
Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2011, Article ID 107160, 16 pages
doi:10.1155/2011/107160

Research Article

Tactical Agent Personality

Chek Tien Tan1 and Ho-lun Cheng2

1 Games Studio, Center for Human Centred Technology Design, School of Software, Faculty of Engineering and Information Technology,
University of Technology, Sydney, Building 10, Level 4 Broadway NSW 2007, Australia

2 Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore 117543

Correspondence should be addressed to Ho-lun Cheng, hcheng@comp.nus.edu.sg

Received 30 August 2010; Revised 21 December 2010; Accepted 11 March 2011

Academic Editor: Soraia Raupp Musse

Copyright © 2011 C. T. Tan and H.-l. Cheng. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper proposes a novel agent personality representation model used to provide interagent adaptation in modern games,
coined as the Tactical Agent Personality (TAP). The TAP represents the tactical footprints of a game agent using a weighted network
of actions. Directly using the action probabilities to model an agent’s personality, removes the time and effort required by experts
to craft the model as well as eliminates the performance dependency on expert knowledge. The effectiveness, versatility, generality,
scalability, and robustness claims of the TAP architecture and its variations are applied and evaluated across a variety of game
scenarios, namely, First-person shooters (FPSs), real-time strategy (RTS) games, and role-playing games (RPG), where they are
shown to exhibit plausible adaptive behavior.

1. Introduction

In the player modeling domain of modern game AI, current
approaches are hard to generalize as they require manual
expert knowledge to be incorporated in each game. Player
modeling (obtaining a useful representation of the player for
adaptive game play) is one aspect of game AI that needs to be
emphasized because it represents a class of methods to enable
the synthesis of agent behavior adaptive towards the player.
And the player is one of the most important factors in cre-
ating intelligent game agents. Current methods [1–5] mainly
involve classification tasks based on manually specified player
archetypes. This requires much specialized expert knowledge
to be incorporated and hence limits the generalization
capabilities of these methods in different games.

Many studies in player modeling have been used for
player action prediction. Donkers and Spronck [6] made use
of preference functions to evaluate state preferences in order
to predict the next action of the player. Thue and Bulitko
[7] introduced a concept which they term as goal-directed
player modeling, whereby they made use of the fact that quest
goals are always known in advance in RPG games to predict

the player’s future actions to accomplish them. This limits
the method to only quest-driven games. Yannakakis and
Maragoudakis [8] also targeted at action prediction based on
a Bayesian network with a subset of attributes of the current
world state as the inputs. Van der Sterren’s [1] work uses a
naive Bayes classifier to classify player behavior into different
archetypes and then use it to customize the NPC agent’s
tactical behavior.

A number of player modeling approaches [2–5] have
been studied in the field of interactive storytelling whereby
the game story is automatically adjusted online according to
the play style. In general, they use similar techniques based
on the tracking of player actions and using them to adjust a
vector of player archetypes. For example, in El Nasr’s work
[5], the vector of archetypes include relunctant hero, violent,
coward, truth seeker, and self-interested.

As mentioned, these methods share a similar problem.
They mainly try to classify the player into archetypes, and it
was unclear how these archetypes were formulated, and from
their trait names, it seems possible that considerable expert
domain knowledge is needed to generate them. This limits
their generalization capabilities.

2 International Journal of Computer Games Technology

In view of these limitations, this paper hence describes
the Tactical Agent Personality (TAP), an effective model
used for inter-agent adaptation that eliminates the bag-
gage of requiring expert knowledge whilst providing high-
performance adaptation. The TAP model basically uses a
statistical model based purely on action footprints, and this
model is directly used in a learning framework to affect
future action choices, hence eliminating the need for an
intermediate level of expert intervention. The details can
be found in Sections 3.1 and 3, which describe the basic
TAP model and the corresponding TAP-based adaption
framework, respectively.

In the derivation of the TAP, a collection of work has
been performed to develop the TAP-based framework, and
this paper basically consolidates these efforts as a collective
and holistic proof of the feasibility and versatility of the
TAP model in the various modern games genres. The
subsequent sections describe these studies in detail, namely,
the basic TAP used in a multiagent cooperative FPS game
[9] (Section 3.1), Strategic Agent Personality (SAP) used in
a hierarchical learning framework for an RTS game [10]
(Section 4), and the TAP model based on temporal links used
in an RPG game [11] (Section 5). The paper lastly provides a
deeper analysis of the conclusions in view of all the studies as
a whole, as well as a discussion of future work in Section 6.

2. A Simple but Sufficient Personality Model

Generally, the TAP model can be described as a statistical
record of agent actions and hence can be directly modeled
without any human intervention. For any agent in the game
(PC or NPC), its TAP consists of a set of actions (that are
allowed to be adaptive), with each action tagged with a
relative action value as shown in Figure 1. Formally defined,
if P is the set of all agent personalities, the agent personality,
Pk ∈ P , of an agent k is a function that assigns an action
value to each action

Pk : A −→ [0, 1], (1)

where A is the set of all allowable actions.
As can be expected of such an arrangement, this simply

means that when an action selection mechanism is applied,
the action value determines the chance of choosing that
action in view of other simultaneous actions. That is to
say, the values are normalized to determine a probability of
choosing it. For example, if the actions set only contained the
actions Melee, Shoot, and Heal with action values 0.6, 0.8, and
0.6, respectively, then the resultant probabilities that each of
these actions will be taken are 0.6/(0.6 + 0.8 + 0.6) = 0.3,
0.8/(0.6 + 0.8 + 0.6) = 0.4, and 0.6/(0.6 + 0.8 + 0.6) = 0.3,
respectively. Hence, combining different action values in the
set exhibits different personalities. This is a simple, practical,
and flexible way to define personality in agents. A change
in personality inevitably leads to a change of actions being
exhibited, hence, affecting the agent’s behavior. Intuitively,
this is also true in humans, as our personalities directly
translate into the actions we take in life, and these actions
do not happen with absolute certainty every single time.

Heal
0.5

Melee
0.3

Shoot
0.2

Idle

Crouch

Goto

Die

Pk

Figure 1: An example of Tactical Agent Personality (TAP). Each
action is tagged with a relative action value that can be evaluated
into a probability of choosing it. The shaded ones are the adaptable
actions whilst the unshaded ones are nonadaptable.

The TAP is a generic personality model that can be
utilized differently in the different contexts. For the PCs,
the TAP is used to capture action footprints of the player,
or in other words, a statistical record of the actions taken.
The details of how this is done is left to the implementer
as the focus of this paper is on the framework and not the
implementation details. However, the most straightforward
way would be to obtain a cumulative average count of actions
over time. On the other hand, for the NPCs, the TAPs are
automatically generated and learnt over time (as depicted
in the next section), depending on the PCs’ TAPs. Using
this approach, adaptation can be limited within the space of
personalities, and action planning can take place thereafter,
independent of the adaptation process. This decouples the
potentially time-consuming adaptation process from the
actual action planning process, which allows more flexibility
for the game programmers to tweak performance.

Note also that in Figure 1, it can be seen that there are
actions that can be labeled as nonadaptable (like the die
action). This is simply an option that provides the game
designer the ability to turn off certain actions in case some
of these actions appear to result in erratic behavior after
user trials are performed. In the industry, this might be an
important step to fine-tune some of these NPC behaviors
in shipped versions of the games. That being said, however,
in the research sense, all actions should be made adaptable
to achieve the most generically behaving NPCs. This paper
leaves this option open to allow for more flexibility.

Although the concept of TAP is simple, it is shown to
be a powerful asset when used in an adaptation framework,
as will be seen in the subsequent sections. Moreover, the
simplicity of the TAP representation provides a great ease of
application which should entice game practitioners to use it
in actual commercial games. The next subsection describes
an adaptation framework that makes use of TAP.

International Journal of Computer Games Technology 3

TAPk

Adaptation

Adapternew

Execution Error Reinforcement

Figure 2: The adaptive game loop for the TAP adaptation frame-
work. A cyclic process that enables online training for the adapters.

TAP1 TAP2

Source Agent Source Agent
1’s TAP 2’s TAP

Adapter

TAPk

Adapted agent’s TAP

· · ·

Figure 3: The TAP adaptation process. For each agent, its adapter
takes in either one or more TAPs from other agents to generate its
own TAP.

3. The TAP Adaptation Framework

The TAP adaptation framework [10] is as shown in Figure 2.
It is basically a learning cycle that enables online training for
the adapters (as shown in Figure 3) belonging to each agent.
The details of each process are as follows.

(1) Adaptation. Each NPC agent possesses an adapter mod-
ule which is responsible for interpreting the other agents’
TAPs and hence generating its own TAP, as shown in Figure 3.
Again, it is to be highlighted that this paper focuses on the
framework and not the implementation details. As an initial
implementation, a feed-forward neural network with a single
hidden layer is chosen as the adapter might possibly deal
with large input dimensions, although it can be any function
approximator in general. A diagram of the network structure
is shown in Figure 5, and more implementation details can
be found in Section 3.1. Note that before using the action

values derived from the output of the neural network, they
would need to be converted into probabilities as described in
Section 2. The back-propagation algorithm [12] is used for
the network’s learning processes. Basically, the adapter can be
configured to either selectively take in the other NPCs’ TAPs
as input, or only take in the player’s own TAP, which would
make it a purely player-centric adaptation. After each agent
obtains its own TAP, the game proceeds to the execution
step.

(2) Execution. For the PC, the execution stage involves a
collection of the player statistics to make up the player’s TAP.
Each weight in the TAP is basically an average of the number
of times the respective action has occurred. For the NPCs,
this stage is an execution of actions based on their TAP. It
is worth pointing out that the end of execution does not
always mean a “game over” or “you win” scenario, although
it can be defined this way. Execution should end at a suitable
predefined time in the game which does not disrupt game
play, for example, map transitions in an RPG or respawn
periods in an FPS. At the end of execution, an error is
calculated for the next stage, which is reinforcement.

(3) Reinforcement. The error can also be thought of as the
reward function of game parameters, based on reinforcement
learning terminology [13]. This error is passed on to
each adapter to enable it to update the weights of the
neural network accordingly. At the end of reinforcement, an
updated adapter is being generated for each agent.

Also, at each loop, the adapters need to choose whether
to exploit the learnt knowledge and generate a well-adapted
TAP or to generate a random TAP to possibly create new
learning instances for the adapters (the classical exploration
versus exploitation dilemma [13]). Here, the standard ε-
greedy algorithm [13] is adopted. This means that at the
adaptation step, each adapter will generate a random TAP
with probability ε and exploit the knowledge to generate the
best adapted TAP otherwise.

The ε-greedy algorithm, though simple, has an intrinsic
advantage for modern games. Other than effectiveness in the
agent behavior, diversity also plays a part in making game
AI interesting to the player [14]. In an adversarial example,
when the enemy NPC AI is effective, it provides a challenge
for the player to overcome. When the AI is diverse, it provides
a variety of challenges for the player to play against, especially
when the player gets tired of trying to beat the optimal agent.
A similar statement can be made for cooperative game play in
ally NPC agents. The apparent randomness provided in the
ε-greedy algorithm provides diversity in the agent behavior,
as an enhancement to the effectiveness. Hence, the ε variable
can also be thought of as a mediator between effectiveness
and diversity, both of which are important criterions in
keeping game play interesting.

In this workflow, it can be seen that the resource-
intensive adaptation and reinforcement processes only hap-
pen in between executions, hence, eliminating disruptions
to the main game play. Also, the occasional exploration
mechanism adds variety to NPC behaviors which enhances
player entertainment value [15].

4 International Journal of Computer Games Technology

Figure 4: A screenshot of the fundamental TAP experimental game
environment. The game represents a typical FPS setting. The PC is
in the center, and each of the other NPCs in white are busy with
their own tasks chosen. The opponents are the zombies scattered
over the map in packs.

3.1. Evaluation. An initial evaluation of the basic adaptation
framework based on the fundamental TAP formulation is
performed using an actual game setting. A typical FPS game
scenario is built and a screenshot is as shown in Figure 4.

3.1.1. Experimental Methodology. The experiments in this
section aim to establish tests that can determine whether
the TAP model can provide competent adaptation towards
the player. Competency can be further separated into the
dimensions

(1) effectiveness,

(2) versatility,

(3) robustness,

of the TAP-based adaptation framework. Effectiveness mea-
sures the capability of the framework to provide the intended
results, which is for the agents to adapt and win the game.
Versatility measures how well the framework applies to
different player types, which aims to show that the TAP-based
framework can serve its primarily goal of providing player-
centric adaptation. Robustness measures the consistency of
the results in different situations, so as to ascertain the
validity of the results. The sections that follow describe the
game setups that aim to fulfil these test goals.

3.1.2. Experimental Setup. The goal of the game is to kill
all the zombies in the game world. The PC is a marine
equipped with a laser gun with limited range. The player is
accompanied with 5 ally NPCs carrying the same type of
gun. The PC and his NPCs can also run up close to inflict
melee damage on the opponent. The zombies are packed in
groups and when any of the agents are in range, they will
approach the respective agent and melee attack by biting
them. The game ends when either all zombies are killed or the
PC is killed. An agent’s melee attack does double the damage
compared to shooting because the agent exposes itself to the
attacks of the zombies and attracts more zombies towards
it. All attacks have a certain miss chance which results in no

Heal

Melee

Shoot

Heal

Melee

Shoot

Heal

Melee

Shoot

P1

P2

· · · (to Pn)

Pk

Figure 5: Experimental setup of the fundamental TAP model tests:
the neural network implementation of the adapter. This diagram
shows the neural network structure that is implemented for the
experiments. The number of input neurons (blue-colored neurons)
is equal to nt × na, where nt is the number of input TAPs and na the
number of adaptable actions in each TAP. The number of output
neurons (red-colored neurons) is hence na. The number of hidden
neurons (orange-colored neurons) is 8.

damage to the target when it happens. Also, all attacks have a
chance of hitting critically for twice the damage.

In these experiments, only the actions melee, shoot, and
heal are allowed to be adaptable, so that the results can be
more obvious. An example personality of that used in our
experimental setting is as shown in Figure 1. The action
planning system utilized in the experiments is basically
a rule-based system. The NPCs generally follows the PC
wherever he goes. At each zombie encounter, the NPCs will
choose to either run up close and melee the zombie, stay far
and shoot it, or if an agent’s health is less than full, decide
whether to heal him. The choice of these three actions are
dependant on the action values defined in the agents’ TAPs.

All the result graphs to be shown are based on analyzing
an error value E, which is calculated based on the following
formula:

E =
∑

i∈I

∣∣∣∣∣∣
σi

∑
j∈I
∣∣∣σ j
∣∣∣
×V(i)

∣∣∣∣∣∣
, (2)

where I is the set of game attributes useful in determining the
success rate, V(i) is the value of attribute i, and σi represents
the corresponding coefficients to balance the weight of each
attribute i ∈ I . In this evaluation, there are only two
elements in I . The value V(1) of the first element i = 1
represents the total number of ally NPC agents dead, and
the value V(2) of the second element i = 2 is the total
number of zombies alive. The corresponding coefficients σ1

and σ2 are 0.3 and 0.7, respectively. These two attributes are
the most straightforward metrics to determine the success

International Journal of Computer Games Technology 5

rate of the game. More weight was given to the former
attribute because the goal of the game is to eliminate the
zombies, and that the latter attribute is more of a factor
to determine teamwork effectiveness, though it does have
an effect on the game’s goal. Thus, it can be seen that E
inversely represents the degree of successful game play, which
can be used to determine the effectiveness of the TAP-based
framework.

As shown in Figure 5, The adapter is implemented as
a feed-forward neural network (with a single hidden layer)
using back propagation [12]. In each iteration, the agent will
choose to utilize the most updated TAP with probability ε
and generate a new random TAP otherwise (with probability
1 − ε). As the network weights will be continually updated
in each iteration, the initial network weights are simply
randomized.

The ε is initially set at 0.5 to allow for more explo-
ration and then progressively decreased to allow for more
exploitation thereafter. In the rounds that a random TAP is
generated, a threshold value Thres is set (at THRES = 0.2) to
determine whether the explored TAP performs good enough
to warrant a reinforcement. If E < THRES, the reinforcement
is performed, which consists of the following weight updates
on each network link:

w′i j= wij + κΔw + ηδjoi, (3)

where w′i j and wij are the new and previous network weights
from neuron i to neuron j, κ is the momentum (set at 0.9),
Δw is the last change in weight, η is the learning rate (set
at 0.7), δj is the error at neuron j, and oi is the output at
neuron i. The activation function uses the normal sigmoid
function. The error δj at each output neuron accounts for
the difference between the network generated outputs (oj)
and the outputs that generated good performance (tk)

δj = oj
(

1− oj
)(

tk − oj
)
. (4)

The error δj at each hidden neuron is a weighted sum of all
the outgoing errors (δj) of the neurons it is connected to,

δj = ok(1− ok)
∑

wjkδk. (5)

The number of input neurons (blue-colored neurons) is
equal to |P| × |A| where |P| is the number of input TAPs
and |A| the number of adaptable actions in each TAP.
The number of output neurons (red-colored neurons) is
hence |A|. The number of hidden neurons (orange-colored
neurons) is 8. The network topology is fully connected (only
in the forward direction) in between each layer. In general,
the parameters used in the framework for the experiments
aim to achieve a high rate of learning. This is because AI has
to be visible quickly in modern games.

3.1.3. Experiments and Results. The experiments devised aim
to test the effectiveness and versatility criterions as described
above. Robustness is an accompanying criterion that is
maintained throughout the tests.

(a) Effectiveness Test. Three sets of experiments are crafted
to determine whether the TAP-based framework is effective.
In the first set of experiments, the game scenario is run
500 times with scripted NPCs. Secondly, 500 iterations are
performed again with each NPC having its adapter adapting
to only the PC. In a third set of 500 iterations, the adapters
will adapt to the PC as well as all the other NPCs in the team.
Each round takes anywhere from 10 seconds to 5 minutes
depending on how fast the player is killed or how fast the
zombies are all killed.

To establish robustness, each iteration contains randomly
generated setups. In a single iteration, the scripted behavior
of the NPC is derived from fixed values of each attribute
found in the TAP representation. The notion of ”script”
here is actually not the conventional way of handcrafting
sequences of actions. The scripted agents here actually use
the same action selection mechanism as the adaptive NPCs.
The only difference being that the scripted NPC TAPs do not
change over time. For example, one setup might be to fix a
value of 0.8 for healing, 0.1 for shooting, and 0.1 for melee.
This means the scripted NPC will perform healing 80% of
the time and both shooting and melee 10% of the time. The
reason for doing so is to maintain the same behavioral space
for both teams, with the only difference being the adaptivity
based on the TAP. These fixed values are randomly generated
at the start of each iteration. Moreover, the positions of
the zombies are reshuffled randomly to test for robustness
(but with all sets of experiments having the same random
seed to ensure fairness). Hence, these experiments aim to
test whether the personality, adapted NPCs are better than
scripted ones and also to test the online adaptability of our
framework.

The effectiveness results are consolidated into a single
graph as shown in Figure 6. In general, it can be seen from
Figure 6 that the agents using the TAP framework (only
adapts to the PC) performs better as compared to scripted
agents, with the adaptive agents producing a total average
of E = 0.576 versus a total average of E = 0.628 for
scripted ones. Consequently, when using agents that adapt
to all other agents, it performs vastly better than both the
scripted and the agents that only adapts to the PC, with a
total average of E = 0.393. This might be due to the fact
that the team of agents that adapt to each other has implicitly
learnt cooperative behavior with the entire team, whilst the
team of agents that only adapt to the PC only learns how to
complement the PC.

To determine the significance of the results, unpaired
one-tailed two-sample heteroscedastic Student’s t-tests [16]
are performed on each pair of results. The null hypotheses
are that there are no differences between the performance
of the teams. The alternative hypotheses to be achieved are
that the fully adaptive framework performs better than the
player-only adaptive team, which in turn performs better
than the scripted framework. Hence, a one-tailed test is used
on each two-sample pair of results. All the experiment sets
are independent of each other, so an unpaired t-test is used.
As no assumption can be made about the variances of each
distribution, the heteroscedastic (unequal variance) t-test is
chosen. The results of the t-test are as shown in Table 1.

6 International Journal of Computer Games Technology

Table 1: Effectiveness test results for the fundamental TAP experiments: Table of t-test P-values.

Nonadaptive versus adaptive player Adaptive player versus adaptive Nonadaptive versus adaptive

T-test
<.010 <.010 <.010

P-value

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
100 200 300 400 500

Iteration

E

Adaptive
Adaptive-player only
Non-adaptive

Figure 6: Effectiveness test results for the fundamental TAP
experiments: plots of E against the number of iterations. Lower E
means better performance. A single point on the graph represents a
full game episode. The red-colored line at the top depicts the results
with nonadaptive agents, the black line below shows the results with
agents adaptive only towards the PC, and the blue line at the bottom
shows the results with agents adaptive to all other agents.

It can be seen that the P values are all lower than .01 which
implies that it can be said that the results are statistically
significant at the 1% level.

(b) Versatility Test. To establish versatility, further experi-
ments are also performed to show the adaptability across
different player personalities. In these experiments, one TAP
attribute value is varied from 0 to 1 while the other two
attributes are fixed. To establish robustness, the game is also
run for 500 iterations with each iteration differing in terms of
the randomized elements described in the effectiveness test
setups.

In the versatility tests, Figure 7 shows the results where
the melee and healing attributes are fixed at 0.5 each
respectively, whereas the shooting probability is varied from
0 to 1. Similarly, the melee and shooting attributes are fixed
at 0.5 whilst varying the healing attribute from 0 to 1. Again,
the experiment is repeated for the melee attribute.

The same conclusions as those deduced from Figure 6
(that the team-based adaptive agents perform better than
player-only adaptive agents which in turn perform better
than scripted agents in various configurations of the PC
personalities) can be drawn here also and can thus be now
generalized to more instances of the PC personalities. It
can also be observed that in the melee setup, there is an
abnormality that the nonadaptive team performs just slightly
better than the player-only adaptive team. However, this
result is insignificant as the P value for this pair is .210 as
shown in Table 2.

Compared to the healing and shooting setups, it can
also be seen that the improvements gained in healing is
diminished. As shown in Figure 7, as the player’s healing
attribute get higher, the performance of both types of
adapted agents gets poorer and closer to the scripted agents,
likely due to the fact that he gets killed more often (and
when the PC is killed, it marks the end of an execution).
This is because in the game mechanics, the healer is especially
vulnerable to death as the zombies are scripted to attack
healers first (because healing poses a greater threat to the
zombies).

To determine the significance of the results, unpaired
one-tailed two-sample heteroscedastic t-tests are performed.
The results of the t-test are as shown in Table 2. It can be seen
that most of the P values are lower than .01 which implies
that it is highly unlikely that the results have occurred by
chance. However, in the shooting setup, the P-value is .112,
which shows that it is likely that the result might be due to
chance. This might be due to the fact that changes in the
shooting attribute do not produce enough significant change
for the TAP-based agents to adapt and produce enough
improvement. Nevertheless, there is still well over 85% a
chance that the results are significant. Similar observations
can be made for the P-value of .017 in the melee setup
whereby the significance is at 95%.

4. Strategic Agent Personality

To enhance the TAP model’s generalization capabilities, the
TAP model was adapted [11] to enable strategic decision
making (on top of tactical decision making) as both tactical
and strategic planning aspects are important in modern
games. As described in the earlier subsections, the TAP
consists of tactical actions and hence is responsible for
tactical behavior like the immediate slash and heal actions.
Much of modern game agent intelligence involves strategic
decision making as well, an example of which occurs while
deciding when to do a flanking manoeuvre on the enemy.
In short, tactical decisions are short term and normally
individual based whereas strategic decisions are long term
and normally team based. As an example in an RTS game,
a commander needs to both microcontrol its subordinates
and at the same time decide on its own reactions towards
immediate enemy encounters.

With the aim of creating a combined tactical and
strategic decision-making mechanism into an agent, first the
Strategic Agent Personality (SAP) (as shown in Figure 8) was
introduced as a strategic version of TAP. In this SAP (the
diagram on the right in Figure 8), the primitive actions in the
TAP are replaced with high-level strategies. The commander
has several strategies in mind, each of which is assigned

International Journal of Computer Games Technology 7

Table 2: Versatility test results for the fundamental TAP experiments: Table of t-test P-values.

Nonadaptive versus adaptive player Adaptive player versus adaptive Nonadaptive versus adaptive

Shooting <0.010 0.112 <0.010

Healing <0.010 <0.010 <0.010

Melee 0.210 <0.010 0.017

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Melee

ε

Adaptive
Adaptive-player only
Non-adaptive

(a)

Shooting

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε

Adaptive
Adaptive-player only
Non-adaptive

(b)

Healing

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε

Adaptive
Adaptive-player only
Non-adaptive

(c)

Figure 7: Versatility test results for the fundamental TAP experiments: plot of E against the melee, shooting, and healing probability,
respectively. The color code is the same as in Figure 7.

Ptactical
Pstrategic

Hunt

attack

Attack

attack

attack

Critical

All

All

defend

& defend

Flanking0.2

0.2

0.2

0.2

0.2

0.1

0.1

Heal
0.3

0.3

Melee
0.1

Shoot
0.1

Idle

Die

Crouch

Goto

enemies

Figure 8: An example of Strategic Agent Personality (SAP). This
diagram shows the differences between the fundamental Tactical
Agent Personality (left) and Strategic Agent Personality (right). For
the TAP, each action is tagged with a relative weight that can be
evaluated into a probability of choosing it. The shaded ones are the
adaptable actions whilst the unshaded ones are nonadaptable. The
SAP is similarly defined.

a weight before the start of the decision making process.
Similarly, if Pstrategic is the set of all SAPs, the SAP of an agent,
Pstrategic ∈ Pstrategic, is a function that assigns a weight to each
strategy which is determined by the learning framework as
elaborated on in later subsections.

Pstrategic : S −→W , (6)

where S is the set of all strategies
Next, a hierarchical learning framework was crafted.

Every agent in the game possesses the cognitive framework
as shown in Figure 9. First, a strategy, si, is passed down
from a parent agent in the previous hierarchical level. Based
on this strategy and taking certain environment variables
into consideration, the tactical cognition and the strategic
cognition define the tactical personality, Ptactical , and strategic
personality, Pstrategy, respectively. Via the tactical personality,

Tactical
cognition

Command injection Command injectionReinforcementReinforcement

Environment
(ri)

Strategic
cognition

generator
Behavior
generator

Ptactical

Agent i + 1

Pstrategic

Bi

Si

Si+1

Agent i

Strategy

Figure 9: The combined tactical and strategic hierarchical learning
framework. The tactical behavior and its strategy for the agents
in the current hierarchical level is governed by the strategy being
generated from the commander agents in the previous hierarchical
level. Central to the framework are the adaptive tactical and
strategic personalities which control the selection process for the
behaviors and strategies for each agent.

the behavior generator outputs a sequence of actions, Bi, for
the agent’s current tactical behavior. Similarly, the strategy
generator makes use of the strategic personality to produce
a strategy, si+1, for use by the next agent(s). Note that
our definition of strategy is synonymous with that of a
command decision being passed down from a commander
to a subordinate.

8 International Journal of Computer Games Technology

4.1. Behavior and Strategy Generators. Again, common to
any online learning framework, the problem of exploration
versus exploitation needs to be addressed. For the behavior
generator, the standard ε-greedy algorithm [13] is adopted.
This basically means that the generator chooses a random
tactical behavior sequence with probability ε, and exploits
the knowledge to generate the best behavior (actions with the
highest weight) otherwise.

For the strategy generator, the selection process follows
a softmax rule [13] such that a higher wi value means a
higher chance of being selected, where wi ∈W is the weight
assigned to strategy si ∈ S. The probability, Pr, of selecting a
strategy, si, at time t is

Pr(s(t) = si) = ewi/τ
∑n

k=1 ewk /τ
, (7)

where n is the total number of strategies and τ is a tem-
perature variable to control the greediness of the approach
[13].

These straightforward selection methods ensure that
behavior generation and strategy selection can be done very
quickly without interrupting or overlapping with actual
game play. Also, a change in the weights directly leads to
a different tactical and strategic characteristic for an agent,
hence enabling a platform for variability of game play which
improves entertainment value. Note that strategy generation
uses a softmax rule as opposed to the ε-greedy method used
in tactical behavior generation. This is because strategically
a more constant performance is preferred over variability
whereas, tactically, variability is just as important (for the
purpose of entertainment value as mentioned). A softmax
rule ensures that higher weights would always result in a
higher chance of being selected whereas the ε-greedy method
chooses randomly when exploring.

After the strategies are passed down the hierarchy
and each agent has determined its behavioral action, the
game is executed until the next reevaluation time, T. This
reevaluation time is basically the time step that is set for the
agents to reevaluate the strategies and hence their behaviors.
It can be a periodic time in the game or milestones like map
transitions in an RPG or respawn times in an FPS. After
each execution, a reward value, rT , is generated via a reward
function. A particular formulation of the reward function in
an RTS setting is given in Section 6. This value, rT , represents
the environment factor as shown in Figure 9 which is passed
on to the reinforcement process in the tactical and strategy
cognitions.

4.2. Tactical and Strategic Cognitions. The tactical and
strategic cognitions each perform a two-stage process to
determine the personalities to be used in behavior and
strategy selection, namely, reinforcement and command
injection. In the reinforcement stage, only the behavior and
strategy in use (before the current reevaluation time step)
are affected. For each adaptable action, j, in the behavior
sequence in use, the update function for its weight, wj , is

wj = wj + α(rT − rT), (8)

where α is a positive step-size parameter to control the
magnitude of change. rT is a reference point to determine
whether the current reward is large or small [13], and it can
either be a heuristic value or simply the average rewards over
all the previous reevaluation time steps until the current time
step. Similarly, if strategy i is the current strategy in use, then
the update function for the strategy weight, wi, is

wi = wi + β(rT − rT). (9)

After the tactical and strategic personalities are updated
by the reinforcement process, the strategy received from the
previous hierarchy is used to temporarily affect the weight
values before the selection processes are performed. This is
the command injection stage. If si−1 is the strategy passed
down from the agent from the previous hierarchy,

P′tactical = Ctactical(Ptactical , si−1),

P′strategic = Cstrategic

(
Pstrategic, si−1

)
,

(10)

where P′tactical and P′strategic are the new personalities, respec-
tively. The functions Ctactical and Cstrategic can be rule bases
that define the effect of each individual strategy on the
current weights or a machine learning system trained to
assign changes to each of the weights according to the
strategy being received. In this work, the experimental
setup follows a rule-base system because the nature of our
game requires domain knowledge for each strategy received.
Having the functions as rule bases provides an avenue for the
inclusion of domain knowledge (specific to different game
genres) in our framework. The evaluation of this SAP-based
hierarchical learning framework will be shown in the section
that follows.

The purpose of having a separate reinforcement and
command injection stage is to ensure that the framework
is able to provide both individual and team behaviors. The
reinforcement stage provides for the individual learning
of the tactical and strategic personalities according to the
reward values. It can also be noted that it might be possible
to have what would seem like “conflicting” tactical and
strategic decisions. For example, the strategic decision of
the team might be to launch an all out critical attack but
an individual agent might choose to perform heal some of
the times. In terms of playability, this supposed “conflict” is
actually an advantage which adds variability in the NPCs’
behaviors. To appear realistic in an attack situation, some
NPCs would need to perform healing anyway. Nevertheless,
the heal action would still be performed much lesser due to
the probabilistic effects of the command injection functions
as shown above.

4.3. Evaluation. In order to evaluate the combined hierarchi-
cal framework in a real-game environment that has a typical
strategic component, an RTS scenario is built. A screenshot
of the environment is as shown in Figure 10.

4.3.1. Experimental Methodology. The experiments in this
section aim at complementing the effectiveness, versatility,

International Journal of Computer Games Technology 9

Figure 10: A screenshot of the SAP hierarchical learning framework
experimental game environment. The game represents a typical
real-time strategy (RTS) game setting. Team A consists of the
lighter-colored characters (mainly on the bottom portion of the
figure) whilst Team B consists of the dark-colored characters
(mainly on the top portion of the figure).

and robustness results shown in Section 3.1, so as to establish
two further tests, namely,

(1) generality,

(2) scalability,

of the TAP-based adaptation framework. Generality mea-
sures the effectiveness of the framework to cater to varying
opponent strategies in a different game genre. Scalability
measures how well the framework scales as the number of
adaptive agents gets larger. Robustness is an accompanying
criterion that also needs to be measured to show consistency
of the results. The sections that follow describe the game
setups that aim to fulfil these test goals.

4.3.2. Experimental Setup. The test environment consists
of two opposing teams with symmetrical initial geometric
positions and identical team structures. Each team consists
of agents having one base to defend. The team structure of
our main experiment is shown in Figure 11. The hierarchy is
static with a top level commander agent who directs multiple
subteams, with each subteam having a team leader agent
and a number of subordinate agents. Neither team would
have any tactical or strategic advantage at the start. The
experiments are performed in iterations that end when either
team wins or a draw occurs. A team wins only when the
opposing team’s base is destroyed.

The constituents that make up the tactical and strategic
personalities are also shown in Figure 11. Tactically, each
agent is able to either melee (close range attack with larger
damage), shoot (long range attack with lesser damage), or
heal an ally agent, much like the agents in the fundamental
TAP framework experiments in Section 3.1. The base acts as
a turret that has a longer range than agents and can attack a
single enemy at a time. Strategically, the options available to

the commander agents of each team are common strategies
used in RTS games [17]. and are described as follows.

(1) Hunting attack. All ally agents would move towards
and attack enemy agents first destroying all opponent
agents before moving on to destroy the enemy base.

(2) Critical attack. All ally agents would move towards
the enemy base and try to bring it down. They keep
attacking until either the enemy base is destroyed or
the whole team is annihilated.

(3) Flanking attack. Some ally agents would move
towards and attack enemy agents whilst the rest of the
ally agents move towards one side of the enemy base
and attack it from there.

(4) All defense. All ally agents would stay near the ally
base and attack any enemy agents that come within
range. When all enemy agents are destroyed, they will
move towards and attack the enemy base.

(5) Attack and defend. Some ally agents would stay near
the ally base whilst the rest would move towards and
attack the enemy agents or enemy base.

The tactical and strategic cognition basically consists of
the reinforcement and command injection stages, respec-
tively. The reward function used for the reinforcement stages
is as follows:

rT =
∑

ok∈O
γk|HT(ok)| −

∑

o′k∈O′
γ′k
∣∣∣HT

(
o′k
)∣∣∣, (11)

where rT is the reward at reevaluation time T, O is the set
of all objects of the player team (agents, buildings, turrets, or
other objects useful in determining the winning chance), and
O′ is the set of all objects of the computer-controlled team.
Ht(x) defines a function that returns the hit points or health
of a game object x at time t. γk and γ′k are coefficients to
balance the weight of each type of unit, where

∑
all k γk = 1

and
∑

all k γ
′
k = 1.

In this particular experimental setup, Ht(x) simply
returns the summation of all the hit points of each agent
(including the base agent) in the team. The coefficients γk
and γ′k follows a uniform distribution which assigns equal
weights to each agent. For the purpose of the experiments,
the magnitudes of change and reference point for the reward
functions in (9) and (8) are kept simple and uniform. The
magnitudes of change are set to α = 1 and β = 2 because the
strategies need to be updated faster to induce enough change
to be visible to the player. The reference point is set at rT = 0
so as to give full weight to the actual rewards calculated in the
algorithm.

4.3.3. Experiments and Results. The experiments devised aim
to test the generality and versatility criterions as described
above. Robustness is an accompanying criterion that is
maintained throughout the tests.

(a) Generality Test. The generality test determines whether
the TAP-based framework is still effective in a new game

10 International Journal of Computer Games Technology

Hunting
attack

attack
Attack &

Attack

attack
Critical

All
defend

defend

Defend

Flanking

0.2

0.3

0.2

0.2

0.3

0.1

Heal

0.5

Melee
0.3 Shoot

0.2

side

0.2

0.2

Attack
unit

0.2

Attack
base

0.1

Ptactical

Pstrategic

Commander

Leader 1 Leader 2

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Retreat

Figure 11: Experimental setup of the SAP hierarchical learning framework tests: units’ hierarchy. Each team in the experiment consists of
one commander, two subteam leaders, and 6 units. All agents have the same type of tactical personality (with different weights), but the
strategic personalities at each hierarchical level are made up of different items.

genre. For the team that incorporates the TAP-based frame-
work (Team A), the tactics and strategies are selected and
adapted according to the methodology as depicted in this
section. For the opposing team (Team B), the tactical
behavior is randomly selected between the 3 types shown.
For each experimental setup, one of the 5 strategies is chosen
and fixed for Team B. Hence, Team B portrays a team
scripted with a proper strategy and at the same time having
some variance in their tactical behavior. At the start of each
experimental setup, Team A has their tactical and strategic
personalities randomly initialized. A separate experimental
setup is also performed whereby Team B chooses a random
strategy at each iteration.

The main results are as shown in Figures 12 and 13. The
graphs show the reward value plotted against the number
of iterations. All the agents’ hit points as well as the bases’
hit points are included in the calculation of the reward as
depicted in (11). A positive reward means Team A has won
the game, and the larger it is, the larger the margin of success
(higher performance), and vice versa.

As it can be seen, all the experiments eventually converge
to a stable state where Team A constantly wins. In cases
where Team A randomly starts with a poor mix of tactics
and strategies (Sets 1, 2, and 3), it loses first and tries out
each of the other approaches and eventually finds a winning
strategy which is reinforced and constantly applied. In other
cases, Team A starts with a relatively good strategy (Sets
4 and 5) which is also reinforced and constantly utilized
to win the game. For experiment Set 2, it can be seen
that the opponent’s strategy (all Team B agents attacking
the base at once) is a harder one to beat, and the positive
rewards are small in value. Nevertheless, Team A still finds
the best approach in the end. In experiment Set 6, Team
A also manages to find a winning strategy even though
Team B randomly chooses a strategy at every round. After
around 400 iterations, there is a spike down probably due
to the randomness, but Team A still manages to recover

after another 50 iterations. In general, it can be observed
that the adaptive hierarchical framework enables the agent to
constantly perform better than teams with fixed approaches.

To determine the significance of the results, a single-
sample one-tailed Student’s t-test [16] is performed on
the results. An RTS game is a team-versus-team format
whereby each result is a single set of reward values that
represent the performance of the TAP-based team against
the scripted team. Hence, a single-sample t-test is used. The
null hypotheses are that there are no differences between the
performance of the teams (no difference with an outcome
with mean 0). The alternative hypotheses to be achieved are
that the TAP-based teams perform better than the scripted
team. Hence, a one-tailed t-test is used here.

The results of the t-tests are as shown in Table 3 where
it can be seen that the P-values are mostly lower than .01,
which implies that it is highly unlikely that the results have
occurred by chance in the majority of the cases. The P-values
in the left column are computed considering the full number
of iterations from the start. Here, the flanking and random
setups have the P-value under .01, which concludes that the
results are hardly by chance. However, the all defense has a P-
value of .077, meaning that this ambiguity chance is higher,
but the significance of the result is still well above 90%. The
hunting attack and attack + defense setups seems to have very
poor significance with P-values well above .5. As will be seen
in the next paragraph, this is attributed to the fact that the
learning process prior to convergence is also considered.

The P-values in the right column in Table 3 are computed
starting from iteration 250. This right column represents the
values after the learning framework has converged (it can be
seen from the graphs in Figures 12 and 13 that the framework
converges around iteration 250). It can be seen that after
convergence, the P-values are all well below .01, hence, it
can be concluded that the results are statistically significant
at the 1% level. This refutes the insignificance deductions as
discussed in the last paragraph.

International Journal of Computer Games Technology 11

0.3
0.2
0.1

0
−0.1
−0.2
−0.3
−0.4
−0.5
−0.6

R
ew

ar
d

(1) Hunting attack

100 200 300 400 500

Iteration

(a)

(2) Critical attack
0.1

0
−0.1
−0.2
−0.3
−0.4
−0.5
−0.6

R
ew

ar
d

100 200 300 400 500

Iteration

(b)

−0.7

(3) All defense

R
ew

ar
d

100 200 300 400 500

Iteration

0.3
0.2
0.1

0−0.1−0.2−0.3−0.4−0.5−0.6

(c)

Figure 12: Generality test results for the SAP hierarchical learning
framework: experiment sets 1, 2, and 3. The first three of six
sets of experimental setups where each setup consists of Team
B having a different fixed strategy. Each experiment set has the
reward value plotted against the number of iterations. Note that in
order to maximize visibility, the scales are not uniform across all
graphs.

(b) Scalability Test. To evaluate the scalability of the TAP-
based framework, a set of experiments is performed with an
increasingly large number of agents. The total time needed
for all the agents to complete decision making at each
reevaluation step is recorded and averaged over 500 runs for
each experiment set.

The scalability results are tabulated as shown in Table 4.
To investigate the growth factor, the corresponding graph is
plotted in Figure 14. Although the time required is increasing
in a roughly linear fashion with a factor of 0.0001 as per agent
(taking the rough gradient from the graph in Figure 14), it
still only takes slightly more than one millisecond for around
100 agents, which is rather fast. This means the framework
can be implemented in modern games with a large number
of intelligent agents.

0.25

0.2

0.15

0.05

0

R
ew

ar
d

(4) Attack + defense

0.1

100 200 300 400 500

Iteration

(a)

0.35
0.3

(5) Flanking

0.25
0.2

0.15

0.05
0

0.1

100 200 300 400 500

Iteration

R
ew

ar
d

(b)

−0.1
−0.2
−0.3
−0.4
−0.5

(6) Random
0.3
0.2

0
0.1

R
ew

ar
d

100 200 300 400 500

Iteration

(c)

Figure 13: Generality test results for the SAP hierarchical learning
framework: experiment sets 4, 5, and 6. The last three of six sets of
experimental setups where each setup consists of Team B having a
different fixed strategy. The exception is in the 6th set whereby Team
B chooses a random strategy in each iteration. Each experiment set
has the reward value plotted against the number of iterations. A
single point on the graph represents a full game episode. Note that
in order to maximize visibility, the scales are not uniform across all
graphs.

5. Temporal Links in TAP

Advancing from the fundamental TAP model concept, this
section introduces a temporal notion to the model to
further improve its generality in more game genres (like an
RPG game). To interpret other agents behaviors, capturing
sequential information is essential, apart from knowing
their actions. For example, in a doubles tennis game, if my
teammate frequently runs in front of the net right after his
serve, I would know that he is an aggressive player and,
thereby, act according to that. Sections 3.1 and 4 ignore this
temporal information which seems to possess two problems.
The first is a lack of descriptive power which might deter
adaptation performance. The second problem is that agents

12 International Journal of Computer Games Technology

Table 3: Generality test results for the SAP hierarchical learning framework: tables of mean and t-test P-values.

Mean values

Start from iteration 0 Start from iteration 250

Hunting attack −0.002 0.118

Critical attack −0.015 0.014

All defense 0.017 0.165

Attack + defense 0.162 0.172

Flanking 0.289 0.289

Random 0.074 0.090

t-test P-values

Start from iteration 0 Start from iteration 250

Hunting attack .607 <.010

Critical attack .999 <.010

All defense .077 <.010

Attack + defense <.010 <.010

Flanking <.010 <.010

Random <.010 <.010

Table 4: Scalability test results for the SAP hierarchical learning framework: table of average decision making times.

Number of agents 0 9 21 51 101

Average decision time (s) 0 0.00093 0.00362 0.00471 0.01185

0.01

0.01

0.01

0.01

A
ve

ra
ge

de
ci

si
on

ti
m

e

Number of agents

0

0

0

0
0 20 40 60 80 100 120

Figure 14: Scalability test results for the SAP hierarchical learning
framework: plot of average decision time versus number of agents.
The average time required for decision making is plotted against the
number of agents. The decision time increases roughly linearly with
the number of agents.

might produce erratic behavior when actions of a different
genre are added to their adaptable set.

Hence, an alternative reformation of the model is
performed by including directed edges between each action
as shown in Figure 15. Instead of placing weights on each
action, the weights are placed on each edge to denote a
preference of that transition. Note that Figure 15 is only
illustrative and does not show all the links for viewing clarity.
Formally, if P is the set of all TAPs, the TAP, Pk ∈ P , of an
agent k, is a function that assigns a value, W , to each action
pair

Pk : A× A −→W , (12)

where A is the set of all allowable actions. Now, the
model captures preferences of more descriptive tactical

patterns rather than only previous action preferences. As
explained, this enables more action genres to be adaptable
and improves adaptation performance, which will be shown
in the experiments. By including temporal knowledge in the
model, it is also hoped that the flexibility and accuracy in
interagent adaptation will be improved. In a nutshell, the
temporal TAP aims to improve adaptation performance and
accuracy.

When coupled with the TAP-based adaptation as
described in Section 3, the learning cycle (adaptation, exe-
cution, and reinforcement) is the same as that shown in
Figure 2. The only differences are in the inputs and outputs
of the adapter in the adaptation stage. If the adapter is
implemented as a feed-forward neural network as that shown
in Figure 5, instead of having the neurons as the values on
each action (node), now the neurons represent the values on
each transition (directed edge).

Similar to the fundamental TAP concept, the adaptation
process in the temporal TAP will be decoupled from
the action-planning process. After the adaptation process,
transition weights will be generated to produce an action-
transition graph as shown in the right-hand diagram in
Figure 15. After that, a separate action-selection mechanism
will be used to generate the actual behaviors (action
sequences). The specific implementation is again not the
main focus of this paper but the current mechanism is
a softmax selection probabilistically weighted by all the
outgoing transitions at each action.

5.1. Evaluation. To evaluate the temporal TAP-based frame-
work, a typical battle scenario is created in an RPG game
scenario. An RPG game is chosen as each game character
possesses a good variety of different action genres which can

International Journal of Computer Games Technology 13

Heal

Idle

Shoot

Dodge

Melee

Crouch

0.03

0.03 0.03
0.03

0.03

0.03

0.05

0.05

0.02

0.05

0.050.06

0.08

0.05

0.07

8

8

2

Heal

Idle

Shoot

Dodge

Melee

Crouch

Figure 15: An example, TAP based on temporal links. In the new TAP model (right), a weighted topology depicting the preferential sequence
of actions is added to the previous personality model (left).

effectively evaluate the enhancement claims of the temporal
TAP model. A screenshot of the game environment is as
shown in Figure 16.

5.1.1. Experimental Methodology. The experiments in this
section aim to further complement the results shown in
Sections 3.1 and 6, so as to reinforce two tests, namely, the

(1) generality,

(2) improvement,

claims of the TAP-based adaptation framework. The gener-
ality test here measures the effectiveness of the framework
to cater to yet another game genre (which is RPGs).
Improvement is measured here to test how well the temporal
enhancements improve the TAP framework. Once again,
robustness also needs to be measured to show consistency of
the results. The sections that follow describe the game setups
that aim to fulfil these test goals.

5.1.2. Experimental Setup. The game is modeled to mimic
the complexity and randomness of a modern game; hence,
different action genres that are vastly different in nature are
created. Each agent can be one of 3 classes of characters
typically found in RPG games, and each can possesses a
possibly different AI controller. Every agent possesses the
basic actions idle and dodge, but each character class possesse
different personal attributes and actions like to slash and
shout for the warrior and to heal and mind blast for the priest.

Various aspects of uncertainty found in a typical RPG
game are synthesized so as to show practical applicability
of this temporal algorithm. All class-specific actions have
a certain chance of whether it will succeed, miss, or inflict
critical (double) damage. The amount of damage or healing
inflicted is calculated based on the class attributes, weapon
attributes, and character attributes. In addition, all attacks
have a range and cool-down time as well.

5.1.3. Experiments and Results. The experiments devised aim
to test the generality and effectiveness criterions as described
above. Robustness is an accompanying criterion that is
maintained throughout the tests.

(a) Generality Test. Here another basic proof of concept
of the TAP-based framework is demonstrated in a new
RPG game genre. An RPG game consists of complex game
environments with a larger variety of different action genres
as compared to the FPS or RTS game. The game is set up
as a battle between two teams with the same setup. Each
team consists of 1 PC and 5 NPCs which are made up of 2
warriors, 2 mages, and 2 priests. The first team will be using
the enhanced TAP-based framework (TTAP team), whereas
the other team uses synthetically scripted behavior (scripted
team) in a series of runs.

The results are as shown in Figure 17. The S value on
the y-axis is basically a score value that is the normalized
difference between the hitpoints of the TTAP and scripted
teams. It is a value between −0.5 and 0.5, with the former
that is TTAP team has been wiped out with all scripted
team agents having full hitpoints, and vice versa. It can be
seen that the score is improving as the game proceeds that
is the adaptation does occur to make the agents perform
better.

A single-sample one-tailed Student’s t-test is performed
on the results to establish significance. As the results are
based on a single-reward value that represents the perfor-
mance of the TAP-based team against the scripted team, a
single-sample t-test is used here. The null hypothesis is that
there is no difference between the performance of the teams
(no difference with an outcome with mean 0). The alternative
hypothesis to be achieved is that TTAP team performs better
than scripted team. Hence a one-tailed test is used. As shown
in Table 5, the P-value obtained is less than .01, which means
that the claim is significant.

(b) Improvement Test. Here the experiments are set up to test
whether the improvement made to the temporal TAP model
is effective, in comparison with the fundamental TAP model
(as depicted in Section 3.1). To make this comparison, the
previous game scenario is duplicated. As with the experiment
in Section 3.1, 6 agents are used and the actions melee, shoot,
and heal recreated and made adaptable. The team using the
temporal TAP-based framework (TTAP team) is then set to
pit against a team using the old framework (TAP Team), both
with untrained adapters at first. The results are as shown in
Figure 18.

14 International Journal of Computer Games Technology

HP

HP HP

HP
HP HP

HP

HP
HP

HP
HP

HP

NPC5

NPC11
NPC7 NPC8

NPC9
NPC10

NPC4 NPC1 NPC2 NPC3
PC0

PC6
Manashield

Battle

+60

+30

Figure 16: A screenshot of the experimental game scenario used in evaluating the TAP based on temporal links. Two teams of agents
consisting of warriors, mages and priests pit against each other. They can be differentiated by the weapons they carry.

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

Iteration

S

100 200 300 400 500

Figure 17: Generality test results for the temporal TAP adaptation
framework: plot of S against number of iterations. A single point on
the graph represents a full game episode. S depicts the performance
difference in TTAP team versus scripted team.

Table 5: Generality and improvement test results of the temporal
TAP adaptation framework: table of t-test P-values.

TTAP versus scripted TTAP versus TAP

t-test P-value <.010 <.010

As shown in the graph, TTAP Team consistently performs
better than TAP Teams but as it gets closer to 500 rounds in
the performance seem, to converge to a draw state. This is
probably due to the fact that TAP team has an AI of its own
that also adapts as the game proceeds. In general the line stays
above 0 majority of the time with an average of 0.092, which
means TTAP team wins more as a whole. This shows that
the new temporal TAP framework is performing just slightly
better, and seems to converge to a draw.

Similar to the previous generality experiments, the
single-sample one-tailed Student’s t-test is performed on
the effectiveness results to establish significance. The null
hypothesis is that there is no difference between the perfor-
mance of the teams (no difference with an outcome with
mean 0). The alternative hypothesis to be achieved is that
TTAP team performs better than TAP Team. As shown in
Table 5, the P-value obtained is less than .01, which means
that the probability that the results are due to chance is also
low here.

0.25

0.2

0.1

0.15

0.05

0

−0.05
Iteration

S

100 200 300 400 500

Figure 18: Experimental results of the temporal TAP adaptation
framework over the old TAP framework: improvement test. plot of S
against number of iterations. A single point on the graph represents
a full game episode. S depicts the performance difference in TTAP
team versus TAP team.

6. Conclusion

In this paper, the TAP representation has been described
along with its use in an adaptation framework. In its
basic form, it is an agent personality representation that
captures a sufficient historical knowledge to allow inter-
agent adaptation. One major advantage is that the knowledge
represented is independent of expert knowledge. It also
has the advantage of being a uniform representation that
does not distinguish itself between PCs and NPCs, making
adaptation more generic (not only player-specific adapta-
tion) as required by the application domain. In growingly
popular massive multiplayer online games (MMOGs), for
example, Guild Wars (http://www.guildwars.com/), multiple
PCs and NPCs are mixed in a team for game missions.
As the agent architecture for both are the same, there is
no need for different paradigms to represent their behavior
profile. Moreover, some game worlds deliberately obscure
the differences. Hence, a homogenous representation is
advantageous for simplicity and efficiency.

Various methodology alternatives and enhancements are
also shown and evaluated to show the effectiveness, versatil-
ity, generality, scalability, and robustness claims of the TAP-
based adaptation framework. The evaluations form a wide
range of common modern game genres, whereby the TAP

International Journal of Computer Games Technology 15

framework has shown to enable plausible interagent adaptive
behavior in various forms. This includes the fundamental
TAP evaluated in an FPS, the strategic SAP evaluated in an
RTS, and the temporal TAP evaluated in an RPG. In all,
the TAP model and framework is shown to be a credible
formulation to enable adaptation from one agent to another.
However, there are important issues that should be discussed,
all of which can lead to further evaluations in future work.
These are highlighted in the final paragraphs that follow.

One issue is that most of the experiments involve
comparing against a scripted adversary. It might be argued
that the results might be dependant on how well the scripts
are made. However, it should be pointed out that these
“scripted” adversaries are actually carefully crafted such
that their behaviors represent the nonadaptive versions of
the same framework. They are not actually scripted in the
sense that they are given specific handcrafted sequences
of actions. For example, the adversaries in the main TAP
experiment performed in Section 3.1 contain the exact same
TAP model and the same action selection mechanism.
The only difference is that the TAP model is fixed and
nonadaptive. Hence, the scripting behavioral space is the
same action space in which the adaptive agents utilize. The
versatility tests also make sure that the conclusions can be
made across varying values of each ”scripted” action value in
the TAP model. These measures ensure that the experiments
are not based on a single biased version of a handcrafted
script. Nevertheless, larger scale experiments involving a
larger number of possible action value combinations can be
performed in the future to further support the conclusions.

Next, although using the action transitions seems to be
conceptually better than the actions themselves, experiments
have shown otherwise. The current conclusion is that when
the temporal TAP is being used in the adaptation process,
it suffers from the curse of dimensionality as the number
of weights to be adapted increases at an alarming rate.
This is due to the fact that the number of weights to be
adapted is directly proportional to the number of agents and
the number of actions each agent possesses. More clearly,
the number of adaptive weights (number of inputs to the
neural network) is N × k2, where N is the total number
of agents and k the number of actions each agent has. A
single increase in N means a k2 increase in the number of
weights to be adapted. Hence, this makes the framework
somewhat infeasible for large team sizes. Also, there exists
a limitation in terms of topology design. If the designer
decides on placing self-loops on actions, then he must be
prepared to cater for the possibility that the agent might learn
to keep doing the same action over and over again, which
might look erratic to the player. Moreover, the improvements
over the original nontemporal TAP framework is not that
great (as shown in Figure 18), so a stronger case needs to be
established before this increase in complexity can be justified.
As of now, it seems like the original simple TAP shown
in Section 1 is enough to perform the job, and that the
increase in complexity seems redundant. Possibly more kinds
of experiments on other games can be run here to further
strengthen this claim. Related to scalability, a complete set of
experiments can also be devised in future work to estimate

the time complexities. Some initial experiments (like the
scalability tests in Section 4) have been performed, but much
more can be done in order to obtain estimates on actual
bounds on the number of acceptable weights (and hence
actions and agents) without sacrificing model efficiency.

In the evaluations, some of the results also show that
a relatively large number of iterations are needed before
learning can converge. In the experiments shown in this
chapter, the TAP model has been utilized in model-free
frameworks. This means that the NPCs will initially look
stupid and try all sorts of erratic actions before finally
appearing intelligent when the learning evolves substantially.
This might not be that feasible in modern games where the
NPCs do not have such liberty. A possible resolution is to
introduce some model-based elements in the architecture in
future work.

In the TAP adaptation framework, the core of the adapta-
tion lies in the implementation of the adaptor. As mentioned,
the work in this paper focuses on the framework and not the
implementation, hence, the current implementation limits
itself to a single type of artificial neural network as the
implementation of the adaptor. Perhaps a possible future
work is to focus on the implementation of other network
configurations as well as other supervised, semisupervised
and nonsupervised methods so that they can be compared
empirically to determine the feasible qualities of each.

Lastly, it seems that variants to the fundamental TAP
architecture needs to be created when applying it to different
game genres. In the RTS game application, a SAP model was
introduced as an extension to cater to the hierarchical team-
based game play. Similarly, in the RPG game application,
a temporal version was introduced to cater to the increase
in action genres. Hence, a major step in future work is to
generalize the formalization of the model so as to cater to a
broader genre of game play. A first step might be to combine
the notion of tactical and strategic actions as well as perhaps
allow the option of toggling action and transition weights. In
view of the longer term, possibly a clearer definition of the
generic computer game space needs to be considered. In all,
this presents a plethora of opportunities to extend this work
to greater heights.

References

[1] W. van der Sterren, “Being a better buddy: interpreting the
player’s behavior,” in AI Game Programming Wisdom 3, pp.
479–494, Charles River Media, Cambridge, Mass, USA, 1st
edition, 2006.

[2] M. Sharma, M. Mehta, S. Ontan, and A. Ram, “Player
modeling evaluation for interactive fiction,” in Proceedings of
the Artificial Intelligence and Interactive Digital Entertainment
Conference Workshop on Optimizing Player Satisfaction, 2007.

[3] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen, “Interactive
storytelling: a player modelling approach,” in Proceedings of
the Artificial Intelligence and Interactive Digital Entertainment
Conference, pp. 43–48, 2007.

[4] H. Barber and D. Kudenko, “Dynamic generation of dilemma-
based interactive narratives,” in Proceedings of the Artificial
Intelligence and Interactive Digital Entertainment Conference,
pp. 2–7, 2007.

16 International Journal of Computer Games Technology

[5] M. S. El-Nasr, “Interaction, narrative, and drama: creating
an adaptive interactive narrative using performance arts
theories,” Interaction Studies, vol. 8, no. 2, pp. 209–240, 2007.

[6] J. Donkers and P. Spronck, “Preference-based player mod-
eling,” in AI Game Programming Wisdom 3, pp. 647–659,
Charles River Media, Cambridge, Mass, USA, 1st edition,
2006.

[7] D. Thue and V. Bulitko, “Modeling goal-directed players
in digital games,” in Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment Conference, pp. 285–298,
Marina del Rey, Calif, USA, 2006.

[8] G. N. Yannakakis and M. Maragoudakis, “Player modeling
impact on players entertainment in computer games,” in User
Modeling, vol. 3538 of Lecture Notes in Computer Science, pp.
74–78, Springer, Berlin, Germany, 2005.

[9] C. T. Tan and H. Cheng, “Personality-based adaptation for
teamwork in game agents,” in Proceedings of the 3rd Conference
on Artificial Intelligence and Interactive Digital Entertainment,
pp. 37–42, Palo Alto, Calif, USA, 2007.

[10] C. T. Tan and H. Cheng, “A combined tactical and strategic
hierarchical learning framework in multi-agent games,” in
Proceedings of the ACM SIGGRAPH Sandbox Symposium on
Videogames, Los Angeles, Calif, USA, 2008.

[11] C. T. Tan and H. Cheng, “TAP: an effective personality
representation for inter-agent adaptation in games,” in Pro-
ceedings of the Artificial Intelligence and Interactive Digital
Entertainment Conference, Los Angeles, Calif, USA, 2008.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” in Parallel
Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1, pp. 318–362, The MIT Press, Cambridge,
Mass, USA, 1986.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, The MIT Press, Cambridge, Mass, USA, 1998.

[14] I. Szita, M. Ponsen, and P. Spronck, “Effective and diverse
adaptive game AI,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 1, no. 1, pp. 16–27, 2009.

[15] P. Spronck, “A model for reliable adaptive game intelligence,”
in Proceedings of the International Joint Conference on Artificial
Intelligence Workshop on Reasoning, Representation, and Learn-
ing in Computer Games, pp. 95–100, 2005.

[16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C: The Art of Scientific
Computing, Cambridge University Press, Cambridge, UK, 2nd
edition, 1992.

[17] F. Sailera, M. Buro, and M. Lanctot, “Adversarial planning
through strategy simulation,” in Proceedings of the IEEE Sym-
posium on Computational Intelligence and Games, Honolulu,
Hawaii, USA, April 2007.

