issues in forensic toxicological investigations. Here, we developed 
methods to estimate time intervals since ketamine use is based on significant metabolite changes in 
rat serum over time after a single intraperitoneal injection of ketamine, and global metabolomics was 
quantified by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry 
(UPLC-Q-TOF–MS). Thirty-five rats were treated with saline (control) or ketamine at 3 doses (30, 60, 
and 90 mg/kg), and the serum was collected at 21 time points (0 h to 29 d). Time-dependent rather 
than dose-dependent features were observed. Thirty-nine potential biomarkers were identified, 
including ketamine and its metabolites, lipids, serotonin and other molecules, which were used for 
building a random forest model to estimate time intervals up to 29 days after ketamine treatment. 
The accuracy of the model was 85.37% in the cross-validation set and 58.33% in the validation set. 
This study provides further understanding of the time-dependent changes in metabolites induced by 
ketamine abuse.
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Ketamine [2-(O-chlorophenyl)-2-(methylamino)-cyclohexanone], a nonnarcotic analgesic, is a phenylcyclohexy-
lamine derivative consisting of its two optical enantiomers, (S)- and (R)-ketamine1. Due to its short half-life, 
quick onset, lack of clinically significant respiratory depression and the possibility of inhalation to maintain the 
anesthetic  state2–4, it is used clinically as an anesthetic in human and veterinary medicine. However, ketamine 
can cause the emergence of delirium, which consists of hallucinations and an altered sensory  state5, leading 
to recreational misuse in clubs and drug-facilitated sexual  assault6. Therefore, ketamine is also classified as a 
Schedule III substance by the US Food and Drug Administration and as a Class B drug in the UK owing to its 
putative addiction  liability7. There has been an apparent increase in the use of ketamine as a drug of abuse (party 
drug) globally in recent  years8, which increases the challenge in the detection of cases related to ketamine abuse.

To date, there have been many studies on the  mechanisms9,  metabolism4,  pharmacokinetics10,11, and 
 detection12–15 of ketamine. However, few studies have investigated the time interval following ketamine abuse. 
Inference of the time interval following drug abuse is a challenging issue in forensic science. It can provide strong 
clues to the location of the suspect’s drug use, the situation of the person who committed the joint crime, and 
even the location of the drug trafficking den. The inferences of time intervals, in some rapid deaths, depend on 
witnesses, police reports and the circumstances surrounding the  death16,17. Although useful, such studies are 
limited in their ability to determine survival times, as many overdose deaths occur without  witnesses18. Addition-
ally, detecting the metabolites of drugs may be a popular choice for estimating the time of death or time of drug 
use. For example, in a heroin-related death, the presence of  O6-monoacetyl morphine in the blood may indicate a 
more rapid death, typically less than 20–30 min in a minority of  cases17. The time interval following drug use can 
also be inferred through forensic toxicology. Our group used the blood concentration ratio of ethyl glucuronide 
(EtG) to ethyl sulfate (EtS) to estimate the length of time after drinking alcohol, with an error mostly lower than 
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10% within 8  h19. This method, however, is only suitable within a short time interval because of the relatively 
short window of detection for EtG (8–12 h) and EtS (5–12 h). Even if these approaches provide an exploration 
means to estimate the time interval since the use of drugs, they are only suitable for some well-established condi-
tions with witnesses and specific metabolites that can be detected because individual differences, environmental 
conditions, and several other variables may affect the inference of the time interval since the use of drugs.

However, metabolomics, which analyses multiple changes in the global profile, seems to be more promising 
than traditional methods for reliably estimating the time interval since the use of  drugs20 because it can quantify 
time-related multiparametric metabolites in the responses of living systems to pathophysiological stimuli or 
genetic  modifications21, and time-series metabolomic datasets are  rich22. In recent studies, metabolomics has 
revealed that the administration of ketamine causes changes in metabolites in the  urine23,  brain24, and  blood25 of 
rats. Changes in the levels of some metabolites are time-dependent26. In another study, metabolomics was used to 
establish a metabolic clock of five blood metabolites that accurately predicts gestational age and identifies labor 
onset within two, four, and eight weeks via two to three  biomarkers27. Metabolomics data have also been used 
for estimating the postmortem interval (PMI) using aqueous ovine humor samples after death for up to 24  h28. 
Taurine, choline, and succinate were found to be the metabolites most significantly correlated with the PMI.

This study aimed to infer the time interval following ketamine abuse, relying on significant changes in the 
serum metabolites of rats over time (up to 29 days) after a single intraperitoneal (IP) injection of ketamine. 
Global metabolomics data were acquired by ultra-performance liquid chromatography-quadrupole-time-of-
flight mass spectrometry (UPLC-Q-TOF–MS). The levels of ketamine and its metabolites in the serum of rats 
were measured, and short time intervals can be inferred following the use of ketamine alone. These differential 
time-dependent metabolites are used for the inference of long time intervals through machine learning. These 
significant metabolite changes may offer new insights into the biochemical processes related to ketamine. This 
approach would not only lead to constructive progress in drug control and drug rehabilitation but also become 
an irreplaceable scientific standard for more solid evidence in court fair trials and punishment of drug crimes.

Materials and methods
Chemicals and reagents
Ketamine was supplied by the Institute of Forensic Science Ministry of Public Security (Beijing, China). Water 
was purified with a Purelab Ultra Millipore filtration unit (Labtech, Villmergen, Switzerland). HPLC-grade 
acetonitrile (ACN) and methanol (MeOH) were purchased from Sigma‒Aldrich (Buchs, Switzerland). HPLC-
grade formic acid was obtained from Aladdin (Shanghai, China).

Animals and administration
A total of 18 male and 17 female Sprague‒Dawley rats (220 ± 20 g) were purchased from the Laboratory Ani-
mal Center of Shanxi Medical University, Taiyuan, China. The animal ethics approval number was SCXK (Jin) 
2015–0001. The rats were housed under 12 h light/12 h dark conditions (lights on at 6:00 and lights off at 18:00). 
The rats were kept in the room at 24 ± 2 °C and 50–60% humidity with free access to tap water and food for one 
week to acclimate to the environment. Before the experiment, the diet was removed for 12 h. A subanaesthetic 
dose of 30 mg/kg of ketamine is regarded as a recreational dose in  rodents24. To exclude the influence of this 
dose on metabolomics, a control group (n = 5, 3 male and 2 female, injected with 0.9% saline solution) and three 
ketamine-treated groups were established, including a low-dose group (n = 10, 5 male and 5 female, ketamine 
hydrochloride was dissolved in 0.9% saline and injected with ketamine at 30 mg/kg, IP), a middle-dose group 
(n = 10, 5 male and 5 female, injected with ketamine at 60 mg/kg, IP), and a high-dose group (n = 10, 5 male 
and 5 female, injected with ketamine at 120 mg/kg, IP). Blood samples (150 µL) were serially collected from 
the orbital venous plexus into centrifuge tubes just before drug administration and at 0.5 h, 1 h, 2 h, 4 h, 8 h, 
12 h, 1 d, 2 d, 3 d, 4 d, 6 d, 8 d, 10 d, 12 d, 14 d, 17 d, 20 d, 23 d, 26 d, and 29 d after drug administration. All rats 
were were humanely euthanized by  CO2 gas exposure after the experiment. Serum was separated from blood 
by centrifugation at 5000 × g for 10 min and stored at − 80 °C until further analysis. These samples were used as 
the training cohort and for screening time-dependent metabolites. All animal experiments complied with the 
ARRIVE guidelines, were approved by the Institutional Animal Care and Use Committee of Shanxi Medical 
University, and were performed in accordance with the current relevant legislation in China.

In addition, 4 male rats were injected with 0.9% saline solution or ketamine (30, 60, or 120 mg/kg, IP). Blood 
samples (150 µL) were serially collected from the orbital venous plexus into centrifuge tubes just before drug 
administration and at 1 h, 12 h, 5 d, 9 d, and 15 d after drug administration. These 24 samples were included in 
the validation cohort.

Sample preparation
Serum samples from the 35 rats in the training cohort were completely randomized and analyzed across 23 days. 
The 24 samples from 4 rats in the validation cohort were analyzed three years later. An aliquot of 500 µL of ace-
tonitrile and 20 µL of 100 µg/mL L-2-chloro-phenylalanine (internal standard) were added to 100 µL of serum 
samples and centrifuged at 13,000 × g for 10 min after ultrasonic extraction for 30 min at 4 °C. Three hundred fifty 
µL of the supernatant was dried using a vacuum concentrator (Labconco 7,810,016 Acid-Resistant  CentriVap®, 
USA). The dried samples were redissolved in aliquots of 200 μL of methanol, filtered through a 0.22 μm mem-
brane and transferred to sample vials for UPLC-Q-TOF MS analysis. Quality control (QC) samples were obtained 
by pooling 10 μL of the supernatant of each sample.
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Liquid chromatography-high-resolution mass spectrometric analysis
The untargeted metabolomics data were acquired by UPLC-Q-TOF MS analysis using HPLC on an Agilent 1290 
Infinity Binary HPLC system with a BEH C18 column (2.1 × 100 mm, 1.7 μm, Waters) coupled to an Agilent 
6550 iFunnel quadrupole time-of-flight (Q-TOF) MS instrument (Agilent, USA) equipped with a Dual Agilent 
Jet Stream (AJS) electrospray ionization (ESI) source. The MS instrument was run in positive ionization mode, 
with a full scan from 50 to 1000 m/z mass range at 1.40 spectra/s, a MS/MS scan with a normalized collision 
energy of 35 V and an isolation window of 4 m/z at 4 spectra/s. The source parameters were set as follows: dry-
ing gas temperature of 200 °C, flow rate of 14 L/min, sheath gas temperature of 350 °C, flow rate of 11 L/min, 
and nebulizer pressure of 35 psi.

The mobile phase consisted of water with 0.1% formic acid (A), and acetonitrile with 0.1% formic acid (B) 
was used to conduct chromatographic separation at a flow rate of 0.3 mL/min at 4 °C. The gradient program 
followed the Table 1. The postrun re-equilibrium time was 2 min. The injection volume was 5 μL.

Metabolomic data processing
For the serum samples from the 35 rats in the training cohort, characteristic peak extraction was performed by 
Profinder 10.0 (Agilent, USA) through automatic peak picking, filtering with the abundance higher than 5000, 
and alignment with the window of 2 min, finally generating CEF files. Then, the data were imported into Mass 
Profiler Professional (MPP, Agilent, USA), only peaks which were detected in 50% of samples in at least one 
group could be used for subsequent multivariate analysis, including principal component analysis (PCA) and 
partial least squares-discriminant analysis (PLS-DA), as well as ANOVA. Cluster analysis was achieved through 
Heml 1.0.3.729. Differential compounds were screened by a P value < 0.05 based on the abundance of peaks at 
different time points.

For the validation cohort, extraction of the characteristic peaks of the differential compounds over time was 
performed with Molecular Feature Extractor (Agilent, USA). The samples were normalized independently from 
the training cohort.

Identification of differential compounds
The identification of differential compounds relies on accurate high-resolution mass measurements of molecular 
ions and fragment ions. The accurate mass of the compound was calculated through the MS spectrum and its 
isotope pattern using MassHunter Qualitative Analysis software (version R.08.00, Agilent, USA). The result 
was searched against compound databases, such as the Metabolite and Tandem MS Database (METLIN), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), the Human Metabolome Database (HMDB) and LIPID MAPS, 
with a mass accuracy of 5 ppm to generate a list of candidate compounds. The isotopic pattern of the molecular 
ions helped to determine the likely formulas. Tandem mass spectrometry (MS/MS) spectral database matches 
were used to match the fragment ion spectra to the candidate compounds, which was considered a level 2 
identification according to the Chemical Analysis Working Group of the Metabolomics Standards  Initiative30.

Machine learning for the inference of time intervals following ketamine use
The abundances of the identified differential compounds were subjected to machine learning algorithms to 
develop a prediction model for inferring the amount of time since the last ketamine use. This study used Weka 
(version 3.8.6, New Zealand, https:// waika to. github. io/ weka- wiki/), a software package with several machine 
learning algorithms. After comparing the different algorithms, a random forest (RF) model was constructed to 
infer the time interval following the use of ketamine. Ten fold cross-validation was employed to evaluate the 
performance of the models. The complete dataset was divided into 10 sets, and in every round, 9 sets were used 
for training, and 1 set was used for testing. After the classification models were selected, the models were tested 
for sensitivity, specificity, accuracy, and the Matthew correlation coefficient (MCC). This model was then applied 
to the validation cohort for prediction and verification.

Institutional review board statement
The animal study protocol was approved by the Institute of Zoology Animal and Medical Ethics Committee of 
Shanxi Medical University.

Table 1.  The gradient program.

Time (min) A (%) B (%)

0 98 2

3 75 25

5 70 30

6 40 60

8 40 60

15 10 90

18.5 98 2

https://waikato.github.io/weka-wiki/


4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18867  | https://doi.org/10.1038/s41598-024-69805-6

www.nature.com/scientificreports/

Results and discussion
Ketamine cohort: a study of the metabolic profile of rats after a single dose of ketamine
To determine the highly dynamic metabolic changes in rats after a single dose of ketamine, we performed high-
density blood sampling at 21 time points for 29 days. The dose may affect the metabolic profile in the blood of 
rats, so three doses (low-dose: 30 mg/kg, middle-dose: 60 mg/kg, and high-dose: 120 mg/kg) were included in 
the treatment groups. To exclude the effect of blood collection on the rats, control rats treated with 0.9% saline 
solution were also sampled simultaneously at 21 time points. After removing outliers, a total of 35 rats (low-
dose: 10, middle-dose: 10, high-dose: 10, and control: 5) and 704 samples (low-dose: 205, middle-dose: 209, 
high-dose: 192, and control: 98) from the training cohort were analyzed using the UPLC‒Q‒TOF MS method 
for untargeted metabolomics analysis. In addition, another separate set of 4 rats (1 low-dose, 1 middle-dose, 1 
high-dose, and 1 control) with 24 samples was included as the validation cohort.

A total of 2502 features were identified and quantified across 704 samples. The instrument analysis lasted for 
23 days, and 85 quality control (QC) samples were included to assess the instrument stability. The abundances 
of these 2502 features in both the training samples and QC samples were used for principal component analysis 
(PCA), in which samples were reduced dimensionally and distributed on the basis of the first two principal 
components (Fig. 1). The relative standard deviation (RSD) of internal standard in all samples was 29.58%. The 
QC samples clustered together in the score plot, indicating that the stability of the instrument was satisfactory 
and that further data analysis could be continued.

Time-dependent changes in the metabolic profiles
To clearly observe the metabolomic changes over time, the abundances of the same metabolite at the same time 
point at the same dose were averaged, and the QC samples were also removed to generate a new PCA score plot 
(Fig. 2). Samples with the same dose clustered together, and the distance among samples with the same dose was 
greater than the distance among samples at the same time point. It might be deduced that the dose had a greater 
effect on the serum metabolome of the rats than did the administration time. This research suggested that the 
dose of a drug should be considered when studying its influence on serum metabolomics. The metabolic profiles 
in all 4 groups showed a time-dependent trend: samples whose sampling time was within 4 h showed obvious 
separation from samples at other time points. As time progressed, the metabolic profiles gradually became closer 
to those of the other samples when no ketamine was administered. This result suggested that the rats might have 
undergone a strong stress response and metabolic disorder initially, followed by an adaptive recovery process 
resulting in a gradual stabilization of the metabolic profiles over time.

The observation of a similar metabolic profile separation between samples within 4 h and other samples in 
the control group suggested that there might be other contributing factors involved (Fig. 2a). The distance of 
metabolic profile separation in the control group, however, was greater than that in the three drug groups, sug-
gesting that ketamine might alleviate the stimulation of the metabolome induced by artificial treatment during 
blood collection, which may be related to ketamine’s clinical anesthetic effect.

Figure 1.  PCA score plot of metabolic patterns in rat serum. C control group, H high-dose group, M middle-
dose group, L low-dose group, QC quality control group.
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Strategies to predict the duration of a single dose of ketamine
Ketamine and its metabolites: potential biomarkers for short intervals after ketamine administration
The traditional method used to monitor ketamine is the detection of ketamine and its metabolites, which were 
also found in these untargeted metabolomics data. Ketamine is a chlorine-containing compound. Chlorine has 
two stable isotopes, 35Cl and 37Cl, whose natural abundances are 75.77% and 24.23%, respectively. Chlorine-
containing compounds show a characteristic distribution of chlorine isotopes that is easily recognizable via mass 
spectrometry. Based on these findings and mass fragmentation data, ketamine and its metabolites were detected 
in this study. The phase I metabolites detected included norketamine, hydroxyketamine (HK), hydroxynor-
ketamine (HNK), and dehydronorketamine (DHNK). The phase II metabolites detected included norketamine 
glucuronic acid conjugate and hydroxynorketamine glucuronic acid conjugate. Combined with previous research 
 results1,4, the metabolic pathway of ketamine was validated in this study based on this nontargeted metabolomics 
analysis (Fig. 3). Ketamine is initially metabolized via nitrogen demethylation to norketamine, which is further 
metabolized to HNK and DHNK. HNK is formed through the hydroxylation of the cyclohexyl ring of norketa-
mine at various locations, while DHNK is directly formed from norketamine or from HNK via a nonenzymatic 
dehydration event. Norketamine can also be conjugated with glucuronic acid in the serum. In addition to the 
major metabolic pathways of ketamine, several other pathways have also been studied. One of these pathways 
is the direct hydroxylation of ketamine to HK, which is readily demethylated via CYP2B6 to the corresponding 
HNK. HNK can also be conjugated with glucuronic acid in the serum. Because ketamine is a racemic mix-
ture consisting of (S)- and (R)-ketamine, its nitrogen-demethylated metabolite, norketamine, is also a racemic 
mixture. We detected 2 chromatographic peaks corresponding to the norketamine glucuronic acid conjugate. 
Due to the different locations of hydroxylation, 2 peaks of HK and 3 peaks of hydroxynorketamine glucuronic 
acid conjugate were detected in this study. Some studies have shown that 80% of ketamine and its metabolites 
are excreted in the urine as conjugates of hydroxylated ketamine metabolites with glucuronic  acid4,31,32. To the 
best of our knowledge, this is the first study to report the detection of the phase II metabolites of ketamine, i.e., 
norketamine glucuronic acid conjugates and hydroxynorketamine glucuronic acid conjugates, in blood samples. 
Other glucuronic acid conjugates were not detected in this study.

The relative abundances of ketamine and its metabolites were found to be dose dependent; that is, the higher 
the dose was, the greater the abundance was (Fig. 4). Although the trend of changes in the same metabolite in 
different dose groups was similar, the abundances of these metabolites peaked within 2 h. Compared with its 
metabolites, ketamine could be detected for the longest time—10 days. Norketamine could be detected in the 
serum of rats for 6 days regardless of the dosage given (Fig. 5). These metabolites could be used as indications 
of short time intervals following ketamine usage.

Discovery and cluster analysis of 39 time‑dependent potential biomarkers
As Fig. 2b shows, the samples within 4 h clearly separated from samples at other time points (Fig. 2b). At the 
same time, ketamine could be detected within 4 h in the three ketamine groups (Fig. 4). Therefore, ketamine 
use within 4 h can be deduced through the detection of ketamine. Subsequent analyses were based on the data 
at longer time points (8 h-29 days after a single dose of ketamine). At the same time, time-dependent features 
obtained from the three ketamine groups were intersected to obtain biomarkers that were not influenced by 
dosage. There were 484, 508, and 381 differential features in the high-dose, middle-dose, and low-dose ketamine 
groups, respectively. There were 165 overlapping features, and 39 compounds were identified (Table S1). These 
39 compounds included lipids and lipid-like molecules, ketamine and its metabolites, arachidonoyl dopamine, 
indole-3-acetamide and cis-2/3-dihydro-2/3-dihydroxy-4’-chlorophenyl.

The 39 compounds at all time points were used for PCA. In contrast to the plot in Fig. 2a, a PCA score plot 
(Fig. 6a) based on the abundance of 39 compounds showed that the samples in the control group and ketamine 
groups before administration (green) clustered together. The samples from the 3 ketamine groups showed a 
time-dependent change in the direction of principal component 1. The times were grouped from 0.5 h to 4 h 

Figure 2.  PCA score plot of metabolic patterns in rat serum. The abundance of the same metabolite at the same 
time point with the same dose was averaged.
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(blue), 8 h to 1 day (red), 2 days to 8 days (yellow), and 10 days to 29 days (azure) from left to right in Fig. 6a. 
The change induced by time was greater than that induced by dosage.

Cluster analysis of the fold change (average of the ketamine group/control group) of the 39 compounds 
revealed that ketamine and its metabolites clustered together and increased immediately when the rats were 
given ketamine. These compounds made the greatest contribution to the separation of the 0.5–4 h samples from 
the other samples (Figs. 6b and 7).

The changes in indole-3-acetamide and cis-2/3-dihydro-2/3-dihydroxy-4-chlorobiphenyl were the same as 
those in ketamine. These compounds could be used as potential biomarkers for recent ketamine use. Studies 
have demonstrated a decrease in the content of Indole-3-acetamide in rats following high-fat feeding, with a 
negative correlation observed with body  weight33. Furthermore, the body weight of rats was significantly down-
regulated after ketamine  treatment34, suggesting that ketamine may elevate the level of Indole-3-acetamide 
content to reduce body weight.

Lipids and lipid-like molecules were found to contribute significantly to the separation among longer time 
points after the use of ketamine (Figs. 6b and 7). Most lipids decreased after ketamine treatment, which may 
explain why the body weight of the ketamine group was significantly lower than that of the normal saline group 
reported by Wu and  coauthors34. PC (16:1(9E)/0:0) and LysoPC (16:1(9Z)/0:0) decreased at 70% of the time 
points after ketamine administration compared with those in the control group, making them potential biomark-
ers of a single dose of ketamine. A study revealed that alterations in the levels of LysoPC and other substances 
were associated with the dysregulation of membrane phosphatidylcholine, leading to liver  injury35. And in this 
study, LysoPC (16:1(9Z)/0:0) changed significantly, reflecting that ketamine can modify membrane phosphati-
dylcholine metabolism in rats and impair their hepatic function. Additionally, relevant literature has reported 
that ketamine can induce liver  damage36.

Figure 3.  Proposed metabolic pathway of ketamine.
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The metabolic clock of time after a single dose of ketamine determined by machine learning
We divided all samples into five time intervals: no drug (control and before administration), 0.5 h to 4 h, 8 h to 
1 day, 2 days to 8 days and 10 days to 29 days. Based on the 39 time-dependent metabolites in 704 samples from 
35 rats, a model to predict the time after a single dose of ketamine was built using Weka 3.8.6. The attributes were 
scaled, and the random forest algorithm, which is based on the tree package, was used to construct a forest of 
random trees. Ten fold cross-validation was employed to evaluate the performance of the model, including the 
accuracy, recall, precision, false-positive rate (FPR), MCC, receiver operating characteristic (ROC) curve and 
area under the curve (AUC). The results of the model are shown in Table 2 and Fig. 8a. An accuracy of 85.37% 
and an average ROC area of 0.96 indicated high accuracy. A recall of 0.85 indicated high sensitivity. The high 
MCC of 0.81 indicated that the predicted model was reliable. Then, this model was used on the 24 samples in 
the validation set for prediction and verification. The model yielded an accuracy of 58.33% and an average ROC 
area of 0.81 (Fig. 8b). The lower accuracy for the validation set may be due to different sampling time points 

Figure 4.  Changes in the abundance of ketamine and its metabolites over time.
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that were not included in the validation set. In fact, the random forest method has been utilized to construct 
metabolic circadian clocks in various fields. For instance, models predicting due date by measuring metabolites 
in the blood of pregnant  women37, metabolic clocks forecasting age by measuring metabolites in the brains of 
mice at different  ages38, and models estimating post-mortem interval by analyzing muscles of rats have all been 
developed using this  approach39. Therefore, the random forest is a reliable method to classify samples and predict 
time intervals following ketamine administration. However, it is imperative to optimize this model through analy-
sis of additional samples including human serum samples if it is to be widely applicable in practical scenarios.

Conclusions
In conclusion, this study utilized untargeted metabolomics to detect ketamine and its metabolites in serum of 
rats, which could be used for estimating the time interval of ketamine usage within a short period of time (less 
than 4 h). A total of 39 time-dependent potential biomarkers were identified, including ketamine and its metabo-
lites, lipids, serotonin, and other molecules. A random forest model based on these 39 potential biomarkers 
was established to predict the time after the last use of ketamine in rats. The accuracy of the model was 85.37% 
in the cross-validation set and 58.33% in the validation set. The model could potentially be used for inferring 

Figure 5.  Peak and limit detection times for the abundance of ketamine and its metabolites in rat serum.

Figure 6.  PCA model based on 66 time-dependent compounds at all time points. (a) Score plot. The no-drug 
group included samples from the control group and ketamine groups before administration (green). Time 1 
included samples from 0.5 h to 4 h (blue). Time 2 included samples from 8 h to 1 day (red). Time 3 included 
samples from 2 to 8 days (yellow). Time 4 included samples from 10 to 29 days (azure). (b) PCA loading plot. 
Ketamine and its metabolites (red), lipids and lipid-like molecules (green), and other potential biomarkers 
(blue).
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time intervals up to 29 days following a single dose of ketamine. Untargeted metabolomics proved to be a valu-
able tool for investigating drug metabolic pathways and estimating the time interval of ketamine use based on 
changes in the global metabolic profile of the body. These significant metabolite changes may offer new insights 
into the biochemical processes related to ketamine. The development of such an analytical tool for inferring the 
time interval following ketamine use would benefit the process of drug control and drug rehabilitation as well 
as assist in ensuring fair trials and appropriate punishment for drug-related crimes within court proceedings.

Figure 7.  Cluster analysis of 66 characteristic time-dependent metabolites. Each row corresponds to a specific 
metabolite; each column corresponds to samples at the same time points. All the values are the logarithmic 
transformation of the fold change (average of the ketamine group/control group) of the detected abundance of 
each metabolite at the same time points. Red to white indicates high to intermediate relative abundance, whereas 
white to blue indicates intermediate to low relative abundance. Red indicates that the fold change was greater 
than 1.2, indicating that the abundance of metabolites increased after the IP of ketamine, while blue indicates 
that the fold change was less than 0.8333, indicating that the abundance of metabolites decreased after the IP of 
ketamine.

Table 2.  Detailed accuracy by random forest in ten fold cross validation.

TP rate FP rate Precision Recall F-measure MCC ROC area PRC area Class

0.85 0.009 0.96 0.55 0.90 0.88 0.987 0.959 No drug

0.97 0.009 0.96 0.97 0.96 0.95 0.996 0.966 0.5 h to 4 h

0.81 0.013 0.90 0.81 0.85 0.83 0.971 0.878 8 h to 1 day

0.68 0.054 0.77 0.68 0.72 0.65 0.927 0.763 2 days to 8 days

0.934 0.115 0.79 0.93 0.86 0.79 0.954 0.893 10 days to 29 days

Weighted average 0.85 0.053 0.86 0.85 0.85 0.81 0.96 0.889
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